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ABSTRACT 

Social media is one of the main sources for news consumption, 
especially among the younger generation. With the increasing pop-
ularity of news consumption on various social media platforms, 
there has been a surge of misinformation which includes false in-
formation or unfounded claims. As various text- and social context-
based fake news detectors are proposed to detect misinformation 
on social media, recent works start to focus on the vulnerabilities of 
fake news detectors. In this paper, we present the frst adversarial 
attack framework against Graph Neural Network (GNN)-based fake 
news detectors to probe their robustness. Specifcally, we leverage a 
multi-agent reinforcement learning (MARL) framework to simulate 
the adversarial behavior of fraudsters on social media. Research has 
shown that in real-world settings, fraudsters coordinate with each 
other to share diferent news in order to evade the detection of fake 
news detectors. Therefore, we modeled our MARL framework as a 
Markov Game with bot, cyborg, and crowd worker agents, which 
have their own distinctive cost, budget, and infuence. We then use 
deep Q-learning to search for the optimal policy that maximizes 
the rewards. Extensive experimental results on two real-world fake 
news propagation datasets demonstrate that our proposed frame-

work can efectively sabotage the GNN-based fake news detector 
performance. We hope this paper can provide insights for future 
research on fake news detection. 

CCS CONCEPTS 

• Computing methodologies → Machine learning; • Informa-

tion systems → Social networks. 
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1 INTRODUCTION 

With the burgeoning of social media, inaccurate or unfounded in-
formation (i.e., misinformation) is also circulating on social media, 
which demotes people’s belief in truth and science [6, 40]. Unlike 
traditional news media, social engagement like commenting and 
sharing expedite the spread of misinformation and exaggerate its 
infuence at scale. Recent research has pointed out that misinforma-

tion has been hindering the promotion of vaccines and threatening 
public health during the COVID-19 global pandemic [26]. 

To combat massive misinformation on social media, many ma-

chine learning based misinformation detectors are proposed [48]. 
Besides the methods utilizing natural language processing tech-
niques to check the news content and its writing style to verify 
its veracity [21, 36, 46], recent works have begun to leverage news 
social engagement using graph models for fact-checking [3, 27, 30, 
35]. Compared to the straightforward NLP-based methods, social-
engagement-based methods regard engaged users as an integral 
part of news posts. Based on the theory and evidence that news 
consumers have preferences on news content (i.e., the echo cham-

ber) [10, 16, 27, 29, 39], the engagement patterns of misinforma-

tion and fact are also diferent. Moreover, the prevalent bots and 
fraudsters engaged with fake news posts also diferentiate their 
engagement patterns from regular ones [37]. 

Despite the rapid development of automatic fact-checking, most 
fake news detectors are static models vulnerable to adversarial 
attacks. Similar to many security problems, we must acknowl-
edge that misinformation detection is an armed race between con-
tent moderators and malicious actors aiming at manipulating pub-
lic opinion or gaining money through incited social engagement. 
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Figure 1: An illustration of attacking a fake news classifer via 
manipulating news posts’ social engagement. The classifer 
misclassifes the fake news after the fraudster who has shared 
many real news posts shares it. 

Therefore, it is imperative to enhance the robustness of misinfor-

mation detectors. Though some recent works have investigated the 
robustness of NLP-based misinformation detectors [1, 18, 19, 24, 49], 
no work has probed the robustness of social-engagement-based 
misinformation detectors. [24] and [28] are two closest works to 
ours. However, they either do not consider social engagement-

based detectors or do not model the diverse fraudster type in the 
misinformation campaign. 

We use Figure 1 to demonstrate the vulnerability of social engage-
ment based misinformation detectors. Many existing works [30, 35] 
model news social engagement on social media as a heterogeneous 
graph where users and news posts are nodes, and an edge means a 
user has shared the post. Graph Neural Networks (GNNs) [15, 22, 45] 
have been widely leveraged to encode the above social engagement 
graph and predict the veracity of news posts. Many GNNs are de-
signed to encode the neighboring node information to enhance the 
prediction performance of the target node. To exploit this property, 
as shown in Figure 1, the fraudster who has shared many real news 
can fip the GNN-based misinformation detector’s prediction on a 
target fake news by sharing it. Because the newly added real news 
neighbors will alleviate the suspiciousness of the target fake news. 

To analyze the robustness of social-engagement-based misinfor-

mation detectors, inspired by GNN robustness research [42], we 
propose to attack GNN-based misinformation detectors by simulat-

ing the adversarial behaviors of fraudsters. However, the real-world 
misinformation campaign delivers three non-trivial challenges for 
attack simulation: (1) To evade detection while promoting fake 
news on social media, malicious actors can only manipulate the 
controlled user accounts to share diferent social posts. However, 
most of the previous GNN adversarial attack works assume all 
nodes and edges can be perturbed, which is impractical. (2) Many 
deployed GNN-based fake news detectors are grey-box models with 
various model architectures tailored to the heterogeneous user-post 
graph. Thus, the gradient-based optimization method used by previ-
ous works [50] cannot be utilized to devise an attack. (3) Real-world 
evidence [31, 44] shows that various coordinated malicious actors 
have engaged in the misinformation campaign. Diferent types of 
malicious actors have diferent capabilities, budgets, and risk ap-
petites. For instance, key opinion leaders have stronger infuence 
than social bots but cost more to cultivate. 

