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Abstract

The paper considers a Mixture Multilayer Stochastic Block Model (MMLSBM), where
layers can be partitioned into groups of similar networks, and networks in each group are
equipped with a distinct Stochastic Block Model. The goal is to partition the multilayer
network into clusters of similar layers, and to identify communities in those layers. Jing
et al. (2020) introduced the MMLSBM and developed a clustering methodology, TWIST,
based on regularized tensor decomposition.

The present paper proposes a different technique, an alternating minimization algo-
rithm (ALMA), that aims at simultaneous recovery of the layer partition, together with
estimation of the matrices of connection probabilities of the distinct layers. Compared to
TWIST, ALMA achieves higher accuracy, both theoretically and numerically.

Keywords:  Stochastic Block Model, Multilayer Network, Alternating Minimization,
Clustering

1. Introduction

Stochastic networks arise in many areas of research and applications and are used, for ex-
ample, to study brain connectivity or gene regulatory mechanisms, to monitor cyber and
homeland security, and to evaluate and predict social relationships within groups or be-
tween groups, such as countries. While in the early years of the field of stochastic networks,
research mainly focused on studying a single network, in recent years the frontier moved to
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the investigation of collection of networks, the so called multilayer network, which allows
to model relationships between nodes with respect to various modalities (e.g., relationships
between species based on food or space), or consists of network data collected from different
individuals (e.g., brain networks).

Although there are many different ways of modeling a multilayer network (see, e.g., an
excellent review article of Kivela et al. (2014)), in this paper we consider the case where
all layers have the same set of nodes, and all edges between nodes are drawn within layers,
i.e., there are no edges connecting the nodes in different layers. MacDonald et al. (2021)
called this type of networks the multiplex networks and argued that they appear in a variety
of applications. Indeed, consider brain networks of several individuals that are drawn on
the basis of some imaging modality. The nodes in the networks are associated with brain
regions, and the brain regions are considered to be connected if the signals in those regions
exhibit some kind of similarity. In this setting, the nodes are the same for each individual
network, and there is no connection between brain regions of different individuals. For
this reason, one can consider a multiplex network constituted by brain networks of several
individuals, with common nodes but possibly different community structures in different
layers (individuals). It is known that brain disorders are associated with changes in brain
network organizations (see, e.g., Buckner and DiNicola (2019)), and that alterations in the
community structure of the brain have been observed in several neuropsychiatric condi-
tions, including Alzheimer disease (see, e.g., Chen et al. (2016)), schizophrenia (see, e.g.,
Stam (2014)) and epilepsy disease (see, e.g., Munsell et al. (2015)). Hence, assessment of
the brain modular organization may provide a key to understanding the relation between
aberrant connectivity and brain disease.

The multiplex networks have been studied by many authors who work in a variety of
research fields. (see, e.g., Durante et al. (2017), Han and Dunson (2018), Aleta and Moreno
(2019), Kao and Porter (2017) among others). In this paper, we consider a multilayer net-
work where all layers are equipped with the Stochastic Block Models (SBM). In this case,
the problems of interest include finding groups of layers that are similar in some sense,
finding the communities in those groups of layers and estimation of the tensor of connection
probabilities. While the scientific community attacked all three of those problems, often in
a somewhat ad-hoc manner (see e.g., Brodka et al. (2018), Kao and Porter (2017), Mercado
et al. (2018) among others), the theoretically inclined papers in the field of statistics mainly
been investigated the case where communities persist throughout all layers of the network.
This includes studying the so called “checker board model” in Chi et al. (2020), where the
matrices of block probabilities take only a finite number of values, and communities persist
in all layers. The tensor block models of Wang and Zeng (2019) and Han et al. (2021)
belong to the same category. In recent years, statistics publications extended this type of
research to the case, where community structure persists but the matrix of probabilities
of connections can take arbitrary values (see, e.g., Bhattacharyya and Chatterjee (2020),
Paul and Chen (2020), Lei et al. (2019), Lei and Lin (2020), Paul and Chen (2016) and
references therein). The authors studied precision of community detection and provided a
comparison between various techniques that can be employed in this case.
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In many practical situations, however, the assumption of common community structures
in all layers of the network may not be justified. Indeed, as we have stated above, some
psychiatric or neurological conditions may be due to the alteration in the brain networks
community structures rather than modifications in the strength of connections. For this
reason, it is of interest to study a multiplex network with distinct community structures in
groups of layers. Recently, Jing et al. (2021) investigated the so called “Mixture MultiLayer
Stochastic Block Model” (MMLSBM), where there are L layers can be partitioned into M
different types, with M being a small number. In MMLSBM, each class m of layers is
equipped with its own community structure and a distinct matrix of connection probabil-
ities By, m = 1,..., M. The methodology of Jing et al. (2021) is based on a regularized
tensor decomposition, where all tensor dimensions are treated in the same way. The theory
is developed under the assumption that the number of layers does not exceed the number
of nodes. Note that the latter may not be true, for example, for brain networks, where the
number of nodes is in hundreds (and is fixed) while the number of individuals, whose brain
images are available, can grow indefinitely.

In this paper, we also consider the MMLSBM and suggest a new algorithm for layer
partition and local communities recovery. While the methodology of Jing et al. (2021),
called TWIST, is based on a regularized tensor decomposition, our technique is centered
around finding the groups of layers. Indeed, the “naive” approach to the problem would
be to vectorize all adjacency matrices and cluster them using the k-means procedure. The
major difference between our paper and Jing et al. (2021) is that we recognize that it is
advantageous to treat within-layer and between-layer dimensions of the adjacency tensor
differently. Specifically, we propose a novel ALternating Minimization Algorithm (ALMA)
which utilizes the fact that, for each layer of the network, the matrix of probabilities of
connections can be approximated by a low-rank matrix. As a result, for the MMLSBM, our
algorithm consistently recovers the layer labels and the memberships of nodes.

The present paper makes several contributions. First, it introduces the idea that the
key to the inference in the MMLSBM is the identification of the groups of layers: as soon as
networks in each of M layers are discovered, the communities can be found by the spectral
algorithm of Lei and Rinaldo (2015), applied to the averages of the adjacency matrices. In
addition, it uses the information that all layers are approximately low-rank. In comparison,
the TWIST algorithm of Jing et al. (2021) only uses the information that the underlying
tensor is approximately low-rank, which ignores the low-rankness within each layer. Due
to this idea, as it follows from our theoretical analysis, ALMA achieves higher accuracy in
the between-layer clustering. In addition, unlike the technique in Jing et al. (2021), ALMA
does not require the assumption that the number of layers in the network is smaller than the
number of nodes. More specifically, if L is the number of layers, n is the number of nodes in
each layer and pp.x is the sparsity level of the network, the between-layer clustering errors
(proportion of misclassified layers) of ALMA and TWIST are

log? L log? L 1
R(BALLMA) _ofloe 2(n + L) P 0g (n+ L) ), RgLWIST) _0 ogn
12 Pmax n2[min(n, L) pmax] Ln prax
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where the error rate of TWIST holds only if L < n. Note that the error rates of ALMA hold
when L > n, and, for L < n, one has RSBALLMA) = o(RgLWIST)) since L 1 pmax — 00. Also,
our numerical studies show that ALMA leads to smaller between-layer and within-layer
clustering errors than TWIST.

In this paper, we are not interested in the case of M = 1, where communities are the
same in all layers. Indeed, if one knows that M = 1, then, under the assumption that there
are only M = 1 types of matrices of connection probabilities, one can just find communities
by spectral clustering after averaging. For this reason, one should not apply ALMA to the
“checker board” or tensor block model, and ALMA should not be compared with techniques
designed for this type of models.

Also, we assume that both the number of distinct layers M and the number of com-
munities in each group of layers are fixed and known in advance. While this is usually not
true in practice, this is a very common assumption for theoretical investigations. When the
algorithm is used in a real data setting, one needs to obtain solutions for several different
values of M and then choose the one that agrees with data. Since the probability tensor
of the MMLSBM has sets of identical layers, we can borrow the idea from the problem of
determining the number of clusters in a data set, when the K-means algorithm is used. One
of the most popular heuristic methods is the so called “elbow method”. In our setting, we
can run the algorithm with an increasing number of clusters M, and plot an error measure
of the model as a function of M. This function would decrease as M increases since models
with larger M explain more variations. Then, the elbow methods evaluate the curve of the
function and find the “elbow of the curve”, i.e., the point where the function is no longer
decreasing rapidly, as the number of distinct layers M grow (see, e.g., Tibshirani et al.
(2001), Zhang et al. (2012); Le and Levina (2015)). Other methods of choosing M include
cross-validation (Wang, 2010) and information criterion (Hu and Xu, 2003). After the num-
ber of groups of layers has been determined by one of the above mentioned techniques and
the between-layers clustering has been implemented, one can identify the number of com-
munities within each group of layers using common techniques employed in the Stochastic
Block Models (SBMs) (Zhang et al., 2012; Le and Levina, 2015; Pensky and Zhang, 2019).

Note that dynamic network models can be viewed as a particular case of the multilayer
network model where there are no edges connecting the nodes in different layers. The dif-
ference between those models and the multilayer network is that, in a dynamic network, the
layers are ordered according to time instances, while in a multilayer network the enumera-
tion of layers is completely arbitrary. That is why, although there is a multitude of papers
that study the change point detection in the dynamic SBMs (see, e.g., Bhattacharjee et al.
(2018), Gangrade et al. (2018) and Wang et al. (2017) among others), the techniques and
error bounds in those papers are not applicable in the situation of the MMLSBM.

The rest of the paper is organized as follows. Section 2 describes the MMLSBM and
presents the necessary concepts and notations. Section 3 introduces the Alternating Min-
imization Algorithm (ALMA). Section 4 provides theoretical guarantees for between-layer
and within-layer clustering errors. Specifically, the section starts with Section 4.1 that
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investigates the situation where ALMA is applied to the true probability tensor. Based
on the results of this analysis, Section 4.2 provides assumptions which, as it is confirmed
in Section 4.3, guarantee convergence of our algorithm. Finally, Section 4.4 produces up-
per bounds for between-layer and within-layer clustering errors. Section 4 is concluded by
a discussion of various aspects of ALMA in Section 4.5. Section 5 brings up theoretical
and numerical comparisons between the ALMA and the TWIST algorithms. In particular,
Section 5.1 describes TWIST algorithm while Section 5.2 provides theoretical comparisons
between ALMA and TWIST. Section 5.3 produces numerical comparisons between ALMA
and TWIST via simulations, and also compares both of them with a simple baseline algo-
rithm. Finally, Section 5.4 extends these comparisons to real data examples. The proofs
of all statements in the paper are deferred to Section 6, Appendix.

2. Model framework

This paper considers an L-layer network on the same set of n vertices V = {1,--- ,n}. For
any 1 <[ < L, the observed data is the adjacency matrix A; € R™*™ of the [-th network,
where Ay(i,7) = Ay(j,i) = 1 if a connection between nodes i and j is observed at the [-th
network, and A;(i,j) = A;(j,7) = 0 otherwise. Assume that for all 1 < ¢ < j < n and
1 <1< L, Ai,j) are the Bernoulli random variables with Pr(A;(7,j) = 1) = P, (4,7), and
they are independent with each other. The probability matrices {P*l}lel take M different
values (M < L), that is, there exists a partition of [L] = {1, ,L} = UM_,S,, such that
P.; = Q.. for all | € S,,,. This means that there exists a clustering function z : [L] — [M]
such that z(l) = m if the I-th network is of the type m, or, equivalently, [ € S,,,. Consider
a set Fr s of the clustering matrices

Fou=1{Zec{0,1}">*M z1=1, Z"1+#0},

and Z € Fp, ps such that Z(l,m) = 1if [ € Sy, and Z(l,m) = 0 otherwise, and matrix Z does
not have zero columns. It is easy to see that matrix Z”'Z is diagonal, and W, = Z(ZTZ)~1/?
satisfies WI'W, = I. Here, W, (I, m) = L% il e S, and Z(l,m) = 0 otherwise, where
L,,, is the number of networks in the layer of type m, m =1, ..., M.

