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ABSTRACT

Social media is one of the main sources for news consumption,
especially among the younger generation. With the increasing pop-
ularity of news consumption on various social media platforms,
there has been a surge of misinformation which includes false in-
formation or unfounded claims. As various text- and social context-
based fake news detectors are proposed to detect misinformation
on social media, recent works start to focus on the vulnerabilities of
fake news detectors. In this paper, we present the first adversarial
attack framework against Graph Neural Network (GNN)-based fake
news detectors to probe their robustness. Specifically, we leverage a
multi-agent reinforcement learning (MARL) framework to simulate
the adversarial behavior of fraudsters on social media. Research has
shown that in real-world settings, fraudsters coordinate with each
other to share different news in order to evade the detection of fake
news detectors. Therefore, we modeled our MARL framework as a
Markov Game with bot, cyborg, and crowd worker agents, which
have their own distinctive cost, budget, and influence. We then use
deep Q-learning to search for the optimal policy that maximizes
the rewards. Extensive experimental results on two real-world fake
news propagation datasets demonstrate that our proposed frame-
work can effectively sabotage the GNN-based fake news detector
performance. We hope this paper can provide insights for future
research on fake news detection.
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1 INTRODUCTION

With the burgeoning of social media, inaccurate or unfounded in-
formation (i.e., misinformation) is also circulating on social media,
which demotes people’s belief in truth and science [6, 40]. Unlike
traditional news media, social engagement like commenting and
sharing expedite the spread of misinformation and exaggerate its
influence at scale. Recent research has pointed out that misinforma-
tion has been hindering the promotion of vaccines and threatening
public health during the COVID-19 global pandemic [26].

To combat massive misinformation on social media, many ma-
chine learning based misinformation detectors are proposed [48].
Besides the methods utilizing natural language processing tech-
niques to check the news content and its writing style to verify
its veracity [21, 36, 46], recent works have begun to leverage news
social engagement using graph models for fact-checking [3, 27, 30,
35]. Compared to the straightforward NLP-based methods, social-
engagement-based methods regard engaged users as an integral
part of news posts. Based on the theory and evidence that news
consumers have preferences on news content (i.e., the echo cham-
ber) [10, 16, 27, 29, 39], the engagement patterns of misinforma-
tion and fact are also different. Moreover, the prevalent bots and
fraudsters engaged with fake news posts also differentiate their
engagement patterns from regular ones [37].

Despite the rapid development of automatic fact-checking, most
fake news detectors are static models vulnerable to adversarial
attacks. Similar to many security problems, we must acknowl-
edge that misinformation detection is an armed race between con-
tent moderators and malicious actors aiming at manipulating pub-
lic opinion or gaining money through incited social engagement.
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Figure 1: An illustration of attacking a fake news classifier via
manipulating news posts’ social engagement. The classifier
misclassifies the fake news after the fraudster who has shared
many real news posts shares it.
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Therefore, it is imperative to enhance the robustness of misinfor-
mation detectors. Though some recent works have investigated the
robustness of NLP-based misinformation detectors [1, 18, 19, 24, 49],
no work has probed the robustness of social-engagement-based
misinformation detectors. [24] and [28] are two closest works to
ours. However, they either do not consider social engagement-
based detectors or do not model the diverse fraudster type in the
misinformation campaign.

We use Figure 1 to demonstrate the vulnerability of social engage-
ment based misinformation detectors. Many existing works [30, 35]
model news social engagement on social media as a heterogeneous
graph where users and news posts are nodes, and an edge means a
user has shared the post. Graph Neural Networks (GNNs) [15, 22, 45]
have been widely leveraged to encode the above social engagement
graph and predict the veracity of news posts. Many GNNss are de-
signed to encode the neighboring node information to enhance the
prediction performance of the target node. To exploit this property,
as shown in Figure 1, the fraudster who has shared many real news
can flip the GNN-based misinformation detector’s prediction on a
target fake news by sharing it. Because the newly added real news
neighbors will alleviate the suspiciousness of the target fake news.

To analyze the robustness of social-engagement-based misinfor-
mation detectors, inspired by GNN robustness research [42], we
propose to attack GNN-based misinformation detectors by simulat-
ing the adversarial behaviors of fraudsters. However, the real-world
misinformation campaign delivers three non-trivial challenges for
attack simulation: (1) To evade detection while promoting fake
news on social media, malicious actors can only manipulate the
controlled user accounts to share different social posts. However,
most of the previous GNN adversarial attack works assume all
nodes and edges can be perturbed, which is impractical. (2) Many
deployed GNN-based fake news detectors are grey-box models with
various model architectures tailored to the heterogeneous user-post
graph. Thus, the gradient-based optimization method used by previ-
ous works [50] cannot be utilized to devise an attack. (3) Real-world
evidence [31, 44] shows that various coordinated malicious actors
have engaged in the misinformation campaign. Different types of
malicious actors have different capabilities, budgets, and risk ap-
petites. For instance, key opinion leaders have stronger influence
than social bots but cost more to cultivate.

