
ar
X

iv
:2

21
0.

07
23

6v
3 

 [c
s.L

G
]  

16
 Ja

n 
20

23

Improved Bounds on Neural Complexity for

Representing Piecewise Linear Functions

Kuan-Lin Chen
Department of Electrical and Computer Engineering

University of California, San Diego
La Jolla, CA 92093, USA

kuc029@ucsd.edu

Harinath Garudadri
Qualcomm Institute

University of California, San Diego
La Jolla, CA 92093, USA
hgarudadri@ucsd.edu

Bhaskar D. Rao
Department of Electrical and Computer Engineering

University of California, San Diego
La Jolla, CA 92093, USA

brao@ucsd.edu

Abstract

A deep neural network using rectified linear units represents a continuous piece-
wise linear (CPWL) function and vice versa. Recent results in the literature esti-
mated that the number of neurons needed to exactly represent any CPWL function
grows exponentially with the number of pieces or exponentially in terms of the
factorial of the number of distinct linear components. Moreover, such growth is
amplified linearly with the input dimension. These existing results seem to indi-
cate that the cost of representing a CPWL function is expensive. In this paper, we
propose much tighter bounds and establish a polynomial time algorithm to find
a network satisfying these bounds for any given CPWL function. We prove that
the number of hidden neurons required to exactly represent any CPWL function
is at most a quadratic function of the number of pieces. In contrast to all previous
results, this upper bound is invariant to the input dimension. Besides the number
of pieces, we also study the number of distinct linear components in CPWL func-
tions. When such a number is also given, we prove that the quadratic complexity
turns into bilinear, which implies a lower neural complexity because the number
of distinct linear components is always not greater than the minimum number of
pieces in a CPWL function. When the number of pieces is unknown, we prove
that, in terms of the number of distinct linear components, the neural complexities
of any CPWL function are at most polynomial growth for low-dimensional inputs
and factorial growth for the worst-case scenario, which are significantly better
than existing results in the literature.

1 Introduction

The rectified linear unit (ReLU) [Fukushima, 1980, Nair and Hinton, 2010] activation has been by
far the most widely used nonlinearity and successful building block in deep neural networks (DNNs).
Numerous architectures based on ReLU DNNs have achieved remarkable performance or state-
of-the-art accuracy in speech processing [Zeiler et al., 2013, Maas et al., 2013], computer vision
[Krizhevsky et al., 2012, Simonyan and Zisserman, 2015, He et al., 2016], medical image segmen-
tation [Ronneberger et al., 2015], game playing [Mnih et al., 2015, Silver et al., 2016], and natural
language processing [Vaswani et al., 2017], just to name a few. Besides such unprecedented empiri-

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

http://arxiv.org/abs/2210.07236v3


n = 1

n = 2
n = 1

invariant to n

1 5 10 15 20

10
1

10
5

10
9

10
13

10
17

Number of pieces q

N
u

m
b

er
o

f
h

id
d

en
n

eu
ro

n
s
h

n = 1

n = 1

n = 2

n = 1

n = 2

1 5 10 15 20

10
1

10
4

10
7

10
10

Number of distinct linear components k

N
u

m
b

er
o

f
h

id
d

en
n

eu
ro

n
s
h

Theorem 1 and 3

[Hertrich et al., 2021]

[He et al., 2020]

Figure 1: Any CPWL function R
n → R with q pieces or k distinct linear components can be exactly

represented by a ReLU network with at most h hidden neurons. In Theorem 1 and 3, h = 0 when
q = 1 or k = 1. The bounds in Theorem 1 and the worst-case bounds in Theorem 3 are invariant to n.
(4) is used to infer h based on the depth and width given by Hertrich et al. [2021]. The upper bounds
given by Theorem 1 and 3 are substantially lower than existing bounds in the literature, implying
that any CPWL function can be exactly realized by a ReLU network at a much lower cost.

cal success, ReLU DNNs are also probably the most understandable nonlinear deep learning models
due to their ability to be “un-rectified” [Hwang and Heinecke, 2019].

The ability to demystify ReLU DNNs via “un-rectifying ReLUs” dates back to a seminal work by
Pascanu et al. in 2014. Because each of ReLUs in a hidden layer divides the space of the preceding
layer’s output into two half spaces whose ReLU response is affine in one half space and exactly
zero in the other, the layer of ReLUs can be replaced by an input-dependent diagonal matrix whose
diagonal elements are ones for firing ReLUs and zeros for non-firing ReLUs. Based on this ratio-
nale, Pascanu et al. [2014] proved that a neural network using ReLUs divides the input space into
many linear regions such that the network itself is an affine function within every region. Two ex-
cellent visualizations are shown in Figure 2 in [Hanin and Rolnick, 2019a] and [Hanin and Rolnick,
2019b]. At this point, it is quite evident that any ReLU network exactly represents a CPWL function.
Pascanu et al. also proved that the maximum number of linear regions for any ReLU network with a
single hidden layer is equivalent to the number of connected components induced by arrangements
of hyperplanes in general position where each hyperplane corresponds to a ReLU in the hidden
layer. Such a number can be computed in a closed form by Zaslavsky’s Theorem [Zaslavsky, 1975].
Furthermore, they showed that the maximum number of linear regions can be bounded from be-
low by exponential growth in terms of the number of hidden layers, leading to a conclusion that
ReLU DNNs can generate more linear regions than their shallow counterparts. In the same year,
Montúfar et al. improved such a lower bound and gave the first upper bound for the maximum num-
ber of linear regions. These bounds and their assumptions were later improved by [Montúfar, 2017,
Raghu et al., 2017, Arora et al., 2018, Serra et al., 2018, Hinz and van de Geer, 2019], just to name
a few. We refer readers to Hinz’s doctoral thesis for a thorough discussion on the upper bound of
the number of linear regions. Because a CPWL function with more pieces can better approximate
any given continuous function and a ReLU DNN exactly represents a CPWL function [Arora et al.,
2018], a ReLU DNN with more linear regions in general exhibits stronger expressivity. In summary,
this “un-rectifying” perspective provides us a new angle to understand ReLU DNNs, and the results
in some ways align with advances in approximation theory demonstrating the expressivity.1

Despite these advancements in linear regions, the complexity of a ReLU DNN that exactly represents
a given CPWL function remains largely unexplored. One can find that this question is the opposite
direction of the above-mentioned line of research. Although Arora et al. [2018] proved that any
CPWL function can be exactly represented by a ReLU DNN with a bounded depth, any estimates

1The approximation viewpoint is not the focus of this paper. The literature on approximation is vast and
we refer readers to [Vardi et al., 2021, Lu et al., 2017, Eldan and Shamir, 2016, Telgarsky, 2016, Hornik et al.,
1989, Cybenko, 1989], just to name a few.

2



regarding the width or number of neurons of such a network were not given. The resources required
for a ReLU neural network to exactly represent a CPWL function remained unknown until He et al.
[2020] provided a bound to the complexity of a ReLU network that realizes any given CPWL func-
tion. They proved that the number of neurons is bounded from above by exponential growth in
terms of the product between the number of pieces and the number of distinct linear components of
a given CPWL function. Such an exponential bound also grows linearly with the input dimension.
Because the number of pieces is an upper bound of the number of distinct linear components for
any CPWL function [Tarela and Martínez, 1999, He et al., 2020], the bound grows exponentially
with the quadratic number of pieces, which seems to imply that the cost for representing a CPWL
function by a ReLU DNN is exceedingly high.

The most recent upper bound can be inferred from a recent work by Hertrich et al. [2021] although
the number of hidden neurons was not directly given. Hertrich et al. [2021] proved a width bound
in terms of the number of distinct linear components under the same depth used by Arora et al.
[2018] and He et al. [2020].2 In particular, they proved that the maximum width of a ReLU network
that represents any given CPWL function can be polynomially bounded from above in terms of
the number of distinct linear components. However, the order of such a polynomial is a quadratic
function of the input dimension, which can be immensely large for a small number of pieces or linear
components when the input dimension is large. This bound grows larger with the input dimension
even though the underlying CPWL function is just a one-hidden-layer ReLU network using only
one ReLU (see Figure 1 for the difference between n = 1 and n = 2 when q = 2 or k = 2).

In this paper, we provide improved bounds showing that any CPWL function can be represented
by a ReLU DNN whose neural complexity is bounded from above by functions with much slower
growth (see Figure 1). Our results imply that one can exactly realize any given CPWL function by
a ReLU network at a much lower cost. On the other hand, in addition to guaranteeing the existence
of such a network, we also give a polynomial time algorithm to exactly find a network satisfying our
bounds. To the best of our knowledge, our results regarding the computational resource for a ReLU
network, i.e., the number of hidden neurons, are the lowest upper bounds in the existing literature
and the algorithm is the first tailored procedure to find a network representation from any given
CPWL function. Key results and main contributions of this paper are highlighted below.

1.1 Key results and contributions

Quadratic bounds. We prove that any CPWL function with q pieces can be represented by a
ReLU network whose number of hidden neurons is bounded from above by a quadratic function of
q. We also give the corresponding upper bounds for the maximum width, i.e., the maximum number
of neurons per hidden layer, and the number of layers for such a network. The maximum width is
bounded from above by O(q2) and the number of layers is bounded from above by a logarithmic
function of q, i.e., O(log2 q). These bounds are invariant to the input dimension. For any affine
function, the upper bounds for the maximum width and the number of hidden neurons are zero.

Further improvements on neural complexity. When the number of distinct linear components
k of any CPWL function is given along with the number of pieces q, the quadratic bounds O(q2)
for the number of hidden neurons and the maximum width turn into bilinear bounds of k and q, i.e.,
O(kq). Such a change reduces the neural complexity because k ≤ q, and q can be much larger than
k. Still, these bounds are independent of the input dimension.

Finding a network satisfying bilinear bounds. We establish a polynomial time algorithm that
finds a ReLU network representing any given CPWL function. The network found by the algorithm
satisfies the bilinear bounds on the number of hidden neurons and the maximum width, and the
logarithmic bound on the number of layers. Note that such an algorithm also guarantees that one
can always reverse-engineer at least one ReLU network from the function it computes. Compared
to the general-purpose reverse-engineering algorithm proposed by Rolnick and Kording [2020], our
algorithm specializes in the situation when pieces of a CPWL function are given.

2The number of “affine pieces” used by Theorem 4.4 in [Hertrich et al., 2021] should be interpreted as
the number of distinct linear components to best reflect the upper bound for the maximum width. Such an
interpretation of “affine pieces” is different from the convention used by Pascanu et al. [2014], Montúfar et al.
[2014], Arora et al. [2018], Hanin and Rolnick [2019a], and this work.

3



Improved bounds from a perspective of linear components. When the number of pieces of a
CPWL function is unknown and only the number of linear components k is available, we prove that
the number of hidden neurons and maximum width are bounded from above by factorial growth.
More precisely, O (k · k!). The number of layers is bounded from above by linearithmic growth, or

O(k log2 k). However, when the input dimension n grows sufficiently slower than k, e.g.,O
(√

k
)

,

then bounds for the number of hidden neurons and maximum width reduce to polynomial growth
functions of order 2n+ 1; and the linearithmic growth reduces to O (n log2 k) for the depth.

A new approach to choosing the depth. Instead of scaling the depth of a ReLU network with the
input dimension [Arora et al., 2018, He et al., 2020, Hertrich et al., 2021], we reveal that construct-
ing a ReLU network whose depth is scaled with the number of pieces of the given CPWL function
is more advantageous. Such a scaling turns out to be the key to deriving better upper bounds. This
insight is provided by the max-min representation of CPWL functions [Tarela et al., 1990]. The
importance of this scaling on the depth in ReLU networks has not been well recognized by existing
bounds in the literature. We discuss implications of different representations in Section 4.

2 Preliminaries

Notation and definitions used in this paper are set up and clarified in this section. The set
{1, 2, · · · ,m} is denoted by [m]. I [condition] is an indicator function that gives 1 if the condi-
tion is true, and 0 otherwise. The CPWL function is defined by Definition 1 below.