Furthermore, we assume that each network can be described by a Stochastic Block Model
(SBM). Specifically, we assume that, for each m and any [ € S, Py; = Q. where Quy, is
generated as follows: the nodes V are grouped into K,, classes Gy, 1, , G K,,, and the
probability of a connection P,;(i, j) is entirely determined by the groups to which the nodes
i and j belong at [. In particular, if i € G, and j € Gy 5, then Py(i, ) = By, (k, k'),
where B,, € REn*Km is the connectivity matriz with By, (k, k') = B, (K, k). In this case,
one has

P, =0,B,0. m=:(10), ©,c¢cF.x,, (1)

where ©,,(i, k) = 1 if and only if node i belongs to the class G, ; and is zero otherwise.
Denote Qum = \/|Sm|Qum. Denote the three-way tensors with the [-th layer A; and
P,; by, respectively, A, P, € RE*"*" and the three-way tensor with the m-th layer Q..
by Q, € RM*nxn  We refer to the description above as the Mixture Multilayer Stochastic
Block Model (MMLSBM). Table 1 contains a detailed list of its main parameters.
The objective of this work is to partition the multilayer network A into M similar
layers (between-layer clustering) and furthermore, for each of these sets of layers, to recover
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L Number of layers in the multi-layer network
n Number of vertices in each layer
M Number of types of layers
uM_.S,, Partition of L layers into M types
Ly, = |Sn The number of layers of type m

Z € {0,1}>M Clustering matrix of L layers
W. = Z(Z"Z)~"/? | Orthonormal basis of the layer clustering matrix

K, Number of communities in the layers of the m-th type
K= Z%zl Ky, Total number of communities
G, Gm K, Communities in the layers of the m-th type
B,, € REmxKm Connectivity matrix of the layers of the m-th type
P, € Rbxnxn Connectivity tensor of the network

A € {0,1}xmxn | Tensor of the network, consisting of adjacency matrices of L layers

Table 1: The parameters of the Mixture Multilayer Stochastic Block Model (MMLSBM).

communities Gy 1, ,GmK,,,» m = 1,..., M (within layer clustering). Specifically, we
focus on the setting where M and { K, }_, are fixed or grow slowly, while n and L tend to
infinity, since usually networks are large but have relatively few similar groups of layers, and
the number of communities is also usually small compared to the number of nodes. In order
to make the paper more readable, througout the paper we shall illustrate the theoretical
developments on a simple example with the two-groups of layers structure.

2.1 Notations

For any matrix X € R™*"2_ denote the Frobenius and the operator norm of any matrix
X by || X||F and || X]||, respectively, and its r-th largest singular value by o,.(X). Let
vec(X) € R™"™2 be vectorization of matrix X obtained by sequentially stacking columns of
matrix X. Denote the projection operator onto the nearest orthogonal matrix by II,:

IL,(X) = X(XTX)"1/2, (2)

If ny > ng, then II,(X) is an orthogonal matrix that has the same column space as X.
Specifically, if the singular value decomposition of X is X = UXV7”, where U € RM*"2
and ¥,V € R"*"2_then II1,(X) = UVT.

For any tensor X € R™*"2X"3 it mode 1 matricization M;(X) € R™*"2"3 ig g
matrix such that [My(X)](l,:) = vec(X(l,:,:)). For any tensor X € R™*"2%X"3 and a
matrix A € R™*™  their mode-1 product X x; A is a tensor in R™*"2*"3 defined by

ni
(X %1 Al(jig i) = > X(i1,dn,i3)A(in, ), j=1,....m.
i1=1
In this product, every mode-1 fiber of tensor X is multiplied by matrix A:
Y=Xx A Y=AX, Y=M(Y), X=M(X) (3)
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If X € R™*™2X"3 and Y € R™*"2%"3 are two tensors, their mode-(2,3) product denoted by
X %237, is a matrix in R"*™ with elements i1 =1,...,n, i =1,...,m

na M3
(X x23Y](ir,i2) = > X (i1, j2, j3)Y (i2, ja2, j3) = Tr[X (i1, 1, )Y (i2, :,1)"]
Jj2=173=1

The Frobenius norm || X || and the largest singular value o1 (X)) of a tensor X € R™*72x"3
are defined by

ni,n2,n3

||XHF = Z X(i17i2>i3)2>

11,12,83=1

UI(X):HXH XX1U1 X9 U2 X3 U3.

max
uieRnivnuiH:lvlSiS?’
Operations above obey the following properties:

1. For X € Rm>xnm2xns - A ¢ R™*™ Y € R™"2X" one has (X x1 A) x23Y = AT (X x33Y)
2. If W is such that WI'W =1, then ||Q x; WT|% = [|Q|%

For a more comprehensive tutorial for tensor algebra, please, see the review article of
Kolda and Bader (2009).

Next, we introduce some notations that will be used later in the paper. Let K =
(Ki,...,Ku), and denote

M
Kpax = m:nil,aX,M K,  Kunin = m:I{l,ln,M Ky, K= Z Kp,. (4)
m=1
Denote the size of the smallest cluster in all networks by gmin, i-€., gmin = min |Gy, 1.
1<m<M
1<k<Km

Consider the SVDs of matrices Q,(m,:,:) and the matrices Il 1 orthogonal to the linear
spaces of their eigenvectors:

Q.(m,:,:) = Up A, UL, Ty =1-U, UL (5)

Since rank(Q,(m,:,:)) = K, U, € R™Em is an orthogonal matrix that has the same
column space as Q,(m,:,:). Note that we somewhat abuse notations here: Iy is a matrix
and also an operator, so that, for any matrix X, Il L (X) is a projection of the matrix X
on the linear space orthogonal to the column space of matrix U,,.

Now, we introduce operators that will be used later in the paper. For any tensor
X € RMxnxn - define a projector Ik : RMxnxn _, RMxnxn py

[HK(X)](m,:,:):HKm(X(m,:,:)), m=1,...,M, (6)

where Ilg,, : R"*" — R™*" is the projection onto the nearest rank K,, matrix. Consider
operator IlI7k : RMxnxn _y RMxnxn qefined as

Hr g (X)](m,:,:) = X(m,:,:) — HUJT;LX(m, : :)HUTLR, (7)

where Iy 1 is defined in (5). In addition, let Iz k,, : REXnxn _y REXnXn he the projection
onto the subspace spanned by U,, for each “slice” of the tensor, i.e.,

M7k, (X)](m, ) = X(m/, 1) — HUanX(m',:,:)HU#T, m =1,..., M,
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3. Alternating Minimization Algorithm (ALMA)

As we observe the multi-layer networks {AI}ZL: 1, our objectives are

e Between-layer clustering: recover the network classes Sy, -« , Sy such that [L] =
UM_. S,

m=

e Within-layer clustering: recover the community structures for each network class,
i.e., for any m € [M], find a partition of the vertices G 1, , G K,,-

To achieve these goals, we start with the estimation of Q, € RM*"*" and W, ¢ RI*M
based on A. Then, the between-layer clustering can be carried out by applying K-means
algorithm to the rows of the estimator W of matrix W,. Subsequently, the within-layer
clustering of the m-th group of networks can be obtained by analyzing estimators Q*(m, )
of Q,(m,:,:) for every m € [M].

In order to estimate @, and W,, note that the tensor A can be considered as a noisy
observation of P, since E(A) = P,, where P, = Q, X1 W*T, and W, is an orthogonal
matrix by definition. For this reason, we propose to find @, and W, by solving the following
optimization problem

argmin |A — Q x; W7 || (8)
Q7W
st. Q € RM < W e RIXM WTW =1, rank(Q(m, :,:)) < K, for all 1 <m < M.

We solve (8) by alternatively minimizing the objective function in (8) over Q and W.

When W is fixed, the best approximation to Q is given by Q = IIk (A x1 W). Indeed, by
equation (3), one has ||[A—Q x1 W = [[M1(A)—WM;(Q)]||. Hence, minimization of the
last expression over Q yields M;(Q) = WL M;(A) which, by (3), leads to Q = A x; W.
The latter, due to the rank restrictions, is approximated by the closest rank projection
HK(A X1 W)

When Q@ is fixed, the problem of minimizing of |[A — Q x1 WZ||r over W under the
assumption that W/ W = I, is called the orthogonal Procrustes problem (see, e.g., Gower
and Dijksterhuis (2004)), and it has an explicit solution W = II,(A x23 Q), where II,(X)
is defined in (2). Combining the two steps, we summarize this alternating minimization
procedure in Algorithm 1.

After obtaining W and E), we recover the groups of similar networks Sy, -+, Sy by
clustering the rows of W into M groups using the (1 + €) approximate K-means algorithm.
Finally, for clustering the nodes in each type of networks, we apply spectral clustering with
@(m, ;,:) being treated as the affinity matrix. Specifically, we first find the orthogonal
matrix of size n X K,, whose columns are the top K, eigenvectors of @(m, 5, 1), and then
cluster its rows into K, groups using the (1+¢) approximate K-means. There exist efficient
algorithms for solving the (1 + €) approximate K-means problem, see, e.g., Kumar et al.
(2004a).

Initialization We remark that Algorithm 1 requires an initialization clustering matrix
W, For this reason, we present an initialization procedure, which is based on an initial
estimator of the between-layer clustering. This procedure is summarized in Algorithm 2,
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Algorithm 1 Alternating Minimization Algorithm (ALMA)

Input: Adjacency tensor A € REX™X": number of different types of networks M

{ K, }M_,; Initialization clustering matrix W) € REXM guch that (W) W) =1
Output: A clustering matrix W € REXM guch that WIW = I, and a tensor

@ c RMann‘

Steps:

1: Set iter = 1.

2: Let QU+ = [T (A x; W) where Ik is a projector defined in (6).

3: Let Wtertl) — IT,(A x93 QUt™+1)) where IT,(X) is defined in (2).

4: Set iter = iter + 1.

5: Repeat steps 2-4 until [|[Witer) — Wter=1)|| o < ¢ where ¢, 1, is a pre-specified
threshold, or the number of iterations exceeds the upper limit: iter > N(iter),

6: Set W — W(iter—1)7 @ _ Q(iter—l).

Algorithm 2 Initialization of Algorithm 1

Input: Adjacency matrices A; € R™*" 1 <[ < L; number of different layers M; K.
Output: W),

Steps:

1: Set W € REXM t6 he composed of the top M left singular vectors of M3(A).

2: Apply the (1 + €) approximate K-means algorithm to the rows of W to obtain the
initial between layer clustering [L] = UM_,S,,.

3: Apply (9) to obtain W) from [L] = UM_,S,,.

In particular, we first obtain an initial between-layer clustering matrix Z(1) € {0, 1}2*M
using, e.g., spectral clustering algorithm on vectorized layer matrices {Al}lel, and then set

w = zW(zHTz1)=1/2, (9)

One can also use alternative methods to generate WO and subsequently follow Steps 2
and 3 in Algorithm 2. For example, one can follow initialization strategy in (Jing et al.,
2021, Section 5.5) to obtain WO This, however, will require additional assumptions to
comply with the theory in Jing et al. (2021).

For the initial clustering, we use the (1 + €) approximate solution of the K-means
algorithm, that is, the solution whose objective value is within (1 + €) of the optimal value.
While the K-means clustering is NP-hard, efficient procedures exist for finding such an
approximate solution (see, e.g., Kumar et al. (2004b)).

4. Theoretical guarantees
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4.1 Convergence of the iterative algorithm for the true probability tensor

The purpose of this section is to explain how Algorithm 1 works. Indeed, in order this
algorithm delivers acceptable solutions when it is applied the adjacency tensor A, it should
guarantee convergence when A is replaced by P,, and one starts from an arbitrary matrix
WO close to W,. In this case, the associated optimization problem becomes

argmin || P, — Q x; W' ||p (10)
QW
st. Q € RM>*mn W e REXM WIW =1, rank(Q(m,:,:)) < K,,, for all 1 <m < M.
Then, Algorithm 1 yields
Q(iter) _ HK(P* X1 Vv(iter—l))7 W(iter) _ W*HO(Q* X2.3 Q(iter)), (11)
where the latter formula is obtained using P, = Q, x1 WL . Hence,
WU =TI, (P, %23 QUY) = TL(W.(Q. x23 Q') = W.IL(Q, x23 Q1)

As a result, we can reformulate problem (10) by writing W = W,V for some V €
RM*M Then (10) is simplified to

argmin [|Q, —Q x1 V'|p (12)
QV

st. Q € RM>mxn vy ¢ RMXM IV — 1 rank(Q(m,:,:)) < K, forall 1 <m < M,

and the iterative relations (11) become
Q(iter) — HK(Q* X1 \;‘(iterfl))7 V(iter) — HO(Q* x93 Q(iter))7 (13)
where the first equation follows from the fact that
P* X1 W*V(iter—l) — (P* X1 W*) X1 V(iter—l) — Q* X1 V(iter_l).