To overcome the above challenges, we devise a dedicated Multi-

agent Reinforcement Learning (MARL) framework, while none 
of the previous GNN robustness work was used. Specifcally, to 
simulate the real-world behavior of fraudsters who share diferent 
posts, we harness a deep reinforcement learning framework to fip 

the classifcation result of a target news node by modifying the 
connections of users who shared the post. We model the MARL 
framework as a Markov Game where the agents work coordinately 
to fip the classifcation result. Overall, our contributions are: 

• To the best of our knowledge, we are the frst work to probe the 
robustness of GNN-based fake news detectors from a social en-
gagement perspective. Although there have been previous works 
on attacking fake news detectors using NLP methods, attacking 
fake news detectors by manipulating the social engagement of 
news targets has not been studied. 

• We leverage a MARL framework to perform targeted attacks on 
GNN-based fake news detectors to simulate real-world misinfor-

mation campaigns. Specifcally, we modeled fraudsters as agents 
with diferent costs, budgets, and infuences in our framework. 

• Our experiment results show that our proposed MARL frame-

work could efectively fip the GNN prediction results. We discuss 
the vulnerabilities of GNN-based fake news detectors and provide 
insights on attack strategies and countermeasures. 

The rest of the paper is organized as follows. In Section 2, we 
introduce related work. In Section 3 and 4, we introduce the problem 
defnition and proposed framework. In Section 5, we report our 
experiment results and analysis. Finally, we discuss the limitation 
and future work of this paper in Section 6. 

2 RELATED WORK. 

In this section, we review the related work on (1) graph neural 
network-based fake news detection; (2) adversarial attack on graph 
neural networks; and (3) adversarial attack on fake news detection. 

2.1 GNN-based Fake News Detection 

We can categorize the existing GNN-based misinformation detec-
tion works into two major categories according to their graph 
prototypes: 1) Propagation-based work [17, 27, 29, 41]: these works 
model the sharing sequence of a news post as a tree-structured 
propagation graph with the news post as the root node and edges 
representing shared relations between users. It can be formulated 
as either a propagation graph classifcation or a root node classifca-
tion task. The propagation graph is infeasible for adversarial attacks 
because the attacker needs to employ a lot of users to share the 
target post to fip its classifcation results. At the same time, such 
operations are naive for optimization and easily captured by simple 
outlier measurements. 2) Social-context-based work [5, 30, 35, 47]: 
all users and their shared news posts (e.g., tweets) formulate a bipar-
tite graph (as shown in Figure 1) where an edge means a user shared 
the post and the objective is training a GNN to classify the news 
post nodes. Note that previous works usually add the publisher as 
the third type of node connecting to social posts. In this paper, we 
only consider the common-used graph prototype (i.e., user-post 
bipartite graph) as it is easier to manipulate in practice. 

2.2 Adversarial Attack on GNNs 

As GNNs attain excellent performance on many graph mining tasks, 
their robustness against adversarial attacks has drawn increased 
attention in recent years [42]. RL-S2V [8] and Nettack [50] are 
two early GNN attacking algorithms aiming at lowering the GNNs’ 
node classifcation performance via add/deleting edges or modi-

fying node features under a given budget. Following these work, 
other works have begun to investigate the GNN robustness under 
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diferent tasks, e.g., link prediction [4], knowledge graph embed-

ding [34], and community detection [25]. However, none of the 
previous works have attempted to attack GNN-based fake news 
detectors, which have recently become popular amid massive adver-
saries engaging in fake news spread [37]. Compared to the previous 
works using reinforcement learning to attack GNNs, our work uti-
lizes a multi-agent setting to mimic the real-world misinformation 
campaign. In addition, to simulate the real-world attack setting, we 
only manipulate the edges of the news social engagement graph 
since it is unlikely that attackers can modify news posts. 

2.3 Adversarial Attack on Fake News Detectors 

Given a wide array of machine learning-based fake news detectors, 
only a few works have investigated the robustness or vulnerabilities 
of fake news detectors [1, 9, 18, 19, 23, 24, 49]. Among those works, 
[19] examines the robustness of text-based news veracity classifers 
over time and against attacks crafted by manipulating news sources. 
[1, 23, 49] probe the robustness of NLP-based fake news detectors 
by devising various attacks that distort the news content or inject 
adversarial texts. Nash-Detect [9] and AdRumor-RL [28] study the 
robustness of graph-based spam detectors and rumor detectors 
respectively, using the reinforcement learning framework. MAL-

COM [24] carries out the attacks from another perspective which 
modifes the comments of each piece of news to fool the fake news 
detectors leveraging multi-source data. PETGEN [18] simulates the 
behavior of malicious users on social media by generating a se-
quence of texts to attack sequence-based misinformation detectors. 
Unlike previous work, we are the frst to explore the robustness 
of social context-based fake news detectors using a multi-agent 
reinforcement learning framework. 