Definition 1. A function p : Rn → R is said to be CPWL if there exists a finite number of closed
subsets of Rn, say {Ui}i∈[m], such that (a) Rn =

⋃

i∈[m] Ui; (b) p is affine on Ui, ∀i ∈ [m].

A family of closed convex subsets, say {Xi}i∈[q], satisfying Definition 1 is also referred to as a
family of convex regions, affine pieces or simply pieces for a CPWL function in this paper. Def-
inition 1 follows the definition of CPWL functions by Ovchinnikov [2002]. Notice that there are
different definitions in the literature. For example, Chua and Deng [1988] and Arora et al. [2018]
defined a CPWL function on a finite number of polyhedral regions. However, their definitions are
essentially the same as Definition 1 because any family of closed subsets satisfying Definition 1 can
be decomposed into polyhedral regions. It is possible that some of the closed subsets satisfying
Definition 1 are non-convex even though the number of them reaches the minimum (see Figure 2 in
[Wang and Sun, 2005]). The continuity is implied by Definition 1 due to the subsets being closed.

Because the goal of this paper is to bound the complexity of a ReLU DNN that exactly represents
any given CPWL function, it is necessary to be able to measure the complexity of a CPWL function.
The complexity of a CPWL function can be described using two different perspectives. One is the
number of pieces q, which is the number of closed convex subsets satisfying Definition 1. Because
this number has a minimum and any finite number above the minimum can be a valid m in Definition
1, the bounds become obviously loose when the number of pieces is not the minimum. Without loss
of generality, we are interested in the number q when it is the minimum. The other is the number of
distinct linear components k. A linear component of a CPWL function is defined in Definition 2.

Definition 2. An affine function f is said to be a linear component of a CPWL function p if there
exists a nonempty subsetM ⊆ [m] such that f(x) = p(x), ∀x ∈ ⋃i∈M Ui where {Ui}i∈[m] is a
family of the minimum number of closed subsets satisfying Definition 1.

A greater q or k gives a CPWL function more degrees of freedom because a CPWL function allowed
to use q + 1 pieces or k + 1 arbitrary linear components can represent any CPWL function with q
pieces or k distinct linear components and still have the flexibility to modify existing affine maps
or increase the number of distinct affine maps of the CPWL function. Although increasing them
both leads to a CPWL function with greater flexibility, the speed of upgrading degrees of freedom
is different from each other. Note that a CPWL function with q pieces can never have more than q
distinct linear components and a CPWL function with k distinct linear components can easily have
more than k minimum number of pieces. Such a difference in a 1-dimensional case can be clearly
observed from Figure 1 in [Tarela and Martínez, 1999]. Note that it is possible for two disjoint
subsets from a minimum number of closed subsets satisfying Definition 1 to share the same linear
component. In other words, a linear component can be reused by multiple pieces. Hence, increasing
k gives faster growth than increasing q for the complexity and expressivity of CPWL functions.

4



We define the ReLU activation function in Definition 3. The ReLU network defined in Definition 4
is a simple architecture which is usually referred to as a ReLU multi-layer perceptron. Definition 5
defines the corresponding number of hidden neurons, depth, and maximum width.

Definition 3. The rectified linear unit (ReLU) activation function σ is defined as σ(x) = max(0, x).
The ReLU layer or vector-valued rectified linear activation function σk is defined as σk(x) =
[

σ(x1) σ(x2) · · · σ(xk)
]T

where x =
[

x1 x2 · · · xk

]T

.

Definition 4. Let l be any positive integer. A function g : Rk0 → R
kl is said to be an l-layer

ReLU network if there exist weights Wi ∈ R
ki×ki−1 and bi ∈ R

ki for i ∈ [l] such that the
input-output relationship of the network satisfies g(x) = hl(x) where h1(x) = W1x + b1 and

hi(x) = Wiσki−1

(

hi−1(x)
)

+ bi for every i ∈ [l] \ [1].
Definition 5. The sum

∑L−1
l=1 kl and the maximum maxl∈[L−1] kl for L > 1 are referred to as the

number of hidden neurons and the maximum width of an L-layer ReLU network, respectively. Any
1-layer ReLU network is said to have 0 hidden neurons and a maximum width of 0. An l-layer ReLU
network is said to have depth l and l − 1 hidden layers.

3 Upper bounds on neural complexity for representing CPWL functions

The correspondence between CPWL functions and ReLU networks was first clearly confirmed by
Theorem 2.1 in [Arora et al., 2018] although a weaker version of the correspondence can be inferred
from Proposition 4.1 in [Goodfellow et al., 2013]. Arora et al. [2018] proved that every ReLU net-
work R

n → R exactly represents a CPWL function, and the converse is also true, i.e., every CPWL
function can be exactly represented by a ReLU network. One of the key steps used by Arora et al.
[2018] to construct a ReLU network from any given CPWL function relies on an important repre-
sentation result by Wang and Sun [2005], stating that any CPWL function can be represented by a
sum of a finite number of max-η-affine functions [Magnani and Boyd, 2009] whose signs may be
flipped and η is bounded from above by n + 1 where η is the number of affine functions in the
max-η-affine function. The implication of using this representation is later discussed in Section 4.1
and its max-η-affine functions are given therein. The bound η ≤ n+1 in the representation allowed
Arora et al. [2018] to further prove that there exists a ReLU DNN with at most

⌈

log2(n+ 1)
⌉

(1)

hidden layers to exactly realize any given CPWL function. However, the computational resource
required for a ReLU network to exactly represent any CPWL function had not been available in the
literature until the work by He et al. [2020].

3.1 Upper bounds in prior work

He et al. [2020] proved that a CPWL function R
n → R with q pieces and k linear components can

be represented by a ReLU network whose number of neurons is given by






O
(

n2kq+(n+1)(k−n−1)
)

, if k ≥ n+ 1,

O
(

n2kq
)

, if k < n+ 1.
(2)

The number of hidden layers in such a ReLU DNN is also bounded from above by
⌈

log2(n+ 1)
⌉

,
which is the same as the bound derived by Arora et al. [2018]. One of their significant contributions
in our view is that they utilize the number of pieces and linear components of a CPWL function to
bound the complexity of the equivalent ReLU network. He et al. [2020] also proved the relationship

k ≤ q ≤ k! (3)

for any CPWL function. Note that the bounds in (3) on the number of pieces q and linear components
k were first mentioned by Tarela and Martínez [1999] who developed the lattice representation of
CPWL functions. Asymptotically, the bounds in (2) for k ≥ n + 1 and k < n + 1 are amplified
linearly with the input dimension n for any fixed k. Due to (3), they can be further bounded from

above by O
(

n2q
2+(n+1)(q−n−1)

)

and O
(

n2q
2
)

in terms of q and n. On the other hand, in terms

of k and n, they can be further bounded from above by O
(

n2k·k!+(n+1)(k−n−1)
)

and O
(

n2k·k!
)

.

5



Because these bounds grow much faster than exponential growth, they seem to suggest that the cost
of computing a CPWL function via a ReLU network is exceptionally high.

Hertrich et al. [2021] proved that any CPWL function R
n → R with k distinct linear components

can be represented by a ReLU network whose maximum width is O
(

k2n
2+3n+1

)

under the same

number of hidden layers
⌈

log2(n+ 1)
⌉

. Hence, the number of hidden neurons must be bounded
from above by

O
(

k2n
2+3n+1 log2 (n+ 1)

)

. (4)

Note that we infer this bound by taking the product of the depth and the maximum width. Using k ≤
q, the bound in (4) can be expressed in terms of q, leading to O

(

q2n
2+3n+1 log2 (n+ 1)

)

. Such

a bound can grow slower than O
(

n2q
2
)

, but it grows faster than O
(

n2q
2
)

if the input dimension

n grows sufficiently faster than the number of pieces q. Also, O
(

k2n
2+3n+1 log2 (n+ 1)

)

grows

faster than O
(

n2k·k!
)

when the input dimension n grows sufficiently faster than the number of
distinct linear components k.

3.2 Improved upper bounds

We show that any CPWL function can be represented by a ReLU network whose number of hidden
neurons is bounded by much slower growth functions. We state our main results in Theorem 1, 2 and
3, and focus on their impact in this subsection. Each one of them is tailored to a specific complexity
measure of the CPWL function. Their proof sketches are deferred to Section 4.2. We first focus
on the case when the number of linear components is unknown and the complexity of the CPWL is
only measured by the number of pieces q.

Theorem 1. Any CPWL function p : Rn → R with q pieces can be represented by a ReLU network
whose number of layers l, maximum width w, and number of hidden neurons h satisfy

l ≤ 2 ⌈log2 q⌉+ 1, (5)

w ≤ I [q > 1]

⌈

3q

2

⌉

q, (6)

and

h ≤
(

3 · 2⌈log2 q⌉ + 2 ⌈log2 q⌉ − 3
)

q + 3 · 2⌈log2 q⌉ − 2 ⌈log2 q⌉ − 3. (7)

Furthermore, Algorithm 1 finds such a network in poly (n, q, L) time where L is the number of
bits required to represent every entry of the rational matrix Ai in the polyhedron representation
{x ∈ R

n|Aix ≤ bi} of the piece Xi for every i ∈ [q].

Algorithm 1 Find a ReLU network that computes a given continuous piecewise linear function

Input: A CPWL function p with pieces {Xi}i∈[q] of Rn satisfying Definition 1.

Output: A ReLU network g computing g(x) = p(x), ∀x ∈ R
n.

1: f1, f2, · · · , fk ← run Algorithm 6 to find all distinct linear components of p
2: for i = 1, 2, · · · , q do
3: Ai ← ∅
4: for j = 1, 2 · · · , k do
5: if fj(x) ≥ p(x), ∀x ∈ Xi then
6: Ai ← Ai

⋃{j}
7: end if
8: end for
9: vi ← run Algorithm 2 with {fm}m∈Ai

using the minimum type
10: end for
11: v ← run Algorithm 3 with v1, v2, · · · , vq ⊲ Combine q ReLU networks in parallel

12: u← run Algorithm 2 with
{

[

s1 s2 · · · sq
]T 7→ sm

}

m∈[q]
using the maximum type

13: g ← run Algorithm 4 with v and u ⊲ Find a ReLU network for the composition u ◦ v

6



The proof of Theorem 1 is deferred to Appendix B.4 in the supplementary material. Algorithm 6,
2, 3, and 4 used by Algorithm 1 are deferred to Appendix C in the supplementary material and

will be discussed soon after the discussion on bounds. Because 2⌈log2 q⌉ < 2q, the upper bound in
(7) can be further bounded from above by 6q2 + 2 ⌈log2 q⌉ q + 3q − 2 ⌈log2 q⌉ − 3, leading to the
asymptotic bound h = O(q2). Obviously, l = O(log2 q) and w = O(q2). Since the bound given by

Theorem 5.2 in He et al. [2020] can be lower bounded by O
(

n2q
2
)

, it grows exponentially faster

than our bound of h given in Theorem 1. On the other hand, the upper bound given by (4) is at
least polynomially larger than our bound of h and the order of this polynomial grows quadratically
with the input dimension n. Note that such a polynomial becomes an exponential function when the
growth in n is not slower than q. Such differences are illustrated by the figure on the left-hand side
of Figure 1. The bounds in Theorem 1 are independent of the input dimension n. Hence, one can
realize any given CPWL function using a relatively small ReLU network even though n is huge.

In terms of the maximum width, the upper bound given by (6) is at least polynomially smaller
than the one given by Hertrich et al. [2021]. In contrast to the bound for the number of layers in
[Arora et al., 2018, He et al., 2020, Hertrich et al., 2021] that grows logarithmically with the input
dimension n, our bound in Theorem 1 grows logarithmically with the number of pieces q. Therefore,
the ReLU network found by Algorithm 1 in general becomes deeper when the CPWL becomes more
complex for a fixed input dimension. On the other hand, the network remains the same depth even
for an arbitrarily larger n as long as q is fixed. Taking an affine function for example, a 1-layer ReLU
network with 0 hidden neurons is the solution given by Theorem 1. However, the bound given by
[Arora et al., 2018, He et al., 2020, Hertrich et al., 2021] keeps increasing the depth for a larger n.