To overcome the above challenges, we devise a dedicated Multi-
agent Reinforcement Learning (MARL) framework, while none
of the previous GNN robustness work was used. Specifically, to
simulate the real-world behavior of fraudsters who share different
posts, we harness a deep reinforcement learning framework to flip
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the classification result of a target news node by modifying the
connections of users who shared the post. We model the MARL
framework as a Markov Game where the agents work coordinately
to flip the classification result. Overall, our contributions are:

e To the best of our knowledge, we are the first work to probe the
robustness of GNN-based fake news detectors from a social en-
gagement perspective. Although there have been previous works
on attacking fake news detectors using NLP methods, attacking
fake news detectors by manipulating the social engagement of
news targets has not been studied.

o We leverage a MARL framework to perform targeted attacks on
GNN-based fake news detectors to simulate real-world misinfor-
mation campaigns. Specifically, we modeled fraudsters as agents
with different costs, budgets, and influences in our framework.

o Our experiment results show that our proposed MARL frame-
work could effectively flip the GNN prediction results. We discuss
the vulnerabilities of GNN-based fake news detectors and provide
insights on attack strategies and countermeasures.

The rest of the paper is organized as follows. In Section 2, we
introduce related work. In Section 3 and 4, we introduce the problem
definition and proposed framework. In Section 5, we report our
experiment results and analysis. Finally, we discuss the limitation
and future work of this paper in Section 6.

2 RELATED WORK.

In this section, we review the related work on (1) graph neural
network-based fake news detection; (2) adversarial attack on graph
neural networks; and (3) adversarial attack on fake news detection.

2.1 GNN-based Fake News Detection

We can categorize the existing GNN-based misinformation detec-
tion works into two major categories according to their graph
prototypes: 1) Propagation-based work [17, 27, 29, 41]: these works
model the sharing sequence of a news post as a tree-structured
propagation graph with the news post as the root node and edges
representing shared relations between users. It can be formulated
as either a propagation graph classification or a root node classifica-
tion task. The propagation graph is infeasible for adversarial attacks
because the attacker needs to employ a lot of users to share the
target post to flip its classification results. At the same time, such
operations are naive for optimization and easily captured by simple
outlier measurements. 2) Social-context-based work [5, 30, 35, 47]:
all users and their shared news posts (e.g., tweets) formulate a bipar-
tite graph (as shown in Figure 1) where an edge means a user shared
the post and the objective is training a GNN to classify the news
post nodes. Note that previous works usually add the publisher as
the third type of node connecting to social posts. In this paper, we
only consider the common-used graph prototype (i.e., user-post
bipartite graph) as it is easier to manipulate in practice.

2.2 Adversarial Attack on GNNs

As GNNs attain excellent performance on many graph mining tasks,
their robustness against adversarial attacks has drawn increased
attention in recent years [42]. RL-S2V [8] and Nettack [50] are
two early GNN attacking algorithms aiming at lowering the GNNs’
node classification performance via add/deleting edges or modi-
fying node features under a given budget. Following these work,
other works have begun to investigate the GNN robustness under
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different tasks, e.g., link prediction [4], knowledge graph embed-
ding [34], and community detection [25]. However, none of the
previous works have attempted to attack GNN-based fake news
detectors, which have recently become popular amid massive adver-
saries engaging in fake news spread [37]. Compared to the previous
works using reinforcement learning to attack GNNs, our work uti-
lizes a multi-agent setting to mimic the real-world misinformation
campaign. In addition, to simulate the real-world attack setting, we
only manipulate the edges of the news social engagement graph
since it is unlikely that attackers can modify news posts.