3 PROBLEM FORMULATION 

We formulate the problem of attacking social-engagement-based 
fake news detectors as attacking GNNs on a user-post sharing graph. 
In this section, we frst defne GNN-based fake news detection and 
then introduce our adversarial attack objective. 

3.1 GNN-based Fake News Detection 

A user-post sharing graph is defned as a bipartite graph G = 
{� ,� , �, X� , X�, � }, where � = (�0, · · · , �� ) is a set of users, � = 
(�0, · · · , � � ) is a set of news posts, and the edge �� � = (�� , � � ) ∈ � 
indicates the user �� has shared the news post � � . X� and X� are 
two feature matrices of user nodes and news nodes, respectively. 
According to previous works [10, 17, 30], the feature vectors of 
users and news can be composed of their text representations or 
handcrafted features. Following [10], we use the 300-dimensional 
Glove embeddings of users’ historical posts and news post text to 
represent X� (�, :) and X� ( �, :), respectively. We use X to represent 
all node features for convenience. � � ∈ � represents the label of 
� � ∈ � where 1 (0 resp.) represents fake news (real news resp.). 

To detect fake news based on G, a general GNN framework [15, 
45] can be applied to it. Concretely, to learn a news post � ’s repre-
sentation, a GNN aggregates its neighbors’ information recursively:

� � �� 
h
(� ) 

h
(� −1) 

h
(� −1)

� � � = � ⊕ AGG(� ) , (�, �) ∈ � , (1) 

where � is the GNN layer number. AGG is the GNN aggregator that 
aggregates neighbor embeddings. Common aggregators employ 
attention [45], mean [15], and summation [15]. ⊕ represents the 

operation that combines the embedding of � at the last GNN layer 
and its aggregated neighbor embeddings. Common approaches 
include concatenation and summation. Similarly, the representation 
of � can be learned by the same process shown in Eq. (1). 

To classify the news post � ∈ � , a GNN classifer � takes the 
G as input where �� and �� are node features of � and � . It maps 
� ∈ � to � ∈ (0, 1) after feeding the ℎ� at the last layer to an MLP 
and softmax layer. The GNN classifer can be trained on partially 
labeled post nodes with the following cross-entropy loss in a semi-

supervised fashion: 
∑ 

� � 
L�� � (G, �� ) = −log � � · � ((�� (�, X) � ) . (2) 

�� ∈V 

3.2 Adversarial Attacks on GNN-based Fake 
News Detectors 

At a high level, our problem can be regarded as attacking GNN-
based node classifcation but with practical constraints to simulate 
real-world misinformation campaigns. Specifcally, the objective 
of the attacking method is to fip the GNN classifcation results 
of target social posts via maneuvering controlled malicious social 
media user accounts to share new posts. Note that we assume 
attackers can only perturb the graph by controlling malicious users 
to share news posts and not delete existing shared news posts. 
We make this assumption because in a real-world setting, even 
though the users can delete existing shared posts, the record of 
shared relations may still exist in the database. Considering the 
massive social network data and the diverse fake news detectors 
employed by the platform, we assume the unknown target GNN is 
pre-trained on clean data in our problem setting (i.e., the training 
data is not poisoned by the adversary). Also, we assume that we 
have knowledge about the type of GNN the detector is trained 
on, but we do not have access to its model parameters. Thus, our 
problem is a grey-box evasive structural attack on the GNN-based 
node classifcation task. We formally defne our attack objective as:

∑ 
max 1(�� ∗ (� ′ , X)� ≠ �� )
�� ,�� 

�∈�� 

s.t. � ∗ 
= arg min L�� � (G, �� ), (3) 

� 

|�� | ≤ Δ� , |�� | ≤ Δ� , 

where �� , �� , and �� represent a set of controlled users, manipu-

lated edges, and target news posts, respectively. G represents the 
clean graph and � ′ is the set of perturbed edges. Δ� (Δ� resp.) rep-
resents the budget of controlled users (modifed edges resp.). The 
above adversarial objective essentially maximizes the misclassifca-

tion rate of the target social posts. 

4 METHODOLOGY 

In practice, misinformation campaigns are carried out by coordi-
nated fraudsters manipulating social user accounts to evade detec-
tion. In this section, we frst elucidate the property of attackers mo-

tivated by real-world misinformation campaigns. Then we present 
the multi-agent reinforcement learning framework we use to probe 
the robustness of GNN-based fake news detectors. 