We briefly explain algorithms used by Algorithm 1. Algorithm 2 finds a ReLU network that com-
putes a max-affine or min-affine function [Magnani and Boyd, 2009]. Algorithm 3 concatenates two
given ReLU networks in parallel and returns another ReLU network computing the concatenation
of two outputs. Algorithm 4 finds a ReLU network that represents a composition of two given
ReLU networks. These algorithms are basic manipulations of ReLU networks. Algorithm 1 is a
polynomial time algorithm, following from the proof of Theorem 2. Table 1 in Appendix C in the
supplementary material gives a complexity analysis for Algorithm 1.

Notice that Algorithm 1 does not need to be given any linear components or completely know the
CPWL function because every distinct linear component can be found by Algorithm 6, which only
needs to be given a closed ǫ-ball in the interior of every piece of a CPWL function p and observe the
output of p when feeding an input. Algorithm 6 solves a system of linear equations for every piece
of p to find the corresponding linear component. Every system of linear equations here has a unique
solution because the interior of each of the pieces is nonempty. The nonemptyness is guaranteed by
Lemma 12(a) in Appendix A in the supplementary material.

The 5th step of Algorithm 1 can be executed by checking the optimization result of the following
linear programming problem

minimize fj(x) − p(x),

subject to x ∈ Xi.
(8)

The condition in the 5th step can only be true when the optimal value is nonnegative. Because every
piece of p is given to Algorithm 1, the piece Xi is available for the linear program as a system of
linear inequalities. The objective function is also available since p is affine on Xi and all distinct
linear components are available from Algorithm 6. The corresponding linear component of p on Xi

can be found by first feeding at most n + 1 affinely independent points from the closed ǫ-ball to p
and every candidate linear component, and then matching their output values.

The ellipsoid method [Khachiyan, 1979], the interior-point method [Karmarkar, 1984], and the path-
following method [Renegar, 1988] are polynomial time algorithms for the linear programming prob-
lem using rational numbers on the Turing machine model of computation. These algorithms are
also known to be weakly polynomial time algorithms. The strongly polynomial time algorithm re-
quested by Smale’s 9th problem [Smale, 1998], i.e., the linear programming problem, is still an
open question. Given that we run the 5th step of Algorithm 1 by solving the linear programming
problem in (8), Algorithm 1 is a weakly polynomial time algorithm. The question of whether it is a
strongly polynomial time algorithm is not known. The dependency on the number of bits L in the
time complexity of Algorithm 1 directly comes from using (8) to execute the 5th step. In practice,
linear programming problems can be solved very reliably and efficiently [Boyd and Vandenberghe,

7



1 2 3 4 5 6 7 8 9 10

10
1

10
5

10
9

10
13

10
17

k

U
p

p
er

b
o

u
n

d
o

f
h

1 2 3 4 5 6 7 8 9 10

10
1

10
5

10
9

10
13

10
17

k

U
p

p
er

b
o

u
n

d
o

f
h

1 2 3 4 5 6 7 8 9 10

10
1

10
5

10
9

10
13

10
17

k

U
p

p
er

b
o

u
n

d
o

f
h

n = 1

n = 2

n = 3

n = 10

Figure 2: Left: The upper bound of h in Theorem 3 grows much slower when n grows sufficiently
slower than k, leading to a much better upper bound compared to the worst-case asymptotic bound
O (k · k!) in Theorem 3 when n is sufficiently larger. Middle: the bound in (4) inferred from
[Hertrich et al., 2021]. Right: Theorem 5.2 in [He et al., 2020].

2004]. We provide an implementation of Algorithm 1 and measure its run time on a computer for
different numbers of pieces and input dimensions in Appendix D in the supplementary material.

Theorem 2 discusses the case when the number of linear components and pieces are both known.

Theorem 2. Any CPWL function p : Rn → R with k linear components and q pieces can be rep-
resented by a ReLU network whose number of layers l, maximum width w, and number of hidden

neurons h satisfy l ≤ ⌈log2 q⌉+ ⌈log2 k⌉+ 1, w ≤ I [k > 1]
⌈

3k
2

⌉

q, and

h ≤
(

3 · 2⌈log2 k⌉ + 2 ⌈log2 k⌉ − 3
)

q + 3 · 2⌈log2 q⌉ − 2 ⌈log2 k⌉ − 3. (9)

Furthermore, Algorithm 1 finds such a network in poly (n, k, q, L) time where L is the number of
bits required to represent every entry of the rational matrix Ai in the polyhedron representation
{x ∈ R

n|Aix ≤ bi} of the piece Xi for every i ∈ [q].

The proof of Theorem 2 is deferred to Appendix B.3 in the supplementary material. The bounds in
Theorem 2 are in general tighter and always no worse than those in Theorem 1 because q is never less
than k but can be much larger than k. Asymptotically, l = O(log2 q), w = O(kq), and h = O(kq).
The bound given by Theorem 5.2 in He et al. [2020] increases exponentially faster than the bound
of h in Theorem 2.

When the number of linear components is the only complexity measure of the CPWL function, we
resort to Theorem 3 below.

Theorem 3. Any CPWL function p : Rn → R with k linear components can be represented by a
ReLU network whose number of layers l, maximum width w, and number of hidden neurons h satisfy

l ≤
⌈

log2 φ(n, k)
⌉

+ ⌈log2 k⌉+ 1, w ≤ I [k > 1]
⌈

3k
2

⌉

φ(n, k), and

h ≤
(

3 · 2⌈log2 k⌉ + 2 ⌈log2 k⌉ − 3
)

φ(n, k) + 3 · 2⌈log2 φ(n,k)⌉ − 2 ⌈log2 k⌉ − 3 (10)

where

φ(n, k) = min





n
∑

i=0

(

k2−k
2

i

)

, k!



 . (11)

The proof of Theorem 3 is deferred to Appendix B.5 in the supplementary material. Because
φ(n, k) ≤ k!, the worst-case asymptotic bounds for l, w and h are l = O (k log2 k), w = O (k · k!),
and h = O (k · k!), respectively. However, it holds that

∑n

i=0

( k2
−k
2

i

)

≤ k2n, so the asymptotic

bounds are l = O (n log2 k), w = O
(

k2n+1
)

, and h = O
(

k2n+1
)

when n grows sufficiently

slower than k. For example, n = O
(√

k
)

. In this case, w and h are bounded from above by a

polynomial of order 2c
√
k+1 for some constant c, which grows slower than factorial growth. Such

an advantage for small n is illustrated by the figure on the left-hand side of Figure 2.

Since the bound given by Theorem 5.2 in [He et al., 2020] can be bounded from below by
O
(

n2k·k!
)

, it at the minimum grows exponentially larger than the upper bound of h in Theorem

8



3. Even for a small n, the relative order of growth is gigantic. The figure on the right-hand side of
Figure 2 illustrates such a large difference. For k = 5, n2k·k! ≈ 7.92 × 1028 when n = 1, while
our bound of h is at most 3615 for any n. The difference is extremely large even though k is small
under n = 1. The middle plot in Figure 2 shows that (4) increases much faster when n becomes

larger. For k = 3, k2n
2+3n+1 log2 (n+ 1) ≈ 8.20× 10110 when n = 10, while our bound of h is at

most 95 for any n. The upper bound of h in Theorem 3 is much better than (4) for any n and k.

Lemma 1. Let Pn,k be the set of all CPWL functions with exactly k distinct linear components such
that p : Rn → R, ∀p ∈ Pn,k. Let Cn,k(p) be the collection of all families of closed convex subsets
satisfying Definition 1 for any p ∈ Pn,k. Then, k ≤ minQ∈Cn,k(p)|Q| ≤ φ(n, k).

The proof of Lemma 1 is deferred to Appendix B.1 in the supplementary material. Clearly, φ(n, k)
is a better upper bound of q compared to the bound q ≤ k! given by He et al. [2020]. When n grows
sufficiently slower than k, the bound φ(n, k) can be exponentially smaller than k!.

3.3 Limitations

Although these new bounds are significantly better than previous results, it is still possible to find a
ReLU network whose hidden neurons are fewer than the bounds in Theorem 2 to exactly represent
a given CPWL function. A tight bound for the case when n = 1 was first given by Theorem 2.2 in
[Arora et al., 2018]. However, it seems more difficult to bound the size of a network from below for
n > 1. To the best of our knowledge, we are not aware of any tight bounds in the literature for the
size of the ReLU network representing a general CPWL function using an arbitrary input dimension.

4 Representations of CPWL functions have different implications on depth

We reveal implications of using different representations of CPWL functions and their impact on
constructing ReLU networks. We first discuss the popular representation used by prior work and the
implicit constraint imposed by such a representation.

4.1 Constrained depth

Arora et al. [2018], He et al. [2020], and Hertrich et al. [2021] proved the same bound for the num-
ber of layers, relying on the following representation of a CPWL function

p(x) =
J
∑

j=1

σj max
i∈η(j)

fi(x) (12)

where σj ∈ {+1,−1} and η(j) is a subset of [J ] such that
∣

∣η(j)
∣

∣ ≤ n+ 1 for all j ∈ [J ]. That is, a
sum of a finite number of max-η-affine functions whose signs may be flipped. (12) was established
by Theorem 1 in [Wang and Sun, 2005] which is essentially the same as Theorem 1 in [Wang, 2004]
that emphasizes the difference between two convex piecewise linear functions. This result was also
used by Goodfellow et al. [2013] to prove Proposition 4.1 in the maxout network paper.

The depth given by (1) does not scale with the complexity of a CPWL function. This feature directly
comes from using a ReLU network to realize each of max-η-affine functions in (12) and concatenat-
ing all of them together. Because the size of η(j) is bounded from above by n+ 1, the depth can be
made to depend solely on n. Such a treatment seems to be the only way if one considers a CPWL
function represented by (12). As a result, the ReLU network is forced to use a depth constrained
by the input dimension to represent the given CPWL function, which in turn requires more hidden
neurons. Because we do not use (12), our networks are not limited by such an implication.

4.2 Proof sketch for the unconstrained depth

We give a proof sketch in this subsection for our main results. By using a different representation,
the depth of a ReLU network is able to be scaled with the complexity measure, i.e., the number of
pieces, of any given CPWL function to accommodate the high expressivity.

By Theorem 4.2 in [Tarela and Martínez, 1999], any CPWL function p can be represented as

p(x) = max
X∈Q

min
i∈A(X )

fi(x) (13)

9



for all x ∈ R
n where A (X ) =

{

i ∈ [k] | fi(x) ≥ p(x), ∀x ∈ X
}

is the set of indices of linear

components that have values greater than or equal to p(x) for all x ∈ X , and Q is any family of
closed convex subsets of Rn satisfying Definition 1. We have used f1, f2, · · · , fk to denote the k
distinct linear components of p. Notice that Theorem 4.2 in [Tarela and Martínez, 1999] was first
stated by Theorem 7 in [Tarela et al., 1990]. Both are essentially the same, but Theorem 4.2 in
[Tarela and Martínez, 1999] emphasizes the convexity of each of the regions in the domain. Both
theorems are also fundamentally equivalent to Theorem 2.1 in [Ovchinnikov, 2002]. Notice that one
of the concluding remarks in [Ovchinnikov, 2002] pointed out that the convexity of the input space is
an essential assumption. The entire space Rn satisfies such an assumption. In addition, Ovchinnikov
pointed out that the max-min representation also holds for vector-valued CPWL functions. Hence,
it is possible to generalize our bounds to vector-valued CPWL functions.

Using the representation in (13) and Lemma 2 below, we are able to prove Theorem 2 by bounding
the size ofQ andA (X ). Theorem 1 and 3 can be proved by applying Lemma 1 to Theorem 2. Note
that the size |Q| in (13) is the key for the depth of a ReLU network to be able to scale with q.

Lemma 2. Let m be any positive integer. Define l(m) = ⌈log2 m⌉+ 1, w(m) = I [m > 1]
⌈

3m
2

⌉

,
and the following sequence for any positive integer k,

r(k) =



















0, if k = 1,
3k
2 + r

(

k
2

)

, if k is even,

2 + 3(k−1)
2 + r

(

k+1
2

)

, if k 6= 1 and k is odd.