2.3 Adversarial Attack on Fake News Detectors

Given a wide array of machine learning-based fake news detectors,
only a few works have investigated the robustness or vulnerabilities
of fake news detectors [1, 9, 18, 19, 23, 24, 49]. Among those works,
[19] examines the robustness of text-based news veracity classifiers
over time and against attacks crafted by manipulating news sources.
[1, 23, 49] probe the robustness of NLP-based fake news detectors
by devising various attacks that distort the news content or inject
adversarial texts. Nash-Detect [9] and AdRumor-RL [28] study the
robustness of graph-based spam detectors and rumor detectors
respectively, using the reinforcement learning framework. MAL-
COM [24] carries out the attacks from another perspective which
modifies the comments of each piece of news to fool the fake news
detectors leveraging multi-source data. PETGEN [18] simulates the
behavior of malicious users on social media by generating a se-
quence of texts to attack sequence-based misinformation detectors.
Unlike previous work, we are the first to explore the robustness
of social context-based fake news detectors using a multi-agent
reinforcement learning framework.

3 PROBLEM FORMULATION

We formulate the problem of attacking social-engagement-based
fake news detectors as attacking GNNs on a user-post sharing graph.
In this section, we first define GNN-based fake news detection and
then introduce our adversarial attack objective.

3.1 GNN-based Fake News Detection

A user-post sharing graph is defined as a bipartite graph G =
{U,V,E, Xy, Xy, Y}, where U = (ug, - ,u;) is a set of users, V =
(vo, - - - ,vj) is a set of news posts, and the edge e;; = (uj,vj) € E
indicates the user u; has shared the news post vj. X;, and X, are
two feature matrices of user nodes and news nodes, respectively.
According to previous works [10, 17, 30], the feature vectors of
users and news can be composed of their text representations or
handcrafted features. Following [10], we use the 300-dimensional
Glove embeddings of users’ historical posts and news post text to
represent Xy, (i, :) and Xy, (j, :), respectively. We use X to represent
all node features for convenience. y; € Y represents the label of
vj € V where 1 (0 resp.) represents fake news (real news resp.).
To detect fake news based on G, a general GNN framework [15,
45] can be applied to it. Concretely, to learn a news post v’s repre-
sentation, a GNN aggregates its neighbors’ information recursively:

b =0 (hf ™" @ ac6" (0 V. (wo) < E)). ()

where [ is the GNN layer number. AGG is the GNN aggregator that
aggregates neighbor embeddings. Common aggregators employ
attention [45], mean [15], and summation [15]. ® represents the
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operation that combines the embedding of v at the last GNN layer
and its aggregated neighbor embeddings. Common approaches
include concatenation and summation. Similarly, the representation
of u can be learned by the same process shown in Eq. (1).

To classify the news post v € V, a GNN classifier f takes the
G as input where X, and X, are node features of u and v. It maps
v € Vtoy € (0,1) after feeding the h, at the last layer to an MLP
and softmax layer. The GNN classifier can be trained on partially
labeled post nodes with the following cross-entropy loss in a semi-
supervised fashion:

Lonn(G.fo) = ), log(y; - o(p(EX))). (@)

v; eV

3.2 Adversarial Attacks on GNN-based Fake
News Detectors

At a high level, our problem can be regarded as attacking GNN-
based node classification but with practical constraints to simulate
real-world misinformation campaigns. Specifically, the objective
of the attacking method is to flip the GNN classification results
of target social posts via maneuvering controlled malicious social
media user accounts to share new posts. Note that we assume
attackers can only perturb the graph by controlling malicious users
to share news posts and not delete existing shared news posts.
We make this assumption because in a real-world setting, even
though the users can delete existing shared posts, the record of
shared relations may still exist in the database. Considering the
massive social network data and the diverse fake news detectors
employed by the platform, we assume the unknown target GNN is
pre-trained on clean data in our problem setting (i.e., the training
data is not poisoned by the adversary). Also, we assume that we
have knowledge about the type of GNN the detector is trained
on, but we do not have access to its model parameters. Thus, our
problem is a grey-box evasive structural attack on the GNN-based
node classification task. We formally define our attack objective as:

IIJm}EX Z 1(fy- (B, X)o # Yo)

e veVT

s.t. 6" = argmin LoNn (G, fo), )
)

|Ue| € Ay, |Ea| < Ae,

where Ug, E,4, and VT represent a set of controlled users, manipu-
lated edges, and target news posts, respectively. G represents the
clean graph and E’ is the set of perturbed edges. A, (A, resp.) rep-
resents the budget of controlled users (modified edges resp.). The
above adversarial objective essentially maximizes the misclassifica-
tion rate of the target social posts.

4 METHODOLOGY

In practice, misinformation campaigns are carried out by coordi-
nated fraudsters manipulating social user accounts to evade detec-
tion. In this section, we first elucidate the property of attackers mo-
tivated by real-world misinformation campaigns. Then we present
the multi-agent reinforcement learning framework we use to probe
the robustness of GNN-based fake news detectors.