The latter implies that, for the sets S; and Sy in RM*"X" defined by

S1 ={Q : rank(Q(m,:,:)) < K,, for all 1 <m < M},
S ={Q=Q,x1V:VecRMMyTy -1},

Q(iter) is the nearest point on S; to Q, x; VUter=1 and Q. x; V{te) ig the nearest point
on S to Q) Hence, the update formula (13) can be viewed as an alternating projection
between S and Ss.

Denote the tangent planes to the sets S; and Sy at Q, by L1 and Lo, respectively. Then,
the explicit formulas for L; and Ly are given by

Ly ={Q e RM™™ ™ : Ty Q(m,:,)llyr =0, m=1,...,M,} (14)
Lo :{Q:Q* x1 X:X € SkGW]\/[}7

10



ALTERNATING MINIMIZATION ALGORITHM FOR CLUSTERING MULTILAYER NETWORK

where Skew s represents the set of skew-symmetric matrices of size M x M. The intuition,
the formal definition of tangent space, and the derivations of L; and Lo are deferred to
Section 6.1.

Hence, the “alternating projection” viewpoint of (13) reveals that it is approximately an
alternating projection procedure between the subspaces L1 and Lo. Since the projections
onto L and Lo are linear operators, the convergence rate of this alternating projection
method can be described by the operator norm of the composite operator:

| Pr, P, X || r
K = max —_— . 15
H ™ o cRMxnxn 1X || 7 (15)

Since Ppr, and P, are projection operators, one has ||Pr, (X)||r < | X||r, | Pr,(X)|lr <
|| X || and, therefore, Ky < 1.

Note that xz can be expressed via the smallest principal angle 6 between planes L; and
Lo: kg = cos(f). In particular, ki = 0 if L; and Ly are perpendicular to each other, and
kg = 1 if the intersection L; N Ly is nontrivial. Since the algorithm in (13) is approximately
an alternating projection procedure between the subspaces L and Lo, it converges faster
for smaller values of ky. Note that kg = 1 if and only if Pr,Pr, X = X for some X, i.e.,
when there is a nontrivial intersection between planes L and Ls.

Illustrative example. Consider an example, of a multilayer network with L layers and n

nodes, where layers can be partitioned into M = 2 groups and each of the groups of layers
has K7 = K9 = 2 communities. For simplicity, we assume that layers of the network are
perfectly balanced, i.e., L1 = Lo = L/2, and each of those layers contains two communities
of sizes exactly n/2. Furthermore, we assume that all layers have the same matrix of block
probabilities By = By = B where B;; = pand B;; = ap, 1,7 = 1,2, 1 # j, 0 < a < L
The latter means that a pair of vertices in different communities are « times less likely to
be connected by an edge than two vertices in the same community.

In this example, all differences between the layers come from the community structures,
so we assume that gn, 0 < 8 < 1, nodes switch their community memberships between
groups of layers. For simplicity we assume that fn/2 nodes move from community 1 to
community 2 and visa versa, so that |G1; N Ga;| = (1 — 5)n/2, i =1,2. Since M = 2, the

. . . . 0 1
skew-symmetric matrix of size 2 must be a scalar multiple of (_ 1 0) . Hence, one has

dim(Lg) = 1, and kg can be explicitly written as

P \/HQ*(L ) :) - HU%—Q*(L 5 )HU%H%‘ + HQ*(Zv 5 :) - HU{-Q*(Qv 5 )HUf-H%‘
" 1Q. (L)% +11Q.(2 )

and kg = 0 only if 8 = 0. In particular, under the settings above, ||Q,(4,:,:)||% = Ln?(1 +
a®)p?/4 and [|Q.(7,:,:) = Thy 1 Q. (i3, )My [ = Ln®B(1 = B)(1 — a®)p?, i, j = 1,2, i # j,
so that ky = 48(1 — B)(1 — a?)/(1 + a?). We remark that in this example, sz does not
depend on n or L.

11
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4.2 Assumptions
In order to guarantee linear convergence of Algorithm 1 when it is applied to the true prob-
ability tensor P, we make the following assumption:

(A1). The subspaces Lj and Lo, defined in (14), have only trivial intersection at the origin.

While Assumption (A1) is somewhat complicated, it is actually not very restrictive. Specif-
ically, the statement below provides two very simple sufficient conditions that guarantee As-
sumption (A1). In particular, Assumption (A1(b)) holds if each clustering pattern is not
obtained by mixing other clustering patterns via combining or intersecting the clusters. For
example, Assumption (A1(b)) holds with high probability when the M clustering patterns
are drawn uniformly at random.

Lemma 1. Let at least one of the following conditions hold:

(Al(a)). For every 1 <m < M, the sets of (M — 1) matrices

{HU#@Q*(ml, : :)HU#,m/ #m,1<m' < M}

are linearly independent. That is, the vectorized versions of those matrices, a matriz of size
n? x M with the m-th column given by vec(IlyL Q. (m',:,))Ily L), has rank (M —1).

(A1(b)). For all1 <m < M, one has

Span(©,,) & @ Span(© ),

1<m/<M,m’#m

where ©,, € R™Em s the membership matriz for the m-th network as defined in (1) and
@ stands for the direct sum of subspaces.

The proof that these conditions are sufficient is presented in Section 6.6. While conditions
in Lemma 1 are sufficient, they are not necessary. A more detailed discussion of assumption
(A1) is deferred to Section 4.5.

In addition, we impose few other natural assumptions as follows:

(A2). There exist absolute constants ¢y > 0 such that KpaxM < coK, where K is defined
in (4).

(A3). The layers in the network, as well as local communities in each network are balanced,
i.e., there exist absolute constants cq, ¢, c3, ¢4 such that

L L
ClMSLmSCQM, C3KLm§’Gm’k‘SC4KLm forany 1§m§M,1§k§Km,
(16)

12
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where |Gy, x| is the size of the k-th community in cluster m.

(A4). There exist matrices BY, € REmxKm 4 = 1 ... M, such that B,, = pmaxBY,,
where pmax € (0,1] controls the overall network sparsity and the matrices BY, are such
that, for all m = 1,..., M, there exists some absolute constants b; > 0 and by > 0 such that

0k, (Bp) > b1, [IBollr > b2 K, Byl < 1. (17)

We remark that the first two inequalities of (17) imply that the magnitude of BY, is bounded
from below, while the last inequality of (17) ensures that the magnitude of B?, is bounded
from above. In addition, |BY|s > K.} |IB%|/#, and (17) guarantees that ||BY [ is
bounded from both below and above: by < ||BY |lo < 1.

Illustrative example (continuation) . In our example, Assumption (A1) holds if the
communities in the layers of type 1 are different from the communities in the layers of type
2, which is true if if # > 0. Assumption (A2) holds with ¢p = 1. Assumption (A3) holds
with ¢ = ¢3 = ¢3 = ¢4 = 1. Assumption (A4) holds with ppax = p, b1 = 1 — « and
ba =/ (1+a?)/2.

4.3 Convergence of ALMA

Denote by xo the condition number of matrix @, x23 Q, € RMM,

- 01(Q, x23Q,)
"7 7u(Q, X23Q,)

1 K?
=log?(n + L)\/ M3 k3 { 4/ 18
BmL o8 (n - ) "o pmaxn2 * Pmax min(na L) ( )

Then, the following proposition shows that, with a good initialization that satisfies (20), as
the number of iterations tends to infinity, Algorithm 1 converges to a fixed point that is
close to Q, and W,.

Proposition 1 requires that xgy is bounded away from 1. We remark that by definition,
kg < 1. In many models such as the illustrative example at the end of Section 4.1, kp
is bounded away from 1 and it does not depend on n or L. However, Proposition 1 still
implicitly requires a lower bound of n and L through (19) since ppax can not be larger than 1.

Let

Proposition 1. [Theoretical guarantees of Algorithm 1.] Let Assumptions (A1)-(A4) hold
and kg be bounded away from one, i.e., there exists a constant c.,, < 1 such that kg < cxy, .
Let, for some positive absolute constant C

(19)

Do > Cy ma </<552 logf(n+ L)M3K? log(n + L))
max —_

(1—kg)*n min(n,L)" n+L
Let the initialization W) have an estimation error bounded above by some positive function

h of M,K and ko: .
WD — W, ||p < h(M, K, ko). (20)

13
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Then, for some absolute constant Cy > 0 and iter > 1, with probability 1—o(1) asn, L — oo,
one has

iter 1 + K iter)
[Witer+1) _ W || < T wter) W, || g+ Cy B (21)
and, therefore,
26n 2C
W — W, ||p < —L — + 2 BuL- (22)
1— 1—kKknH

If €, > 6Co (1 — rp) L Bn,r, then, under our stoppmg criterion, Algorithm 1 terminates
within at most T;, 1, iterations, where

wlh —w, 2
Ty, = log (6” ”F> /10g< ) ;
€n, L, 14+ kg

In addition, for some absolute constant C3 > 0 and any m = 1,..., M, with probability
1—o0(1) as n,L — oo, one has

QW) = Q.J(m.:,3)|| < 2pmaxn VLW ) — W + Cs v/Prmas(n + L) log(n + L),
(23)

and (23) holds when (Q(iter),W(iter) are replaced with CA;),\/R\/'

Sketch of the proof of Proposition 1. The proof of Proposition 1 is deferred to
Section 6.2. Below we provide some insight into how this theorem can be proved. The proof
of the main inequality (21) in Proposition 1 can be divided into four steps.

The first step establishes a deterministic bound on ||[W{te) — W_|| for any given fixed
A. The second and third steps establish probabilistic bounds for a random tensor A under
the probabilistic model in Section 2. Finally, the fourth step simplifies this probabilistic
bound using Assumptions (A2)-(A4).

As for the proof of (23), it is based on the following chain of inequalities

1@ — Q.(m, =) = 1k, [A x1 W] = Q. (m,:,:)|| <2 A x1 W = Q,(m,=,1)|
<2|Ps x1 (W = W[ 4 2[A X3 W(:,m)|| < 2[|Q.[|[[W — W.|| + 2[|A]
< 2[QuIIIW = W.[r + 2| A, (24)

where A = A — P,, and the factor 2 in the first inequality follows from
A 50 W — L, [A 5 W < 14 0 W = Q, (m,1).

Inequality (23) is then obtained by combining (24) with the upper bounds on ||A] in
Lemma 3 (see Appendix) and the fact that |Q.|| < ||Q.|lF < PmaxnV'L.

Remark 1. Permutations. We remark that instead of (20), W(1) can be close to W,
up to a permutation of columns, and this permutation has no impact on the between-layer
and within-layer clustering results, as the outputs of Algorithm 1, W and Q, would also be
close to W, and @, up to permutations of columns and layers, respectlvely.

14
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Remark 2. Initialization. Proposition 1 requires initialization W) that satisfies
condition (20). If M, K and kg are uniformly bounded above for any values of n and
L, then (20) is satisfied by any matrix W) since for any L x M matrix W such that
WTW = I one has |W||Z = M, i.e. condition (20) holds with h(M, K, rg) = 2v/M.

