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COUNTING ROOTS OF POLYNOMIALS OVER Z/p*Z

TRAJAN HAMMONDS, JEREMY JOHNSON, ANGELA PATINI, AND ROBERT M. WALKER

ABSTRACT. Until recently, the only known method of finding the roots of polynomials over prime
power rings, other than fields, was brute force. One reason for this is the lack of a division algorithm,
obstructing the use of greatest common divisors. Fix a prime p € Z and f € (Z/p"Z)[z] any nonzero
polynomial of degree d whose coefficients are not all divisible by p. For the case n = 2, we prove a
new efficient algorithm to count the roots of f in Z/p>Z within time polynomial in (d+size(f)+log p),
and record a concise formula for the number of roots, formulated by Cheng, Gao, Rojas, and Wan.

1. INTRODUCTION

Since the days of Diophantus, mathematicians have been interested in finding rational or integer
solutions to polynomial equations. In the 1940s, André Weil proved the Riemann hypothesis for
zeta-functions of nonsingular curves over finite fields [8]. In 1949, Weil proposed enticing conjec-
tures that connect finding solutions to polynomials over finite fields with studying the geometry
of complex algebraic varieties [9]. Weil proved these conjectures in the case of curves, yielding a
bound for counting the number of points on a curve over a finite field—-the Hasse-Weil bound:

[Ny — (¢ + 1) <29V,

where ¢ is a prime power and N, is the number of points over IE‘?I on a curve with genus g. Such
bounds on point counts extend to higher dimensions, per work of Weil, Deligne, Dwork, and others.

We wish to count roots over the prime power ring Z/ pFZ. That said, the usual approaches do not
work since the polynomial ring (Z/p*Z)[z] does not have unique factorization when k > 2. Thus
we must sleuth for alternate approaches to count roots of nonconstant univariate polynomials over
7./p*Z, since traditional methods for factoring and root counting over finite fields are unavailable.

As a backdrop, suppose p € Z is a prime, both m,v € Zy, f € Zlxy,...x,] is a nonzero
polynomial with at least one coefficient being a unit modulo p, and N,,(f) denotes the number of
solutions to f =0 mod p™ in the ring (Z/p™Z)". Consider the Igusa Poincaré Series [6]:

QUt) = Y Nulf) - € 2]
m>0
Igusa’s proof that Q(f;t) is rational [5], solving a conjecture of Borevich and Shafarevich, relied
on Hironaka’s resolution of singularities [4], which runs in exponential time. Zuniga-Galindo [10]
later derived an algorithm to compute Q(f;t), where the dependence on v in the complexity was of
order 8. While one could in principle use standard generating function tricks to then extract Ny, (f)
for any given m, Zuniga-Galindo’s algorithm only works in the case where f splits completely into
linear factors over Q — a severe restriction. Cheng, Gao, Rojas, and Wan, during a meeting at the
American Institute for Mathematics (AIM) in May 2017, found an explicit formula for No(f) when
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v = 1, but without a proof or complexity bound. We prove their formula is correct and that it has
near-quadratic complexity.

Going forward, given a prime p € Z,, and k € Z,, we view the set Z/p*Z := {0,1,...,pk — 1}
as a ring, and let m,.: Z[z] - (Z/ pF7Z)[z] denote the surjective ring homomorphism defined by

e e
Tk E gzt = E [ZR A
=0 =0

where ¢ := m(c) € Z/p*Z when ¢ € Z [3, Ch. 9]. Given a polynomial g € (Z/p*Z)[z], we let
g € Z[z] denote the lift of g-read, m,(g) = g-whose coefficients all lie between 0 and pF —1. Also,

for g € (Z/pZ)|x], we say a root of multiplicity one is simple, and a root is degenerate otherwise.

Definition 1.1. For any nonconstant polynomial f € Z[x], any prime p € Zy, and any k € Z,
let Vi (f) = {C € Z/p"Z: [mp ()](C) = 0 € Z/p*Z}. Also, we set Ag(p) :={0,1,...,p" -1} C Z.

Definition 1.2. Let f € Z[z]\ {0} be a nonconstant polynomial of degree d. Fix any prime p not
dividing every coefficient of f. We define the maximal multiplicity £ of a root of f modulo p, and
a series of polynomials fi,..., fs, g, h1, ho,t all in (Z/pZ)[x] and polynomials Ly, ..., Ly € Z[x].