(14)

Then, there exists an l(m)-layer ReLU network g : Rn → R with r(m) hidden neurons and a
maximum width of w(m) such that g computes the extremum of f1(x), f2(x), · · · , fm(x), i.e.,
g(x) = maxi∈[m] fi(x) or g(x) = mini∈[m] fi(x) for all x ∈ R

n under any m scalar-valued

affine functions f1, f2, · · · , fm. Furthermore, Algorithm 2 finds such a network in poly(m,n) time.

The proof of Lemma 2 is deferred to Appendix B.2 in the supplementary material. One can also
view l(m), w(m), and r(m) as upper bounds for the number of layers, maximum width, and the
number of hidden neurons. Because r(m) < 6m − 3 by Lemma 6, the bound for the number of
hidden neurons r(m) is tighter than the bound 8m− 4 given by Lemma D.3 in [Arora et al., 2018]
or Lemma 5.4 in [He et al., 2020] (these two lemmas are essentially the same). The bound for the
number of layers remains the same as the one given by Lemma D.3 in [Arora et al., 2018]. By
combining Lemma 2 with Lemma 3, Lemma 4, and Lemma 8, we can easily perform the same
job on computing the extremum of multiple scalar-valued ReLU networks as Lemma D.3 does in
[Arora et al., 2018]. Lemma 6, 3, 4, and 8 are given in Appendix A in the supplementary material.

5 Broader impact

Our results guarantee that any CPWL function can be exactly computed by a ReLU neural network
at a more manageable cost. This assurance is crucial because CPWL functions are important tools
in many applications. Such an assurance also relates DNNs closer to CPWL functions and allows
researchers and engineers to understand the expressivity of DNNs from a different perspective. We
focus on simple ReLU networks (ReLU multi-layer perceptrons) in this paper, but it may be possible
to derive bounds for other activation functions and advanced neural network architectures such as
maxout networks [Goodfellow et al., 2013], residual networks [He et al., 2016], densely connected
networks [Huang et al., 2017], and other nonlinear networks [Chen et al., 2021], by making some
(possibly mild) assumptions. Our contributions advance the fundamental understanding of the link
between ReLU networks and CPWL functions.

Acknowledgments and disclosure of funding

We would like to thank the anonymous reviewers for their constructive comments, Tai-Hsuan Chung
for answering our mathematical questions, and Christoph Hertrich for his thoughtful comments on
the time complexity of Algorithm 1 and for clarifying Theorem 4.4 in [Hertrich et al., 2021]. This
work was supported in part by NSF under Grant CCF-2225617, Grant CCF-2124929, and Grant
IIS-1838897, in part by NIH/NIDCD under Grant R01DC015436, and in part by KIBM Innovative
Research Grant Award.

10



References

Raman Arora, Amitabh Basu, Poorya Mianjy, and Anirbit Mukherjee. Understanding deep neural
networks with rectified linear units. In International Conference on Learning Representations,
2018.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

Kuan-Lin Chen, Ching-Hua Lee, Harinath Garudadri, and Bhaskar D. Rao. ResNEsts and DenseN-
Ests: Block-based DNN models with improved representation guarantees. In Advances in Neural
Information Processing Systems, pages 3413–3424, 2021.

Leon O. Chua and An-Chang Deng. Canonical piecewise-linear representation. IEEE Transactions
on Circuits and Systems, 35(1):101–111, 1988.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of Control,
Signals and Systems, 2(4):303–314, 1989.

Ronen Eldan and Ohad Shamir. The power of depth for feedforward neural networks. In Conference
on Learning Theory, pages 907–940. PMLR, 2016.

Kunihiko Fukushima. Neocognitron: A self-organizing neural network model for a mechanism of
pattern recognition unaffected by shift in position. Biological Cybernetics, 36(4):193–202, 1980.

Ian Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron Courville, and Yoshua Bengio. Maxout
networks. In International Conference on Machine Learning, pages 1319–1327. PMLR, 2013.

Boris Hanin and David Rolnick. Complexity of linear regions in deep networks. In International
Conference on Machine Learning, pages 2596–2604. PMLR, 2019a.

Boris Hanin and David Rolnick. Deep ReLU networks have surprisingly few activation patterns. In
Advances in Neural Information Processing Systems, 2019b.

Juncai He, Lin Li, Jinchao Xu, and Chunyue Zheng. ReLU deep neural networks and linear finite
elements. Journal of Computational Mathematics, 38(3):502–527, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Conference on Computer Vision and Pattern Recognition, pages 770–778. IEEE, 2016.

Christoph Hertrich, Amitabh Basu, Marco Di Summa, and Martin Skutella. Towards lower bounds
on the depth of ReLU neural networks. In Advances in Neural Information Processing Systems,
pages 3336–3348, 2021.

Peter Hinz. An analysis of the piece-wise affine structure of ReLU feed-forward neural networks.
PhD thesis, ETH Zurich, 2021.

Peter Hinz and Sara van de Geer. A framework for the construction of upper bounds on the number
of affine linear regions of relu feed-forward neural networks. IEEE Transactions on Information
Theory, 65(11):7304–7324, 2019.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are uni-
versal approximators. Neural Networks, 2(5):359–366, 1989.

Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. Densely connected
convolutional networks. In Conference on Computer Vision and Pattern Recognition, pages 4700–
4708. IEEE, 2017.

Wen-Liang Hwang and Andreas Heinecke. Un-rectifying non-linear networks for signal representa-
tion. IEEE Transactions on Signal Processing, 68:196–210, 2019.

Narendra Karmarkar. A new polynomial-time algorithm for linear programming. In Proceedings
of the 16th Annual ACM Symposium on Theory of Computing, pages 302–311, 1984. Revised
version: Combinatorica 4:373–395, 1984.

11



Leonid Genrikhovich Khachiyan. A polynomial algorithm in linear programming. Doklady
Akademii Nauk, 244(5):1093–1096, 1979. Translated in Soviet Mathematics Doklady 20(1):191–
194, 1979.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet classification with deep con-
volutional neural networks. In Advances in Neural Information Processing Systems, pages 1097–
1105, 2012.

Zhou Lu, Hongming Pu, Feicheng Wang, Zhiqiang Hu, and Liwei Wang. The expressive power of
neural networks: A view from the width. In Advances in Neural Information Processing Systems,
2017.

Andrew L. Maas, Awni Y. Hannun, and Andrew Y. Ng. Rectifier nonlinearities improve neural
network acoustic models. In International Conference on Machine Learning, 2013.

Alessandro Magnani and Stephen P. Boyd. Convex piecewise-linear fitting. Optimization and Engi-
neering, 10(1):1–17, 2009.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

Guido Montúfar. Notes on the number of linear regions of deep neural networks. In International
Conference on Sampling Theory and Applications, 2017.

Guido Montúfar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. On the number of linear
regions of deep neural networks. In Advances in Neural Information Processing Systems, pages
2924–2932, 2014.

Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltzmann machines.
In International Conference on Machine Learning, pages 807–814, 2010.

Sergei Ovchinnikov. Max-min representation of piecewise linear functions. Contributions to Alge-
bra and Geometry, 43(1):297–302, 2002.

Razvan Pascanu, Guido Montúfar, and Yoshua Bengio. On the number of response regions of deep
feed forward networks with piece-wise linear activations. International Conference on Learning
Representations, 2014.

Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, and Jascha Sohl-Dickstein. On the ex-
pressive power of deep neural networks. In International Conference on Machine Learning, pages
2847–2854. PMLR, 2017.

James Renegar. A polynomial-time algorithm, based on Newton’s method, for linear programming.
Mathematical Programming, 40(1):59–93, 1988.

David Rolnick and Konrad Kording. Reverse-engineering deep ReLU networks. In International
Conference on Machine Learning, pages 8178–8187. PMLR, 2020.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional networks for biomedi-
cal image segmentation. In International Conference on Medical Image Computing and Computer
Assisted Intervention, pages 234–241. Springer, 2015.

Thiago Serra, Christian Tjandraatmadja, and Srikumar Ramalingam. Bounding and counting linear
regions of deep neural networks. In International Conference on Machine Learning, pages 4558–
4566. PMLR, 2018.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman,
Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine
Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of Go with
deep neural networks and tree search. Nature, 529(7587):484–489, 2016.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In International Conference on Learning Representations, 2015.

12



Steve Smale. Mathematical problems for the next century. The Mathematical Intelligencer, 20(2):
7–15, 1998.

J. M. Tarela and M. V. Martínez. Region configurations for realizability of lattice piecewise-linear
models. Mathematical and Computer Modelling, 30(11-12):17–27, 1999.

J. M. Tarela, E. Alonso, and M. V. Martínez. A representation method for PWL functions oriented
to parallel processing. Mathematical and Computer Modelling, 13(10):75–83, 1990.

Matus Telgarsky. Benefits of depth in neural networks. In Conference on Learning Theory, pages
1517–1539. PMLR, 2016.

Gal Vardi, Daniel Reichman, Toniann Pitassi, and Ohad Shamir. Size and depth separation in ap-
proximating benign functions with neural networks. In Conference on Learning Theory, pages
4195–4223. PMLR, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems, 2017.

Stephen A. Vavasis and Yinyu Ye. A primal-dual interior point method whose running time depends
only on the constraint matrix. Mathematical Programming, 74(1):79–120, 1996.

Shuning Wang. General constructive representations for continuous piecewise-linear functions.
IEEE Transactions on Circuits and Systems I: Regular Papers, 51(9):1889–1896, 2004.

Shuning Wang and Xusheng Sun. Generalization of hinging hyperplanes. IEEE Transactions on
Information Theory, 51(12):4425–4431, 2005.

Thomas Zaslavsky. Facing up to arrangements: Face-count formulas for partitions of space by
hyperplanes, volume 154. American Mathematical Society, 1975.

Matthew D. Zeiler, Marc’Aurelio Ranzato, Rajat Monga, Min Mao, Kun Yang, Quoc V. Le, Patrick
Nguyen, Alan Senior, Vincent Vanhoucke, Jeffrey Dean, and Geoffrey E. Hinton. On rectified
linear units for speech processing. In International Conference on Acoustics, Speech and Signal
Processing, pages 3517–3521. IEEE, 2013.

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] The main claims are summarized in Section 1.1.

(b) Did you describe the limitations of your work? [Yes] See Section 3.3.

(c) Did you discuss any potential negative societal impacts of your work? [No] This is a
theoretical paper and we are not aware of any negative societal impacts.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] All definitions
and assumptions are stated or referenced before the results.

(b) Did you include complete proofs of all theoretical results? [Yes] Appendix B in the
supplementary material.

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [N/A]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [N/A]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A]

13



(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [N/A]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [N/A]

(b) Did you mention the license of the assets? [N/A]

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data
you’re using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifi-
able information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14



A Lemmas

Lemma 3. Let l be any positive integer. There exists an l-layer ReLU network g with 2n(l − 1)
hidden neurons and a maximum width of 2n such that g(x) = x for all x ∈ R

n. Furthermore,
Algorithm 5 finds such a network in poly(n, l) time.

Proof. Appendix B.6.

Definition 6. Let g(l,n,w) denote an l-layer ReLU network with n hidden neurons and a maximum
width bounded from above by w.

Lemma 4. There exists g(l1+l2−1,n1+n2,max(w1,w2)) that represents any composition of

g(l1,n1,w1) and g(l2,n2,w2). Algorithm 4 finds such a network computing the composition in

poly
(

max(w1, w2),max(l1, l2)
)

time.

Proof. Appendix B.7.

Lemma 5. The sequence r(k) defined by (14) is a strictly increasing sequence.

Proof. Appendix B.8.

Lemma 6. For any positive integer k, the sequence r(k) defined by (14) satisfies

r(k) ≤ 3
(

2⌈log2 k⌉ − 1
)

< 6k − 3. (15)

Proof. Appendix B.9

Lemma 7. Let m1 and m2 be the output dimensions of g(l1,n1,w1) and g(l2,n2,w2), respectively.
Define

l = max(l1, l2), (16)

w = wj +max(wi, 2mi), (17)

and
n = n1 + n2 + 2mi|l1 − l2| , (18)

where i = argmink∈[2] lk and j = [2] \ {i}. Then, there exists g(l,n,w) such that

g(l,n,w)(x) =

[

g(l1,n1,w1)(x)
g(l2,n2,w2)(x)

]

(19)

for all x ∈ R
n.

