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ABSTRACT 

Accurately predicting the performance of radiant slab systems can be challenging due to the large thermal 
capacitance of the radiant slab and room temperature stratification. Current methods for predicting heating and 
cooling energy consumption of hydronic radiant slabs include detailed first-principles (e.g., finite difference) and 
reduced-order (e.g., thermal Resistor-Capacitor (RC) network) models. Creating and calibrating detailed first-
principles models, as well as detailed RC network models for predicting the performance of radiant slabs require 
substantial effort. To develop improved control, monitoring, and diagnostic methods, there is a need for simpler 
models that can be readily trained using in-situ measurements. 

In this study, we explored a novel hybrid modeling method that integrates a simple RC network model with 
an evolving learning-based algorithm termed the Growing Gaussian Mixture Regression (GGMR) modeling approach 
to predict the heating and cooling rates of a radiant slab system for a Living Laboratory office space. The RC network 
model predicts heating or cooling load of the radiant slab system that is provided as an input to the GGMR model. 
Three modeling approaches were considered in this study: 1) an RC network model; 2) a GGMR model, and 3) the 
proposed hybrid modeling between RC and GGMR. The three modeling methods have been compared for predicting 
the energy use of a radiant slab system of a Living Laboratory office space using measurement data from January 15th 
to March 7th, 2022. The first two weeks of data were used for training, while the remaining data was used for testing 
of all three modeling methods. The hybrid approach had a Normalized Root Mean Square Error (NRMSE) of 15.46 
percent (8.62 percent less than the RC-Model 3 alone and 19.36 percent less than the GGMR alone), a Coefficient of 
Variation of RMSE (CVRMSE) of 6.43 percent (3.59 percent less than the RC-Model 3 and 8.05 percent less than the 
GGMR), a Mean Absolute Error (MAE) of 3.61 kW (2.13 kW and 3.87 kW less than the RC-Model 3 and GGMR, 
respectively), and a Mean Absolute Percentage Error (MAPE) of 5.28 percent (3.85 percent and 3.92 percent lower 
than the RC-Model 3 and GGMR, respectively). 

1. INTRODUCTION

Hydronic radiant slab systems (HRSS) have significant benefits for thermal management of conditioned spaces, 
including increased thermal comfort and energy savings (Joe and Karava 2019; Rhee and Kim 2015). Apart from 
these benefits, the large thermal storage capacity of an HRSS has a few disadvantages. One disadvantage of the 
large thermal time constant is that it causes cooling output to be delayed when supply water flow rates and 
temperature are adjusted (Liu et al. 2011). Additionally, conventional control based on room temperature feedback 
may consume more primary energy than a conventional air system (Sourbron et al. 2009). Moreover, an HRSS 
frequently experiences concurrent thermal disturbances caused by solar radiation, internal heat, and air systems 
(Koschenz and Dorer 1999) that when combined with conventional control approaches can lead to overcooling or 
overheating issues. To address these issues, an HRSS should incorporate Model Predictive Control (MPC) with 
accurate load prediction (Joe and Karava 2019). In general, load prediction methods for buildings fall into three 
categories: first-principles models, reduced-order thermal Resistor-Capacitor (RC) network models, and data-driven 

mailto:lwang12@uwyo.edu


 
 3470, Page 2 

 

7th International High Performance Buildings Conference at Purdue, July 10 – 14, 2022 

models, as summarized in ASHRAE (Handbook 2001) and (Dong et al. 2016). The following subsections will 
review those models followed by a brief statement of research objectives. 
 
1.1 First-Principles Models 
In this application, first-principles models refer to models that use Computational Fluid Dynamics (CFD) (Zhang et 
al. 2013) or building energy simulation software such as EnergyPlus (Crawley et al. 2001), and ESP-r (Clarke 2001). 
The computational cost of CFD makes them incompatible with large-scale simulation programs (Neumann, Gamisch, 
and Gschwander 2021; Rodríguez Jara et al. 2016). Most current building energy software requires a detailed physical 
and operational description of the building, as well as a well-mixed zone air assumption, to predict the performance 
of a building and its heating, ventilation, and air conditioning (HVAC) system.  
 
