
日本ソフトウェア科学会第 39 回大会 (2022 年度) 講演論文集

How many mutex bugs can a simple analysis

find in Go programs?

Fumi Takeuchi　Hidehiko Masuhara　Raffi Khatchadourian

　Youyou Cong　Keisuke Ishibashi

In open source software, it is known that there are many concurrency bugs. A previous study in Go

revealed that a considerable number of such bugs are simple (for example, 9% of the bugs are the ones

that forget to unlock a mutex,) through a manual program investigation. This paper tries to detect such

bugs by applying a simple analysis in order to see how far such a tool can match the manual analysis.

We built a simple intraprocedural control flow analysis in Go, and evaluated its performance with respect

to the open source programs with concurrency bugs reported in the previous study. Consequently, as for

quality, the recall is good at 88% and the precision is poor at 60%, and as for analysis time, it can be

finished within practical amount of time (for example, 1 second per 5000 LoC).

1 Introduction

Forgetting to unlock mutual exclusion (here-

inafter referred to as mutex) is one of the ma-

jor root cause of bugs dealing with mutex. This

bugs will lead to deadlock errors by waiting for re-

sources forgotten to be released which will never

be available. We call this bugs as mutex bugs, and

forgotten unlock as missing unlock.

Mutex bugs sometimes lead to serious and fatal

errors in software. For example, [27] is a mutex

bug found in MariaDB recently which will cause

denial of service fatal error. The cause of [27] was

that acquired mutex was not released correctly in

制御フロー解析を用いた排他制御誤り検出器の作成と Go言語製オープンソースソフトウェアに対する有効性検証
竹内 史　増原 英彦　叢 悠悠, 東京工業大学 数理・計算科学系, Tokyo Institute of Technology.

Raffi Khatchadourian, ニューヨーク市立大学 (CUNY)ハンター校, City University of New York (CUNY)

Hunter College.

石橋 圭介, 国際基督教大学, International Christian

University.

the error handling case.

Among many languages, the Go programming

language (hereinafter referred to as Go) programs

seems to have many mutex bugs. Like the case

of [27], mutex bugs can be found around error

handling, since programmers need to unlock mu-

tex at both of the main functionality and er-

ror handling. If a language has the feature of

try-catch-finally exception handling, program-

mers can put unlocks together in finally clause.

Nevertheless, Go intentionally omit this style ex-

ception handling system [9].

Previous study [48] shows that considerable

amout (about 9%) of bugs which will lead to dead-

lock error are mutex bugs. This study was con-

ducted by the manual investigation on real-world

open source software (hereinafter referred to as

OSS) written in Go.

We aim to propose a mutex bugs checker to see

how frequent those bugs appear in real world Go

programs. In this paper, mutex bugs checker made

with control flow analysis is shown in Section 3

and its evaluation regarding the quality and the

performance is illustrated in Section 5.

Previous studies enable the detection and auto-

mated fix, by using session graphs [43], behavioral

types [38] [39], novel constraints solver [41], mod-

eling Go’s communication between processes [45],

none of the above studies did investigate the pos-

sibility of a simple analysis, whose analysis could

be finished faster.

2 Background

2. 1 Go and Concurrency

To deal with concurrency, it is essential to con-

sider how to synchronize each process at some

point. Concurrent programs consist of two parts,

one is the point that is needed to run syn-

chronously, and the other is the point that can

be run simultaneously since each process does not

depend on the other [42]. The latter one is called

embarrassingly parallel, and for concurrent pro-

grams, the method to deal with the former is sig-

nificant. In fact, many techniques are proposed to

turn the former part into the embarrassingly par-

allel, and it is better to do so if it can be, but in

Go, the former case can be seen a lot, so this paper

focuses on that.

In Go, there are two commonly used methods

to deal with concurrency. One is mutual exclusion

(hereinafter referred to as mutex), and the other

is channel. Mutex is a well-known method often

used in other languages while channel is not.

2. 2 Mutex

Mutex is a well-known and low-level mechanism

for concurrency to exclude race conditions. Race

condition happens when concurrent processes op-

erate the same memory without synchronization

and if one of them is the write operation [42]. For

example, suppose there are one global variable V

and two processes executed concurrently A and B

which increment V. Here, increment operation is

done by loading from the memory, adding 1 to the

value, and then writing the result to the mem-

ory. The expected result value of V is 2 since it

is incremented two times. However, A and B are

done concurrently, it is possible that loading in A

is done between loading in B and writing in B.

In this case, both A and B write 1 to the V, and

this is called a race condition. Troublesomely, race

condition does not happen every time. In the pre-

vious example, it is also the case that A is done af-

ter the writing operation of B, which results in no

race conditions. Thereby, to eliminate the possi-

bility of race conditions, mutex is used. According

to [42], mutex has two states, locked and unlocked,

and two operations, lock and unlock. Each opera-

tion is done atomically, thus a process has to wait

to possess the lock of mutex from locked mutex

by the other process to be unlocked. Therefore,

for the above example, by wrapping lock and un-

lock to the same mutex object each increment in

A an B, the race condition is resolved and always

the result V becomes 2. Besides, the part which

must be protected due to race condition is called

a critical section.

However, since processes cannot go through the

critical section until the lock is released, if one

process forgets to release the lock, every process

cannot proceed. This is called a deadlock error.

Actually Go has two types of deadlocks: one is a

global deadlock, and the other is a partial dead-

lock. Global deadlock means all the processes are

halted, on the other hand, partial deadlock indi-

cates some of the processes are halted.