4.1 Attacker Property 

4.1.1 Atacker Knowledge. As introduced in Section 3.2, our attack 
is a grey-box attack meaning the attackers only have knowledge 
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Figure 2: The user account number distribution according to 
the amount of news shared by them. We sample accounts in 
diferent ranges to represent diferent user types. 

about the architecture of the GNN-based classifer, but not its model 
internals like weights or coefcient values. To attack the GNN 
classifcation results of target posts, we assume the attacker can 
sense the entire graph, including the features and labels of the user 
and post nodes as well as their connections. The above setting is 
practical since social media information is publicly accessible and 
the attackers can easily infer node features and labels given fruitful 
related works in misinformation research. 

4.1.2 Atacker Capability. To imitate the real-world behavior of 
fraudsters as much as possible, we defne the capability of users 
controlled by fraudsters (i.e., �� ) as follows: 

• Direct Attack: � ∈ �� shares the � ∈ �� directly if (�, �) ∉ �. In 
real-world settings, given that a controlled user shared many 
posts from trustworthy sources that seemed to be legitimate, it 
will help alleviate the suspiciousness of a fake news post if the 
user shares the post. 

• Indirect Attack: For � ∈ �� , � ∈ �� , (�, �) ∈ �, we carry out the 
′attack by controlling � to share � ∉ �� . The indirect attack ex-

ploits the neighbor aggregation mechanism of GNNs by exerting 
infuence on the target post by changing its neighborhood. In 
practice, for a controlled user having shared the target post with 
fake new, one can let the controlled user share posts from trust-
worthy sources to mislead the GNN’s prediction on the target 
fake news post. Since indirect attack does not directly modify 
the edge between controlled user and target news post, it is less 
noticeable than direct attack. 

Note that as previously mentioned in Section 3.2, attackers are 
only allowed to add edges between user nodes and news post nodes. 

4.1.3 Agent Configuration. Real-world evidence shows that multi-

ple groups of malicious actors are engaged in the misinformation 
campaign [32, 37, 40]. Besides singletons who act individually, most 
misinformation campaigns are executed coordinately by profes-
sional agencies since it would reach the campaign goal faster while 
maximizing the utilities of existing resources. From the adversarial 
attack perspective, diferent types of controlled user accounts have 
distinct infuences on target posts and diferent budgets. For in-
stance, the bot users are usually low-cost and with a higher budget. 
However, these bot users have few historical records; thus each bot 
user has limited infuence on target posts [37]. The crowd workers 
with credible and rich social profles are usually expensive, but they 
have a stronger infuence on target posts. 

To model the above distinct malicious actor groups, previous 
single-agent RL frameworks are not applicable [8, 43]. Therefore, 

we leverage a MARL, which not only enables the personalized con-
fguration for each group but also helps simulate the coordinated 
behavior between diferent groups. Specifcally, we defne three 
agents which control three distinct groups of user accounts accord-
ing to the malicious accounts introduced in [40]. We divide the user 
accounts based on the number of news they have shared, Figure 
2 shows the distribution of the number of news that users have 
shared in Politifact and Gossipcop datasets. Table 1 compares the 
key properties of the following agents. 
1) Agent 1 (Social Bots): Social bots registered and fully controlled 
by automated programs have been proven to engage in fake news 
spreading by many works [2, 37]. The frst agent controls the bot 
users, and it has a low cost and high budget. We randomly select 
the users with only one connection in our datasets to represent the 
newly created bot users. 
2) Agent 2 (Cyborg Users): According to [40], cyborg users are 
registered by humans and partially controlled by automated pro-
grams. The easy switch of functionalities between humans and 
bots ofers cyborgs unique opportunities to spread fake news. Since 
those users are camoufaged as human, they usually have more 
historical engagements (i.e., connections to other posts). In our 
datasets, we randomly select the users with more than 10 connec-
tions to represent the compromised users. The cost, budget, and 
infuence of cyborg agents are between that of the other two agents. 
3) Agent 3 (Crowd Workers): The crowd workers are usually of 
high cost since they get paid for each campaign. Meanwhile, they 
have the strongest infuence. We take the users with more than 20 
connections, where 100% of them connect to real-news posts to 
represent the crowd workers. 

4.2 Attack Framework 

In the real world, each agent above represents a malicious actor 
that aims to infuence the fake news classifcation results. Given a 
set of target news posts �� , the attack process can be modeled as 
a multi-agent cooperative reinforcement learning problem where 
all agents work together to maximize the misclassifcation rates 
of target news posts. Figure 3 illustrates the attack process of the 
proposed MARL algorithm. First, actions made from diferent agents 
are aggregated by the center controller; then, aggregated actions 
are applied to the environment composed of the social engagement 
graph and the surrogate classifer; the updated state and rewards 
generated by the classifer are fnally sent back to each agent for 
the next episode of optimization. In this subsection, We frst defne 
each component of the MARL framework, then introduce how we 
leverage deep Q-learning for optimization. 