The theoretical guarantees on the initialization in Algorithm 2 are given by the state-
ment below. The proof of Proposition 2 is deferred to Section 6.3.

log(n?+L)
min(n2,L) *

Then for any r > 0, there exists a constant Cs5 > 0 depending only on r, €, such that, with
probability at least 1 — min(n?, L)™" ,

Proposition 2. [Theoretical guarantees of Algorithm 2.] Assume that pmax >

caM(n?+ L)

w W, || <C .
” ”F =0 Cl“OpmaXHQL

(25)

2
Let us discuss the assumptions in Proposition 2. The condition pmax > % holds

if (19) is true. In addition, under the assumptions that M, K , ko are uniformly bounded
above, as n, L — oo, Proposition 2 implies that |[W®) — W, ||p = O([pmax min(n?, L)]~1/?),
while (20) requires that |[W(1) — W,|z = O(1). As a result, the output of Algorithm 2
satisfies the initialization condition (20) in Proposition 1. Combining Proposition 1 and 2,
we obtain the following result that guarantees success of Algorithms 1 and 2

Theorem 1. Let Assumptions (A1)-(A4) hold and kg be uniformly bounded away from
one for any n and L large enough. Let, for some positive absolute constant Cy

121600 LYM3K3 1 L) C.coM(n?+ L
pmax201maX<H0 og’(n+ L) og(n+ L) «coM(n*+ L) . (26)

(1—ku)tnmin(n,L)" n+L *h2(M, K, k)rkon?L
Then, with probability 1 — o(1) as n, L — oo, for some absolute positive constants Co and
Cs, and anym =1,..., M, one has

20
1-— KH

W - W, | < BaL (27)

H[@ —Q.,](m,, ;)H < Wmax VLW — W[5 + O3 \/Pmax(n + L) log(n + L).  (28)

Illustrative example (continuation) . In our example, one has

(14 a?)(np)? < 1 1h>

(Q* X2,3 Q*) = 9 1—h 1

where h = 2 (1 +a?)71 (1 + )B(1 — B). It is easy to check that kg = h/(2 — h), so it is
independent of n and L. Since

5/2 2 1 4
= 2V/2 1 L) {4/
Bor, = 2V2 kg ? log?(n + )( pmaxn2+pmaxnmin(n, L)>,
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Theorem 1 implies that, whenever

log®(n + L) log(n + L)
>C
Pmax = L fnax (nmin(n, L)Y n+L ’

one has H\/R\f —W.||Fp <CBpr—0asn,L— .

4.4 Consistency of between-layer and within-layer clustering

This section studies misclassification error rates of network clustering and local community
detection. The misclassification error rates are measured by the Hamming distance between
clustering partitions. Since the clustering is unique only up to a permutation of clusters,
denote the set of permutation functions of [r] = {1,--- ,r} by N(r).

Given the true partition of network layers [L] = {1,--- , L} = UM_,S,, and the estimated
partition [L] = UM Sm, the misclassification error rate of between-layer clustering is given
by

Rpr =1L min Z|S \S (29)

rer(M)

The misclassification rate of within-layer clustering is defined similarly: given the true
partition of vertices [n] = {1,--- ,n} = Uﬁ(:mle,k and the estimated partition UkK:mlek,
the misclassification error rate of within-layer clustering for the m-th group of layers is given
by

Ry (m) = nt TEIK?(III('lm Z ’Gm k \ Gm 7( k)‘ (30)

The derivations of both misclassification rates are based on the upper bound (23) and
Lemma C.1 of Lei and Lin (2020). In addition, the analysis of within-layer clustering also
applies the Davis-Kahan theorem. Our results on the misclassification errors are as follows,
with the proof deferred to Section 6.4.

Theorem 2. (a) [Between-layer clustering error] For an (1 + €) approzimate solution of
the K-means problem, with probability 1 — o(1) as n, L — oo, the between-layer clustering

error is bounded by

2
n,L

Rp <Ce —5—"—.
BL = M2(1 — HH>2

(31)

for some constant C¢ depending on e.
(b) [Within-layer clustering] With probability 1 — o(1) as n,L — oo, the within-layer
clustering error of the m-th type of network is bounded by

5,21 log?(n + L
RWL(m)gceKmax<(1_jH)2+ f’;L(p Noom=1 (32)

Here, kg and B,1 are defined in, respectively, (15) and (18).
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Figure 1: Examples of convergence rates of the alternating projection algorithm. Left: &;
and S are “tangent” to each other and their tangent planes have nontrivial intersections.
Right: the tangent planes of &; and Sy only have a trivial intersection.

S1
S1
S2
S2

INlustrative example (continuation) . In our example, Theorem 2 can be simplified to

log*(n + L) log*(n + L) ) RWL:O< log*(n + L) >

12 Prmax n?[min(n, L) pmax)? n min(n, L) pmax

RBL§O<

It shows that clustering is consistent as long as pmax > C [nmin(n, L)] ™" log(n + L).

4.5 Discussion of theoretical guarantees

This section shows that Assumption (A1) is not restrictive, and is usually satisfied in
practice. In Lemma 1, we have already provided sufficient conditions that guarantee validity
of Assumption (A1). Below, we continue the discussion of this assumption.

The fact that Assumption (A1) is not restrictive can also be inferred from counting the
dimensions of L; and Ls. Since a symmetric matrix Q(m,:,:) has n(n — 1)/2 degrees of
freedom, the set

{Q(m> ) :) : HU#Q(ma ) )HUﬂ-n = O}

has n(n —1)/2 — (n — Kpp)(n — Ky, — 1)/2 = Kyyn — K (K, + 1) /2 degrees of freedom.
Summing those up for 1 < m < M, obtain that the dimension of L; is Zn]\f:l(Kmn -
K (K + 1)/2). Since the set Skewjys has M(M — 1)/2 degrees of freedom, Ly has a
dimension of M (M — 1)/2. Since random subspaces of dimensions d; and do in R” do not
intersect if di + do < D, that is, if

M
M(M —1) Ko (K + 1) 2
—a— > :(Kmn—f) < Mn?,

m=1

(which holds when n is large), then (A1(b)) should usually hold.
We also remark that Assumption (A1) is slightly more restrictive than the local unique-
ness of the solution to the problem (8) in the noiseless scenario, which only requires that

S1 and Sy intersect only at Q,. However, our goal is to prove the linear convergence of
Algorithm 1, and, as it is shown in Figure 1 below, the convergence rate of the alternating
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method in Algorithm 1 would be slow and nonlinear if §; and Ss are “tangent” to each other
and their tangent planes have nontrivial intersections. On the other hand, the convergence
rate is linear if the tangent planes to S; and Sy have only a trivial intersection.

We should mention that Assumption (A1) fails in the case of the “checker board” model
of Chi et al. (2020), where all networks have the same community structures. As we have
indicated, we are not interested in carrying out the inference in this case. However, we
remark that the ALMA still succeeds empirically in the checker board model, even though
the Assumption (A1) is violated.

Remark 3. Uniqueness of the solution. Similar to many clustering problems, the
solution of the optimization problem (10) is unique only up to permutations of clusters.
The non-uniqueness due to permutation of clusters, however, does not cause difficulty for
Algorithm 1. Hence, Proposition 1 still applies: if the initialization w s reasonably close
to W,, then Algorithm 1 converges to the true solution.

5. Comparison with existing results

To the best of our knowledge, the only paper that studied the model considered in this paper
is Jing et al. (2021), where the authors introduced algorithm TWIST, based on regularized
tensor decomposition. In this section, we provide theoretical and numerical comparisons
with their results.

5.1 Description of TWIST

While Jing et al. (2021) consider the model described in this paper, their methodology
and their assumptions are somewhat different. Specifically, TWIST iterates Tucker de-
composition with regularization step on the observation tensor A to obtain a low-rank
approximation of A, where the intention of the regularization is to dampen the stochastic
errors. The Tucker structure of the approximation is used to cluster the nodes and the
layers. Jing et al. (2021) start with compiling a collection of all clustering matrices ©,,,
m=1,...,M, in (1) into one matrix ® € R"*X defined as ® = [@1,--- ,Oy;]. With this
notation, they obtain the Tucker decomposition of the true probability tensor P, as

P,—Bxy®x30 x,Z, CeRKXExM (33)

where Z € {0,1}2*M is the clustering matrix of layers such that Z(ZTZ)~%/? = W, and B
is defined as

B(:,:,m) = diag(0,---,0,B,,,0,---,0), m=1,..., M. (34)

Furthermore, they obtain the SVD © = UDR of © where matrices U cR™ and R €
REXXT have orthonormal columns, 7 is the rank of ® and D is the diagonal matrix of

nonzero singular values. The objective of the technique is to recover matrix W, as well as
U.
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The TWIST algorithm is based on iterative updates of matrices Uer) and Witer),
Specifically, given Uer) and Witer) TWIST sets

-[j-(iter) _ 7)517r(ﬁ(iter))’ W(iter) _ 7)527M(W(iter))’

where, for matrix V, any d > 0 and positive integer s, one has

min (9, |V (i :)|)
VG,

Pss(V) = SVDs(V.) with V.(i,:) = V(i,:) , (35)

and SV D; returns the top s left singular vectors. Subsequently, the new iterations Qliter+1)

and W(iter+1) are obtained as, respectively, the top r left singular vectors of M3(A x;
(UteNT o (WEeNT and the top M left singular vectors of Mj(A xo (UEE))T x4
(ﬁ(ite’"))T. The process is carried out till the number of iterations reaches the pre-specified
value iterpax.

5.2 Theoretical comparisons of TWIST and ALMA

Note that TWIST aims at revealing both the global and the local memberships of nodes,
together with the memberships of layers. Since Algorithm 1 (ALMA) does not deal with
the concept of global communities, in the context of this paper, we use the terms “within—
layer” and “between—layer” clustering to stand for the local memberships and memberships
of layers, respectively. The global communities, defined in Jing et al. (2021), are related to,
but not identical, to the persistence of the local ones in all layers.

Since Jing et al. (2021) apply a different technique, their assumptions, theoretical anal-
ysis, and final results differ from ours. We start with the comparison of the assumptions.

Specifically, Jing et al. (2021) impose the following conditions:

1. Denote omin(B) = min {omin(M1(B)), omin(M2(B)), omin(Ms3(B))}. Then, for the
tensor B, defined in (34), one has oyin(B) > ¢1Pmax- Note that

Umin(B) S U'min(Ml(B)) = min OK,, (Bm) = Pmax min OK,, (Bgl)
m=1,--- M m=1,--- M
Hence, the assumption on oy,in(M1(B)) is equivalent to the first part of Assumption
(A4) in (17). While the assumptions on omyin(M;(B)) for j = 2,3, are not directly
comparable to the second part of Assumption (A4) in (17), both serve a similar pur-
pose that B is not too small.

2. Matrix © in (33), for some &y < 00, is assumed to satisfy the condition omax(@) <
Kooy (©) where r = rank(®). This assumption implicitly implies our assumption (A2)
and the “balanced local community” assumption in (A3), i.e., the second condition
in (16).

3. Layer sizes and community sizes in the layers are assumed to be similar. This is
equivalent to the assumption (A3).
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4. Network sparsity assumption L n pmay > C(K+&3 12 log? n) M~1&8 12 log? (ko) log? n.
In comparison, we have a similar assumption in (19).

5. Theoretical analysis of TWIST is carried out under the condition that L < n. We do
not impose this assumption.

Under these assumptions, the theoretical upper bound for the error rate of the between-layer

clustering of TWIST is
2logn
RIWIST) _ ) (4 - log .
BL "M L1 Do

Under the additional assumption v Lnpgayx > CM _1/%87‘5/ 2log(rko) log®? n, the theoretical
upper bound for the error rate of within-layer clustering for the m-th type of network is

~4 72
(TWIST) B koK logn
Ry, 1 (m)=0 (Manmax> .

We remark that the comparison with xg and &g is not straightforward, as they are defined
very differently (even though both measure how “well-conditioned” the model is). In order
to compare the clustering errors of ALMA and TWIST, we assume that M, K,,,, kg and Kp
are uniformly bounded by constants independent of n and L, so that, as a result, the same
is true for K,r and &g. Then the clustering error rates are more comparable since they
depend only on n, L, and pmax. Specifically, the theoretical upper bound for the error rate
of the between-layer clustering are

4 4
(ALMA) _ log®(n + L) log*(n + L) (TWIST) logn
for ¢ < 1? Pmax n2[min(n, L) pmax)? /) Ry, =0 Lnpo ) (36)

The theoretical upper bound for the error rate of the within-layer clustering for the m-th
type of network are

4
(ALMA) B log*(n+ L) (TWIST) B logn
Ry, (m)=0 (n min(, L) proe ) Ry r (m)=0 7anmax . (37)

Recall that, for both the between-layer clustering and the within-layer clustering, the error
rates of TWIST are derived under the assumption that L < n.

In comparison, the error rates of the between-layer clustering of ALMA are better in
two aspects. First, they hold in the case of L > n. Second, since both methods require
that the quantity n L ppax grows with n and L, it is easy to see that, up to the logarithmic

factors
’ (ALMA) (TWIST)

Ry, —0<RBL ) if n—o0, L/n—0.
Also, up to the logarithmic factors, the within-layer clustering error rates are equivalent.
However, Jing et al. (2021) do not have anything similar to Assumption (A1) imposed
in the present paper. This assumption is due to the fact that Proposition 1 attempts
to achieve something more than clustering: it aims at recovering Q, and W, directly.
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In addition, we have somewhat stronger assumption on sparsity, requiring that ppax >

O(logéizn) + :lorgriil?:?)), instead of pmax > O(k:fj:n) in Jing et al. (2021). We suspect that

the difference in the assumptions is due to the technicalities in our analysis, rather than the
inherent drawbacks of our algorithm.