2. 3 Channel

Channel is like a stream with buffers to com-

municate between processes. Based on Hoare’s

Communication Sequential Processes [34] (here-

inafter called CSP), channel is brought to Go.

As Hoare described in [34], input and output be-

tween processes are the primitives of communica-

tions, and he illustrates communication as send

and receive values between processes. Originally

in [34], transceiving is done directly from and to

processes, however, he also considered communi-

cating through a port, a sort of variable for input

and output like a stream.

2. 4 Go and Static Analysis

In Go, static code analysis tools are often used.

One example is a lint tool called go fmt (or gofmt)

[8]. Go officially provides go fmt command for the

sake of formatting codes. Thanks to this static

analysis tool, the number of conflicts over coding

styles might be fewer than other languages since

Go programmers can delegate it to the standard

[46]. The other example is go vet [18]. As the

description in [18] says, go vet command reports

common mistakes in a heuristical way by analyz-

ing code statically.

2. 5 Control Flow Analysis

To analyze programs statically, it is needed to

know in what order the program will be executed.

To have this information, Control Flow Graph

(hereinafter called CFG) represents the order of

the program execution.

CFG is a directed graph that consists of basic

blocks which are composed of a linear sequence of

a fragment of a program [28]. In short, a part of

a program whose order of execution depends on

condition is expressed as a path, while a part of

a program that has immutable order is expressed

as a vertex. The example code in Go and its CFG

are shown in Listing 1 and Figure 1.

Listing 1 Example Code for CFG

1 // F returns the position of 0

2 // in the given lisrt.

3 // If no 0 in list, then return

4 // the length of the list.

5 func F(list []int) int {

6 fmt.Println("start")

7 counter := 0

8 for _, l := range list {

9 fmt.Println("check", l)

10 if l == 0 {

11 fmt.Println("0 found", counter)

12 break

13 }

14 counter++

15 }

16 fmt.Println("end")

17 return counter

18 }

The code in Listing 1 contains some conditional

branches. On line 6, if iteration over list has

not done, the body of for loop (hereinafter called

range.body) will be executed. Otherwise after

line 14 (hereinafter called range.done) will be ex-

ecuted. And on line 8, there is a if statement

dependent on the condition of the current list

item l in the iteration. If the condition holds,

break will be executed subsequently, so the suc-

cessor of this if body (hereinafter called if.then is

range.done.

And Figure 1 represents the CFG of Listing 1.

Each node consists of the fragment of linearly se-

quential processes †1.

2. 6 Strongly Connected Components

In a directed graph, if the subgraph of it con-

sists of vertices that are reachable from any other

vertices, the region is estimated as strongly con-

†1 Depending on the implementation of CFG builder,

the computation for conditions (such as l == 0 in the

Listing 1) are sometimes included in successive nodes

(here means 4 if.then instead of 2 range.body), but in

this paper, regarding it as included in its predecessor.

0 entry

fmt.Println("start")
counter := 0
, l := range list

1 range.loop

2 range.body

fmt.Println("check", l)
l == 0

3 range.done

fmt.Println("end")
return counter

4 if.then

fmt.Println("0 found", counter)

5 if.done

counter++

図 1 CFG of Listing 1

nected [28]. This is important for analysis since

this represents a loop in CFG. In the above ex-

ample Figure 1, the components which can be es-

timated as strongly connected are 1, 2, and 5, as

shown in Figure 2 with enclosed by the red dashed

frame.

By seeing strongly connected components (here-

inafter referred to as SCC) as a block, this graph

can be assessed as a directed acyclic graph (here-

inafter called DAG).

3 Methodology

To check mutex bugs, our checker attempts to

find missing unlocks, in other words, the position

that locks may be called without unlocked. List-

ing 2 shows the Go code contaning mutex bugs,

while Listing 3 is the fixed version of Listing 2.

The Listing 3 illustrates three patterns of the miss-

ing unlock positions.

Listing 2 Go Code with Mutex Bugs

1 func _(mu *sync.Mutex, cond bool, list []

int) {

2 mu.Lock()

3 if cond {

4 return

5 }

6 mu.Unlock()

7

8 for _, l := range list {

9 mu.Lock()

10 if l == 0 {

11 continue

12 }

13 if l == 1 {

14 break

15 }

16 mu.Unlock()

17 }

18 }

Listing 3 Fixed code of Listing 2

1 func _(mu *sync.Mutex, cond bool, list []

int) {

2 mu.Lock()

3 if cond {

4 + 　 mu.Unlock()

5 return

6 }

7 mu.Unlock()

8

9 for _, l := range list {

10 mu.Lock()

11 if l == 0 {

0 entry

fmt.Println("start")
counter := 0
, l := range list

1 range.loop

2 range.body

fmt.Println("check", l)
l == 0

3 range.done

fmt.Println("end")
return counter

4 if.then

fmt.Println("0 found", counter)

5 if.done

counter++

図 2 CFG of Listing 1 with a Red Dashed Frame of Strongly Connected Components

12 + 　　 mu.Unlock()

13 continue

14 }

15 if l == 1 {

16 + 　　 mu.Unlock()

17 break

18 }

19 mu.Unlock()

20 }

21 }

To check mutex bugs, firstly CFG built on

each function declaration including methods and

anonymous functions. Since the analysis strat-

egy is intraprocedural, CFG builder does not trace

function calls inside function declaration. In brief,

the checker interprets a project as a cluster of

many CFGs. After CFGs are constructed, the

checker traverses each CFG by DFS. At each DFS

step, lock and unlock operations for each mutex

object are recorded (corresponding to lockstate

in Listing 4). Then current CFG block is deter-

mined as containing mutex bugs or not (corre-

sponding to report procedure call in Listing 4).