4.2.1 MARL Framework. Diferent from previous GNN attacks 
using single-agent RL, which can be modeled as a Markov Decision 

Table 1: The comparison of properties among bots, cyborgs, 
and crowd worker agents. 

Agent User Cost Infuence Budget 

1 bot low low high 
2 cyborg moderate moderate moderate 
3 crowd worker high high low 
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Figure 3: The proposed MARL framework to generate ad-
versarial edge perturbations against GNN-based fake news 
classifer. See Section 4.2 for more details. 

Process (MDP) [8, 43], the MARL framework is a Markov game 
(MG). We formally defne the MG and its components as follows: 

Defnition 4.1. A Markov game is defned by a tuple 
(N , S, {A� }� ∈N , P, {�� }� ∈N , �), where N = {1, · · · , � } represent 
the set of � agents, S is the state space observed by all agents, 
A� denotes the action space of agent � . P is the state transition 
probability given a state � ∈ S and action � ∈ A. � is the reward 
function that determines the immediate reward received by agent � 
after a transition from (�, �) to � ′ . � is the discount factor to long-
term reward. 

• Action. As defned in Section 4.1.2, each � ∈ �� can only add 
edges based on their connection status to � ∈ �� . Meanwhile, 
each agent controls a set of users ��

� according to Section 4.1.3. We 
use ��� (�, �) to denote the action that adds the edge between user 

� and post � . Thus, the action space for agent � at time � is �� ∈� 
A� ⊆ ��

� ×�� . We use a centralized controller to aggregate agent 
actions. Specifcally, in each episode, the fnal actions are from 
the three types of agents with a fxed proportion, this proportion 
is motivated by real-world misinformation campaigns. 

• State. Since all agents work cooperatively to attack the same set 
of target posts �� against the same classifer � , all agents share 
the same state at time � represented by (G� 

′ , � ), where G′ is the � 
perturbed graph at time � . 

• Reward. As a grey-box attack, we aim to fip the classifcation 
results of the target classifer. Since we have knowledge of the 
GNN architecture of the detector, we use one of the three GNN 
models (i.e. GAT, GCN, and GraphSAGE) as our surrogate target 
classifer and take its classifcation results on �� as the reward 
to guide the agent. Note that the reward is shared by all agents 
under the cooperative setting. After all agents make the actions 
under their budgets (i.e., one episode), the reward for each agent 
towards the target post � ∈ �� is: 

�

� � 1 : �� ∗ (� ′ , X)� ≠ ��,
� (G ′ , �� ∗ )� = (4)

−1 : �� ∗ (� ′ , X)� = �� . 

• Terminal. After each agent makes fnite modifcations according 
to their own budget Δ�� , the Markov game stops. 

4.2.2 Deep Q-Learning. To solve the above Markov game, we need 
to fnd the optimal policy that maximizes the expected value of 
long-term rewards. Since each agent has its own controlled user 

Table 2: Dataset statistics and agent confgurations for Poli-
tifact and Gossipcop datasets. 

Data |� | |� | |� | |�� | Agent Δ� Δ� 

1 100 1 
POL 276,277 581 1,074,890 62 2 50 3 

3 20 5 

1 1,000 1 
GOS 565,660 10,333 3,084,931 1,547 2 500 3 

3 100 5 

accounts and budget, each agent � should have its own policy �� that 
�� � ∼ �� (·|�� ). We use the Q-learning to learn the optimal policy ��,∗ 

parameterized by a Q-function ��,∗ (�� , �� ). The optimal Q-value 
for agent � can be represented by the following Bellman equation:

� � � � � � 
��,∗ �� , �

� 
= � �� , �

� + � max � ∗ �� +1, �
�,′ , (5)� � 

� ′ 

where ��,′ represents agent �’s future action based on state �� . The 
above equation suggests a greedy policy where the agent �’s best 
action based on �� is the action that maximizes the Q-value above: 

� � � � 
�� �� | �� ; �

�,∗ 
= arg max ��,∗ �� , �

� . (6)� � 
�� � 

For each target post � ∈ �� , we would like to choose the con-
trolled user � ∈ �� with the most infuence to � to fip the GNN 
classifcation result on � . Thus, using GNNs to parameterize the 
Q-function could help model each action’s value. Specifcally, we 
frst employ a two-layer GraphSAGE [15] to obtain the embedding 
of each post node ℎ�,� in current state �� according to Eq. (1). Note 
that we only consider the 2-hop neighborhood of all target nodes 
and controlled user accounts, which could reduce the state and 
action space. For agent � at time � with embeddings of controlled 
user accounts ℎ�,� , � ∈ � � and the target node ℎ�,� , � ∈ �� , the� 
Q-value of action ��� (�, �) is calculated by the following equation: 

� � � � � � 
�� �� , �

�
� (�, �) = � � 1 (ℎ�,� ) · � � 2 (ℎ�,� ) , (7) 

where two liner layers are applied on two end node embeddings 
before computing their dot product which yields the Q-value of the 
given action. 