4.1 Attacker Property

4.1.1  Attacker Knowledge. As introduced in Section 3.2, our attack
is a grey-box attack meaning the attackers only have knowledge
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Figure 2: The user account number distribution according to
the amount of news shared by them. We sample accounts in
different ranges to represent different user types.

about the architecture of the GNN-based classifier, but not its model
internals like weights or coefficient values. To attack the GNN
classification results of target posts, we assume the attacker can
sense the entire graph, including the features and labels of the user
and post nodes as well as their connections. The above setting is
practical since social media information is publicly accessible and
the attackers can easily infer node features and labels given fruitful
related works in misinformation research.

4.1.2  Attacker Capability. To imitate the real-world behavior of
fraudsters as much as possible, we define the capability of users
controlled by fraudsters (i.e., U.) as follows:

e Direct Attack: u € U, shares the v € Vr directly if (u,0) ¢ E. In
real-world settings, given that a controlled user shared many
posts from trustworthy sources that seemed to be legitimate, it
will help alleviate the suspiciousness of a fake news post if the
user shares the post.

o Indirect Attack: For u € U, v € V1, (u,0) € E, we carry out the
attack by controlling u to share v’ ¢ V7. The indirect attack ex-
ploits the neighbor aggregation mechanism of GNNs by exerting
influence on the target post by changing its neighborhood. In
practice, for a controlled user having shared the target post with
fake new, one can let the controlled user share posts from trust-
worthy sources to mislead the GNN’s prediction on the target
fake news post. Since indirect attack does not directly modify
the edge between controlled user and target news post, it is less
noticeable than direct attack.

Note that as previously mentioned in Section 3.2, attackers are
only allowed to add edges between user nodes and news post nodes.

4.1.3  Agent Configuration. Real-world evidence shows that multi-
ple groups of malicious actors are engaged in the misinformation
campaign [32, 37, 40]. Besides singletons who act individually, most
misinformation campaigns are executed coordinately by profes-
sional agencies since it would reach the campaign goal faster while
maximizing the utilities of existing resources. From the adversarial
attack perspective, different types of controlled user accounts have
distinct influences on target posts and different budgets. For in-
stance, the bot users are usually low-cost and with a higher budget.
However, these bot users have few historical records; thus each bot
user has limited influence on target posts [37]. The crowd workers
with credible and rich social profiles are usually expensive, but they
have a stronger influence on target posts.

To model the above distinct malicious actor groups, previous
single-agent RL frameworks are not applicable [8, 43]. Therefore,
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we leverage a MARL, which not only enables the personalized con-
figuration for each group but also helps simulate the coordinated
behavior between different groups. Specifically, we define three
agents which control three distinct groups of user accounts accord-
ing to the malicious accounts introduced in [40]. We divide the user
accounts based on the number of news they have shared, Figure
2 shows the distribution of the number of news that users have
shared in Politifact and Gossipcop datasets. Table 1 compares the
key properties of the following agents.

1) Agent 1 (Social Bots): Social bots registered and fully controlled
by automated programs have been proven to engage in fake news
spreading by many works [2, 37]. The first agent controls the bot
users, and it has a low cost and high budget. We randomly select
the users with only one connection in our datasets to represent the
newly created bot users.

2) Agent 2 (Cyborg Users): According to [40], cyborg users are
registered by humans and partially controlled by automated pro-
grams. The easy switch of functionalities between humans and
bots offers cyborgs unique opportunities to spread fake news. Since
those users are camouflaged as human, they usually have more
historical engagements (i.e., connections to other posts). In our
datasets, we randomly select the users with more than 10 connec-
tions to represent the compromised users. The cost, budget, and
influence of cyborg agents are between that of the other two agents.
3) Agent 3 (Crowd Workers): The crowd workers are usually of
high cost since they get paid for each campaign. Meanwhile, they
have the strongest influence. We take the users with more than 20
connections, where 100% of them connect to real-news posts to
represent the crowd workers.

4.2 Attack Framework

In the real world, each agent above represents a malicious actor
that aims to influence the fake news classification results. Given a
set of target news posts Vr, the attack process can be modeled as
a multi-agent cooperative reinforcement learning problem where
all agents work together to maximize the misclassification rates
of target news posts. Figure 3 illustrates the attack process of the
proposed MARL algorithm. First, actions made from different agents
are aggregated by the center controller; then, aggregated actions
are applied to the environment composed of the social engagement
graph and the surrogate classifier; the updated state and rewards
generated by the classifier are finally sent back to each agent for
the next episode of optimization. In this subsection, We first define
each component of the MARL framework, then introduce how we
leverage deep Q-learning for optimization.