(1) We can factor hy := m,(f) as

h =m(f) = fif - fig € (Z/pL)[x), (1.0.1)

where

(a) ¢ is the maximal multiplicity of a root r € Z/pZ of hi—if h; has any;

(b) the f; € (Z/pZ)|x] are monic, separable, and pairwise coprime; and

(¢) g € (Z/pZ)|x] has no roots in Z/pZ.
Thus the degree of f; equals the number of distinct roots of hy in Z/pZ of multiplicity i.
The reader can consult [3, Ch. 8,9,13] for relevant background definitions in the setting of
univariate polynomial rings over a field.

(2) Suppose that f; = H;tgl(f ) L;; as a product (possibly empty) of distinct linear terms in

(Z/pZ)[x]. We define L; € Z[z] to be L; = H?igl(fi) L; ;. Note that m,(L;) = fi.

(3) We also define polynomials t, he € (Z/pZ)[z] via

l
t:= Wp[z—l) (f—ﬁHﬁ;) ], h := ged(f2 - fo,t).
=1

Definition 1.3. Fix a degree-d polynomial f € Z[z]\ {0} written as f(z) = co + c12 + ... + cqz.
In terms of the natural logarithm, we define the computational size of f to be

d
size(f) =) log(2 + |ei);
i=0
it is simply the number of bits needed to record the above monomial term expansion of f.

We now state the main result of this note.

Main Theorem 1.4. With notation as in Definitions 1.1, 1.2, and 1.3,

(1) We have

#Vo2(f) = #{a € As(p): fa) =0 mod p*} = deg(f1) + p - deg(ha), (1.0.2)

where deg stands for polynomial degree.
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(2) The polynomials t, f1, and hy can be computed deterministically in time that is polynomial
in d + size(f) + log(p), where d = deg(f), counting the necessary arithmetic operations.

While the first term in formula (1.0.2) counts the roots modulo p? that descend to simple roots
modulo p, the second term counts the roots modulo p? that descend to degenerate roots modulo p.

2. PRELIMINARIES FOR THE PROOF

Throughout, p is an arbitrary prime number. We state a proposition together with two versions
of Hensel’s Lemma, a crucial tool for proving Theorem 1.4(1).

Proposition 2.1 (Cf., [3, Sec. 13.5, Prop. 33]). If g € (Z/pZ)[z] is nonconstant, and there is an
r € Z/pZ such that (z —r) | g but (z — 7)1 g, then ¢'(r) # 0 in Z/pZ.

In [7, Sec. 2.6, Thm. 2.23 + paragraph between Examples 11-12], a derivation of both versions
of Hensel’s Lemma below is given via Taylor expansion. We note that [7, Sec. 2.6] phrases both
versions of Hensel’s Lemma in terms of an arbitrary integer r rather than stipulating 0 <r < p—1.

Lemma 2.2 (Hensel’s Lemma Version I). Let f € Z[z] be nonconstant, and suppose there is
an r € Aq(p) with [m,(/)](T) = 0. If [m,(f)]'(F) # 0, then there exists an s € Az(p) such that

[7,2(£)](3) = 0 in Z/p?*Z and s = r mod p, namely, s = ¢ where t := 7 — (f’(r)) - f(r) € Z/p*Z.
Moreover, s is unique.

Lemma 2.3 (Hensel’s Lemma Version II). Let f € Z[z] be nonconstant, and suppose there exists
rin A;(p) such that f(r) =0 mod p*, where k € Z,. If f/(r) =0 mod p, then

s=r modp® = f(s)= f(r) mod p"TL.

That is, f(r + tp*) = f(r) mod p*+! for all 0 <t < p — 1, indeed for all t € Z.

k+1  Thus Lemma 2.3 can lift roots

F+1 are obtained this way.

Notably, we have p roots mod p**! when f(r) = 0 mod p
modulo pF to roots modulo pF*!. Conversely, all the roots modulo p

3. PROOF OF THE MAIN THEOREM

Proof of Theorem 1.4(1). Recall that in Definition 1.2 we defined polynomials £; € Z[z| such that
mp(Li) = fi. Let U := {¢ € Az(p): ¢ € V,2(f)}, which is the disjoint union of the two sets

S={ueU:ueV,(Ly)}, and T:=U\S.

Recall that we defined he = ged(fa--- fo,t) € (Z/pZ)[z]; this monic polynomial is a product
(possibly empty) of distinct linear terms. Let D(z) € Z[z] be the lift of hy constructed analogously
to the L£;, taking the corresponding product of the @ lifts of the linear factors. To get 1.4(1), it
suffices to show that as maps of sets (a) m,|g : S — V,(L1) is a bijection, and (b) |7 : T — V,(D)
is a p-to-1 surjection. But first, we record a lemma.