5 EXPERIMENTS 

As mentioned in Section 4.1.2, indirect attacks do not modify the 
edges between user nodes and target news nodes directly and are 
more likely to be used by attackers in practice to evade detection. 
In this section, we conduct a series of experiments to validate the 
efectiveness of our proposed framework under the more realistic 

Table 3: Performance of surrogate models mea-

sured by accuracy and F-1 score. 

Models 
Politifact Gossipcop 

Accuracy F1 Accuracy F1 

GCN 0.8673 0.8632 0.8278 0.7864 
GAT 0.8600 0.8543 0.8423 0.8010 
SAGE 0.8034 0.7973 0.8824 0.8636 
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Table 4: Results of using MARL to perform indirect targeted attacks comparing to several 
baselines. Experiments are repeated fve times, and the average success rate is reported. 

Politifact Gossipcop 
Method Fake Real Fake Real 

GAT GCN SAGE GAT GCN SAGE GAT GCN SAGE GAT GCN SAGE 

RD-Edge 0.14 0.45 0.13 0.11 0.33 0.15 0.06 0.28 0.25 0.08 0.22 0.14 
RD-Node 0.12 0.48 0.14 0.13 0.38 0.15 0.12 0.32 0.22 0.12 0.23 0.16 
RL - A1 0.17 0.42 0.16 0.08 0.07 0.21 0.14 0.45 0.23 0.08 0.80 0.16 
RL - A2 0.15 0.38 0.16 0.08 0.13 0.18 0.18 0.52 0.32 0.06 0.83 0.24 
RL - A3 0.18 0.64 0.19 0.08 0.13 0.18 0.19 0.51 0.31 0.12 0.85 0.22 

MARL 0.33 0.92 0.28 0.22 0.31 0.19 0.21 0.64 0.36 0.18 0.89 0.28 

indirect settings and analyze the factors that afect MARL’s at-
tack performance. Then, we present experiment results to compare 
direct attack against indirect attack. Finally, we discuss some coun-
termeasures that could be used by defenders. Specifcally, we aim 
to answer the following research questions: 

• RQ1: How does the performance of MARL compare to baselines? 
• RQ2: What factors afect the performance of MARL? 
• RQ3: How does direct attack compare with indirect attack? 
• RQ4: What are some countermeasures against attacks? 

5.1 Experiment Settings 

In this subsection, we introduce the experiment settings for MARL 
indirect attacks. We frst introduce the datasets, surrogate models, 
and baseline methods used for the experiments, then we introduce 
the implementation details. 

5.1.1 Datasets. We extract two social engagement graphs from 
the FakeNewsNet [38] dataset composed of the metadata of fake 
and real news posts and their engaged users on Twitter from two 
fact-checking sources: Politifact and Gossipcop. Following [10], we 
take Glove 300D [33] embedding of a user’s historical tweets as its 
feature and the Glove embedding of the associated news content 
of a social post as its features. Note that our attack operates the 
controlled users to share posts; since the number of changed edges 
for a user is within a tight budget, we assume all node features are 
unchanged during the attack process. 

5.1.2 Surrogate Models. Under the grey-box setting, the attacker 
only has information about the architecture of the model being 
attacked. Thus the attack has to be performed on a surrogate model 
M that has the same GNN architecture as the target model. For the 
GNN-based fake news detectors, we include three classic GNN mod-

els. Specifcally, we use Graph Convolution Network [22], Graph 
Attention Network [45], and GraphSAGE[15] as our M. Table 3 
shows the performance of these surrogate models on Politifact and 
Gossipcop. We trained these models to ensure that they have simi-

lar performance across both datasets. So that we can measure the 
attack performance of MARL comparably. 

5.1.3 Baseline Atack Methods. Due to the attacker’s limited capa-
bility and restricted candidates of both controlled users and target 
posts, we cannot take the feature and gradient-based attacks [50] 
as baselines. To compare the efectiveness of the proposed MARL 
framework, we compare it with the following baselines: 

• Random-Edge (RD-Edge): This is a simple baseline that randomly 
selects the controlled users and target posts to add edges until 
meeting the budget. 

• Random-Node (RD-Node): This baseline injects new user nodes 
into the graph and connects them with the target news nodes. 

• Single Agent RL: To demonstrate the efectiveness of MARL, we 
created this baseline by limiting the attacker to a single type of 
agent. Specifcally, we have three baselines named RL-A1 (Bot), 
RL-A2 (Cyborg), and RL-A3 (Crowd Worker). 