To get an idea of how tight the error bounds are, one can compare them with the existing
results for SBM, which is the special case of the MMLSBM with L = M = 1. In particular,
Lei and Rinaldo (2015) show that when pmax > C logn/n, then the spectral clustering could
achieve a misclassification rate of O (K/(n pmax)). On the other hand, it is known (see, e.g.,
Abbe (2018)) that, when K = 2, the threshold for the exact recovery of the membership is
Pmax = O(logn/n) and the threshold for the weak recovery of the membership (i.e., better
than random guess) is pmax = O(1/n). In this sense, the theoretical guarantees of both
TWIST and ALMA recover the case L = M = 1 up to some logarithmic factors.

It would also be interesting to compare the computational cost of ALMA and TWIST. In
ALMA, the steps QU™ 1) = ITg (A x Witer)) and Witer+1) — 1 (A X293 QUter 1) require,
respectively, O(LMn? + Kn?) and O(LMn? + LM?) operations, so that, each iteration of
ALMA requires O(LMn?+ LM? + Kn?) operations. When L and n are large, the dominant
term is O(Ln?M). In comparison, each iteration of TWIST has a computational cost of
O(Ln?(r + M)), which is larger than that of ALMA, since r is larger than M, due to

[©1, -, 0] e RK, whereK:Z%ﬂKm > M.

5.3 Numerical comparisons

As it is evident from the previous section, the theoretical comparison between ALMA and
TWIST is very difficult due to the differences between assumptions. We also compare both
algorithms with a simple baseline algorithm for the between-layer clustering. The baseline
algorithm first applies spectral clustering to each of the L layers, obtaining initial within-

~ (1
layer clustering matrices @() € {0,1}"*K [ =1,...,L. After that, it generates estimated

~(), ~(
connectivity matrices G)( )(G)( ))T € {0,1}™*™ where entries are equal to one if nodes belong

to the same community and zero otherwise. Subsequently, it carries out spectral clustering
of the vectorized versions of those connectivity matrices to partition the layers.

In order to test the performance of Algorithm 1 (ALMA) and subsequent within-layer
clustering, and to provide a fair comparison of the clustering precisions with the TWIST
technique of Jing et al. (2021) and the baseline algorithm, we carry out a limited simulation
study with various choices of parameters pmax, L and n. We use the misclassification rates as
the measure of the performance of our algorithm. Specifically, we characterize the between
layer clustering precision by (29). For the error of the within-layer clustering, we average
the rates in (30) over the M layers and use

M
Ry = Mt Z Ry r(m). (38)
m=1
We choose M and fix K1 = --- = Kj; = K, so that in each cluster, network follows SBM

with K communities. The underlying class for each layer, and the membership for each
node in every class of layers are randomly sampled using the multinomial distributions with
equal class probabilities 1/M for the layers of the networks, and 1/K for the nodes in each
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Figure 2: Simulation Scenario 1: L = 40,n = 100, M = 3, K = 3,a = 0.9. The between-
layer clustering errors and within-layer clustering errors are plotted versus py,q.. The solid
lines exhibit the average misclassification errors.
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Figure 3: Simulation Scenario 2: L =40, M = 3, K = 3, Pyaz = 0.6, = 0.9. The between-
layer clustering errors and within-layer clustering errors are plotted versus the number of
vertices n. The solid lines exhibit the average misclassification errors.

of the layer clusters. In each of the layers, we use identical connectivity matrices B,, = B
where the diagonal values are set to p = ppq: While the off-diagonal entries are equal to
q = Qpmaz With a < 1. The constant « controls the ratio of the probability of connection of
a node outside its own community versus inside it. Consequently, the within layer clustering
is easier when « is small and harder when it is large.

We investigate the performances of ALMA (Algorithm 1) and compare it with the
performances of TWIST and the baseline method in four simulation scenarios. In our
simulations, we set M = 3, K = 3 and r = 7, since r = rank([@1, -+ ,Oy]) < Z%zl K, —
(M — 1), with inequality occurring in degenerate settings. Since our approach does not

22



ALTERNATING MINIMIZATION ALGORITHM FOR CLUSTERING MULTILAYER NETWORK

0.6
e i
S Lot
0.4 o
|
£0.3
51}
0.2
|
TWIST | ] o1y i
—— T | —e—TWIST
0 Baseline L‘ T :?_%*E Baseline ‘
R S S I OISR RSP DP
L L
(a) Between-layer clustering (b) Within-layer clustering

Figure 4: Simulation Scenario 3: n =40, M = 3, K = 3, pjmaz = 0.5, = 0.8. The between-
layer clustering errors and within-layer clustering errors are plotted versus the number of
layers L when L > n. The solid lines exhibit the average misclassification errors.

involve the concept of global membership, we only compare ALMA with TWIST in terms
of “within—layer” and “between—layer clustering”. Furthermore, we choose the stopping
criterion ||[Witer) — Wwter=1)|| - < 104 for both of ALMA and TWIST to make a fair
comparison between the algorithms. Below we describe the simulation schemes.

In Simulation 1, we investigate the effect of the network sparsity on the precision of
the algorithms. For this purpose, we choose the number of vertices n = 100, the number
of layers L = 40, the number of network clusters M = 3, the number of communities in
each cluster of layers K = 3 and a = 0.9. The variable p;,q., which controls the overall
network sparsity, varies from 0.3 to 1. Fig. 2 shows that both between-layer and within-layer
clustering errors decrease as pmq, is increasing.

In Simulation 2, the settings are the same as Simulation 1 except that ppe. = 0.6 is
fixed, and the number of vertices varies from 30 to 300. As n increases, the between-layer
and within-layer clustering error rates decrease to zero, as predicted by Theorem 2.

In Simulations 3 and 4, we study the effect of the numbers of layers in the network,
when L > n and L < n, respectively. Specifically, in Simulation 3, we set n = 40, M =
3, K = 3,a = 0.8, puaz = 0.6 and vary the number of layers L between 40 and 140. The
settings in Simulation 4 are the same as Simulation 3, except n = 100 is larger, and L varies
from 50 to 100.

For all algorithms, in each of the simulation scenarios, we report the between-layer and
the within-layer clustering errors (29) and (30), respectively, averaged over 100 independent
simulation runs. The results are summarized in Figures 2-5.

As it is evident from Figures 2-5, for all four scenarios, ALMA has smaller both the
between-layer and the within-layer clustering errors, and both ALMA and TWIST outper-
form the baseline method. Note also that ALMA has better precision not only in the case
of L > n, that violates the assumptions of TWIST, but also in the case of L < n.
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Figure 5: Simulation Scenario 4: n = 100, M = 3, K = 3, pjpaz = 0.5, @ = 0.9. The between-
layer clustering errors and within-layer clustering errors are plotted versus the number of
layers L when L < n. The solid lines exhibit the average misclassification errors.

5.4 Real Data Examples

In this section, we apply ALMA to two real data sets: worldwide food trading networks
and airline flight networks. The two datasets have been studied previously in Jing et al.
(2021) and Wu et al. (2016), respectively.

The Worldwide food trading networks data have been described in De Domenico et al.
(2015), and is available at https://www.fao.org/faostat/en/#data/TM. The data con-
tain trading volumes among 245 countries for more than 300 food items. To avoid sparsity
and to be consistent with Jing et al. (2021), we consider trading relations between 98 coun-
tries/regions on 30 food products (such as tea, sugar, wine, etc.) in the year 2010. These
data can be described by a multilayer network, in which layers represent different products,
nodes are countries, and edges at each layer represent trading relationships of a specific
food product among countries.

Similar to the procedure in Jing et al. (2021), we convert the original directed networks
to undirected ones by ignoring the directions, and delete the links with weights less than 8.
Thus, we draw an edge in a network if the trading volume in a food product is higher than
8 units. After this pre-processing step, we obtain a 30-layers network with 98 nodes, that
can be represented by an adjacency tensor A of dimension 30 x 98 x 98.

We also analyze the airline-airport network data set, available at https://openflights.
org/data.html#route, which contains information on 67663 flight routes, including the
name of the airline and the source and the destination airports. By including only the
major airlines, with more than 200 routes, and major airports, with more than 40 routes,
we obtain a flight network with 89 layers and 583 nodes, where layers represent different
airlines, nodes are airports and edges at each layer represent the routes of a specific airline
among the airports. Formally, these data can be represented by a multi-layer adjacency
tensor A of dimension 89 x 583 x 583.

We compare the performances of ALMA and TWIST and show that ALMA consistently
outperforms TWIST in terms of the “goodness of fit” of the MMLSBM model. In this
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paper, for a tensor A € REX"X" we measure the “goodness of fit” of the MMLSBM model,
that consists of the between-layer clusters S; U ---Sys and within-layer clusters {G, x},
1<k <Ky, 1<m< M, by the mean of squared errors (MSE) defined as

771 Km

M
1
MSE({Sm}, {Gms}) = — ZZZHAsm, GGy = ASmsGiGms B (39)

m=11=1 j=

Here, As,, a represents the sub-tensor that consists of the layers of type m and
the nodes in the i-th and j-th community of the network of type m, while JTlSm,Gmmeyj
represents the average of this sub-tensor. As a result, MSE({S,}, {Gn x}) represents the
sum of squared errors, resulting from fitting A to the MMLSBM model ({Sy,}, {Gm i}, 1 <
m < M,1 <k < K,,). We expect that a more precise between-layer and within-layer

clustering gives a smaller MSE.

m,i aGm,j

Table 2: Comparison of the “goodness of fit” of ALMA, TWIST and the baseline method
in food trading network and airline-airport network for various choices of M and K. The
table reports the values of the MSE in (39).

(M, K) ‘ (2,2) (2,3) (2,4) (2,6) (2,9) (3,3) (3,5) (4,2) (4,3) (4,5)
Food Trading Network

ALMA | 4.8855 4.4273 4.3242 4.1368 4.0275 4.3805 4.1347 4.8730 4.3461 4.1129

TWIST | 4.7574 4.5023 4.3857 4.2076 4.0962 4.4325 4.1389 4.8167 4.3940 4.1535

Baseline | 5.0521 4.6449 4.5033 4.3805 4.3086 4.5731 4.3482 4.8844 4.5023 4.3170
Airline-airport Network

ALMA 0.1380 0.1251 0.1222 0.1169 0.1138 0.1238 0.1168 0.1377 0.1228 0.1162

TWIST | 0.1344 0.1272 0.1239 0.1189 0.1157 0.1252 0.1169 0.1361 0.1242 0.1174

Baseline | 0.1428 0.1312 0.1272 0.1238 0.1217 0.1292 0.1229 0.1380 0.1272 0.1220

For both data sets, we assume that all layer networks have the same number of commu-
nities, i.e., K1 = .-+ = Kj; = K, and apply ALMA and TWIST with various choices of M
and K. Subsequently, we record the MSE for ALMA and TWIST for each of the choices of
(M, K). Since the K-means algorithm is random and produces different outputs over each
run, we record the average MSE over 100 runs. Results are presented in Table 2.

Table 2 establishes that, in most cases, ALMA outperforms TWIST in terms of the
MSE defined in (39). It confirms the observation that ALMA utilizes the structure of the
MMLSBM better than TWIST, and that both ALMA and TWIST outperform the baseline
method. The only exception might be the setting with K = 2, where ALMA performs
slightly worse or comparable to TWIST. We remark that, in the TWIST algorithm, the
layer of the m-th type increases the rank of the estimated tensor by K,, — 1, while it
requires an additional estimation of a matrix of rank K,, in the ALMA algorithm. This
might explain a minor advantage of TWIST when K = K,,, = 2.
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Figure 6: A visualization of the manifold M, the curve v in M, the tangent vector +/(0),
and the tangent space Tx(M).
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6. Appendix
6.1 Manifold and tangent space

The concepts of tangent vector and tangent space to an abstract manifold can be found
in, e.g., Boothby and Boothby (2003) and Absil et al. (2009). When M is a manifold
embedded in the Euclidean space RP, then a smooth function v : R — M is called a
curve in M, and +/(0) is a tangent vector to the manifold M at the point v(0). The
tangent space of M at x, denoted by T, M, is the set of all tangent vectors of M at
x, that is, T,M = {7/(0) : v:R — M is a smooth function with v(0) = 2} (Absil and
Oseledets, 2015). Intuitively, the tangent plane T, M is the subspace that approximates
the manifold M in a local neighborhood around x. For example, if M is the unit sphere
{x = (z1,22,73) : ¥} + 23 + 23 = 1}, then the tangent space at point (21, #2,23) is given
by {(z1,z2,23) : T121 + Toxa + T3z = 0}. A visualization of the tangent space is given in
Figure 6.