The whole specification of the procedure is shown

in Listing 4.

Listing 4 Pseudo code of checker’s common

algorithm by DFS

1 Require:

2 block: CFG’s block,

3 lockstate: hashmap of boolean,

4 report: procedure which require block and

lockstate,

5

6 procedure DFS(block, lockstate, report)

7 for each node in block’s AST nodes

8 if node is an operation to a mutex

object

9 mu = the operated mutex object

10 if operation is lock

11 lockstate[mu] = true

12 else if operation is unlock

13 lockstate[mu] = false

14 end if

15 end if

16 end for

17

18 report(block, lockstate)

19

20 for each succ of block

21 DFS(succ, copy of lockstate, report)

22 end for

23 end procedure

The report function tries to find three types of

patterns, one is missing unlock reporter before re-

turn, another is the checker for lock-unlock consis-

tency in a loop, and the other is the missing un-

lock reporter before exiting from a loop by break.

These reporters are run sequentially and some-

times report the same missing unlock. If the re-

ports are the same suggestion, it must be reported

only one of them.

If any mutex objects’ lockstate are true and the

block does not have any successors, it should be

reported at the block since it means releasing of

the mutex object’s lock is not done before exiting

from the function. For example, in Listing 5, on

line 4, the mutex object mu has been locked but

not released before exiting from the function.

Listing 5 Missing Unlock Before Return

1 func _(mu *sync.Mutex, cond bool) {

2 mu.Lock()

3 if cond {

4 return

5 }

6 mu.Unlock()

7 }

And in Figure 3, the CFG of Listing 5 is shown.

As it indicates exiting block (block 1 and 2) from

the function does not have any successors, so it

can be reported. In those two, block 2 does not

have unlock call for mu, therefore it must be re-

ported. Additionally for the automated fix, unlock

call for mu must be inserted at the last position be-

fore return of AST nodes in block 2.

If any mutex objects’ lockstate is true, the cur-

rent block’s successor is a loop entrance (like

range.loop or for.loop), and the lock is acquired

in the SCC which includes the loop entrance, it

must be reported. For instance, Listing 6 and

corresponding CFG given in Figure 4 contains a

missing unlock in if.then block, since on line 5

continue is executed without unlock for mu. If

2

0 entry

1 if.done 2 if.then

図 3 CFG of Listing 5 with a Blue Doubled

Frame For the Block to be Reported

(corresponding AST Nodes are abbreviated)

continue is executed, acquirement for the lock of

mu on line 3 will be executed, although it causes

deadlock since it is not unlocked.

Listing 6 Missing Unlock in the Last of Loop

1 func _(mu *sync.Mutex, list []int) {

2 for _, l := range list {

3 mu.Lock()

4 if l == 0 {

5 continue

6 }

7 mu.Unlock()

8 }

9 }

If any mutex objects’ lockstate is true, the cur-

rent block is the bridge from an SCC, and all the

predecessors of the successors of the current block

except the current block are in the same SCC, it

must be a break from a loop without unlocking.

As an example, Listing 7 and its CFG in Figure 5

represents the error captured by this algorithm.

On line 5 break from a loop is executed without

unlocking the mumutex, therefore if mu lock is tried

to be acquired in other functions or somewhere in

the same function, it will be a deadlock error.

Listing 7 Missing Unlock in the Last of Loop

1 func _(mu *sync.Mutex, list []int) {

2 for _, l := range list {

3 mu.Lock()

4 if {

0 entry

1 range.loop

3 range.done

2 range.body

5 if.done

4 if.then

図 4 CFG of Listing 6 with a Red Dashed Frame of Strongly Connected Components and a Blue

Doubled Frame For the Block to be Reported (corresponding AST Nodes are abbreviated)

5 break

6 }

7 mu.Unlock()

8 }

9 }

4 Implementation

To implement simple analysis checker and auto-

mated fix tool in Go, commonly analysis package

[1] is used as mentioned in Section 2. Additionally,

previous studies use external languages or tools

like C++ [41] or Haskella and mCRL2 [39] [44],

but this paper only uses Go and Go libraries to

make the installation process as easy as possible.

The implementation will be available at https:

//github.com/prg-titech/mutexunlock.

4. 1 Control Flow Graph Builder

Under [1], some helpful checkers are provided by

the Go team semi-officially. For the CFG Builder.

Among those, ctrlflow package [5] helps to build

CFG from the source code. This package con-

structs CFG based on intraproceduraal analysis,

which means panic outside of a function will be

omitted from CFG.

However, [5] does not have the position informa-

tion corresponding to blocks. AST nodes in blocks

know their position in source code, but if a block

does not have any AST nodes, there is no way to

identify the block’s position, though the position

data are required to report or insert release calls

to developers.

For this reason, we decided to fork the ctrlflow

package [5] to supplement position information to

blocks. By virtue of this fork, for example, report

of break like in Listing 7 was realized, since with-

out position data the if then block have no AST

nodes which are required to report.

In terms of the limitation of using this package,

all the code must be buildable before static anal-

ysis. This is required to build the type and value

information for variables and functions.

4. 2 Fix Suggestion

[1] also has fix suggestion system. By putting

the start position, the end position, and the alter-

native text to TextEdit [2] struct, fix suggestion

could be implemented. To use, the only require-

ment is to add -fix option when executing the

analyzer binary.