Budget and Target Selection Criteria For the Politifact dataset, 
we randomly sampled 100 bot agents, 50 cyborg agents, and 20 
crowd worker agents from Table 1. For the Gossipcop dataset, we 
randomly sampled 1,000 bot agents, 500 cyborg agents, and 100 
crowd worker agents. 
Implementation Details For Random-Edge method, we connect 
edges between sampled attack agents and news targets based on the 
agent node’s degree. Specifcally, we randomly connect bot agents 
with 1 news target, cyborg agents with 3 news targets, and crowd 
worker agents with 5 new targets. For Random-Node method, we 
add 5 user nodes for each of the three agent types. We generate 
the embedding for each node by randomly sampling 20 nodes from 
each type of agent, and taking the average of their embedding as 
the new embedding for the injected node. We connect the generated 
user nodes with target news nodes the same way in the Random-

Edge method. We use PyG [13] to implement all GNN algorithms. 
The MARL algorithm is implemented based on the RL-S2V code 
provided by [8]. Our code and data are publicly available 1. 
Performance Metrics Since we only aim to fip the classifcation 
results of a selected group of target posts, we use the success rate 
(SR) as the metric to evaluate the attack performance, which is the 
number of misclassifed posts divided by the total number of target 
posts after the attack. 

5.2 RQ1: Performance of MARL 

Since attackers are more likely to use indirect attacks than direct 
attacks to evade detection in practice, we study targeted indirect 
attacks on both fake and real news in Politifact and Gossipcop. 
Table 4 reports the attack performance of MARL compared to the 
baselines. From the table, we make the following observation: 

• MARL improves the overall attack performance on fake news 
across both datasets. Compared to the Random-Edge baseline, 

1https://github.com/hwang219/AttackFakeNews 
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Figure 4: Indirect attack performance of diferent types of agents on fake news in Politifact and Gossipcop datasets. 
Performance on GAT, GCN, and GraphSAGE are marked in blue, red, and green respectively. 

MARL improves the success rate of targeted fake news attacks by 
[57.6%, 51.1%, 53.6%] respectively for [GAT, GCN, GraphSAGE] 
on Politifact, and [250%, 128.6%, 44%] on Gossipcop. 

• MARL does not improve the performance of attacking real news 
in Politifact for GCN and GraphSAGE detectors. While MARL 
improves performance on all three GNN detectors in Gossipcop, 
the attack performance is worse compared to attacking fake 
news on GAT and GraphSAGE. This is likely due to the agent 
confguration of the experiment setting having less infuence on 
real news than on fake news. 

• Another interesting fnding is that GCN is more sensitive to 
edge perturbations compared to GAT and GraphSAGE. Attackers 
can achieve fairly good performance on GCN with only a small 
amount of edges added to the graph. For instance, we can reach 
a success rate of 0.48 with just 210 edges added when attacking 
fake news on Politifact. Comparably, with the same amount of 
attack budget, the success rate on GAT and GraphSAGE detectors 
are 0.12 and 0.14 respectively, much lower than GCN. Previous 
works [7, 8] have also shown that GCNs are vulnerable to struc-
tural adversarial attack due to the low breakdown point of their 
weighted mean aggregation method. 

5.3 RQ2: Attack Performance Analysis 

In this subsection, we answer RQ2 and provide insights on the 
factors that afect MARL’s attack performance. Specifcally, we 
provide analysis based on agent types and news types. 

5.3.1 Agent Types. Figure 4 shows the ablation study results on 
single agent RL. Specifcally, we use RL-A1, RL-A2, and RL-A3 
methods to carry out targeted indirect attacks on fake news in 
Politifact and Gossipcop datasets with increasing attack budgets by 
using more agents. We make the following observations: 

• The overall attack performance increases with incremental attack 
budget for all three types of agents. 

• The performance gain slows down after hitting a threshold. There-
fore, attackers need to select the optimum number of agents to 
perform indirect attacks. 

• Crowd worker agents achieve better performance than bot and 
cyborg agents on all three GNNs given the same amount of 
attack budgets. This is expected since crowd worker agents have 
stronger infuence and their social posts are connected to real 
news. Therefore, they exert more infuence on fake news. 

Based on the above observation, we divide user nodes into łgoodž 
and łbadž groups. Specifcally, we put users who have more than 
80% of the news they shared being fake into the łbadž group and 
users who have less than 20% of the news they shared being fake 
into the łgoodž group. 

5.3.2 News Types. Intuitively, we conjecture that the news post 
node with a higher degree is more robust to attacks than those 
with lower degrees. To verify this hypothesis, we attack diferent 
groups of fake news in Politifact and Gossipcop according to their 
node degree, or their social popularity. Specifcally, we categorize 
news with less than 10 tweets as low popularity; news with more 
or equal than 100 tweets as high popularity; and news in between 
as mid. For this experiment, we use 10 crowd worker agents for 
Politifact and 50 crowd worker agents for Gossipcop respectively. 
As shown in Table 5, it is signifcantly harder to attack news with a 
higher degree across all three GNNs. Even on the most vulnerable 
GNN (i.e. GCN), MARL has a signifcant performance decrease (80% 

Table 5: Indirect targeted attack on fake news in Politi-
fact and Gossipcop based on their news degrees using 
crowd worker agents. 