4.2.1 MARL Framework. Different from previous GNN attacks
using single-agent RL, which can be modeled as a Markov Decision

Table 1: The comparison of properties among bots, cyborgs,
and crowd worker agents.

Agent User Cost Influence Budget
1 bot low low high
2 cyborg moderate moderate moderate
3 crowd worker high high low
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Figure 3: The proposed MARL framework to generate ad-
versarial edge perturbations against GNN-based fake news
classifier. See Section 4.2 for more details.

Process (MDP) [8, 43], the MARL framework is a Markov game
(MG). We formally define the MG and its components as follows:

Definition 4.1. A Markov game is defined by a tuple

N, S, {AYie N> P (R }ieN» ¥), where N = {1,-- -, N} represent
the set of N agents, S is the state space observed by all agents,
A denotes the action space of agent i. P is the state transition
probability given a state s € S and action a € A. R is the reward
function that determines the immediate reward received by agent i
after a transition from (s, a) to s’. y is the discount factor to long-
term reward.

e Action. As defined in Section 4.1.2, each u € U, can only add
edges based on their connection status to v € V7. Meanwhile,
each agent controls a set of users U} according to Section 4.1.3. We
use ai(u, v) to denote the action that adds the edge between user
u and post v. Thus, the action space for agent i at time ¢ is ai €
A C Ul V. We use a centralized controller to aggregate agent
actions. Specifically, in each episode, the final actions are from
the three types of agents with a fixed proportion, this proportion
is motivated by real-world misinformation campaigns.

e State. Since all agents work cooperatively to attack the same set
of target posts V7 against the same classifier f, all agents share
the same state at time ¢ represented by (G/, f), where G; is the
perturbed graph at time ¢.

e Reward. As a grey-box attack, we aim to flip the classification
results of the target classifier. Since we have knowledge of the
GNN architecture of the detector, we use one of the three GNN
models (i.e. GAT, GCN, and GraphSAGE) as our surrogate target
classifier and take its classification results on V as the reward
to guide the agent. Note that the reward is shared by all agents
under the cooperative setting. After all agents make the actions
under their budgets (i.e., one episode), the reward for each agent
towards the target post v € V7 is:

R(G S = | LT v @

e Terminal. After each agent makes finite modifications according
to their own budget A}, the Markov game stops.

4.2.2 Deep Q-Learning. To solve the above Markov game, we need
to find the optimal policy that maximizes the expected value of
long-term rewards. Since each agent has its own controlled user
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Table 2: Dataset statistics and agent configurations for Poli-
tifact and Gossipcop datasets.

Data U] 4 |E| [Vr|  Agent A, A
1 100 1
POL 276,277 581 1,074,890 62 2 50 3
3 20 5
1 1,000 1
GOS 565,660 10,333 3,084,931 1,547 2 500 3
3 100 5

accounts and budget, each agent i should have its own policy 7* that
a, ~ 7' (+|st). We use the Q—learning to learn the optimal policy 7%*
parameterized by a Q-function Q%* (s, ar). The optimal Q-value
for agent i can be represented by the following Bellman equation:

Q" (st.af) =R (se.a}) +ymax Q" (sersa™). (9)

where a® represents agent i’s future action based on state s;. The
above equation suggests a greedy policy where the agent i’s best
action based on s; is the action that maximizes the Q-value above:

nt (ai | st;Qi’*) = arg max Q"* (st, ai) ) (6)
:

For each target post v € V1, we would like to choose the con-
trolled user u € U, with the most influence to v to flip the GNN
classification result on v. Thus, using GNNs to parameterize the
Q-function could help model each action’s value. Specifically, we
first employ a two-layer GraphSAGE [15] to obtain the embedding
of each post node hy; in current state s; according to Eq. (1). Note
that we only consider the 2-hop neighborhood of all target nodes
and controlled user accounts, which could reduce the state and
action space. For agent i at time ¢ with embeddings of controlled
user accounts hy s, u € Uci and the target node hy s, v € Vr, the
Q-value of action al(u,v) is calculated by the following equation:

0 (snab@o)) = o (W (hun)) - o (Walhan)), ()

where two liner layers are applied on two end node embeddings
before computing their dot product which yields the Q-value of the
given action.