1.2 Thermal RC Network Models 
An inverse grey-box RC model strikes a balance between a physically-based model and a data-driven model (Braun 
and Chaturvedi 2002). An RC network model is considered as a collection of linear ordinary differential equations 
(ODEs). RC models are typically in the form of 2R1C, 3R2C, or lumped RC parameter models with associated self-
adjusting methods (Rodríguez Jara et al. 2016). According to (O’Dwyer et al. 2016), when the resistance and 
capacitance values are positive, there is theoretically a guaranteed thermal passivity solution for RC models. As for 
the training of RC models, there is considerable research devoted to optimizing the trade-off between model accuracy 
and complexity (Ahn and Song 2010; Goyal, Liao, and Barooah 2011; Koschenz and Dorer 1999; Liu et al. 2011).  
 
Nevertheless, there are some limitations in terms of the application of the RC model. The accuracy of lumped 
parameter methods is highly dependent on the estimation and calibration of their characteristic parameters (Rodríguez 
Jara et al. 2016), which requires substantial effort. Moreover, the accuracy of the RC model applied to a radiant slab 
degrades when the slab is subjected to rapid thermal disturbances (Neumann, Gamisch, and Gschwander 2021; Rhee 
and Kim 2015). 
 
1.3 Data-driven Models 
Many data-driven/machine learning algorithms have been evaluated for building energy models such as Partial Least 
Squares (PLS), Principal Component Analysis (PCA), Gaussian Process Regression (GPR) and Gaussian Mixture 
Model (GMM). For example, GPR has been used to capture the complex and highly subjective relationships between 
room temperature and subjective thermal perception (Guenther and Sawodny 2019). Also, GMM is widely recognized 
for its ability to model multimode characteristics and deal with process uncertainty (Billard et al. 2008; Li and Song 
2020).  
 
Considerable efforts have been made in the field of incremental learning Gaussian Mixture Regression (GMR), or 
Growing GMR (GGMR), to develop a mechanism for GMR adaptation (Bouchachia and Vanaret 2011; Cederborg et 
al. 2010; Karami and Wang 2018; Li and Song 2020; Wang, Kubichek, and Zhou 2018).  
 
In this study, we propose a hybrid approach, in which the output from a simpler RC model is used as one of the inputs 
to a GGMR model. The proposed hybrid model combines the benefits of both the GGMR and RC models. The 
methodology and performance metrics for model evaluation are detailed in Section 2. Section 3 presents model 
development and a case study for an existing office at Purdue University followed by conclusions in Section 4.  
 

2. METHODOLOGY 
 
This section discusses the development of RC network models, the GGMR approach, and the hybrid modeling 
approach along with describing the model prediction performance criteria metrics. 
 
2.1 RC Network Model 
An RC network model is based on heat balance equations applied to temperature state variables (Braun and 
Chaturvedi 2002; Joe and Karava 2017). A general state-space model for estimating a radiant slab systems load is of 
the form  

 
𝑥

𝑑𝑡
= 𝐴x + Bu (1) 
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y = cTx + dTu 

where estimated resistances, capacitances and heat flux coefficients (such as the ratio of solar radiation to the 
envelope state) form matrices A, B and vectors c, d. The variables x, u, y, t represent vectors of state, input, output 
variable and sampling time, respectively. For an HRSS, a single output variable is the cooling and heating load. The 
state vector contains all the temperature nodes. The input vector contains all the driving conditions, such as the 
heating or chilled water temperature, exterior air temperature, solar radiation, lighting, and occupancy schedule. 
The discrete version of the above state-space model can be written in terms of a recursive formula as 

 𝑥(𝑘+1)𝑇 = 𝐴𝑑𝑥𝑘𝑇 + 𝐵𝑑𝑢𝑘𝑇 (2) 
 𝑦𝑘𝑇 = 𝑐𝑑

𝑇𝑥𝑘𝑇 + 𝑑𝑑
𝑇𝑢𝑘𝑇 (3) 

where the subscript d indicates these variables are the discretized forms of A, B, c, d in equation (1). A typical 
objective function for training an RC network model is to minimize the Root-Mean-Square Error (RMSE) for the 
training duration, denoted as the following, where N stands for the number of samples. 