Proof. Appendix B.10.

Lemma 8. Let m1,m2, · · · ,mk be the output dimensions of g(l1,n1,w1), g(l2,n2,w2), · · · , g(lk,nk,wk),
respectively. Define

l = max
i∈[k]

li, (20)

w =
∑

i∈[k]

max(wi, 2mi), (21)

and
n =

∑

i∈[k]

ni + 2mi(l − li). (22)

Then, there exists g(l,n,w) such that

g(l,n,w)(x) =











g(l1,n1,w1)(x)
g(l2,n2,w2)(x)

...
g(lk,nk,wk)(x)











(23)

for all x ∈ R
n. Furthermore, Algorithm 3 finds such a network in poly

(

maxi∈[k] wi, k, l
)

time.

15



Proof. Appendix B.11.

Lemma 9. Let f1, f2, · · · , fk be any affine functions such that fi : R
n → R for all i ∈ [k]. Define

the set of feasible ascending orders as

Snf1,f2,··· ,fk =
{

(s1, s2, · · · , sk) ∈ S(k) | fs1(x) ≤ fs2(x) ≤ · · · ≤ fsk(x),x ∈ R
n
}

(24)

where S(k) is the collection of all permutations of the set [k]. It holds true that

∣

∣

∣Snf1,f2,··· ,fk
∣

∣

∣ ≤ min





n
∑

i=0

(

k2−k
2

i

)

, k!



 . (25)

Proof. Appendix B.12.

Lemma 10. If Definition 1 is satisfied for a non-affine function, then every nonempty subset has a
nonempty intersection with the other subset or at least one of the other subsets.

Proof. Appendix B.13.

Assumption 1. The number of closed connected subsets satisfying Definition 1 is a minimum.

The interior and frontier (boundary) of a set X are denoted as IntX and FrX , respectively.

Lemma 11. Let fi denote the affine function associated with Xi for i ∈ [I] where {Xi}i∈[I] is a

family of closed connected subsets satisfying Assumption 1. Then, for any i ∈ [I], j ∈ [I] such that
i 6= j and Xi

⋂Xj 6= ∅,

(a) fi and fj are different, and {x ∈ R
n| fi(x) = fj(x)} 6= ∅.

(b) {x ∈ R
n| fi(x) = fj(x)} is an affine subspace of Rn with dimension n− 1.

(c) Xi

⋂Xj ⊆ {x ∈ R
n| fi(x) = fj(x)}.

(d) x 6∈ IntXi and x 6∈ IntXj for all x ∈ Xi

⋂Xj .

Proof. Appendix B.14, B.15, B.16, and B.17.

Lemma 12. If a family of closed connected subsets {Xi}i∈[I] satisfies Assumption 1, then, for all

i ∈ [I],

(a) IntXi 6= ∅.
(b) FrXi =

⋃

k∈[I]\i Xk

⋂Xi.

(c) IntXi

⋂

IntXj = ∅ for all j ∈ [I] such that j 6= i.

Proof. Appendix B.18, B.19, and B.20.

Lemma 13. Let {Xi}i∈[m] be any finite family of subsets satisfying Assumption 1. Let {Hj}j∈[k]

be any finite family of affine subspaces of Rn with dimension n− 1. Then, for every i ∈ [m],

Xi

⋂



R
n \

⋃

j∈[k]

Hj



 6= ∅. (26)

Proof. Appendix B.21.

Proposition 1. For any family of closed connected subsets satisfying Definition 1, all subsets are
the largest closed connected subsets if and only if Assumption 1 is satisfied.

Proof. Appendix B.22.

16



B Proofs

B.1 Proof of Lemma 1

Proof. Let the family of closed connected subsets Q̄ = {Xi}i∈[I] satisfy Assumption 1 for any
p ∈ Pn,k. Let the k distinct linear components of p be f1, f2, · · · , fk and Hlm be the intersection
between fl and fm for l ∈ [k],m ∈ [k], l 6= m. Note that every Hlm is an affine subspace of
R

n with dimension n − 1 (a hyperplane) or an empty set. Because the linear components are
distinct, it must be true that k ≤ I by Definition 2. If p is an affine function, then it follows that
k = minQ̄∈Cn,k(p)

∣

∣Q̄
∣

∣ = φ(n, k) = 1, the claim holds. For the non-affine case, we must have k > 1.

LetR = R
n \ H where

H =
⋃

k∈[m],l∈[m],k 6=l

Hkl. (27)

Note that H 6= ∅ according to Lemma 10 and 11(c). By Lemma 12(b), the boundary or frontier of
Xi for i ∈ [I] is given by

FrXi =
⋃

j∈[I]\i

(

Xi

⋂

Xj

)

. (28)

Because everyXi

⋂Xj for i ∈ [I], j ∈ [I], i 6= j is a subset of someHlm for l ∈ [k],m ∈ [k], l 6= m
by Lemma 11(c), it follows that the boundary of Xi, FrXi, satisfies

FrXi ⊆ H (29)

for i ∈ [I]. The interior of Xi, IntXi, is a nonempty subset of R
n according to Lemma 12(a).

Furthermore, by Lemma 13,

Xi

⋂

R 6= ∅. (30)

Now, define

Zi = (IntXi)
⋂

R (31)

for i ∈ [I]. Note that Zi = Xi

⋂R 6= ∅ due to (29) and (30). Let A be any subset of Rn and λ(A)
be the number of connected components of A in R

n. It must be true that

1 = λ(Xi) ≤ λ (IntXi) ≤ λ(Zi). (32)

By Lemma 12(c), IntXi

⋂

IntXj = ∅ for i ∈ [I], j ∈ [I], i 6= j. We have

I ≤ λ





⋃

i∈[I]

IntXi



 =
∑

i∈[I]

λ(IntXi) ≤
∑

i∈[I]

λ(Zi) = λ





⋃

i∈[I]

Zi



 = λ





⋃

i∈[I]

Xi

⋂

R



 . (33)

Notice that
⋃

i∈[I]

Xi

⋂

R = R
n
⋂

R = R (34)

by the property
⋃

i∈[I] Xi = R
n in Definition 1. Plugging (34) into (33) leads to

I ≤ λ(R) (35)

which states that I is bounded from above by the number of connected components of R in R
n.

Notice that every component is an open convex set because every component is the intersection of a
finite number of open half spaces. Therefore,

I =
∣

∣Q̄
∣

∣ = min
Q′∈C′

n,k
(p)

∣

∣Q′
∣

∣ ≤ min
Q∈Cn,k(p)

|Q| ≤ λ(R) (36)

where C′n,k(p) denotes the collection of all families of closed connected subsets satisfying Definition

1 for any p ∈ Pn,k. Because the ascending order of these k linear components does not change
within a connected component of R, λ(R) can be bounded from above by the number of feasible
ascending orders. Let S(k) be the collection of all permutations of the set [k]. It follows that

λ(R) ≤
∣

∣

∣

{

(s1, s2, · · · , sk) ∈ S(k) | fs1(x) ≤ fs2(x) ≤ · · · ≤ fsk(x),x ∈ R
n
}

∣

∣

∣
. (37)

Finally, Lemma 9 proves the statement by bounding the number of feasible ascending orders.

17



B.2 Proof of Lemma 2

Proof. It suffices to show that

g(x) = max
i∈[k]

xi. (38)

for all x =
[

x1 x2 · · · xk

]T ∈ R
k since the composition of affine functions is still affine. The

affine functions can be absorbed into the first layer of the ReLU network g. We prove the case for
taking the maximum of m real numbers since the same procedure below can be applied to prove the
case of taking the minimum due to the following identity

min
i∈[k]

fi(x) = −max
i∈[k]
−fi(x). (39)

Because max(x1, x2) = max(0, x2−x1)+max(0, x1)−max(0,−x1) for any x1 ∈ R and x2 ∈ R,
it holds true that

max
j∈[k]

xj =







max
j∈[ k2 ]

maxi∈{2j−1,2j} xi, if k is even

max
j∈[ k+1

2 ] α(j;x1, x2, · · · , xk), if k is odd
(40)

for xj ∈ R, j ∈ [k] where

α(j;x1, x2, · · · , xk) =







maxi∈{2j−1,2j} xi, if j ∈
[

k−1
2

]

max(0, xk)−max(0,−xk), if j = k+1
2

. (41)

Let r(k) be the number of operations of taking the maximum between a zero and a real number, i.e.,
max(0, x), x ∈ R for computing the maximum of k real numbers using (40). One can find r(2) = 3
and r(3) = 8 by expanding all operations in (40). Because we do not need any maximum operations
to compute the maximum over a singleton, we define r(1) = 0. For any positive integer k such that
k ≥ 2, we have the recursion

r(k) =







3k
2 + r

(

k
2

)

, if k is even

2 + 3(k−1)
2 + r

(

k+1
2

)

, if k is odd
(42)

according to (40). Note that r(n) is the number of ReLUs in a ReLU network g that computes the
maximum of n real numbers or a max-affine function. The number of ReLUs here is equivalent to
the number of hidden neurons according to Definition 4. We shall note that the number of ReLU
layers is equivalent to the number of hidden layers.

Obviously, we only need a 1-layer ReLU network with no ReLUs to compute the maximum of a
singleton. Suppose that we aim to compute the maximum of m = 2n real numbers for any positive
integer n. Then, every time the recursion goes to the next level in (42), the number of variables
considered for computing the maximum is halved. Hence, the number of ReLU layers is n. When
m is not a power of two, i.e., 2n < m < 2n+1, then we can always construct a ReLU network with
n+ 1 ReLU layers and 2n+1 input neurons, and set weights connected to the 2n+1 −m “phantom
input neurons” to zeros. Because ⌈log2 m⌉ = n + 1 for 2n < m < 2n+1, the number of ReLU
layers is ⌈log2 m⌉ for any positive integer m. By Definition 5, we have l(m) = ⌈log2 m⌉+ 1.

By Lemma 5, r(k) is a strictly increasing sequence. Therefore, the maximum width of the network
is given by the width of the first hidden layer. When L = 1 or m = 1, the width is 0 due to Definition
5. When L > 1 or m > 1,

max
l∈[L−1]

kl =

{

3m
2 , if m is even

2 + 3(m−1)
2 , if m is odd

=

⌈

3m

2

⌉

.

(43)

Algorithm 2 directly follows from the above construction. Its complexity analysis is deferred to
Table 2 in Appendix C.

18



B.3 Proof of Theorem 2

Proof. Let f1, f2, · · · , fk be k distinct linear components of p andQ be any family of closed convex
subsets of Rn satisfying Definition 1. By Theorem 4.2 in [Tarela and Martínez, 1999], p can be
represented as

p(x) = max
X∈Q

min
i∈A(X )

fi(x) (44)

for all x ∈ R
n where

A (X ) =
{

i ∈ [k] | fi(x) ≥ p(x), ∀x ∈ X
}

(45)

is the set of indices of linear components that have values greater than or equal to p(x) for all x ∈ X .
A thorough discussion of the representation (44) is given in Section 4.2.

According to (44), there are |Q| minima required to be computed where each of them is a minimum

of
∣

∣A (X )
∣

∣ real numbers. Then, the value of p can be computed by taking the maximum of the

resulting |Q| minima. We will show that these operations are realizable by a ReLU network. By
Lemma 2, an l(m)-layer ReLU network with r(m) hidden neurons and a maximum width of w(m)
can compute the extremum of m real numbers given by m affine functions.

We realize (44) in three steps. First, we create |Q| ReLU networks where each of them is an

l
(

∣

∣A (X )
∣

∣

)

-layer ReLU network with r
(

∣

∣A (X )
∣

∣

)

hidden neurons and a maximum width of

w
(

∣

∣A (X )
∣

∣

)

that computes mini∈A(X ) fi(x) for X ∈ Q. Second, we parallelly concatenate these

|Q| networks, i.e., put them in parallel and let them share the same input to obtain a ReLU net-

work that takes x and outputs |Q| real numbers. Finally, we create an l
(

|Q|
)

-layer ReLU network

with r
(

|Q|
)

hidden neurons and a maximum width of w
(

|Q|
)

that takes the maximum of |Q| real
numbers.