5 EXPERIMENTS

As mentioned in Section 4.1.2, indirect attacks do not modify the
edges between user nodes and target news nodes directly and are
more likely to be used by attackers in practice to evade detection.
In this section, we conduct a series of experiments to validate the
effectiveness of our proposed framework under the more realistic

Table 3: Performance of surrogate models mea-
sured by accuracy and F-1 score.

Models Politifact Gossipcop
Accuracy F1 Accuracy F1
GCN 0.8673 0.8632 0.8278 0.7864
GAT 0.8600  0.8543  0.8423  0.8010
SAGE 0.8034 0.7973 0.8824 0.8636
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Table 4: Results of using MARL to perform indirect targeted attacks comparing to several
baselines. Experiments are repeated five times, and the average success rate is reported.

Politifact

Gossipcop

Method Fake Real

Fake Real

GAT GCN SAGE GAT GCN

SAGE GAT GCN SAGE GAT GCN SAGE

RD-Edge 0.14 045 0.13 0.11  0.33
RD-Node 0.12 0.48 0.14 0.13 0.38
RL - A1 0.17  0.42 0.16 0.08 0.07
RL - A2 0.15 0.38 0.16 0.08 0.13

0.15 0.06 0.28 0.25 0.08 0.22 0.14
0.15 0.12 0.32 0.22 0.12 0.23 0.16
0.21 0.14 045 0.23 0.08 0.80 0.16
0.18 0.18 0.52 0.32 0.06 0.83 0.24

indirect settings and analyze the factors that affect MARL’s at-
tack performance. Then, we present experiment results to compare
direct attack against indirect attack. Finally, we discuss some coun-
termeasures that could be used by defenders. Specifically, we aim
to answer the following research questions:

RQ1: How does the performance of MARL compare to baselines?
RQ2: What factors affect the performance of MARL?

ROQ3: How does direct attack compare with indirect attack?
RQ4: What are some countermeasures against attacks?

5.1 Experiment Settings

In this subsection, we introduce the experiment settings for MARL
indirect attacks. We first introduce the datasets, surrogate models,
and baseline methods used for the experiments, then we introduce
the implementation details.

5.1.1 Datasets. We extract two social engagement graphs from
the FakeNewsNet [38] dataset composed of the metadata of fake
and real news posts and their engaged users on Twitter from two
fact-checking sources: Politifact and Gossipcop. Following [10], we
take Glove 300D [33] embedding of a user’s historical tweets as its
feature and the Glove embedding of the associated news content
of a social post as its features. Note that our attack operates the
controlled users to share posts; since the number of changed edges
for a user is within a tight budget, we assume all node features are
unchanged during the attack process.

5.1.2  Surrogate Models. Under the grey-box setting, the attacker
only has information about the architecture of the model being
attacked. Thus the attack has to be performed on a surrogate model
M that has the same GNN architecture as the target model. For the
GNN-based fake news detectors, we include three classic GNN mod-
els. Specifically, we use Graph Convolution Network [22], Graph
Attention Network [45], and GraphSAGE[15] as our M. Table 3
shows the performance of these surrogate models on Politifact and
Gossipcop. We trained these models to ensure that they have simi-
lar performance across both datasets. So that we can measure the
attack performance of MARL comparably.

5.1.3 Baseline Attack Methods. Due to the attacker’s limited capa-
bility and restricted candidates of both controlled users and target
posts, we cannot take the feature and gradient-based attacks [50]
as baselines. To compare the effectiveness of the proposed MARL
framework, we compare it with the following baselines:
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e Random-Edge (RD-Edge): This is a simple baseline that randomly
selects the controlled users and target posts to add edges until
meeting the budget.

e Random-Node (RD-Node): This baseline injects new user nodes
into the graph and connects them with the target news nodes.

e Single Agent RL: To demonstrate the effectiveness of MARL, we
created this baseline by limiting the attacker to a single type of
agent. Specifically, we have three baselines named RL-A1 (Bot),
RL-A2 (Cyborg), and RL-A3 (Crowd Worker).

Budget and Target Selection Criteria For the Politifact dataset,
we randomly sampled 100 bot agents, 50 cyborg agents, and 20
crowd worker agents from Table 1. For the Gossipcop dataset, we
randomly sampled 1,000 bot agents, 500 cyborg agents, and 100
crowd worker agents.