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 √
∑ (𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑,𝑘 − 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑘)

2𝑁𝑡𝑟𝑎𝑖𝑛
𝑘=1

𝑁𝑡𝑟𝑎𝑖𝑛 − 1
 (4) 

 
2.2 GGMR Method 
GMR(Sung 2004) is a regression approach that models probability distributions rather than functions. Assume the 
data follow the joint density 

 𝑓𝑋,𝑌(𝑥, 𝑦) = ∑ π𝑗

𝐾

𝑗=1

ϕ(𝑥, 𝑦; μ𝑗 , Σ𝑗) (5) 

where K is the number of Gaussian mixtures, π𝑗 is the weight coefficient mean μ𝑗 = [
μ𝑗𝑋

μ𝑗𝑌
], covariance Σ𝑗 =

[
Σ𝑗𝑋 Σ𝑗𝑌

Σ𝑌𝑋 Σ𝑌𝑌
]. The Gaussian mixture probability function shown in equation (5) can be presented as 

 𝑓𝑋,𝑌(𝑥, 𝑦) = ∑ π𝑗

𝐾

𝑗=1

ϕ(𝑦|𝑥; 𝑚𝑗(𝑥), σ𝑗
2)ϕ(𝑥; μ𝑗𝑋, Σ𝑗𝑋) (6) 

where 
𝑚𝑗(𝑥) = μ𝑗𝑋 + Σ𝑗𝑌𝑋Σ𝑗𝑋

−1(𝑥 − μ𝑗𝑋) (7) 

σ𝑗
2 = Σ𝑗𝑌𝑌 − Σ𝑗𝑌𝑋Σ𝑗𝑥

−1Σ𝑗𝑋𝑌  (8) 

 
From equation (6), the marginal density of X is  

𝑓𝑋(𝑥) = ∑ π𝑗

𝐾

𝑗=1

ϕ(𝑥; μ𝑗𝑋 , Σ𝑗𝑋) (9) 

 
The conditional probability density function of 𝑌|𝑋 is 

 𝑓𝑌|𝑋(𝑦|𝑥) = ∑ 𝑤𝑗(𝑥)

𝐾

𝑗=1

ϕ(𝑦; 𝑚𝑗(𝑥), σ𝑗
2) (10) 

with the mixing weight 

 𝑤𝑗(𝑥) =
π𝑗ϕ (𝑥; μ𝑗𝑥,Σ𝑗𝑋

)

∑ π𝑗
𝐾
𝑗=1 ϕ(𝑥; μ𝑗𝑋 , Σ𝑗𝑋)

 (11) 

 
In the current study, we are interested in the expectation of y among all gaussian components: 

 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑|𝑥 = 𝑚(𝑥) = 𝐸[𝑌|𝑋 = 𝑥] = ∑ 𝑤𝑗(𝑥)𝑚𝑗(𝑥)

𝐾

𝑘=1

 (12) 
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To accommodate new data in an online setting, control model complexity and allow modeling of time-varying 
processes, GGMR has been proposed by (Bouchachia and Vanaret 2011) with growing and shrinking mechanisms. 
We utilized its updating Gaussians algorithm in the present paper. More details can be seen in (Bouchachia and 
Vanaret 2011). The best match Gaussian is updated using the following formulas: 

 𝑞𝑗 =
𝑝𝑗

∑ 𝑝𝑘𝑘=1…𝐾

 (13) 

 𝑐𝑗(𝑡) = 𝑐𝑗(𝑡 − 1) + 𝑞𝑗 (14) 

 τ𝑗(𝑡) = (1 − α)τ𝑗(𝑡 − 1) + α𝑞𝑗 (15) 

 η𝑗 = 𝑞𝑗 (
1 − α

𝑐𝑗

+ α) (16) 