The parallel combination of |Q| networks in the second step can be realized by Lemma 8. The third
step can be fulfilled by Lemma 4. With the above construction, we can now count the number of
layers, the upper bound for the maximum width, and the number of hidden neurons for a ReLU
network that realizes p. The number of layers is given by

l
(

|Q|
)

+max
X∈Q

l
(

∣

∣A (X )
∣

∣

)

− 1. (46)

The maximum width is bounded from above by

max





∑

X∈Q

max

(

w
(

∣

∣A (X )
∣

∣

)

, 2

)

, w
(

|Q|
)



 . (47)

The number of hidden neurons is given by

r
(

|Q|
)

+
∑

X∈Q

r
(

∣

∣A (X )
∣

∣

)

+ 2

(

max
Y∈Q

l
(

∣

∣A (Y)
∣

∣

)

− l
(

∣

∣A (X )
∣

∣

)

)

. (48)

Because A (X ) for every X ∈ Q is a subset of [k], it holds that

1 ≤
∣

∣A (X )
∣

∣ ≤ k (49)

for all X ∈ Q. Therefore, the number of layers in (46) can be bounded from above by

l
(

|Q|
)

+ l (k)− 1 =
⌈

log2|Q|
⌉

+ ⌈log2 k⌉+ 1 (50)

where we have used the definition of the function l in Lemma 2. Again, using (49), the upper bound
for the maximum width in (47) can be further bounded from above by

max





∑

X∈Q

max
(

w (k) , 2
)

, w
(

|Q|
)



 = max
(

|Q|max
(

w (k) , 2
)

, w
(

|Q|
)

)

≤ max



|Q|max

(

⌈

3k

2

⌉

, 2

)

,

⌈

3|Q|
2

⌉





=

⌈

3k

2

⌉

|Q|

(51)

19



where we have used the definition of the function w in Lemma 2. Note that the maximum width is
zero when the number of layers is one. Finally, again, using (49), the number of neurons in (48) can
be bounded from above by

r
(

|Q|
)

− 2l(k) + 2l(1) +
∑

X∈Q

(

r (k) + 2l (k)− 2l(1)
)

= r
(

|Q|
)

− 2l(k) + 2l(1) +|Q|
(

r (k) + 2l (k)− 2l(1)
)

= r
(

|Q|
)

− 2 ⌈log2 k⌉+|Q|
(

r (k) + 2 ⌈log2 k⌉
)

≤ 3
(

2⌈log2|Q|⌉ − 1
)

− 2 ⌈log2 k⌉+|Q|
(

3
(

2⌈log2 k⌉ − 1
)

+ 2 ⌈log2 k⌉
)

= 3
(

2⌈log2|Q|⌉ − 1
)

+ 3|Q|
(

2⌈log2 k⌉ − 1
)

+ 2
(

|Q| − 1
)

⌈log2 k⌉

(52)

where we have used Lemma 6 for the upper bound in the fourth line of (52). Expanding and rear-
ranging terms in (52) lead to (9).

Algorithm 1 directly follows from the above construction. Its complexity analysis is deferred to
Table 1 in Appendix C.

B.4 Proof of Theorem 1

Proof. By Lemma 1, the number of distinct linear components k is bounded from above by the
number of pieces, i.e., k ≤ q, implying that the bounds in Theorem 2 can be written in terms of q.
Substituting k with q in Theorem 2 proves the claim.

According to Theorem 2, the time complexity of Algorithm 1 is poly(n, k, q, L). Using the bound
k ≤ q proves the claim for the time complexity.

B.5 Proof of Theorem 3

Proof. By Lemma 1, the minimum number of closed convex subsets q of a CPWL function p : Rn →
R can be bounded from above by φ(n, k), i.e.,

q ≤ φ(n, k) = min





n
∑

i=0

(

k2−k
2

i

)

, k!



 . (53)

Substituting q with φ(n, k) in Theorem 2 proves the claim.

B.6 Proof of Lemma 3

Proof. Obviously, a one-layer ReLU network is an affine function whose weights can be set to fulfill
the identity mapping in R

n. We prove the case when the number of layers is more than one in the
next paragraph. We start with a scalar case, and then work on the vector case.

For any x ∈ R, it holds that max(0, x) − max(0,−x) = x. In other words, a hidden layer of
two ReLUs with +1 and −1 weights can represent an identity mapping for any scalar. For any
vector input in R

n, we can concatenate such structures of two ReLUs in parallel because the identity
mapping can be decomposed into n individual identity mappings from n coordinates. Therefore, a
two-layer ReLU network with 2n hidden neurons can realize the identity mapping in R

n. Stacking
such a hidden layer any number of times gives a deeper network that is still an identity mapping.
Algorithm 5 follows from the above construction. Its complexity analysis is deferred to Table 5 in
Appendix C.

B.7 Proof of Lemma 4

Proof. Because a composition of two affine mappings is still affine, the first layer of either one of the
two networks can be absorbed into the last layer of the other one if their dimensions are compatible.
The resulting new network still satisfies Definition 4. The number of layers of the new network is
l1 + l2 − 1. The number of hidden neurons of the new network is n1 + n2. The maximum width
of the new network is at most max(w1, w2). Algorithm 4 follows from the above construction. Its
complexity analysis is deferred to Table 4 in Appendix C.

20



B.8 Proof of Lemma 5

Proof. For any positive even integer k ≥ 4, it holds true that

r(k) − r(k − 1) =
3k

2
+ r

(

k

2

)

− 2− 3(k − 2)

2
− r

(

k

2

)

= 1. (54)

For any positive odd integer k such that k ≥ 3, we have

r(k) − r(k − 1) = 2 +
3(k − 1)

2
+ r

(

k + 1

2

)

− 3(k − 1)

2
− r

(

k − 1

2

)

=







3, if k+1
2 is even

2 + r
(

k+1
2

)

− r
(

k+1
2 − 1

)

, otherwise

(55)

which is strictly greater than zero. Note that (55) is greater than 0 because the equality in (55) can
be applied over and over again to reach (54) or the base case r(2)− r(1) = 3.

B.9 Proof of Lemma 6

Proof. By Lemma 5, r(k) is a strictly increasing sequence. Then, it must be true that

r(k) = r
(

2log2 k
)

≤ r
(

2⌈log2 k⌉) . (56)

According to the recursion (14), it holds that

r
(

2⌈log2 k⌉) =
3

2

⌈log2 k⌉
∑

i=1

2i

=
3

2

(

2⌈log2 k⌉+1 − 2
)

= 3
(

2⌈log2 k⌉ − 1
)

< 3
(

2(log2 k)+1 − 1
)

= 3 (2k − 1) .

(57)

B.10 Proof of Lemma 7

Proof. Two ReLU networks can be combined in parallel such that the new network shares the same
input and the two output vectors from the two ReLU networks are concatenated together. To see
this, we show that the weights of the new network can be found by the following operations. Let
W

1
i and b

1
i be the weights of the i-th layer in g(l1,n1,w1), and W

2
i and b

2
i are the weights of the i-th

layer in g(l2,n2,w2). Let Wi and bi be the weights of the new network. Now, we find the weights for
the new network. In the first layer, we construct

W1 =

[

W
1
1

W
2
1

]

(58)

and

b1 =

[

b
1
1

b
2
1

]

. (59)

For the i-th layer such that 1 < i ≤ min(l1, l2), we use

Wi =

[

W
1
i 0

0 W
2
i

]

(60)

and

bi =

[

b
1
i

b
2
i

]

. (61)

21



If l1 = l2, then the claim is proved. If l1 6= l2, then we stack a network that implements the
identity mapping to the shallower network such that the numbers of layers of the two networks
are the same. Because the network g(li,ni,wi) is shallower than the other network, we append

|l1 − l2| hidden layers to g(li,ni,wi) such that the procedure in (60) and (61) can be used. By Lemma

3, there exists an
(

|l1 − l2|+ 1
)

-layer ReLU network g(|l1−l2|+1,2mi|l1−l2|,2mi) with 2mi|l1 − l2|
hidden neurons and a maximum width bounded from above by 2mi for representing the identity
mapping in R

mi . By Lemma 4, there exists a network g(li+|l1−l2|,ni+2mi|l1−l2|,max(wi,2mi)) that

represents the composition of g(|l1−l2|+1,2mi|l1−l2|,2mi) and g(li,ni,wi). Now, (60) and (61) can be
used to combine g(lj,nj ,wj) and g(li+|l1−l2|,ni+2mi|l1−l2|,max(wi,2mi)) in parallel because the num-

ber of layers in network g(li+|l1−l2|,ni+2mi|l1−l2|,max(wi,2mi)) is equal to lj according to the fact that

li +|l1 − l2| = max(l1, l2) = lj . Such a new network has max(l1, l2) layers and

nj + ni + 2mi|l1 − l2| = n1 + n2 + 2mi|l1 − l2| (62)

hidden neurons. The maximum width of the new network is at most wj +max(wi, 2mi).

B.11 Proof of Lemma 8

Proof. The case k = 1 is trivial. The case k = 2 is proved by Lemma 7, which gives a tighter bound
on the maximum width. The number of layers and hidden neurons of the claim agree with Lemma
7 when k = 2. The claim can be proved by following a similar procedure from the proof of Lemma
7. By Lemma 3, we can stack an identity mapping realized by an (l − li + 1)-layer ReLU network
with 2mi(l − li) hidden neurons and a maximum width of 2mi on the i-th network for all i ∈ [k]
such that li < l. In other words, we increase the number of hidden layers for any network whose
number of layers is less than l such that the cascade of the network and the corresponding identity
mapping has l layers. For all i ∈ [k] such that li < l, the extended network has ni + 2mi(l − li)
hidden neurons and a maximum width at most max(wi, 2mi) according to Lemma 4. Because all
the networks now have the same number of layers, we can directly combine them in parallel. Hence,
the resulting new network has maxi∈[k] li layers and

∑

i∈[k]

ni + 2mi(l − li) (63)

hidden neurons and a maximum width at most
∑

i∈[k]

max(wi, 2mi). (64)

Algorithm 3 directly follows from the above construction. Its complexity analysis is deferred to
Table 3 in Appendix C.

B.12 Proof of Lemma 9

Proof. Because Snf1,f2,··· ,fk is a subset of S(k) and
∣

∣S(k)
∣

∣ = k! is the number of permutations of k

distinct objects, it follows that
∣

∣

∣Snf1,f2,··· ,fk
∣

∣

∣ ≤ k!. (65)

On the other hand, the number of hyperplanes, or affine subspaces of Rn with dimension n − 1,
induced by the distinct intersections between any two different affine functions is bounded from
above by

(

k

2

)

. (66)

Let the arrangement of these hyperplanes beA, and|A| be the number of hyperplanes in the arrange-
ment. By Zaslavsky’s Theorem [Zaslavsky, 1975], the number of connected components of the set

R
n \

⋃

H∈A

H (67)

is bounded from above by
n
∑

i=0

(|A|
i

)

(68)

22



Because there are at most
(

k
2

)

hyperplanes in R
n, it follows that

∣

∣

∣Snf1,f2,··· ,fk
∣

∣

∣ ≤
n
∑

i=0

(
(

k
2

)

i

)

. (69)

Combining (65) and (69) proves the claim. Notice that the ascending order does not change within
a connected component.