0 entry

1 range.loop

3 range.done

2 range.body

5 if.done

4 if.then

図 5 CFG of Listing 7 with a Red Dashed Frame of Strongly Connected Components and a Blue

Doubled Frame For the Block to be Reported (corresponding AST Nodes are abbreviated)

4. 3 Strongly Connected Components

To know whether the nodes are strongly con-

nected or not, this implementation used Tarjan’s

algorithm [47] to construct SCC data because of

its efficiency.

5 Results

We evaluate our checker’s feasibility with re-

spect to real-world code by applying the checker

to selected open source software projects that are

already reported to have mutex bugs in the pre-

vious study. The selected projects are namely

BoltDB [3], CockroachDB [4], Docker [16]†2, etcd

[7], gRPC-Go [12], and Kubernetes [15] on GitHub.

First, from the bugs reported in the previous

study [48], we selected the ones that are related

to mutex bugs. The bug-fixing commits are re-

trieved from the previous study [48]. They col-

lected many fix commits related to concurrency

bugs from popular OSS. The number of such bug-

containing commits is 8.

Next, for each bug, we apply the buggy commit

to the detector, where a buggy commit is one ver-

sion prior to the fix commit of the bug reported in

†2 Docker repository is renamed to Moby

the paper [48].

Finally, by running the detector on those codes,

the results are obtained. The quality is calculated

based on recall and precision of the results, and

the performance is obtained by calculating mean

response time and its SD of 10 times running by

time command in GNU Bash [10] for each commit.

All the experiments are done on an arm64

Ubuntu 20.04 docker (runsc [11]) instance run-

ning on a VM.Standard.A1.Flex Oracle Cloud in-

stance, whose shared CPU is 4 core Ampere(R)

Altra (Neoverse-N1) and memory is 24GiB.

As a result, Table 5 shows the overall conse-

quence for the quality and the performance of the

checker with the all or target module source code

statistics. While each row represents the bug-

containing commit and the applied results with the

lines of code (hereinafter called LoC), the number

of functions, the number of blocks, and the num-

ber of edges included in the module, each column

shows the following statistics:

• “Runnable” represents whether the checker

can be run.

• “Detected” shows how many missing unlock

was reported.

• “False Positives” illustrates the number of

false-positive reports

• “True Positives” indicates the number of rea-

sonable reports.

• “Manually Fixed in [48]” column implies how

many missing unlock was fixed manually by

the programmer originally, in other words, the

number of bugs expected to be reported.

If the checker is run on a module, the lines of code

(hereinafter called LoC), the number of functions,

the number of blocks, and the number of edges

are the code included in the module, not a whole

project. Due to the limitation of the implemen-

tation, the number of functions, the number of

blocks, and the number of edges cannot be ob-

tained if the target source code is not buildable so

that those fields of the commit 8eba018 in Docker

[20] are empty.

表 1 Results of the Evaluation with Characteristics of Each Project, Including the Number of Detected Missing Unlock, the Number of False

Positives and True Positives, and the Number of Manually Fixed Bugs in [48] for Each Commit.

Project Commit Module* LoC

Number

of

Functions

Number

of

Blocks

Number

of

Edges

Run-

nable

Det-

ected

False

Posi-

tives

True

Posi-

tives

Manually

Fixed

in [48]

Mean

Response

Time (s)

SD (s)

CockroachDB a889f82 [21] gossip 513 89 552 489 △1 5 2 2(3)** 2** 2.14 0.15

CockroachDB 1f70b73 [23] (Project) 118,783 4,527 49,482 47,174 ✓ 5 4 1 1 20.06 0.27

CockroachDB d7bb465 [25] util 24,415 799 5,779 5,048 △2 1 1 0 0 2.57 0.25

Docker 64579f5 [19] proxy 512 20 106 85 △2 1 0 1 1 1.13 0.18

Docker 8eba018 [20] (Failed) 303,110 - - - × - - - (1)*** - -

gRPC-Go 7c6103d [24] (Project) 24,200 1,121 5,888 4,734 ✓ 4 3 1 1 2.78 0.33

Kubernetes 2e7993e [22] storage 5,279 134 1,037 956 △3 2 1 1 1 4.35 0.22

Kubernetes 07424af [26] cloudprovider 25,307 817 7,437 6,673 △3 2 1 1 1 6.95 0.26

Total 20 12 7(8)** 7(8)***

1 Runnable only on subdirectory due to memory usage
2 Runnable only on subdirectory due to build error
3 Runnable only on sub-sub directory due to build error and memory usage on subdirectory
* (Project) means the analyzer could be run on the whole project (the root path), (Failed) means the analyzer could not be run, and the others are the sub or

sub-sub directory (module) names which the analyzer could be run.
** The detector found a unknown missing unlock not fixed in [48]
*** Since the detector cannot be run on Docker 8eba018, it is excluded from the sum.

According to Table 5, for the quality, the recall

is 88% (7 out of 8) while the precision is 60% (12

out of 20). For the performance, it took 1 sec-

ond to analyze 5000 LoC in this experiment with

around 1-second start-up time. The plot is shown

in Figure 6.

As Figure 6 indicates, the relationship between

LoC and the time taken by applying to the target

source code indicates that the time is also linearly

increased as the LoC rises.