 μ𝑗(𝑡) = (1 − η𝑗)μ𝑗(𝑡 − 1) + η𝑗𝑥𝑖 (17) 

 Σ𝑗(𝑡) = (1 − η𝑗)Σ𝑗(𝑡 − 1) + η𝑗 (𝑥𝑖 − μ𝑗(𝑡 − 1))
2

 (18) 

in which 𝑝𝑗  is the match probability calculated with new input 𝑥𝑖  and best match Gaussian ϕ𝑗(μ𝑗 , Σ𝑗),  𝑞𝑗  is the 
expected posterior, 𝑐𝑗 is the sum of the expected posterior for the best match Gaussian, τ𝑗 are the weights of the best 
match Gaussian, η𝑗 is the on-going learning rate for the j-th Gaussian, α is the converging learning rate.  
 
2.3 Hybrid Approach 
In the present study, we have designed the hybrid modeling approach schema as shown in Figure 1, which illustrates 
the underlying structure of the hybrid approach. For each timestamp, the real-time predicted load from the RC model 
is used as one of inputs for the GGMR model (equations (13) – (18)). GGMR predicts system performance by updating 
key GMM parameters such as weighting factors, mean vectors, and covariance matrices. Sec. 3 described the detailed 
hybrid model inputs. In practice, the trained RC model should be started with a reasonable estimate of the initial states. 
As a result of non-optimal state initialization, it is expected that the first few predictions from the RC model will be 
chaotic. The current study proposed a warming-up period to minimize the errors caused by imperfect states 
initialization, and subsection 3.3 detailed how the warming-up steps were determined. 
 

 
Figure 1 Underlying communication for hybrid approach. 

 
2.4 Model Performance Evaluation Criteria 
Four indices, Normalized Root Mean Square Error (NRMSE), Coefficient of Variation of RMSE (CVRMSE), and 
Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE), are used for model performance 
evaluation. 

 𝑅𝑀𝑆𝐸 =  √∑ (𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑,𝑘 − 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑘)
2𝑛

𝑘=1

𝑛 − 1
 (19) 
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 NRMSE =
𝑅𝑀𝑆𝐸

𝑠(𝑎𝑏𝑠(𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑))
 (20) 

 CVRMSE =
𝑅𝑀𝑆𝐸

𝑚𝑒𝑎𝑛(𝑎𝑏𝑠(𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑))
 (21) 

 𝑀𝐴𝐸 =
∑ 𝑎𝑏𝑠(𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑,𝑘 − 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑘)

𝑛
 (22) 

 𝑀𝐴𝑃𝐸 = 1

𝑛
∑ 𝑎𝑏𝑠 (

𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑,𝑘−𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑘

𝑎𝑏𝑠(𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑,𝑘)
) (23) 

where n is the number of observations, 𝑠(𝑎𝑏𝑠(𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)) is the standard deviation of absolute measured values, and 
𝑚𝑒𝑎𝑛(𝑎𝑏𝑠(𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)) is the average of absolute measured values. Both 𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑,𝑘  and 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑘  are signed 
energy uses, with positive representing heating loads and negative representing cooling loads. It should be noted that 
the absolute prediction difference is determined using signed energy use values, whereas the prediction difference is 
normalized using absolute energy uses. 
 

3. CASE STUDY 
 
This section presents a case study that investigates the performance of the RC, GGMR and hybrid modeling 
approaches. 
 