Implementation Details For Random-Edge method, we connect
edges between sampled attack agents and news targets based on the
agent node’s degree. Specifically, we randomly connect bot agents
with 1 news target, cyborg agents with 3 news targets, and crowd
worker agents with 5 new targets. For Random-Node method, we
add 5 user nodes for each of the three agent types. We generate
the embedding for each node by randomly sampling 20 nodes from
each type of agent, and taking the average of their embedding as
the new embedding for the injected node. We connect the generated
user nodes with target news nodes the same way in the Random-
Edge method. We use PyG [13] to implement all GNN algorithms.
The MARL algorithm is implemented based on the RL-S2V code
provided by [8]. Our code and data are publicly available !.
Performance Metrics Since we only aim to flip the classification
results of a selected group of target posts, we use the success rate
(SR) as the metric to evaluate the attack performance, which is the
number of misclassified posts divided by the total number of target
posts after the attack.

5.2 RQ1: Performance of MARL

Since attackers are more likely to use indirect attacks than direct
attacks to evade detection in practice, we study targeted indirect
attacks on both fake and real news in Politifact and Gossipcop.
Table 4 reports the attack performance of MARL compared to the
baselines. From the table, we make the following observation:

e MARL improves the overall attack performance on fake news
across both datasets. Compared to the Random-Edge baseline,

!https://github.com/hwang219/AttackFakeNews
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Figure 4: Indirect attack performance of different types of agents on fake news in Politifact and Gossipcop datasets.
Performance on GAT, GCN, and GraphSAGE are marked in blue, red, and green respectively.

MARL improves the success rate of targeted fake news attacks by
[57.6%, 51.1%, 53.6%] respectively for [GAT, GCN, GraphSAGE]
on Politifact, and [250%, 128.6%, 44%] on Gossipcop.

e MARL does not improve the performance of attacking real news
in Politifact for GCN and GraphSAGE detectors. While MARL
improves performance on all three GNN detectors in Gossipcop,
the attack performance is worse compared to attacking fake
news on GAT and GraphSAGE. This is likely due to the agent
configuration of the experiment setting having less influence on
real news than on fake news.

e Another interesting finding is that GCN is more sensitive to
edge perturbations compared to GAT and GraphSAGE. Attackers
can achieve fairly good performance on GCN with only a small
amount of edges added to the graph. For instance, we can reach
a success rate of 0.48 with just 210 edges added when attacking
fake news on Politifact. Comparably, with the same amount of
attack budget, the success rate on GAT and GraphSAGE detectors
are 0.12 and 0.14 respectively, much lower than GCN. Previous
works [7, 8] have also shown that GCNs are vulnerable to struc-
tural adversarial attack due to the low breakdown point of their
weighted mean aggregation method.

5.3 RQ2: Attack Performance Analysis

In this subsection, we answer RQ2 and provide insights on the
factors that affect MARL’s attack performance. Specifically, we
provide analysis based on agent types and news types.

5.3.1 Agent Types. Figure 4 shows the ablation study results on
single agent RL. Specifically, we use RL-A1, RL-A2, and RL-A3
methods to carry out targeted indirect attacks on fake news in
Politifact and Gossipcop datasets with increasing attack budgets by
using more agents. We make the following observations:

o The overall attack performance increases with incremental attack
budget for all three types of agents.
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o The performance gain slows down after hitting a threshold. There-
fore, attackers need to select the optimum number of agents to
perform indirect attacks.

e Crowd worker agents achieve better performance than bot and
cyborg agents on all three GNNs given the same amount of
attack budgets. This is expected since crowd worker agents have
stronger influence and their social posts are connected to real
news. Therefore, they exert more influence on fake news.

Based on the above observation, we divide user nodes into “good”
and “bad” groups. Specifically, we put users who have more than
80% of the news they shared being fake into the “bad” group and
users who have less than 20% of the news they shared being fake
into the “good” group.

5.3.2  News Types. Intuitively, we conjecture that the news post
node with a higher degree is more robust to attacks than those
with lower degrees. To verify this hypothesis, we attack different
groups of fake news in Politifact and Gossipcop according to their
node degree, or their social popularity. Specifically, we categorize
news with less than 10 tweets as low popularity; news with more
or equal than 100 tweets as high popularity; and news in between
as mid. For this experiment, we use 10 crowd worker agents for
Politifact and 50 crowd worker agents for Gossipcop respectively.
As shown in Table 5, it is significantly harder to attack news with a
higher degree across all three GNNs. Even on the most vulnerable
GNN (i.e. GCN), MARL has a significant performance decrease (80%

Table 5: Indirect targeted attack on fake news in Politi-
fact and Gossipcop based on their news degrees using
crowd worker agents.