Lemma 3.1. Let p: As(p) — Ai(p) be the map of sets sending an element a € Aa(p) to its
remainder after long division by p. Fix r € Ag(p). If f(r) =0 mod p?, then f(p(r)) =0 mod p.

Equivalently, if 7 € Vj2(f), then p(r) € V,,(f) in terms of the bar notation preceding Definition 1.1.
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Indeed, if f(a) = Z?:o cq—ia®~" for any a € Z, then f(r) = Z?:o ca—i(p(r))¥" = f(p(r)) mod p.

(a) mp|s is a bijection: This is vacuous if S is empty, so we may assume S is non-empty. First,
given any element r € U, Lemma 3.1 says m,(r) = m,(p(r)) € V,(f), meeting the first hypothesis
of Hensel’'s Lemma 2.2. Because of our stipulations in defining the polynomials f; in (1.0.1),
Proposition 2.1 applied to hy = m,(f) implies that m,(p(r)) satisfies the second hypothesis under
Hensel’s Lemma 2.2 if and only if m,(p(r)) € V,(£1). Equivalently, r € S and it will be the unique
lift to A2(p) of p(r) € A1(p) as stipulated in Hensel’s Lemma 2.2, since = p(r) mod p. Thus we
may conclude that 7p|s is both surjective and injective, hence bijective.

Before proceeding, we record another lemma.

Lemma 3.2. Given r € A;(p) and 7 := m,(r) € Z/pZ, the following assertions are equivalent to
saying (z —7)? | hy:

(1) 7 is a degenerate root of hy, i.e., both f(r) =0 mod p and f/(r) =0 mod p.
(2) (z—7) | f; for some unique i > 2.

@) @=7)far- fe

Indeed, per the stipulations on the f; in (1.0.1), all of these assertions mean f1(7) # 0 in Z/pZ.

(b) mp|7 is a p-to-1 surjection: This is vacuous if 7" is empty, so we may assume 7" is non-empty.
We note that m,(T") C V,(Ly--- Ly): given r € T', Lemmas 3.1 and 3.2 apply to p(r). Let

l
E(z) = f(z) — (=) [[ £i(z) € pZ[z] = ker .
i=1

Then the integer polynomial (1/p) - E(x) is a lift of ¢(x). Next, since ho divides hy in (Z/pZ)[z],
we note that any r € Aj(p) for which D(r) = 0 mod p also satisfies £;(r) = 0 mod p for some
i > 2 by Lemma 3.2. Thus f(r) = E(r) mod p?. Additionally, ¢(F) = 0 € Z/pZ, so (1/p)E(r) =0
mod p, hence E(r) =0 mod p?. Then f(r) =0 mod p?, so Hensel’s Lemma 2.3 says that r can be
lifted to p distinct roots s; = r+j-p € T' of f modulo p? where 0 < j < p—1. Thus V,(D) C m,(T).

To conclude that mp,|7 is a p-to-1 surjection onto V,(D), it remains to show that conversely,
given u € T, @ := mp(u) € V,(D). Since m,(T) C V(L2 Ly), we have (fo--- fo)(w) =0 € Z/pZ
and (£;(u))’ = 0 mod p? for some i > 2. Thus f(u) = F(u) = 0 mod p*: indeed, since u € T,
f(u) =0 mod p?. It follows that (1/p)E(u) =0 mod p. Equivalently, ¢(@) = 0 € Z/pZ. We may
conclude that (z —)|(f2 -+ fe) and (x —@)|t in (Z/pZ)[z], so by the definition of greatest common
divisor (z —@)|hg in (Z/pZ)[z]. Thus u € V, (D). This completes the proof of claim (b), so we are
done. O

Corollary 3.3. With notation as in Definitions 1.1 and 1.2, exactly

#{a € Ay(p): @€ Vy(La---Le), fla)Z0 mod p?} = deg(fa--- fr) — deg(hz) (3.0.1)
degenerate roots of f modulo p fail to lift to roots of f modulo p>.