3.1 Testbed 
The dataset included in-situ measurements for a living laboratory office space from January 15th to March 7th, 2022, 
with a 5-minute sampling rate. The first two weeks of data were used for training and the rest of the data was used for 
testing. The dataset was divided into two categories, onsite sensor data and estimated data. Onsite sensor data includes 
the following: outdoor air temperature denoted by 𝑇𝑜𝑢𝑡 , façade cavity space temperature denoted by 𝑇𝑐𝑎𝑣 , slab concrete 
temperature denoted by 𝑇𝑠𝑙𝑎𝑏 , flowing water temperature within slab pipe denoted by 𝑇𝑠𝑜𝑢𝑟𝑐𝑒 , solar radiation retrieved 
from a weather station denoted by 𝑄̇𝑠𝑜𝑙𝑎𝑟(AmbientWeatherNetwork2022), and Air Handling Unit (AHU) consumed 
heating power 𝑄̇𝐴𝐻𝑈 . The estimated input values were determined using hourly schedules in accordance with 
(ANSI/ASHRAE/IES 90.1-2010 2010, 1), such as internal heating radiation denoted by 𝑄̇𝑖𝑛𝑡  based on occupancy 
schedule, and lighting radiation 𝑄̇𝑙𝑖𝑔ℎ𝑡 based on lighting schedule. 
 
3.2 RC Network Model Development 
This subsection describes the design logic for the RC model, followed by a description of the target room's physical 
structures and, finally, our consideration of various RC model designs and their associated performance. Ultimately, 
the chosen design will be detailed. 
 
The major thermal components of the living laboratory office space include external walls, roof/ceiling, internal 
wall, south-facing double façade system, conditioned air from AHU system, and hydronic radiant floor system. 
Generally, adding complexity to an RC model can improve accuracy over a wide range of operating conditions, but 
at the expense of requiring additional input variables and more training data. In the present study, we considered 
three RC network designs by considering model robustness and various levels of complexity or model orders. As 
illustrated in Figure 2, the three RC network models considered are a four-state Model 1, a five-state Model 2 and a 
six-state Model 3. In these network diagrams,  𝑇, 𝐶, 𝑄, α  represent temperatures, capacitances, resistances, heat 
fluxes and corresponding coefficients, whereas the subscripts, 
𝑜𝑢𝑡, 𝑐𝑎𝑣, 𝑠𝑙𝑎𝑏, 𝑠𝑜𝑢𝑟𝑐𝑒, 𝑠𝑖𝑛𝑘, 𝑒𝑛𝑣, 𝑟𝑜𝑜𝑚, 𝑖𝑛𝑡𝑤𝑎𝑙𝑙, 𝑠𝑜𝑙, 𝑖𝑛𝑡, 𝑙𝑖𝑔ℎ𝑡, 𝐴𝐻𝑈, 𝑟𝑎𝑑, represent outdoor air, façade cavity, 
slab concrete, hot water or chilled water within tubes, insulation below tubes, envelope, room air, internal wall, solar 
radiation, internal heat, lighting, air handling unit, and the amount of energy added to or extracted from the water 
within radiant slab pipes to maintain the space thermal comfort, respectively.  
 
Each of the three models is composed of two components: room and concrete slab. We chose the same RC network 
model for the room portion of the model to effectively capture its thermal properties: a two-node envelope, one-node 
internal wall, one node cavity for the double façade system, and a room air node to capture disturbances due to 
heating or cooling from the AHU system. It is worth noting that we used the envelope node to represent the external 
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wall and roof/ceiling to keep the model simple. For the concrete slab portion of the model, we experimented with 
various model orders. The detailed thermal structure of the radiant floor was omitted from Model 1 and we 
considered the entire slab to be a single node. In comparison to Model 1, Model 2 included an additional source 
node to represent the flow of water through slab pipes. Furthermore, Model 3 had one additional sink node 
compared to Model 2 to represent heat transfer between the source node and another space. 
 
Figure 3 depicts predicted and actual results obtained for the testing period (10656 sampling points for 37 days). 
Model 1 has significantly higher errors than Models 2 and 3, which can be attributed to the oversimplified concrete 
slab representation. Model 3 has a lower CVRMSE than Model 2, which is consistent with the addition of a sink 
node. Table 2 contains a more detailed comparison of performance.  
 