It remains to derive the tangent planes to the sets S; and Sz at Q, in (14). The
expression for L; follows from the formula for the tangent planes for the manifold of low-
rank matrices (Absil and Oseledets, 2015, equation (13)). Specifically, the explicit formula
for the tangent plane to the manifold of rank K matrices at Q is given by the equation
Iy QI = 0, where U is an orthogonal matrix that has the same column space as Q.
Now, the first formula in (14) is due to the fact that S is the product of M manifolds of
low-rank matrices: S; = ®%:1/\/lm, where

M, = {X € R : rank(X) < K, }.

In order to obtain the second equation in (14), note that the tangent plane to the set
of orthogonal matrices My at I is the set of skew-symmetric matrices: TiMg = Skew s
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(Edelman et al., 1998, Section 2.2.1). Now, the explicit formula for Ly follows from the
facts that S, is obtained by multiplying @, with each element from Mg, where M, is the
set of orthogonal matrices of size M x M: So ={Q =Q, x1 V:V € My}

6.2 Proof of Proposition 1

The organization of this section follows from the sketch of the proof after Proposition 1
in four steps: the first step establishes a deterministic bound of Wtet) — W_ the sec-
ond and the third steps establish a probabilistic bound, and the fourth step simplifies the
probabilistic bound using Assumptions (A2)-(A4).

6.2.1 STEP 1: DETERMINISTIC ANALYSIS OF ALGORITHM 1

In this step, we aim to find a metric ||-||g on RE*M such that {|[Wt) —W,||;}%° _, should
be monotonically decreasing approximately. While it is natural to consider the Frobenius
norm, the previous analysis of the noiseless case in algorithm (13) does not support the
monotonicity of {||W(t) — W, ||p}2° _ . Instead, it establishes the “approximate” mono-
tonicity of |Q, x1 (V) —T)||p of

1Q. > (VU*D —D)||p S kpr| Q. xa (VI — ). (40)

Recall that in the noiseless case, W(ter) = W, V{iter) we expect that ||-||4 should be defined
such that when V is orthogonal and close to I,

W (V = Dlla = [|Q, x1 (V= D|r. (41)

Since the tangent plane of the set of orthogonal matrices at I is the set of skew-symmetric
matrices (Gallier, 2001, Theorem 14.2.2), the tangent space of {W,V : VIV =1} at V =1
is Lo = {W.Y : Y € Skew;} € REXM | (41) implies that for any W,Y € Lo, | - ||4 should
be defined such that |[W.Y|s = A|Q, X1 Y||r = AP« x1 W, Y| for some constant
A > 0. Combining this metric on Lo and the standard Euclidean/Frobenius metric on the
orthogonal subspace Ly, we define the metric || - [|4 : RE*M — R by

[Wila = /AP x1 PLyW]r)? + 1Py W1 (42)

Here, X\ balances the weights from the two components, so that

—1
A= (yegemin, Q. Ye)

YeSkewny, ||[Y]p=1
and the projection operators can be explicitly written as
PL,W = W, (WIwlter) _yyiter) Ty y /9.
P W = W, (WIWe) 4 witedTw,) /2 4 (1 - W, W) witen,

By the definition of the metric || - || in (42), we have the following equivalence between || -4
and [| - ||

Wil = /1P W + [Py WIE = [W]r
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and for CH: max HQ* X1 YHF/ min ”Q* X1 Y”F,
Y eSkew s, HYHF=1 Y eSkew s, ||Y||F=1

[Wla < /CHIPLWIE + C3 1Py WE = Crr [ W]

Before stating our main result, we introduce two additional parameters:

_ pIQHaXTLQL \/ KpmaxL n

= ——— [{/2 = " .
||Q*||%‘ ’ m:rrlunM O-Km(Q*(ma ) ))

.....

K1

Both parameters are greater than 1, and describe how “well-conditioned” @, is, and
when @, is well-conditioned, then all parameters are close to 1. In particular, k1 > 1
because ||Q,||r = | P+||r and all elements of P, are bounded by pmax, and k2 > 1 because

M Kpn
K omin ok (Qumii) £ 303 0HQu(m.i) = [Qul <t
T m=1 k=1

When Q,(m,:,:) is “degenerate” in the sense that og,, (Q.(m,:,:)) =~ 0, then ks is large.
The main result in this step states that, if the noise A is small and when Algorithm 1 is
applied to the observed adjacency tensor A with a good initialization W(?) | the estimations
are likely to improve over each iteration, and Algorithm 1 converges to W, approximately.
The statement is as follows, and its proof is rather complicated and deferred to Section 6.5.

Lemma 2 (Step 1: A deterministic result on Algorithm 1). For

VT (| 00, () < T, (A)] 42 max [T, (@) 2 T, (8]

aj :6,%0

m=1,....
om(Q, x23Q,)
19260 K[| A|2([|Q. + |A]])

+\/M( min O'Km(Q*(mv:v:))> om(Q. X23 Q*)’

m=1,....

19260 K(|Q. 1*(1Q. ]l + 1Al

a9 = - + 6&0,
VM min ok, (Q.(m,:,:)) om(Q, X23Q,)
m=1,....M
f A <t i R
Zf“ H > 4m:nll,1nM UKm(Q*(mﬂ ) ))7
2CHay < min ( 1-— /@Z - miny,—1,... M 0K, (Q.(m,:, ))) (43)
1— kg 2CH(az + 80k§ + 32k) 41Q. ||
and the initialization satisfies
) 1— kg ming,—1.. py ok, (Q.(m,:,:))
wh —w, <m1n< , me LALLM , (44
| la < 2C (ag + 80k3 + 32K3) 4)|Q. | (44)
then for all iter > 1,
. 1 .
[ WO - Wy < =B WO - W+ Cpan, (45)
which tmplies
- 2C
lim W) — W, ||, < =19
iter—o0 1— kg
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6.2.2 STEP 2: PROBABILISTIC ESTIMATION

Since Q, is deterministic in our model, we only need to estimate the terms that depend on
A in Lemma 2. The estimations are summarized as follows, and the proof is deferred to
the Appendix.

Lemma 3 (Step 2: Probabilistic estimation). (a) [Restatement of (Zhou and Zhu, 2019,
Theorem 1.2)] If pmax > % for some constant ¢ > 0, then for any r > 0, there
exists a constant C' > 0 depending only on r,c such that with probability at least 1 —
min(n, L)™", [[A]| = supyegrz vern W satisfies || Al| < C'\/pmax max(n, L) log(max(n, L)).

(b) For any t > 0,

1,2
. —5t
Pr (HHTme(Q*) X2,3 HT,Km(A)H > 3tnvaf’nax> < 2KLexp ( 5 ) - (46)
F 1 + 34/PmaxNgmin

(c) For any t >0,

Pr ( max [Tz k,, (A) x23 Tr ,, (A)]| > 9K *#?pax max(n, L)) (47)
1<m<M
2/2
<2K(L + — ,
< ( n) exp 1+ 1

\/pmax max(nzL)gmin

where gmin 15 the size of the smallest community.

6.2.3 STEP 3: A PROBABILISTIC RESULT ON ALGORITHM 1 WITHOUT ASSUMPTIONS
(A2)-(A4)

From the definition of kg = % and the fact Q, x23 Q, = M1(Q,)M1(Q,)7T, we

have

- (g 20) - (anieny

Q. x1Y[r = M1(Q)Y|Fr < s M1(Q))Y]lF, and [Q, x1Y]|r = [M1(Q)Y|lF >
o (M(Q)Y . As a result, Crr < o
Combining Cy < \/ko with || Q.|| < ||Q.|lF < PmaxtV L, one obtains

2 2
Pmax™" L

)

Then, Lemma 2 and Lemma 3 imply the following statement.

Theorem 3 (Step 3: A generic result on Algorithm 1 without Assumptions (A2)-(A4)).

If
clog(max(n, L))

max(n, L)

DPmax = for some constant ¢ > 0, (48)
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then for any r > 0, there exists C > 0 that depending only on r,c such that for

K22 7 L
al C/@O/ﬂv ( - ) + Cﬁoﬁlligv og max(n, L))
Ty /pmaLX Pmaxn min(n, L) pmaxn min(n, L)

:Cl-{%lilliz V MK(l + log(maX(n’ L)> ),

Pmaxn min(n, L)

if
CroVK < \/pmaxnmin(n,L), \/4a1/£0(a2 +112x3) <1 — Ky, 2Kok2a1V K< (1—-kg)
(49)
and the initialization satisfies
. 1—ky 1
w _w Fgmm( : ) 50
| . 2k0(az + 112"‘3) 4ro koK (50)
then with probability at least
1,2 2
. —5t t“/2
1—nT—2KLeXp< L )—QK(L—i-n)exp - /t ,
+ 3\/pmaxngmin + \/pmax max(n’L)gmin
(iter+1) 1 + Kk (iter)
W - W.|a < W — W, |4+ a1y/%o, (51)

holds for all iter > 1, which implies

2a1+/K
lim W) _ W, || < lim W) _w, |, < V0

iter—o0 iter—o0 1-— HH

6.2.4 STEP 4: SIMPLIFICATION UNDER ASSUMPTIONS (A2)-(A4)
We will need to estimate the parameters i, k2 under Assumptions (A2)-(A4). Since
Q.(m,::) = \/Lm(amBm@)ﬂ and @%@m = diag(|Gm,1|, |Gm2l, -, |Gm.Kk,,|), we have

OKm (Q*(m, 5 )) > LmUKm (Bm)UKm (gm)2 > \/apmax KZ;{/EM minm:l,--- M OK,, (Bgz),
which suggests

Kmax \4
- 61\/551

Similarly, we have the estimation

- clc§b2 '
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Let p* = pmaxnmin(n, L) and ¢ = log(n + L), then we have the estimation that

Lo V K K ppax M log?(max(n, L))
c}Be3biby  pmaxnmin(n, L)

_CH%\/W( t K22 )

Ny/Pmax ~ Pmaxnmin(n, L)
1 VM3 1 KAMB VK KM

N ( )>

1 K?
<Cr2log?(n + L)V M3 +—
pmaxn2 p*

C1 Cgbg

<Cr3log? L
<Ckg log (n+ L) < clc§b2 C%'5C§blb2

1 VEKpaxM
\/]? C%'E’C%blbg

ag =Ck}

VK Knax M (1 N log(max(n, L))

< Crilog(n + L
c15c3biby \/Pmaxn min(n, L)> o 1o )

K3
<Cr3log(n + L)/ —,

*

By calculation, a sufficient condition for the requirement in (49) becomes (19).

With (19), we have % > YU Combining it with as > Crdrirs MK<1 +
log(max(n,L))
vp*
addition, (48) and (49) follow from (19). Then (21) is proved by applying Theorem 3. The
stopping criterion (1) and (22) follows from (21). The proof of (23) is presented in (24) at

the end of Section 4.3.

), the assumption on the initialization (50) can be guaranteed by (20). In

6.3 Proof of Proposition 2

Proof of Proposition 2. Applying (Zhou and Zhu, 2019, Theorem 1.2), for any r > 0 there
exists C' depending on r such that

Pr (IM1(A)] < Cre/pmax(n? + 1)) > 1~ min(n?, L) "
On the other hand,

o (Mi(Py)) = onr(Mi(Q,)) < VEoIMU(QL) I F < v/Ropmaxn VL.