News Degrees Politifact Gossipcop
GAT GCN SAGE GAT GCN SAGE
Low 0.16  0.30 0.21 0.14  0.22 0.25
Mid 0.14  0.15 0.11 0.11  0.13 0.12
High 0.03  0.06 0.03 0.02  0.02 0.05
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Figure 5: Comparison between the direct and indirect attack
on Politifact and Gossipcop on fake news with degrees less
than 10 using “good” users.

on Politifact and 90.9% on Gossipcop) when attacking fake news
with a degree of less than 10 compared to the news with a degree
more than 100. Another observation is that GAT is more robust
than GCN and GraphSAGE on news with degree between 10 and
100. As shown in Table 5, GAT only has a performance drop of
12.5% and 21.4% on Politifact and Gossipcop respectively when
increasing news degree from less than 10 to less than 100. Whereas
the performance drop of GCN and GraphSAGE are almost halved
on both datasets. This is likely due to the attention mechanism of
GAT making it less sensitive to degree changes.

5.4 RQ3: Direct vs. Indirect

Recall from Section 4.1.2, direct attacks mean that attackers modify
the edges directly linked from user nodes to target news nodes.
Although direct attacks are more obvious in real-world scenarios,
they can achieve better performance than indirect attacks due to
the direct perturbation of graph structure. For this experiment,
we sampled 25 good users for Politifact and 250 good users for
Gossipcop to perform targeted attacks on fake news in both datasets.
Figure 5 shows the comparison between direct and indirect attacks.
We can see that direct attack improves the performance on GAT by
81.8% and 147.6% on both datasets respectively. However, we see a
decrease in performance on GCN and GraphSAGE detectors across
both datasets. Especially on GCN detectors in the Politifact dataset.

Based on the observation from Figure 5, we are interested in
whether the performance of direct attack behaves similarly across
news with different degrees. For this experiment, we use the same
news degree categorization as in Table 5 and the same agent config-
uration as in Figure 5 to attack fake news in both datasets. Figure 6
shows that direct attack is effective on news with low and mid
degrees on GAT and GCN detectors, while it is less effective on
news with high degrees on GraphSAGE.

5.5 RQ4: Countermeasures against Attacks

Based on our experiment findings, we discuss the countermeasures
for fraudsters that manipulate news social engagement from two
perspectives. 1) From the machine learning security perspective,
there are fruitful research works on defending against graph ad-
versarial attacks [42]. Approaches like adversarial training [12],
anomaly detection [11], and robust GNN models [14, 20] can be
leveraged to defend the attacks. 2) From the practical perspective,
social media platforms should pay equal attention to both “bot” and
seemingly “good” users. As shown in the experiments, attackers
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Figure 6: Results of direct attack across different types of
news based on their degrees. A brighter color suggests better
attack performance.

can leverage users’ good posting history to carry out a successful
targeted attack on fake news to foul GNN-based detectors. Since
the indirect attack is effective against many GNN detectors, this
suggests that the platform should monitor more engagement activ-
ities of accounts engaged with the target news instead of the target
news itself. Experiment results also show that there is no univer-
sally robust model which prompts the platform to adopt diverse
trust and safety models.

6 CONCLUSION AND FUTURE WORK

In this paper, we aim to understand the vulnerability of graph neural
network-based fake news detectors under structural adversarial
attacks. To the best of our knowledge, this is the first work to
attack GNN-based fake news detectors. This paper aims to provide
insights on how to develop a more robust GNN-based fake news
detector against adversarial attacks in the future. We leveraged a
multi-agent reinforcement learning framework to mimic the attack
behavior of fraudsters in real-world misinformation campaigns.
Our experiment results show that MARL improves overall attack
performance compared to our baselines and is highly effective
against GCN-based detectors.

Even though we have some promising results from the exper-
iments, this paper has two major limitations: 1) This work only
employs a simple heuristic to select users for action aggregation.
2) The search space of the Q network is considerably large and re-
sults in a high computational cost on larger datasets like Gossipcop.
Therefore, there are several interesting directions that need further
investigation. The first one is to automate the process of selecting
optimal agents for action aggregation. The second one is to reduce
the deep Q network’s search space effectively. Finally, we used a
vanilla MARL framework in this paper. It would be interesting to
explore a more complex MARL framework for this task.

7 ETHICAL STATEMENT

The Twitter data used in this paper are obtained from Twitter API
and meet Twitter user agreement. Although we proposed an adver-
sarial attack framework against GNN-based fake news detectors,
our intention is to probe and enhance the robustness of existing
detectors. Therefore, we do not endorse this work to be used for
unethical purposes in any shape or form.
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