6 Discussion and Future Work

6. 1 Discussion

First of all, the rate of missing unlock is 8 out of

83 blocking bugs, which denotes around 9%. This

rate accords with the previous study results, as

[41] shows that the missing unlock bug is approxi-

mately 13% of all the bugs they used in their ex-

periment. Although it is not such a high rate, con-

sidering that these are caused by careless mistakes

that language design could eliminate, the fact that

missing unlock is fixable using the detector can-

not be ignored. Moreover, blocking bugs halt the

whole of the program suspiciously despite the dif-

ficulty of reducing the state complexity, so if 9% of

the blocking bugs can be reduced, it is meaningful.

Among them, Section 5 shows the simple analy-

sis algorithm can detect and fix automatically such

missing unlocks at a high rate, 100% for the detec-

tion and the automated fix with the exception of

the unbuildable case (if not included, 88% for the

detection and the automated fix). Although the

number of bugs is not so much compared to previ-

ous work [41], the fact that such a simple detector

demonstrates detection and fix at a high rate is

significant.

However, the number of false positives is con-

sidered to be a problem. Although according to

Section 5, false positives are 12 out of 20 which

mean 60% of the whole reports, obviously it will

depend on the code size and the domain of mod-

ules, as the results of CockroachDB’s 1f70b73 [23],

and gRPC-Go’s 7c6103d [24] in Table 5 imply that

reports on the whole project might have high rate

false positives at 75% to 80%. the report by ”Miss-

ing Unlock Before Exiting from a Function” for

Intentionally-separated lock and unlock functions,

and regarding a block as break block mistakenly

by ”Consistency After Breaking from Loop” com-

mit the high rate of false positives.

The rate of false positives has a tendency to

be high on the whole project running. The re-

sults of CockroachDB’s 1f70b73 [23], and gRPC-

Go’s 7c6103d [24] show 4 out of 5 and 3 out of 4

respectively, which means 75% to 80% of the re-

ports. Mainly, those false positives reports consist

of separate function design for lock and unlock like

transaction’s begin and commit function, in other

words intentionally not to unlock at the exit point

of a function. The other reports are caused by

the analysis algorithm. Listing 8 shows the false-

positive report due to the detection algorithm.

Listing 8 A False Positive Fix Suggestion in

gRPC-Go

1 diff --git a/balancer.go b/balancer.go

2 index 419e2146..36bdd220 100644

3 --- a/balancer.go

4 +++ b/balancer.go

5 @@ -357,6 +357,7 @@ func (rr *roundRobin)

Get(ctx context.Context,
opts BalancerGetOptions) (addr Ad

6 ...

7 for {

8 ...

9 if rr.waitCh == nil {

10 ch = make(chan struct{})

11 rr.waitCh = ch

12 } else {

13 ch = rr.waitCh

14 + rr.mu.Unlock()

15 }

16 rr.mu.Unlock()

y = 0.0002x + 1.36

0.00

5.00

10.00

15.00

20.00

25.00

0 20000 40000 60000 80000 100000 120000 140000

M
ea

n
 R

es
p

o
n
se

 T
im

e
(s

)

Lines of Code

図 6 The Relationship between Response Time of the Analyzer by Applying to Each OSS and

Lines of Code with SD Error Bar

17 ...

In Listing 8, unlock is done after the else clause

therefore it is not needed to insert rr.mu.Unlock()

in the else clause. This fix is suggested by the

”Consistency After Breaking from Loop” reporter

since the algorithm misunderstands the else clause

as the block which contains a break because of the

CFG shape. False-positive reports can be divided

into these two types.

For benchmark, Figure ?? indicates that the de-

tector running time is linearly increased along with

the amount of the sum of the number of blocks and

number of edges. This result meets the original

estimation described in Section 1 and Section 3.

Interestingly, Figure 6 indicates that the detec-

tor benchmark shows the linear increase with LoC,

which is a more suitable indicator for the scale of

a project because of its ease of measurement.

6. 2 Future Work

6. 2. 1 Algorithm

The current algorithm used in ”Consistency Af-

ter Breaking from Loop” has a problem to deter-

mine whether a block represents a break from a

loop or not. The cause of this problem is using

SCC to know whether it is a loop or not. Newer

methods to identify the loop are proposed like [50],

thus using these instead of SCC will solve this

problem.

Additionally, ”Missing Unlock Before Exiting

from a Function” is the one that commits to false

positives. One simple solution to the issue is that

firstly the just lock functions are marked as candi-

dates to be reported, and then if those are not con-

sistent in the callee function, it can be reported.

6. 2. 2 Channel Support

Currently, the tool does not support channels,

so it must be supported in the future. Actually,

previous work [41] can detect and automatically

fix it. Details will be described in Section 7.

6. 2. 3 Requirement for Full Builds and

Memory Usage

ctrlflow package [5] requires the target source

code to be buildable, which is not needed for the

construction of CFG. However, type information

for variables is necessary for detecting mutex ob-

ject. Currently, we could not find a great way

to deal with this requirement. On the side of

memory usage, 3 cases were failed due to the high

memory usage during the analysis. This is caused

by ctrlflow package [5], not our implementation

part. In [35] it looks runnable on relatively large

projects which is failed in this study due to mem-

ory usage error, therefore maybe using other pack-

age to build CFG would solve this problem.

7 Related Work

Bugs related to concurrency were examined a

lot. They can be roughly divided into three types:

one is the study about bugs itself, another is the

bug detection, and the last one is the automated

bug fix.