Proof. To start, continuing from the proof of Theorem 1.4(1), the right-hand side is equal to
#Vp(La--- Ly) — #V,(D), since fo--- fy and hy are separable. Our argument for claim (b) in the
proof of Theorem 1.4(1) suffices to show that m,(T') = V(D) = V(L2 - - L) NV,[(1/p)E], and that

the set stated in the corollary coincides with {a € A(p): @ € V,(L2--- Ly) — Vp[(1/p)E]}. O
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Proof of Theorem 1.4(2). First note that the decomposition (1.0.1) stated under Definition 1.2 can
be found via any classical factoring algorithm (see, e.g., [1, 2]). The ged of polynomials in (Z/pZ)[x]
of degree < d can be computed in near linear time O(d't°™® (log p)**+°(1), per an algorithm of Knuth
and Schonhage [2, Ch. 3]. Also, division with remainder for polynomials of degree < d in (Z/pZ)[z]
takes time O(d'*°() log p), and reduction mod p of a polynomial f € Z[x] can be done in time linear
in size(f)+logp (see, e.g., [2, Ch. 3] and [1, Ch. 7]). Finally, note that the ged of hy and 2P — z can
be computed in time O(d'*°(") (log p)!T°(1)) by applying the binary method to the computation of
2P mod hy (see, e.g., [1, pp. 102-104, 121-122, & 170-171]).

Going forward, we may assume that the maximal multiplicity £ > 1. Now observe that s; :=
ged (hy, 2P —x) € (Z/pZ)[z] has the property that V,(h1) = V,(s1) and s; has exactly deg(s1)
distinct linear factors. In particular, s; factors as fifs--- fo. Next, note that sy := hy/s; factors
as g - Hle fi71. So then, s3 := ged(sy, s2) = Hf:2 fi- So we can then compute f; as s1/s3 and
ho as ged(ss, t) within (Z/pZ)[z]. This amounts to 3 geds and 2 divisions in (Z/pZ)[z], which is
clearly within the stated complexity bound - provided we can compute ¢ efficiently. That ¢ can be
computed efficiently is immediate since it only involves a distinct degree factorization in (Z/pZ)[z],
a subtraction in Z[z], and a single polynomial division (by p) in Z|x]. O

To conclude, now that the main arguments have been recorded, we certainly invite readers to
either: (a) generate many simple examples to better appreciate the root counting formula under
Theorem 1.4(1); or (b) try implementing the algorithm in a computer algebra system they find
palatable. We close the paper by providing the following example.

Example 3.4. Fix the prime p = 5, and consider the polynomial f € Z[x] defined by
flx)=z(x+2)%(x+ 4@+ 3@+ 20+ 1)+ 5(z + 2)(z + 4)
= 2% 4+ 6622 + 2073273 + 41225222 + 5825972?" + 6225421220 + 5225646927
+ 3534289212'% + 196038817927 + 90322861492'¢ + 348944154432
+ 113842103703z + 3153754032392 + 7451010008552 + 1506289490631
+ 2610867590739210 + 38793387062882° + 49210472198612% + 5275209809592
+ 4688604525204% + 33503448368162° + 1835957176704
+ 7164334863362 + 1746867824692 + 195910410542 + 40.
In particular, invoking language in the proof of Theorem 1.4(1), we have
hi(z) = z(z — 3)%(x — 1)°(x — 2)M (2 + 22 + 1) € (Z/pZ)[2]
fi=z, fo=(x=3), fs=(-1), fu=(@-2), g=2"+2z+1,
tx) = (z =3)(x — 1), he=ged(fafsfia,t) = (z—3)(z — 1) € (Z/5Z)[z].
Thus Theorem 1.4(1) says that
#{a € A3(5): f(a) =0 mod 25} =deg(f1) +5-deg(hy) =1+ 5(2) = 11.

Now, f(z) =0 mod 5 when x = 0,1,2,3 € A;(5). The simple root x = 0 mod 5 lifts uniquely
to the root x = 15 mod 25 per Hensel’s Lemma 2.2. Among the three degenerate roots mod 5,
only x = 1 and = = 3 satisfy f(z) =0 mod 25, and Hensel’s Lemma 2.3 lifts them 5-to-1. The
values © € Ay(5) for which f(x) = 0 mod 25 are 1, 3, 6, 8, 11, 13, 15, 16, 18, 21, and 23. We
note that 1 =6 = 11 = 16 = 21 mod 5, while 3 =8 = 13 = 18 = 23 mod 5, as indicated under
our discussion of Hensel’s Lemma 2.3. In line with formula 3.0.1 under Corollary 3.3, we note in
passing that only x = 2 fails to lift to a root modulo 25.
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