The Model 2 can be represented by a state-space model with the following state, input, and output variable 
definitions: 

 𝒙𝑇 = [𝑇𝑒𝑛𝑣1, 𝑇𝑒𝑛𝑣2, 𝑇𝑟𝑜𝑜𝑚 , 𝑇𝑖𝑛𝑡𝑤𝑎𝑙𝑙 , 𝑇𝑠𝑙𝑎𝑏2, 𝑇𝑠𝑖𝑛𝑘] (24) 

 𝒖𝑇 = [𝑇𝑜𝑢𝑡 , 𝑇𝑠𝑙𝑎𝑏1, 𝑇𝑐𝑎𝑣 , 𝑇𝑠𝑜𝑢𝑟𝑐𝑒 , 𝑄̇𝑠𝑜𝑙 , 𝑄̇𝑖𝑛𝑡 , 𝑄̇𝑙𝑖𝑔ℎ𝑡 , 𝑄̇𝐴𝐻𝑈 ,
𝑑𝑇𝑠𝑜𝑢𝑟𝑐𝑒

𝑑𝑡
] (25) 

 y = 𝑄̇𝑟𝑎𝑑 (26) 

As stated in equation (4), the RC network model training is essentially an optimization problem to determine those 
unknown resistances, capacitances, and heat flux coefficients. The final converged values for those learning 
parameters have been listed in Table 1. In the present paper, Particle Swarm Optimization (PSO) from python 
package (James V. Miranda 2018) was used to solve the above optimization problem.  
 

 

 
 
 

Figure 2 Structure of RC network. Top: four states Model 1; Left: five states Model 2; Right: six states Model 3. 
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Table 1 Final converged values of resistances (K/W), capacitances (J/K) and heat flux coefficients for Model 3. 

𝑅𝑜𝑢𝑡,𝑒𝑛𝑣1 = 3.11E-1 𝑅𝑒𝑛𝑣2,𝑒𝑛𝑣1 = 5.45E-1 𝑅𝑒𝑛𝑣2,𝑟𝑜𝑜𝑚 = 9.94E-1 𝑅𝑖𝑛𝑡𝑤𝑎𝑙𝑙,𝑟𝑜𝑜𝑚 =-1.46E-2 
𝑅𝑠𝑙𝑎𝑏1,𝑟𝑜𝑜𝑚 = 7.21E-1 𝑅𝑐𝑎𝑣,𝑟𝑜𝑜𝑚 = 4.69E-1 𝑅𝑠𝑙𝑎𝑏1,𝑠𝑙𝑎𝑏2 = 5.64E-4 𝑅𝑠𝑜𝑢𝑟𝑐𝑒,𝑠𝑙𝑎𝑏2 =  6.44E-4 
𝑅𝑠𝑜𝑢𝑟𝑐𝑒,𝑠𝑖𝑛𝑘 =9.07E-4 𝐶𝑒𝑛𝑣1 = 2.6𝐸6 𝐶𝑒𝑛𝑣2 = 1.3𝐸6 𝐶𝑟𝑜𝑜𝑚 = 1𝐸8 

𝐶𝑖𝑤 = 1.2𝐸6 𝐶𝑠𝑙𝑎𝑏2 = 6𝐸6 𝐶𝑠𝑖𝑛𝑘 = 2𝐸4 𝐶𝑠𝑜𝑢𝑟𝑐𝑒 = 2.75𝐸5 
𝛼𝑠𝑜𝑙,𝑒𝑛𝑣1 = 1𝐸2 𝛼𝑠𝑜𝑙,𝑒𝑛𝑣2 =  1.87E-1 𝛼𝑖𝑛𝑡,𝑒𝑛𝑣2 = 1.52 𝛼𝑙𝑖𝑔ℎ𝑡,𝑒𝑛𝑣2 = 2.46 
𝛼𝐴𝐻𝑈,𝑟𝑜𝑜𝑚 =1.41 𝛼𝑠𝑜𝑙,𝑖𝑛𝑡𝑤𝑎𝑙𝑙 =  4.66E-1 𝛼𝑖𝑛𝑡,𝑖𝑛𝑡𝑤𝑎𝑙𝑙 = 1.01 𝛼𝑙𝑖𝑔ℎ𝑡,𝑖𝑛𝑡𝑤𝑎𝑙𝑙 = 1.78 

 

 
Figure 3 Testing results for Model 1, Model 2 and Model 3. 