7. 1 Study on Concurrency-Related Bugs

[48] is the study which collects bug fixes re-

lated to concurrency bugs from popular OSS in

Go. As Go introduces the different approach from

other languages to communicate between pro-

cesses, which is channel, they studied how channel

impacted the number of concurrency bugs. The

result is that more than half of 171 bugs in to-

tal are caused due to Go’s characteristics. They

also mentioned that by using channel, the number

of shared memory synchronization bugs, which is

treated in this paper, is decreased. In contrast, the

number of bugs related to channel is increased.

Likewise, in other languages, concurrency-

related bugs in OSS are also researched as the

study on real-world bugs investigation. [49] is one

of the examples in Node.js. They collected and

analyzed 57 bugs among popular OSS in Node.js,

and as a result, they found two-thirds of them

are atomicity violations due to the lack of lan-

guage and runtime support of locks and transac-

tion mechanisms.

7. 2 Concurrency-Related Bugs Detec-

tion

For bug detection, there are dynamic and stat-

ical ways. Go provides a dynamic race condition

bug detection tool officially [6]. Additionally, Go

can detect global deadlock errors at runtime since

it can be investigated by observing processes and

timers. If none of them has progress, it means

the program faces a deadlock error. However, dy-

namic detection cannot know the bug until they

meet, therefore sometimes edge case bugs remain

in a released software emerged as investigated bugs

in [48].

Therefore statical analyses are essential, though

it is not provided officially. [31] illustrates the

current overview of statical concurrency bug de-

tection studies in Go. The first one which pro-

posed the statical concurrency bug detector in Go

[43] used session graph. From the same research

group, two research based on their single static

assignment intermediate representation and its be-

havioural types checking [38] [39] are published.

Moreover, they used bounded model checking in

[32] to aim for supporting more large scale source

code. The verification of communicating session

automata for concurrency is discussed in [40]. One

more study with Go and behavioral types is [33].

This paper extends the usage to not only dead-

locks but also race condition detections. Another

approach is proposing Mini-Go, a subset language

of Go only for concurrent features with its formal-

ization [45]. They used it to detect global deadlock

errors. In addition to those studies, [30] made a

transpiler from Go to Coq and applied the code

to model checker Iris [14] which provides concur-

rency proofs. Likewise, concurrency proofs are en-

couraged in other languages than Go. For exam-

ple, [38] uses Haskell implementation termination

checker and mCRL2 [13].

7. 3 Automated Fix for Concurrency-

Related Bugs

Concurrency-related bugs detection and fixes

are on dependence relation; it must be detected

at least to fix bugs.

[41] is a direct previous work published in 2021,

which uses a similar implementation to this paper.

Firstly they modeled channel and its communica-

tion between processes. Mutex can be expressed

as channel with a size 1 buffer they said, therefore

modeling is enough to support the fix for full Go’s

concurrency. Secondly, all the possible path com-

binations are calculated. Then, they used a novel

constraint solving method (using Z3 [29]) to ex-

amine buffer size overflow for each possible path.

Contrary to this paper, the path combination can

beyond the unit of function.

In other languages, for example in C, while [35]

provides automated fix using XXX, [37] fixes au-

tomatically by a constraint solving especially for

mutex lock and unlock in C.

As the other example in Java, [36] uses types-

tate analysis to examine Stream API which was

introduces in Java 8 [17]. This study is different

from others a little, in terms of its responsibility is

not fix but refactoring, because refactoring implies

the aspect of alleviation.

8 Conclusion

Bugs in software lead to critical problems oc-

casionally. Especially, concurrency-related issues

are relatively more complicated to fix among those

bugs due to the complex states rather than those

sequential programs’. Notably, the combination of

mutex for data race avoidance and error handling

without exception handling makes it harsh to man-

age mutual exclusion unnecessarily; nevertheless,

the worst-case scenario halts the whole program.

Besides, Go is a language advertised for con-

currency support without exception handling. In

fact, such mistakes can be found in the list of real-

world bugs [48] in Go. Seemingly, these bugs in

Go can be detected by using the analysis on the

CFG, therefore this paper discussed such a detec-

tor really works by applying to the real-world fixes

collected in [48].

For the detector, we focus on three missing mu-

tex releases, one is before exiting a function, an-

other is before going back to a loop’s head, and the

other is breaking from a loop. At each step of DFS

to traverse CFG, the lock state for each mutex ob-

ject is stacked, and if the latest state holds one of

the three conditions at least, it will be reported

at the block in the CFG. At the same time, fix

candidates are also suggested by inserting unlock

call for the mutex object at the position reports

emerged.

Meanwhile, the detector is evaluated by apply-

ing those fixes in OSS in [48]. Firstly, those fixes

which are suspected to be missing mutex unlock

picked up manually from blocking bugs list in [48].

Secondly, the detector is applied to one before

commit of the target fix. Finally, the evaluation is

done by comparing the detection and fix reports

with the original programmers’ fixes.

As a result, there are 8 out of 83 (approximately

9%) satisfying bugs. This result is reasonable con-

sidering other previous work like [41]. The detec-

tor can appropriately report and fix all of them ex-

cept for 1 build error project. On the other hand,

the rate of false positives is 75% to 80%, which is

relatively high especially for large LoC targets.

In conclusion, although the number of missing

unlock fixes are not so large, it can be stated that

if 9% of bugs ascribed to trivial mistakes can be

eliminated, it is worth applying. However, the rate

of false positives is rather problematic. To de-

crease the rate, the analysis algorithm must be

extended, like marking at call and checking at

callee. Moreover, the determination algorithm for

the loop must be replaced by other techniques like

[50]. Overall, through this study at least it can be

shown that the simple detector made with CFG

analysis can detect simple missing unlock.