Then Wedin’s sin 6-theorem (Wedin, 1972) and the fact that W, and W(®) are the top left
singular vectors of M (P,) and M; (P, + A) imply that

IM(A)] . VEE
UM(Ml(P*)) n T,Cnv HOpmaxL
Following from the theory of principal angles (Lerman and Zhang, 2014, Section 3.2.1)

and (Golub and Van Loan, 2013, Section 6.4.3), up to a orthogonal transformation of size
M x M, the distance between WO and W, can be bounded above as

IWOWOT _w wT|| <

VZ+ L
min IWOU - W.|r < G2
UeRMxM.yUuT=I "/ Pmax L
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Combining it with (Lei and Lin, 2020, Lemma 9) and note that - in (Lei and Lin, 2020,
Lemma 9) can be set as 1/v/Lmax, where Lyax = maxj<m<n Lm, one has at most

C. min IWOU = W, |2 Lnax
UeRJMx]VI uuT=1

misclassified layers in the (14+€) K-means step 2.
For any two sets of indices, S1,S2 € [1,---, L], let us, and ugs, be their normalized
indicator vectors and let Sz be their difference S3 = (S{fNS2)U(S5NS1). Then, if n|Ss|/|S1] <

1/2, one obtains
Jus, — s, 2 =2 - 2(us, ug,) =2 — 245105 5118
V81|82 VIS1(IS1] = [Ss])

2 S1[(|S1] — |S3]) — (|S1] — |S5])?
_\/\51 (IS1] = [85]) V/IS1(IS1] — [Ss]) + |S1| — |Ss]
2 |S3](|S1]| — |S3]) < g/l

VSIS = 1S3 VISUSI = [S3]) + IS = 13] — 10
Note that, when |S3|/|S1]| > 1/2, one also has

2 ||
— <4< 8=
||u$1 us, ” ‘S |
The above inequalities then imply that, in step 3, for some constant C' one has
L
WO — W, |12 < 8C. min IWOU — W, |2 Zmax
UEeRMxM . yUT =] Luin

Combining the upper bounds above and noting that Assumption (A3) implies that Lyax/Lmin <
ca/c1, completes the proof of Proposition 2. O

6.4 Proof of Theorem 2

Proof of Theorem 2. (a) For completeness, we will first write down the statement from (Lei
and Lin, 2020, Lemma C.1):

Let U be an n x d matriz with K distinct rows with minimum pairwise Euclidean norm
separation y. Let U be another n x d matriz and (©,X) be an (1+ €)-approzimate solution
to K-means problem with input U then the number of errors in © as an estimate of the
row clusters of U is no larger than C.||U — U||F’y for some constant C¢ depending only
on €.

Note that W, is an L x M matrix with M distinct rows with minimum pairwise Euclidean
norm separation larger than 2/ maxy,—i... ar v/ L, the misclassification rate is not larger

than
maXm=1,... .M L

4L
maXy;—1,..., M Lm

Combining it with the estimation of ||[W, — VVH% and assumption (A3) on —"=5
part (a) is proved.

Ol | W — W

32



ALTERNATING MINIMIZATION ALGORITHM FOR CLUSTERING MULTILAYER NETWORK

(b) Denote the orthogonal matrix of size n x K, whose columns are the top K, eigen-
vectors of Q(m,:,:) by U,, and the orthogonal matrix of size n x K,, whose columns are
the top K, eigenvectors of Q,(m,:,:) by U,,, then the Davis-Kahan theorem implies that

1Q(m, =) — Q. (m,:,)||r
ok, (Q.(m,:,:)) ’

In addition, U,, has K,, distinct rows with minimum pairwise Euclidean norm separation
at least 2/,/Gmmax, Where gm max = max |G |. As a result, (23) implies that the

Hﬂm - UmHF <

1<k<K
misclassification rate is bounded by
gm,max HQ( :) _Q*( ,Z,Z)H%u
4n O—Km(Q*( m, ’:))2
1 H ( :)_Q*( 5:7:)“% ||Q( )_Q*( 7:7:)”2
O N (<X LR A o (7 NS

(21Q.IIIW — W.|[r +2|Al)* _ c (2Pmaxn VLW — W.|r + 2| A)?
0K (Qu(m,,1))? - 0K (Qu(m, ;1))

<c.(%) (HW W (Ve R L))>2>

<C.

pmaxn\/Z
<c,(Kmadt (uw R L)))2>

K pmaxn\/z

§C€(Kr2n;‘ )((log (n+ L)VM3 \_/:H<\/Mj+pmaxnmki2n(n,lz)))2

(ng max(n, L)))
pmaxn\/>

<C.Kmax ( log(n 4+ L)M?3

Ko ( 1 N K* ) N (n+ L)log(n + L)?
(1 —£kg)? \pmaxn?®  p2..n?2min(n, L)? N2Pmax L

O]

6.5 Proof of Lemma 2

Proof of Lemma 2. The main idea of the proof of Lemma 2 is as follows. Assumption (A1)
implies that, when the observation is noise-free in the sense that A = P,, Algorithm 1
converges linearly. As a result, we only need to show that the output of the algorithm does
not change much if we replace A with P, and Algorithm 1 with its linear approximation
Pr,Pr,.

Given W) we construct a skew-symmetric matrix Y(iter) ¢ RM*M

Y(iter) _ %(sz(iter) _ W(iter) TW*), (52)

and then the update formula for the “clean” version of the algorithm is the solution to the
equation o .
Q. x1 YUt = pp P (Q, xq YUter)), (53)
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Intuitively, Y itr+1) is the algorithmic update when A, is replaced by P, and Algorithm 1
is replaced by its linear approximation Pr,Pr,. By the definition of £y in (15), we have

||W*Y(iter+1) ||d < KHHW*Y(iter) ||d

We will bound ||[Wter+1) _ W || ; as a function of || W) —W||; by (54) and the following

perturbation bounds in Lemma 4, with its proof deferred to Section 6.5.1.

Lemma 4. For any W let Y and Y1 be defined as in (52) and (53), then

1.
HW*Y(iter)Hd S ”W(iter) . W*Hd
2. For
W (iter+1) I,(P, X923 Q. + HT,K(Q* X1 Y(ltelr))))7
we have
~ /. .. 32/€2HYiterH2
W(lter+1) ~ W, Y(lterJrl) +1 < . 0 . a .
H ( )” -9 _ 8/43(2)”Y1ter”F _ 4HOHY1ter”F(2 + 4/€0HY1terHF)
2/€0+81€0||Yiter”p it 9
1 - ! i ) 4 yiter '
i ( e kol Yiter|| o — k(1 + 4kl Yiter|| p)drol| Yiter|| g (rol )
3. 1If
(W, — Wt < im0 0 (@ )
B Q. ’
then,
B

HW(iter—H) o W(iter—i—l)HF <

om(Q, %23 Q,) — 2[|Q, x2,3 Q.|| Yter)||p — 5’

where, for a1 and as are defined in Lemma 2,

om(Q, X233 Q,)
6

B = (a1 + as|| W, — W12

With the perturbation bounds (57) and (59) in Lemma 4, we have

||W(iter+1) ~ W, (Y(iter—H) + I)”F
SHW(iter-{-l) _ W(iter+1)||p + HW(iter—f—l) _ W*(Y(iter-i-l) + I)HF
) 2
Tom(Qy x23 Q.) —2(Q, x23 Q,[l[[YW)| p — 5

ORI S
T 8K Y1 er || — do|[Yiter|| p(2 + dro [ YT || )
2k0 + Skol| Y| 7
2 = 8ro|[ Y| — ko (1 + dro [ Y| p)dro [ Y| o

+(1+ ) (rol Y| )2
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When

. 1 1
a1 < 1,[[WE) — W, || p < min(—z, —) (60)

32k37 \az”’
we have (using [[Y )| < || W) W || ) 4k Y| < 1, 85| Y| pt-drio | Y || 1 (2+
drollY®T||p) < 1, 8kol Y™ ||p + ro(1 + 4kl Y ||p)drol Y| < 1, which imply
1Q. x2,3 QuIIIYH ) ||p < oar(Q, x23Q.)/2 and [|[W, — W2 <1, and

[Witer 1)y (Giter+1) 4 gy, (61)

< b1

Tom(Q. x23Q,)(1-1/2—-1/3)

651 it it 2

= + (3 + 2k + Skl YT Akl YT
(@, %23 QL) ( 0 ol | 7)(4rol| )

< 651
om(Q, x23 Q)

=ro(ar + az| WIWED) —1||2) 4 (5 + 2k0) (4rio | Y| ) 2.

+ 325 [ Y| + (1 + 260 + 8rol Y| 1) (4rio || Y| )

+ (5 + 2r0) (4rio || Y| )

Combining (54), (55), and (61), we have

Hw(iter-i-l) _ W*Hd < HW*Y(iteH—l)Hd + ”W(iter-i-l) _ W*(Y(iter-‘rl) + I)Hd

< HHHW*Y(iter)”d + Hw(iter+1) _ W*(Y(iterJrl) + I)”d

< KHHW* B W(iter)Hd + ||W(iter+1) _ W*(Y(iterJrl) + I)Hd

<kp|WED-W, |4 +Ch (a1+a2\|w* - wﬁter)—IH%+(5+250)(4ﬁouyiter||F)2)

< WO W g+ Cor (a + anl| W, — WO 3+ 16(5 + 20)3 W) — W, 3)

< ropr [WE) = Wl + Crr (0 + (az + 803 + 3265) [ W) — W, |3)

As a result, if in addition we have

Chr(ag + 80k2 + 3263)|[WU) — W, |4 < (1 — k) /2, (62)
then .
WO W < WO W+ Oy (63)

By the assumptions in (43) and (44), the argument of induction implies that (58), (60), and
(62) hold for all iter > 1. Therefore, (63) holds for all iter > 1 and the theorem is proved.

6.5.1 PROOF OF LEMMA 4

The proof of Lemma 4 is based on Lemma 5-8. Among these lemmas, the proofs of Lem-
mas 5, 7, 8 will be presented in Section 6.6, and Lemma 6 is a restatement of Theorem
VIL.5.1 in Bhatia (1997). We shall prove the three perturbation bounds (55), (57), and (59)
separately.
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Lemma 5. Given any symmetric matriz Q € RM*M if QY —X = S holds for a symmetric
matriz S € RM*M gnd o skew symmetric matriz Y € Skew s, then we have

max([|QY||r, IS[|F) < 2[IX]|£-

Lemma 6. For any square matrices A and B,

IA —Bl|r
I, (A) — TI,(B) | F < 2amin(A) T omin(B)

The inequality also holds if the operator norm is replaced with Frobenius norm.

Lemma 7. For any positive definite matriz Q € RM*M and any skew symmetric matrix
Y € Skewyr with [|[Y|| < 1, we have

2lQll
20min(Q) — €l QY|

IM(QI+Y) — X+ Y)|r < (1+ )(e—2)I Y3

Lemma 8. Let I, be defined in (2). Then

Yllr

(X +Y) - I(X)[lr < (1+ ﬁ)mv

where o (X) represents the M-th singular value of X.

Lemma 9. For a symmetric matriz Xo € R™"™ with rank r, let Iy : R™*™ — R™*™ pe
projection onto the tangent space of {X : rank(X) = r} at Xo and Ilt | be the remainder
of the projection, then for any symmetric matrix A,

Iz (A7

Mz L (A)|lF < — < —rAT
or(Xo) — [|A]

Proof of bound 1 in (55)
It follows from the observation that W,Y(iter) — Pr, (W(iter) — W,) and from the
definition (42), |[W, Y|, = AP, x W, Y )| and

[WED Wy = [P, WY 6 )2 [Py (W) — W 7.

Proof of bound 2 in (57)
By the definition of (53), we have that for any A € Skewy,

0=(Q. x1 YOt — P (Q, x1 YI'),Q, x1 A)
= <Q* X2.3 (Q* X1 ?(iter—l—l) - PL1 (Q* X1 Y(iter)))7A> .