B.13 Proof of Lemma 10

Proof. Let X1,X2, · · · ,XI be a family of nonempty subsets satisfying Definition 1 for a non-affine
function. We prove the claim by contradiction. Suppose that there exists at least one nonempty
closed subset, say Xi, that is disjoint with every other closed subset Xj , j ∈ [I] \ i. It follows that

Xi

⋂ ⋃

j∈[I]\i

Xj = ∅ (70)

which implies

(

R
n \ Xi

)

⋃



R
n \

⋃

j∈[I]\i

Xj



 = R
n. (71)

Because the union of any finite collection of closed sets is closed, it must be true that
⋃

j∈[I]\i Xj

is closed. Notice that Xi is never the whole space R
n because the CPWL function is assumed to

be non-affine.
⋃

j∈[I]\i Xj must be nonempty due to Definition 1. Therefore, both R
n \ Xi and

R
n \ ⋃j∈[I]\i Xj are nonempty and open. Since R

n is connected, it cannot be represented as the

union of two disjoint nonempty open subsets. It follows that the intersection between R
n \ Xi and

R
n \ ⋃j∈[I]\iXj is nonempty. In other words, there exists an element of Rn that is not in Xi and
⋃

j∈[I]\i Xj , contradicting Definition 1.

B.14 Proof of Lemma 11(a)

Proof. If the CPWL function is affine, then there are no intersecting closed subsets because the
only closed subset satisfying Assumption 1 is Rn. On the other hand, if the CPWL function is non-
affine, then there exist at least two intersecting closed subsets according to Lemma 10. For any two
intersecting closed subsets, say Xi and Xj , we first show that

{x ∈ R
n | fi(x) = fj(x)} 6= ∅ (72)

where fi and fj are the affine functions corresponding to Xi and Xj . We prove this statement by

contradiction. Suppose that the intersection is empty, i.e., the linear equation
(

ai − aj

)T
x + bi −

bj = 0 does not have a solution where fi(x) = a
T
i x+ bi and fj(x) = a

T
j x+ bj for ai, aj ∈ R

n and
bi, bj ∈ R. Then, it is necessary that ai = aj and bi 6= bj . In other words, the two affine functions
are parallel, implying that every point in Xi ∩ Xj gives two different values, which cannot be true
for a valid function.

Next, we prove that there does not exist an intersection that is Rn by contradiction. Let us assume
that there exists at least one intersection that is Rn between the affine functions corresponding to two
intersecting closed subsets, say Xi and Xj . Then, we can always replace Xi and Xj with their union.
Such a replacement still satisfies Definition 1 but reduces the number of closed (connected) subsets
by at least one, contradicting the fact that the number of closed subsets is a minimum. Because the
two affine functions are identical if and only if the intersection is Rn, the two affine functions must
be different.

B.15 Proof of Lemma 11(b)

Proof. The claim follows from Lemma 11(a). Because the two affine functions have a nonempty in-
tersection, their intersection must be Rn or an affine subspace of Rn with dimension n−1. However,
the two affine functions must be different, implying that Rn is never the intersection.

23



B.16 Proof of Lemma 11(c)

Proof. Let any given two intersecting subsets be Xi and Xj . The intersection between their corre-
sponding affine functions, say fi and fj , is given by Hij = {x ∈ R

n | fi(x) = fj(x)}. Suppose
that there exists a point a ∈ Xi

⋂Xj such that a 6∈ Hij , then it follows that fi(a) 6= fj(a). Such a
result cannot be true for a valid function. We conclude that Xi

⋂Xj ⊆ Hij .

B.17 Proof of Lemma 11(d)

Proof. We prove the statement by contradiction. Suppose there exists a point c ∈ R
n in the inter-

section of two intersecting closed connected subsets, say Xi and Xj , such that c is an interior point
of Xi, then there exists an open ǫ-radius ball B(c, ǫ) such that x ∈ Xi, ∀x ∈ B(c, ǫ) for some
ǫ > 0. By Lemma 11(b), the intersection between the two affine functions corresponding to Xi and
Xj must be an affine subspace of Rn with dimension n− 1. Let such an affine subspace be denoted
as Hij and its corresponding linear subspace be denoted as V(Hij). Then, there exists a nonzero
vector d ∈ R

n such that αd ⊥ v for all v ∈ V(Hij) and any α 6= 0. Therefore, it follows that
αd+ a 6∈ Hij for any a ∈ Hij and any α 6= 0. According to Lemma 11(c), Xi ∩ Xj ⊆ Hij , so we

have αd+ c 6∈ Xi ∩Xj for any α 6= 0. When α = ǫ
2‖d‖

2

or α = −ǫ
2‖d‖

2

, αd+ c ∈ B(c, ǫ). However,

one of them must satisfy αd + c 6∈ Xi, contradicting the existence of a point in Xi ∩ Xj that is an
interior point of Xi. The same procedure can be applied to prove that there does not exist a point in
Xi ∩ Xj such that it is an interior point of Xj . We conclude that every element in Xi ∩ Xj is not an
interior point of Xi or Xj .

B.18 Proof of Lemma 12(a)

Proof. The boundary or frontier of Xi is given by

FrXi = Xi

⋂

Rn \ Xi

= Xi

⋂





⋃

k∈[I]

Xk



 \ Xi

= Xi

⋂ ⋃

k∈[I]\i

(

Xk \ Xk

⋂

Xi

)

= Xi

⋂ ⋃

k∈[I]\i

(

Xk \ Xk

⋂

Xi

)

= Xi

⋂ ⋃

k∈[I]\i

Xk

= Xi

⋂ ⋃

k∈[I]\i

Xk

=
⋃

k∈[I]\i

Xk

⋂

Xi

(73)

where A denotes the closure of a subset A. We have used Lemma 11(d) for the equality between
the 4-th and 5-th line of (73). Now, we prove that the interior of Xi is nonemtpy by contradiction.

Suppose that the interior of Xi is empty, then it follows that Xi = Xi = FrXi because the closure
of Xi is the union of the interior and the boundary of Xi. Combining that with (73), we have
Xi =

⋃

k∈[I]\i Xk

⋂Xi. which implies every element in Xi is at least covered by one of the other

closed subsets Xk for some k ∈ [I] \ i. In this case, we can delete Xi from X1,X2, · · · ,XI ; and the
remaining I − 1 closed subsets still satisfy Definition 1. Such a valid deletion of Xi contradicts the
fact that I is the minimum number of closed subsets. Hence, the interior of Xi must be nonempty.

B.19 Proof of Lemma 12(b)

Proof. The statement is proved by (73) in Lemma 12(a).

24



B.20 Proof of Lemma 12(c)

Proof. By Lemma 12(a), the interior of every subset is nonempty. Next, by Lemma 11(d), every
point in the intersection between any two subsets is a boundary point of both subsets. It follows that
the interiors of any two subsets are disjoint.

B.21 Proof of Lemma 13

Proof. By Lemma 12(a), the interior of Xi is nonempty. Therefore, there exists an open ǫ-radius
ball B(c0, ǫ) such that x ∈ Xi, ∀x ∈ B(c0, ǫ) for some ǫ > 0 and c0 ∈ Xi. Let us consider the set

⋂

j∈[k]

(

B(c0, ǫ)
⋂

(

H+
j

⋃

H−
j

)

)

(74)

where H+
j and H−

j are two open half spaces created by Hj . It suffices to show the nonemptyness

of the set in (74) to prove the claim. If Hj and B(c0, ǫ) do not intersect, then B(c0, ǫ) completely

belongs to H+
j or H−

j . Without loss of generality, we can remove all j such that Hj does not

intersect B(c0, ǫ) and assume there are k affine subspaces of Rn with dimension n− 1 intersecting
B(c0, ǫ). Let us sequentially carry out the intersection in (74). Every time before the operation of

the j-th intersection between B(cj−1,
ǫ

2j−1 ) and
(

H+
j

⋃H−
j

)

, there exists an open ǫ
2j -radius ball

B(cj ,
ǫ
2j ) for some cj ∈ B(cj−1,

ǫ
2j−1 ) such that it does not intersect with Hj . Therefore, at the

end of the sequential process, there exists an open ball that does not intersect any of these k affine
subspaces of Rn with dimension n− 1. The set in (74) is nonempty, implying (26) holds true.

B.22 Proof of Proposition 1

Proof. We prove the claim by contraposition. If the number of closed connected subsets is not a
minimum, i.e., Assumption 1 is not satisfied, then such a number can be decreased by merging
some of the intersecting closed connected subsets that have the same corresponding affine functions.
Therefore, there exist at least two closed connected subsets that can be made larger.

On the other hand, if the closed connected subsets, say X1,X2, · · · ,XI , have at least one of the
subsets that can be made larger, then there exist at least two intersecting closed connected subsets,
say Xi and Xj , from X1,X2, · · · ,XI such that their corresponding affine functions are the same.
Otherwise, any closed connected subset cannot be made larger than itself. Therefore, Xi and Xj

can be replaced with Xi

⋃Xj and these I − 1 closed connected subsets still satisfy Definition 1,
implying that I is not the minimum.

C Algorithms and time complexities

Table 1: The running time of Algorithm 1 is upper bounded by poly(n, k, q, L).

Line Operation count Explanation

1 O
(

nqmax(n2, q)
)

Algorithm 6 (see Table 6).
2 O(q) Repeat Line 3 to Line 9 q times.
3 O(1) Initialize an empty placeholder.
4 O(k) Repeat Line 5 to Line 7 k times.
5 poly (n, q, L) Solve a linear program [Vavasis and Ye, 1996].
6 O(1) Add an index.
7 - -
8 - -

9 O
(

k2 max(k log2 k, n)
)

Algorithm 2 (see Table 2).
10 - -

11 O
(

qmax(n, k)2 max(n, k, q) log2 k
)

Algorithm 3 (see Table 3).

12 O
(

q3 log2 q
)

Algorithm 2 (see Table 2).

13 O
(

q3 max(n, k)3 log2 q
)

Algorithm 4 (see Table 4).

25



Algorithm 2 Find a ReLU network that computes the extremum of affine functions

Input: Scalar-valued affine functions f1, f2, · · · , fm on R
n and the type of extremum (max or min).

Output: Parameters of an l-layer ReLU network g computing g(x) = maxi∈[m] .fi(x) or g(x) =
mini∈[m] .fi(x) for all x ∈ R

n.

1: A←





−1 1
1 0
−1 0



 ,B←
[

1 1 −1] ,C←
[

1
−1
]

⊲ Constant matrices

2: Ψ(Y,Z)←
[

Y 0

0 Z

]

⊲ A function generating a block diagonal matrix composed of Y and Z

3: Φ(Y, s)←













Y
(1)

0 · · · 0

0 Y
(2) · · · 0

...
...

. . .
...

0 0 · · · Y
(s)













⊲ A block diagonal matrix with Y repeated s times

4: l ← ⌈log2 m⌉+ 1, k0 ← n, kl ← 1, c0 ← m ⊲ l is the number of layers of g
5: for i = 1, 2, · · · , l − 1 do
6: if ci−1 is even then
7: ci ← ci−1

2
8: ki ← 3ci ⊲ Output dimension of the i-th layer
9: else

10: ci ← ci−1+1
2

11: ki ← 3ci − 1 ⊲ Output dimension of the i-th layer
12: end if
13: end for

14: W1 ←
[∇f1 ∇f2 · · · ∇fm

]T

,b1 ←
[

f1(0) f2(0) · · · fm(0)
]T

15: if l > 1 then ⊲ Find the weights of input and output layers, if any
16: if c0 is even then
17: W1 ← Φ (A, c1)W1,b1 ← Φ (A, c1)b1

18: else
19: W1 ← Ψ

(

Φ (A, c1 − 1) ,C
)

W1,b1 ← Ψ
(

Φ (A, c1 − 1) ,C
)

b1

20: end if
21: Wl ← B,bl ← 0kl

22: end if
23: if l > 2 then ⊲ Find the weights of remaining layers, if any
24: for i = 2, 3, · · · , l − 1 do
25: if ci−1 is even then
26: T← Φ (A, ci)
27: else
28: T← Ψ

(

Φ (A, ci − 1) ,C
)

29: end if
30: if ci−2 is even then
31: Wi ← TΦ (B, ci−1)
32: else
33: Wi ← TΨ

(

Φ (B, ci−1 − 1) ,CT
)

34: end if
35: bi ← 0ki

36: end for
37: end if
38: if type of extremum is the minimum then
39: W1 ← −W1,b1 ← −b1

40: Wl ← −Wl,bl ← −bl

41: end if ⊲ See Table 2 in Appendix C for complexity analysis

26



Algorithm 3 Find a ReLU network that concatenates a number of given ReLU networks

Input: Weights of k ReLU networks g1, g2, · · · , gk denoted by {Wj
i ,b

j
i}

lj
i=1 for j ∈ [k].