9 Acknowledgment

I would like to express my gratitude to all the

lab members, my family and friends for their sup-

port.

参 考 文 献
[1] : analysis package, https://golang.org/x/too

ls/go/analysis. Accessed: 2021-12-21.

[2] : analysis package - golang.org/x/tools/go/analysis

- pkg.go.dev, https://pkg.go.dev/golang.org/

x/tools/go/analysis#SuggestedFix. Accessed:

2022-01-31.

[3] : boltdb/bolt: An embedded key/value

database for Go., https://github.com/boltdb/

bolt. Accessed: 2022-01-28.

[4] : cockroachdb/cockroach: CockroachDB -

the open source, cloud-native distributed SQL

database., https://github.com/cockroachdb/c

ockroach. Accessed: 2022-01-28.

[5] : ctrlflow package, https://golang.org/x/t

ools/go/analysis/passes/ctrlflow. Accessed:

2021-12-21.

[6] : Data Race Detector - The Go Programming

Language, https://go.dev/doc/articles/race d

etector. Accessed: 2022-01-31.

[7] : etcd-io/etcd: Distributed reliable key-value

store for the most critical data of a distributed

system, https://github.com/etcd-io/etcd. Ac-

cessed: 2022-01-28.

[8] : fmt command - cmd/fmt - pkg.go.dev, https:

//pkg.go.dev/cmd/gofmt@go1.17.6. Accessed:

2022-01-14.

[9] : Frequently Asked Questions (FAQ), https:

//go.dev/doc/faq. Accessed: 2022-08-01.

[10] : GNU Time - GNU Project - Free Software

Foundation, https://www.gnu.org/software/tim

e/. Accessed: 2022-01-30.

[11] : google/gvisor: Application Kernel for Con-

tainers, https://github.com/google/gvisor. Ac-

cessed: 2022-01-30.

[12] : grpc/grpc-go: The Go language implemen-

tation of gRPC. HTTP/2 based RPC, https:

//github.com/grpc/grpc-go. Accessed: 2022-

01-28.

[13] : Home ― mCRL2 202106.0 documentation,

https://www.mcrl2.org/web/user manual/index.

html. Accessed: 2022-01-31.

[14] : Iris Project, https://iris-project.org/.

Accessed: 2022-01-31.

[15] : kubernetes/kubernetes: Production-Grade

Container Scheduling and Management, https:

//github.com/kubernetes/kubernetes. Accessed:

2022-01-28.

[16] : moby/moby: Moby Project - a collaborative

project for the container ecosystem to assemble

container-based systems, https://github.com/m

oby/moby. Accessed: 2022-01-28.

[17] : Stream (Java Platform SE 8), https://docs

.oracle.com/javase/jp/8/docs/api/java/util

/stream/Stream.html. Accessed: 2022-02-01.

[18] : vet command - cmd/vet - pkg.go.dev, https:

//pkg.go.dev/cmd/vet@go1.17.6. Accessed: 2022-

01-14.

[19] : Merge pull request #7301 from vieux/-

fix goroutines leak exit code · moby/moby@64579f5,

https://github.com/moby/moby/commit/64579f

51fcb439c36377c0068ccc9a007b368b5a, 8 2014.

Accessed: 2022-01-30.

[20] : Merge pull request #17155 from janten/meit-

ner · moby/moby@8eba018, https://github.com

/moby/moby/commit/8eba018b610e425960ffb462

0dd7a0bfde5238d9, 10 2015. Accessed: 2022-01-30.

[21] : Merge pull request #583 from kkaneda/

kkaneda/use has space · cockroachdb/cockroach

@a889f82, https://github.com/cockroachdb/c

ockroach/commit/a889f828214fcfd76f7f2689b7

4cb4bec2bd23a1, 4 2015. Accessed: 2022-01-30.

[22] : Merge pull request #20674 from cae-

sarxuchao/decode-status · kubernetes/kubernetes

@2e7993e, https://github.com/kubernetes/kube

rnetes/commit/2e7993e05708c484a69291c6ddee

f6f3bcc9ee23, 2 2016. Accessed: 2022-01-30.

[23] : Merge pull request #3652 from Bram-

Gruneir/3270 · cockroachdb/cockroach@1f70b73,

https://github.com/cockroachdb/cockroach

/commit/1f70b73ae293d9cb18a0927e79ddc28d9e

5cf696, 1 2016. Accessed: 2022-01-30.

[24] : Merge pull request #794 from smallfish/mas-

ter · grpc/grpc-go@7c6103d, https://github.com

/grpc/grpc-go/commit/7c6103d142da5fd11a369

64c3a42cf698056b00b, 7 2016. Accessed: 2022-01-

30.

[25] : Merge pull request #9924 from petermattis/

pmattis/rm-resource-doc · cockroachdb/cockroach

@d7bb465, https://github.com/cockroachdb/c

ockroach/commit/d7bb465e695c8d6e53d3e2d566

4e764fe4f60f0d, 10 2016. Accessed: 2022-01-30.

[26] : Merge pull request #45179 from yguo0905/

ubuntu-node-e2e-test · kubernetes/kubernetes @07424af,

https://github.com/kubernetes/kubernetes/c

ommit/07424af12b79fe214549e990e014d302b37d

f5c8, 5 2017. Accessed: 2022-01-30.

[27] : CVE-2022-31623, https://cve.mitre.org/

cgi-bin/cvename.cgi?name=CVE-2022-31623,

May 2022. Accessed: 2022-08-03.