News Degrees 
Politifact 

GAT GCN SAGE 

Gossipcop 

GAT GCN SAGE 

Low 
Mid 
High 

0.16 
0.14 
0.03 

0.30 
0.15 
0.06 

0.21 
0.11 
0.03 

0.14 
0.11 
0.02 

0.22 
0.13 
0.02 

0.25 
0.12 
0.05 
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Figure 5: Comparison between the direct and indirect attack 
on Politifact and Gossipcop on fake news with degrees less 
than 10 using “good” users. 

on Politifact and 90.9% on Gossipcop) when attacking fake news 
with a degree of less than 10 compared to the news with a degree 
more than 100. Another observation is that GAT is more robust 
than GCN and GraphSAGE on news with degree between 10 and 
100. As shown in Table 5, GAT only has a performance drop of 
12.5% and 21.4% on Politifact and Gossipcop respectively when 
increasing news degree from less than 10 to less than 100. Whereas 
the performance drop of GCN and GraphSAGE are almost halved 
on both datasets. This is likely due to the attention mechanism of 
GAT making it less sensitive to degree changes. 

5.4 RQ3: Direct vs. Indirect 

Recall from Section 4.1.2, direct attacks mean that attackers modify 
the edges directly linked from user nodes to target news nodes. 
Although direct attacks are more obvious in real-world scenarios, 
they can achieve better performance than indirect attacks due to 
the direct perturbation of graph structure. For this experiment, 
we sampled 25 good users for Politifact and 250 good users for 
Gossipcop to perform targeted attacks on fake news in both datasets. 
Figure 5 shows the comparison between direct and indirect attacks. 
We can see that direct attack improves the performance on GAT by 
81.8% and 147.6% on both datasets respectively. However, we see a 
decrease in performance on GCN and GraphSAGE detectors across 
both datasets. Especially on GCN detectors in the Politifact dataset. 

Based on the observation from Figure 5, we are interested in 
whether the performance of direct attack behaves similarly across 
news with diferent degrees. For this experiment, we use the same 
news degree categorization as in Table 5 and the same agent confg-
uration as in Figure 5 to attack fake news in both datasets. Figure 6 
shows that direct attack is efective on news with low and mid 
degrees on GAT and GCN detectors, while it is less efective on 
news with high degrees on GraphSAGE. 

5.5 RQ4: Countermeasures against Attacks 

Based on our experiment fndings, we discuss the countermeasures 
for fraudsters that manipulate news social engagement from two 
perspectives. 1) From the machine learning security perspective, 
there are fruitful research works on defending against graph ad-
versarial attacks [42]. Approaches like adversarial training [12], 
anomaly detection [11], and robust GNN models [14, 20] can be 
leveraged to defend the attacks. 2) From the practical perspective, 
social media platforms should pay equal attention to both łbotž and 
seemingly łgoodž users. As shown in the experiments, attackers 

Figure 6: Results of direct attack across diferent types of 
news based on their degrees. A brighter color suggests better 
attack performance. 

can leverage users’ good posting history to carry out a successful 
targeted attack on fake news to foul GNN-based detectors. Since 
the indirect attack is efective against many GNN detectors, this 
suggests that the platform should monitor more engagement activ-
ities of accounts engaged with the target news instead of the target 
news itself. Experiment results also show that there is no univer-
sally robust model which prompts the platform to adopt diverse 
trust and safety models. 

6 CONCLUSION AND FUTURE WORK 

In this paper, we aim to understand the vulnerability of graph neural 
network-based fake news detectors under structural adversarial 
attacks. To the best of our knowledge, this is the frst work to 
attack GNN-based fake news detectors. This paper aims to provide 
insights on how to develop a more robust GNN-based fake news 
detector against adversarial attacks in the future. We leveraged a 
multi-agent reinforcement learning framework to mimic the attack 
behavior of fraudsters in real-world misinformation campaigns. 
Our experiment results show that MARL improves overall attack 
performance compared to our baselines and is highly efective 
against GCN-based detectors. 

Even though we have some promising results from the exper-
iments, this paper has two major limitations: 1) This work only 
employs a simple heuristic to select users for action aggregation. 
2) The search space of the Q network is considerably large and re-
sults in a high computational cost on larger datasets like Gossipcop. 
Therefore, there are several interesting directions that need further 
investigation. The frst one is to automate the process of selecting 
optimal agents for action aggregation. The second one is to reduce 
the deep Q network’s search space efectively. Finally, we used a 
vanilla MARL framework in this paper. It would be interesting to 
explore a more complex MARL framework for this task. 

7 ETHICAL STATEMENT 

The Twitter data used in this paper are obtained from Twitter API 
and meet Twitter user agreement. Although we proposed an adver-
sarial attack framework against GNN-based fake news detectors, 
our intention is to probe and enhance the robustness of existing 
detectors. Therefore, we do not endorse this work to be used for 
unethical purposes in any shape or form. 
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