AS a resulta Q* X2,3 (Q* XIY(iter+1) _PL1 (Q* X1 Y(iter)>) = (Q* X2,3 Q*)Y(iter+1) - Q* X2,3
I x(Q, x1 Y (i) is a symmetric matrix. Denoting it by S, Lemma 5 implies that
max([|(Q, x23 Q)Y | p,[IS|r) < 2/Q, x23 Trk(Q, x1 YI)|

<2 max Q. x23 7k, (QIIYY | p < 4|Q. x25 Q.Y s, (64)
1<m<M

36



ALTERNATING MINIMIZATION ALGORITHM FOR CLUSTERING MULTILAYER NETWORK

where the last inequality is due to

Q* X2.3 Q* = HMl(Q*)H27 HQ* X233 HTJQn(Q*)H < HMl(Q*)HHMl(HTJ(m(Q*))H’

Mi(Ilz k,, (Q.)) = M1(Q.)(lu,, @ I) + M1 (Q,)(lyy ®@1ly,,),

where ® represents the Kronecker product, and ||A ® B < ||A]/||B]|-
As a result,

Y| < dreg [ Y0 . (65)

By the definitions of Wtertl) 4nd S, we have WIwlter+h) — T1,(Q, x23 (Q, +
Mrk(Q, x1 Yi))) = I1,((Q, x23 Q,)(Yt+D) + T) — S). Lemma 6, the upper bounds
of ||S||F in (64), and | Y@ +D) || 1 in (65) imply

W WD) —T1,((Q, x23 Q, — S) (YT ) 4+ 1)) ||

=[To((Qy x2,3 Q)Y 4+ 1) = 8) — I((Q. x23 Q. — S)(YH ™) + )|
QHSY iter+1)HF
20min((@. X2,3 Q) (Yot 4 T)) — [|S||(2 + || Y ter+ D)
- 2HSY (iter+1) HF
20min((Q. X2,3 Q) (Yot 1)) — ||S|| (2 + || Y (iter+1)|)
2 SYter D)
20mm(Q* x93 Q.) — 2[[(Q, x2,3 Q,)YertD|| p — [|S| p(2 + || Y Gter+1) )
2(41Q. x2,3 Q.Y || p) (4riol[Y***"| )
= 20 @ 23 Q) — 21Q. 23 Qul| (Aol Y1) — (4]Q. X2 QY™ )2 + Aol Y™ )
32K2||Ylter”2
3= 8rig || Y1er || — drio|[YTer|| (2 + Ao YT || )

<

In addition, Lemma 7 implies

IMo((Q. x23 Q. — S)(YU*D 4 1)) — (YO 4 1) | o

2 - A .
<(1+ 19,00 @. “SI_____y gyt
20min(Q, %23 Q, —S) — €| Q, x23 Q, — S||| Y liter+1) |
<(1+ 2HQ* X2,3 Q*” +2HSHF )HY(iterJrl)H%?
TN 200n(Qy %23 Q) — 2SIk — (Q. x23 Q.|| + [IS]|p) [ Y ter+ )|

< (1 n 260 + o[ Y 7
- 2 — 8k | Yter|| p — ko (1 + 4ro || YT || p)dro| Yiter || 7

) (rol Y | )2
Combining the previous two estimations, part 2 is proved.

Proof of bound 3 in (59)
By the definition of W(ter+1) in (56) and Wter+1) — TI,(A x5 3 Ik (A x; Witer))),
Lemma 8 implies that

W(iterJrl) _W(iter+1) < p1 . < b1 .
| I < om(Py x23 Mk (Q, x1 (T+YWe))) — 81 = on(Q, x2,3Q,) — B2 — b1
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for
B = || A xo3 T (A x; WD) — P o5 (Q, + Trk(Q, x1 Y1) 5

and .
Bo = || Py x23 1k (Q, X1 y (iten)y||.

By the same calculation as in (64), we have

B2 < max |Q, x23 U1k, (QIIIIYI|F < 21Q, x23 QY. (66)

1<m<M

To estimate the upper bound of 1, we note that 81 < 83 + B4 + B5, where

B3 = | A x23 Tk (A x1 W) — A %o 5(Q, + Tr k(A x1 Wi —Q ))|p, (67

B1=||A x23 (Q, + TIrx(A xs WH —Q,)) — P %23 (Q, + Tz (P x1 (W) —W.,)))|
(68)

:HA X23 HT7K[P* X1 W(iter)] + A X293 HT’K[A X1 W(iter)] + P, X23 HT’K[A X1 W(iter)]HF,
and

Bs =[Py x23 (Q, + My (Py x1 (W —W,))) — P, x93 TI1x(Q, x1 (I+ Y))|p
(69)
:HP* X273 HT,K(Q* X1 (WIW(iter) I lter ))”

1 . .
=51Qu X2 T (Q, xa (WI W) 4 WD TW, — 1) |
1 . .
=§||Q* x93 Mr(Q, x1 (W, — WtehT (W, — Wliter)y|

To obtain an upper bound for f3 in (67), let Ik | € RM*nxn he [Ig (A x; Wter))
(Q, + T k(A x; W) — Q) then by Lemma 9 and

Ax1 W (iter) Q* A x4 W(iter) + P, x4 (W(iter) W — *),
we have rank(Ilp k1 (m,:,:)) < 2K,, and

i1, [A >0 WO — @, ](m, 2, )|
0k (Qu(m2,0)) = |QU[ W — W] — [[A]
4[[A > WD — @, ](m,:, )|
T 0K (Qu(m, 1) — QLW — WD — A
(| QITWIW D — T (m, || + [ A])? _ 16([Qu[PIWEW D —T(m, )| + [ A]*)

HHT,K,J_(m, 5 )H <

T 0k (Qu(my 1 0) — QW — W || — A~ s (@ (m;3,2))
(70)

Since rank(Il7x | (m,:,:)) < 2K,,, we have

Bs < [|A xo3 Uk 1 (m,:, )| < 2K || Al[[Hrk, 1 (m,:, ).
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Summing 1 <m < M, (70) yields

M .
3 K5 (1QuIPITWIWter) — T (m, ) ||> + [|A[?)

= ok, (Qu(my ) — [|QL[|W. — Witen | — || A])”
Ko (|QPIWT WO —1](m,)|1% + | Al?)
<16/ A -
4l Z VM (0K, (Q.(m, ) — [|Q.[[[|[W. — Wten)|| — |A])
K(|Q, |2 [WTWter) — 1|2 4+ ||A[%)
<16]|A -
H H r(mlnk 10Km(Q*( m, 7:)) - HQ*HHW* - W(zter)” - HAH)
K(Q.| + 1ADIQ. 2 WT W) — 12 4 [|A|2)
\/M( min{g\il OK,, (Q*(m7 5 )))

Bs = A x23lrx 1[|F < 16AJ

<32

To find an upper bound for 84 in (68), note that

A xo3 gk (A x1 W) (m)| = [|[(A xo3 Tz, (A) WD), m)|
=Lz, (A) X2 1k, (A) WD c;m)| < ||z, (A) x23 g, (A)]],

which implies

1A x93 Tk (A x; W) p < (ax |7k, (A) x5 Tlr ke, (A)][ VM. (71)

Similarly,
| Py x2,3 Trx (A x1 WD) || 5 <  fnax Ik, (Ps) x23 U7 K,, (A) ||V M,

|A xo3 7k (P x1 WD) |5 < fnax M7 k,, (P+) x23 U1 K, (A) ||V M. (72)
As a result,

Ba<V ( max |Urx, (A) x23 U1k, (A)| +2 max |Urk, (Ps) <23 HT,Km(A)H)-

To find an upper bound for S5 in (69), we use

. . .
Fs =5 1Qu 2,3 lrk[Q, x1 (W — W T (W, — WD)

1 A .
<5 max [|Q, x23 U1, Qull[(W, = W) T (W, - WED)||p < [|Q, x5 QuIIIW. — WID|IE,

2 1<m<M

where the inequalities follow the same calculation as in (64) and (66), and ||(W,—W it (W, —
iter )”F_HW W(iter H2
Combining the estimations of 8o, B3, 81, B5 with || WL Wter) _1|| < |[WIWter) _1||» <
[W. = WD | B < By + By + B, and kg = 272291 (59) is proved. 0
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6.6 Proofs of auxiliary Lemmas and Propositions

Proof of Lemma 1. For any X € Skew,, such that Q, x; X € L;, due to

M M
Q. x1 X](m,:,:) = Z X(m,m")Q.(m/,:,:) = Z X(m,mQ,.(m',:,:),
m/=1 m/=1,m'#m

one has "M _ rem X(m,m )y Q,(m', 2, )y = 0. When the first sufficient condition
holds, then X(m m’) =0 for all 1 < m’ < M. Combining the analysis for all 1 < m < M,
we have X = 0. As a result, Ly N Ly = {0} and (A1) holds.

The second sufficient condition follows from the first sufficient condition directly. O

Proof of Lemma 3. We first summarize a special case of (Lei and Lin, 2020, Theorem 2.1)
as follows:

Lemma 10. If X; € R"™", [ = 1,---,L are independent, elementwise sampled from a
centered Bernoulli distribution with parameters not larger than p, then

L t2/2
Pr (H ;XZH > t) < 2(r + n) exp (—meaX(n,r) —|—t>

Since U, is a matrix of size n x K,,, such that the ¢-th column is the normalized indicator
vector of the set Gy i, i.e., the indicator vector with scale 1/4/|Gy,i|. As a result,

<Q*(m1,:,:),A(l,:,:)Um(k7 U, Z Z A 1, 1) ZJQGG(TC;(Z*(ZT)TLJl ]2)7

J1=13j2€Gm ;

and, by Bernstein’s inequality, since each term is no larger than +/L,,pmax and

Z eG(m Q*(m17]17]2)
E A lajl:j/ s < me?naxa
< (51, 72) Gl
142
Pr <‘<Q*(m17 5 :)1 A(la 5 )Um(ka )Um(k> :)T>‘ > t\/meignaxn|Gm,k’|> S 2eXp 1 + 2 t

3 \V pmaxn|Gm,k ‘

Summing it over 1 <i < K,,,, 1 <1< L, and 1 <m; < M, we proved (46).

By definition, ||M(Il7f, (A))]| < 33 0m H\/ﬁ > icGn, A, 59)[], and Lemma 10
implies that

. t2/2
pri 3 A(:,:,Z)Hzt\/pmaxmax(n,LnGm,ky < ALm)exp |~ /t
iGGm’k \/pmaxmax(nvL)|Gm,k|
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As a result,
t2/2
Pr (HMl(HT,Km(A))H < 3Kt/ P max(n, L)) > 2K (L) exp |~ d
\/pmax ma'x(nvL)gmin
and (47) is then proved. Therefore, Lemma 3 is proved. O

Proof of Lemma 5. Without loss of generality, assume that Q is a diagonal matrix with
Q = diag(q1, -+ ,qum). Then foreach 1 <4, <M, ¢;Y;; —X;; =S;; and ¢;Y;; — X;; =
Sjﬂ‘. Since SiJ‘ = Sjﬂ' and Yi,j = —Yjﬂ‘, we have
Xij = Xii o _ GXKij — 86X

G+q = g+ qj

6y =
Since {g;}M, are positive, the lemma is proved. O

Proof of Lemma 7. Let U = exp(Y), then it is an orthogonal matrix. In addition, |[U-I|| =
IS0 YA < 552wl YIP < (e = DY and U — X+ )|l = | 32 g Y¥lr <
1Y[r Yo Y572 < (e = 2)|Y||%.. As a result, Lemma 6 implies

M(QI+Y)) = I+ Y)[[r < [, (QI+Y)) - IL,(QU)[r + [TL(QU) — (I+Y)||r

2
SUmin(Q(I 1Y) + 0min(QU) QU -I-Y)[r+|U-I-Y|p

2lQll
S(l + Umin(Q(I + Y)) + O'min(QU) )(

Q| I
Somnt@) — ey € ~ VI

e—=2)[[Ylr

§<1+

Proof of Lemma 8.

I (X 4+ Y) —IL,(X)||r = (X + Y)[(X+Y)T(X+Y)] % - X[XTX] %9 ¢
=YX+ YY) X+ )] )r+ X (X +Y)T(X+Y)]" - [XTX]7%%) ||

< e XXX X )T (X 4+ V)07 (XXX 4 )T (X 4+ V)]0
72 (X) Y]
1Y|r T 05 _ vT+105 T —0.5
< e K+ YT (X 4+ Y2 — (XXX + Y (X + X))
B —
< g + VEIY A+ YT (X + )0
VDY
SR

Here the first and the second inequalities follow from ||[AB||r < [|A|#||B||, and the third
inequality follows from (Bhatia, 1997, (VII.39)).

O]
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Proof of Lemma 9. Let U € R™*" be the orthogonal matrix that has the same column space
as Xy, then

ITIrAllp = [Ty Ally + Ty Allp 2 [Ty Ally||F = [Ty AU||F,

and

M) A =Ty  AU(UT (X + A)U)'UT AT,
As a result,

[Ty AU A%
I+ | Allr < <
M1 &lle = 57 (%, + AT0) = 0,(%0) - |4
OJ
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