Output: Parameters of an l-layer ReLU network g computing g(x) =











g1(x)
g2(x)

...
gk(x)











, ∀x ∈ R
n.

1: l ← maxj∈[k] lj

2: W1 ←











W
1
1

W
2
1

...

W
k
1











,b1 ←











b
1
1

b
2
1
...

b
k
1











⊲ Weights of the input layer

3: for j = 1, 2, · · · , k do
4: if lj < l then ⊲ Append an identity mapping network to the network if it is shallower
5: m← output dimsion of gj
6: gcj ← run Algorithm 5 with an input dimension m and a number of layers l − lj + 1
7: g′j ← run Algorithm 4 with gj and gcj

8: {Wj
i ,b

j
i}li=1 ← weights of g′j

9: end if
10: end for
11: for i = 2, 3, · · · , l do ⊲ Find the remaining weights

12: Wi ←











W
1
i 0 · · · 0

0 W
2
i · · · 0

...
...

. . .
...

0 0 · · · W
k
i











,bi ←











b
1
i

b
2
i
...

b
k
i











13: end for ⊲ See Table 3 in Appendix C for complexity analysis

Algorithm 4 Find a ReLU network computing a composition of two given ReLU networks

Input: Weights of two ReLU networks g1 and g2 denoted by {W1
i ,b

1
i }l1i=1 and {W2

i ,b
2
i }l2i=1.

Output: Parameters of an l-layer ReLU network g computing g(x) = g2
(

g1(x)
)

, ∀x ∈ R
n.

1: l ← l1 + l2 − 1
2: for i = 1, 2, · · · , l do
3: if i < l1 then ⊲ The first l1 − 1 layers are identical to the corresponding layers in g1
4: Wi ←W

1
i ,bi ← b

1
i

5: else if i = l1 then ⊲ A composition of affine functions is still an affine function
6: Wi ←W

2
1W

1
l1
,bi ←W

2
1b

1
l1
+ b

2
1

7: else ⊲ The last l2 − 1 layers are identical to the corresponding layers in g2
8: Wi ←W

2
i−l1+1,bi ← b

2
i−l1+1

9: end if
10: end for ⊲ See Table 4 in Appendix C for complexity analysis

27



Algorithm 5 Find a ReLU network that computes an identity mapping for a given depth

Input: The input dimension n and the number of layers l of the target ReLU network.
Output: Parameters of an l-layer ReLU network g computing g(x) = x, ∀x ∈ R

n.

1: A←
[

1
−1
]

,B←
[

1 −1] ,C←
[

1 −1
−1 1

]

⊲ Constant matrices

2: Φ(Y, s) =













Y
(1)

0 · · · 0

0 Y
(2) · · · 0

...
...

. . .
...

0 0 · · · Y
(s)













⊲ A block diagonal matrix with Y repeated s times

3: k0 ← n, kl ← n,bl ← 0n

4: for i = 1, 2, · · · , l − 1 do
5: ki ← 2n ⊲ The number of hidden neurons at the i-th hidden layer
6: bi ← 0ki

7: end for
8: if l = 1 then ⊲ Find the weights of input and output layers, if any
9: W1 ← In×n ⊲ An identity matrix

10: else
11: W1 ← Φ (A, k0)
12: Wl ← Φ (B, kl)
13: end if
14: if l > 2 then ⊲ Find the weights of hidden layers, if any
15: for i = 2, 3, · · · , l − 1 do
16: Wi ← Φ (C, n)
17: end for
18: end if ⊲ See Table 5 in Appendix C for complexity analysis

Algorithm 6 Find all distinct linear components of a CPWL function

Input: An unknown CPWL function p whose output can be observed by feeding input from R
n

to the function. A center ci and radius ǫi > 0 of any closed ǫi-radius ball B(ci, ǫi) such that
B(ci, ǫi) ⊂ Xi for i = 1, 2, · · · , q where {Xi}i∈[q] are all pieces of p.

Output: All distinct linear components of p, denoted by F .
1: F ← ∅ ⊲ Initialize the set of all distinct linear components
2: for i = 1, 2, · · · , q do
3: x0 ← ci ⊲ select the center of B(ci, ǫi)
4: y0 ← p(x0)
5:

[

s1 s2 · · · sn

]

← ǫiIn×n ⊲ scale the standard basis of Rn

6: S←
[

s1 s2 · · · sn

]

7: z←











p(s1 + x0)− y0
p(s2 + x0)− y0

...
p(sn + x0)− y0











8: a← S
−T

z ⊲ Find the linear map by solving a system of linear equations
9: b← y0 − a

T
x0 ⊲ Find the translation

10: f ← x 7→ a
T
x+ b ⊲ The affine map on Xi

11: if f 6∈ F then ⊲ Only add the affine map f to the set F if f is distinct to all elements of F
12: F ← F ⋃{f}
13: end if
14: end for ⊲ See Table 6 in Appendix C for complexity analysis

28



Table 2: The time complexity of Algorithm 2 is O
(

m2 max(m log2 m,n)
)

.

Line Operation count Explanation

1 O(1) Initialize constant matrices.

2 O
(

d21
)

Let d1 be the maximum dimension of Y and Z.

3 O(s2d22) Let d2 be the maximum dimension of Y.
4 O(1) Scalar assignments.
5 O(log2 m) Repeat Line 6 to Line 12 ⌈log2 m⌉ times.
6 O(1) Check a scalar is even or not.
7 O(1) Compute a scalar.
8 O(1) Compute a scalar.
9 - -

10 O(1) Compute a scalar.
11 O(1) Compute a scalar.
12 - -
13 - -
14 O(mn) Assign a matrix and a vector.
15 O(1) Check a scalar inequality.
16 O(1) Check a scalar is even or not.

17 O(m2n) Matrix creation and multiplication.
18 - -

19 O(m2n) Matrix creation and multiplication.
20 - -
21 O(1) Assign a constant matrix and vector.
22 - -
23 O(1) Check a scalar inequality.
24 O(log2 m) Repeat Line 25 to Line 30 ⌈log2 m⌉ − 1 times.
25 O(1) Check a scalar is even or not.

26 O(m2) Matrix creation.
27 - -

28 O(m2) Matrix creation.
29 - -
30 O(1) Check a scalar is even or not.

31 O(m3) Matrix creation and multiplication.
32 - -

33 O(m3) Matrix creation and multiplication.
34 - -

35 O(m) Assign a vector whose length is at most
⌈

3m
2

⌉

.
36 - -
37 - -
38 O(1) Check the binary data type.
39 O(mn) Reverse the sign of W1 and b1.
40 O(1) Reverse the sign of a constant matrix and a constant bias.
41 - -

29



Table 3: The time complexity of Algorithm 3 is O
(

d2klmax(d, k)
)

where d is the maximum di-
mension of all the weight matrices in g1, g2, · · · , gk and l = maxj∈[k] lj .

Line Operation count Explanation

1 O(k) Find the maximum among k numbers.

2 O(d2k) Matrix concatenation and assignment.
3 O(k) Repeat Line 4 to Line 9 k times.
4 O(1) Check a scalar inequality.
5 O(1) A scalar assignment.
6 O(d2l) Algorithm 5 (see Table 5).

7 O(d3l) Algorithm 4 (see Table 4).

8 O(d2l) Assign weights of the network.
9 - -
10 - -
11 O(l) Repeat Line 12 l− 1 times.

12 O(d2k2) Assign a matrix and a vector.
13 - -

Table 4: The time complexity of Algorithm 4 isO
(

d3 max(l1, l2)
)

where d is the maximum dimen-
sion of all the weight matrices in g1 and g2.

Line Operation count Explanation

1 O(1) Assign a constant.
2 O(l) Repeat Line 3 to Line 9 l times.
3 O(1) Check a scalar inequality.
4 O(d2) Assign a matrix and a vector (at most d2 + d elements).
5 O(1) Check a scalar equality.

6 O(d3) Matrix multiplication and assignment.
7 - -

8 O(d2) Assign a matrix and a vector (at most d2 + d elements).
9 - -

10 - -

Table 5: The time complexity of Algorithm 5 is O(n2l).

Line Operation count Explanation

1 O(1) Initialize constant matrices.

2 O(s2d1d2) Create a block diagonal matrix from Y ∈ R
d1×d2 and s ∈ N.

3 O(n) Assign two constant scalars and one constant vector of length n.
4 O(l) Repeat Line 5 to line 6 l times.
5 O(1) Assign a scalar.
6 O(n) Assign a vector whose length ki is equal to 2n.
7 - -
8 O(1) Check a scalar equality.

9 O(n2) Assign an n-by-n matrix.
10 - -

11 O(n2) Assign a 2n-by-n block diagonal matrix.

12 O(n2) Assign an n-by-2n block diagonal matrix.
13 - -
14 O(1) Check a scalar inequality.
15 O(l) Repeat Line 16 l− 2 times.

16 O(n2) Assign a 2n-by-2n block diagonal matrix.
17 - -
18 - -

30



Table 6: The time complexity of Algorithm 6 is O
(

nqmax(n2, q)
)

.

Line Operation count Explanation

1 O(1) Initialize an empty placeholder F .
2 O(q) Repeat Line 3 to line 13 q times.
3 O(1) Select an interior point. Use the center of the ball.
4 O(1) Evaluate the function on the point.

5 O(n2) Scale and assign an n-by-n matrix.
6 - -
7 O(n) Translate, evaluate, and subtract n points.

8 O(n3) Solve a system of n linear equations with n variables.
9 O(n) Solve the translation term in the affine map
10 - -
11 O(nq) Each affine map has n+ 1 parameters and F has at most q elements.
12 O(1) Add a distinct affine map to F .
13 - -
14 - -

D Open source implementation and run time of Algorithm 1

We implement Algorithm 1 in Python. Figure 3 shows that the run time of the algorithm is greatly
affected by the number of pieces q.

Code is available at https://github.com/kjason/CPWL2ReLUNetwork.

2
0

2
1

2
2

2
3

2
4

2
5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Number of pieces q

R
u

n
ti

m
e

(s
ec

o
n

d
s)

n = 1

n = 10

n = 100

Figure 3: The run time of Algorithm 1 is an average of 50 trials. Every trial runs Algorithm 1
with a random CPWL function whose input dimension is n and number of pieces is q. The code
provided in the above link is run on a computer (Microsoft Surface Laptop Studio) with the Intel
Core i7-11370H.

31

https://github.com/kjason/CPWL2ReLUNetwork

	1 Introduction
	1.1 Key results and contributions

	2 Preliminaries
	3 Upper bounds on neural complexity for representing CPWL functions
	3.1 Upper bounds in prior work
	3.2 Improved upper bounds
	3.3 Limitations

	4 Representations of CPWL functions have different implications on depth
	4.1 Constrained depth
	4.2 Proof sketch for the unconstrained depth

	5 Broader impact
	A Lemmas
	B Proofs
	B.1 Proof of Lemma 1
	B.2 Proof of Lemma 2
	B.3 Proof of Theorem 2
	B.4 Proof of Theorem 1
	B.5 Proof of Theorem 3
	B.6 Proof of Lemma 3
	B.7 Proof of Lemma 4
	B.8 Proof of Lemma 5
	B.9 Proof of Lemma 6
	B.10 Proof of Lemma 7
	B.11 Proof of Lemma 8
	B.12 Proof of Lemma 9
	B.13 Proof of Lemma 10
	B.14 Proof of Lemma 11(a)
	B.15 Proof of Lemma 11(b)
	B.16 Proof of Lemma 11(c)
	B.17 Proof of Lemma 11(d)
	B.18 Proof of Lemma 12(a)
	B.19 Proof of Lemma 12(b)
	B.20 Proof of Lemma 12(c)
	B.21 Proof of Lemma 13
	B.22 Proof of Proposition 1

	C Algorithms and time complexities
	D Open source implementation and run time of Algorithm 1