[28] Allen, F. E.: Control flow analysis, ACM Sig-

plan Notices, Vol. 5, No. 7(1970), pp. 1–19.

[29] Bjørner, N. and de Moura, L.: Z3: An efficient

SMT solver, Tools and Algorithms for the Con-

struction and Analysis of Systems,(TACAS ’08),
(2008).

[30] Chajed, T., Tassarotti, J., Kaashoek, M. F.,

and Zeldovich, N.: Verifying concurrent Go code

in Coq with Goose, The Sixth International Work-

shop on Coq for Programming Languages, CoqPL,

Vol. 2020, 2020.

[31] Dilley, N. and Lange, J.: An Empirical Study

of Messaging Passing Concurrency in Go Projects.

[32] Dilley, N. and Lange, J.: Automated Verifica-

tion of Go Programs via Bounded Model Checking,

International Conference on Automated Software

Engineering (ASE). IEEE/ACM, 2021.

[33] Gabet, J. and Yoshida, N.: Static race de-

tection and mutex safety and liveness for go

programs, 34th European Conference on Object-

Oriented Programming (ECOOP 2020), Schloss

Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

[34] Hoare, C. A. R.: Communicating sequential

processes, Communications of the ACM, Vol. 21,

No. 8(1978), pp. 666–677.

[35] Jin, G., Zhang, W., and Deng, D.: Automated

concurrency-bug fixing, 10th {USENIX} Sympo-

sium on Operating Systems Design and Implemen-

tation ({OSDI} 12), 2012, pp. 221–236.

[36] Khatchadourian, R., Tang, Y., and Bagherzadeh,

M.: Safe automated refactoring for intelligent par-

allelization of Java 8 streams, Sci. Comput. Pro-

gram., Vol. 195, No. 102476(2020), pp. 102476.

[37] Khoshnood, S., Kusano, M., and Wang, C.:

ConcBugAssist: constraint solving for diagnosis

and repair of concurrency bugs, Proceedings of the

2015 International Symposium on Software Test-

ing and Analysis, ISSTA 2015, New York, NY,

USA, Association for Computing Machinery, July

2015, pp. 165–176.

[38] Lange, J., Ng, N., Toninho, B., and Yoshida,

N.: Fencing off Go: Liveness and safety for

channel-based programming, Conference Record of

the Annual ACM Symposium on Principles of Pro-

gramming Languages, Association for Computing

Machinery, January 2017, pp. 748–761.

[39] Lange, J., Ng, N., Toninho, B., and Yoshida,

N.: A Static Verification Framework for Message

Passing in Go Using Behavioural Types, Proceed-

ings - International Conference on Software Engi-

neering, 2018.

[40] Lange, J. and Yoshida, N.: Verifying Asyn-

chronous Interactions via Communicating Session

Automata, Computer Aided Verification, Dillig,

I. and Tasiran, S.(eds.), Cham, Springer Interna-

tional Publishing, 2019, pp. 97–117.

[41] Liu, Z., Zhu, S., Qin, B., Chen, H., and Song,

L.: Automatically detecting and fixing concurrency

bugs in go software systems, Proceedings of the

26th ACM International Conference on Architec-

tural Support for Programming Languages and Op-

erating Systems, 2021, pp. 616–629.

[42] McCool, M. D., Robison, A. D., Reinders, J.,清文菅原, and エクセルソフト株式会社: 構造化並列プログラミング : 効率良い計算を行うためのパターン
, カットシステム, 2013.

[43] Ng, N. and Yoshida, N.: Static deadlock de-

tection for concurrent go by global session graph

synthesis, Proceedings of CC 2016: The 25th In-

ternational Conference on Compiler Construction,

Association for Computing Machinery, Inc, March

2016, pp. 174–184.

[44] Ng, N. and Yoshida, N.: Static deadlock de-

tection for concurrent go by global session graph

synthesis, Proceedings of CC 2016: The 25th In-

ternational Conference on Compiler Construction,

Association for Computing Machinery, Inc, March

2016, pp. 174–184.

[45] Stadtmüller, K., Sulzmann, M., and Thie-

mann, P.: Static trace-based deadlock analysis

for synchronous mini-go, Programming Languages

and Systems, Lecture notes in computer science,

Springer International Publishing, Cham, 2016,

pp. 116–136.

[46] Suzuki, D.: Go を使いこなせる組織作りの取り組み / DeNA.go # 1, https://speakerdeck.com/da

isuzu/dena-dot-go-number-1?slide=10, 5 2019.

Accessed: 2022-01-03.

[47] Tarjan, R.: Depth-first search and linear graph

algorithms, SIAM journal on computing, Vol. 1,

No. 2(1972), pp. 146–160.

[48] Tu, T., Liu, X., Song, L., and Zhang, Y.: Un-

derstanding real-world concurrency bugs in Go,

Proceedings of the Twenty-Fourth International

Conference on Architectural Support for Program-

ming Languages and Operating Systems, 2019,

pp. 865–878.

[49] Wang, J., Dou, W., Gao, Y., Gao, C., Qin, F.,

Yin, K., and Wei, J.: A comprehensive study on

real world concurrency bugs in Node.js, 2017 32nd

IEEE/ACM International Conference on Auto-

mated Software Engineering (ASE), October 2017,

pp. 520–531.

[50] Wei, T., Mao, J., Zou, W., and Chen, Y.: A

new algorithm for identifying loops in decompi-

lation, International Static Analysis Symposium,

Springer, 2007, pp. 170–183.