Table 2 Hourly prediction performance statistical comparison for proposed RC models. 

Models NRMSE (%) CVRMSE (%) MAE (kW) MAPE (%) 
Model 1 169.09 70.34 42.24 52.33 
Model 2 27.38 11.39 6.90 10.68 
Model 3 24.08 10.02 5.74 9.13 

 
3.2 GGMR Model Development 
This subsection primarily discusses the determination of the input variables for the GGMR model. Correlation 
coefficients R were used as an initial guess input variables. We experimented with various input combinations for 
the GGMR model. Table 3 shows example correlation coefficients for one of the cases considered, whereas the 
performance of the GGMR models with 3 different sets of inputs is shown in Table 4. It is worth noting that larger 
correlation coefficients do not necessarily mean better prediction. For instance, the correlation coefficient of 
𝑄𝑠𝑜𝑙𝑎𝑟 is more significant than 𝑇𝑜𝑢𝑡 , while the inputs including 𝑄𝑠𝑜𝑙𝑎𝑟 did not provide additional prediction 
performance as shown in cases 1 and 2 of Table 4. Moreover, it was found that better prediction performance is 
achieved if we provide flow rate information as an additional input. In comparison to case 1, case 3 had a 2% lower 
CVRMSE after adding 𝐹𝑙𝑜𝑤𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝐺𝐺𝑀𝑅 from another GGMR prediction. In the end, the case 3 inputs were 
selected for the GGMR model. 
 

Table 3 Correlation coefficients between radiant slab system load and input variables. 

𝑻𝒐𝒖𝒕 𝑻𝒔𝒍𝒂𝒃𝒔 𝑻𝒄𝒂𝒗 𝑽𝒂𝒍𝒗𝒆𝒄𝒍 𝑽𝒂𝒍𝒗𝒆𝒉𝒕 𝑸𝒔𝒐𝒍𝒂𝒓 𝑹𝒂𝒅𝒊𝒂𝒏𝒕𝑺𝒍𝒂𝒃𝒍𝒐𝒂𝒅 
-0.06 -0.08 -0.16 -0.89 0.35 -0.16 1 
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Table 4 Hourly prediction performance comparison for different GGMR inputs. 

Case # Inputs CVRMSE (%) 
1 𝑇𝑜𝑢𝑡 , 𝑇𝑠𝑙𝑎𝑏𝑠, 𝑇𝑐𝑎𝑣 , 𝑉𝑎𝑙𝑣𝑒𝑐𝑙 , 𝑉𝑎𝑙𝑣𝑒ℎ𝑡 16.48 
2 Tout, Tslabs, Tcav, Valvecl, Valveht, 𝑄𝑠𝑜𝑙𝑎𝑟 16.49 
3 𝑇𝑜𝑢𝑡 , 𝑇𝑠𝑙𝑎𝑏𝑠, 𝑇𝑐𝑎𝑣 , 𝑉𝑎𝑙𝑣𝑒𝑐𝑙 , 𝑉𝑎𝑙𝑣𝑒ℎ𝑡 , 𝐹𝑙𝑜𝑤𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝐺𝐺𝑀𝑅 14.48 

 
3.3 Hybrid Model Development 
As mentioned in Sec. 2.3, the development of the hybrid approach is primarily concerned with the determination of 
warming-up step for the RC model. As illustrated in Figure 4, the warming up step was statistically chosen as 15 to 
minimize the prediction error. Consistent with GGMR model, different input combinations for the hybrid model were 
also investigated as presented in Table 5 where 𝑅𝐶𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑅𝑒𝑎𝑙𝑇𝑖𝑚𝑒  represents the predicted load from RC model. 
Compared with case 1, case 2 had 0.30% lower CVRMSE, which was consistent with the results shown in Table 4. In 
the end, the case 2 inputs were selected for the hybrid model. 

 

 
Figure 4 Determination of warming up step for RC model based on stepwise (5 minutes) prediction performance. 

 
Table 5 Hourly prediction performance comparison for different hybrid model inputs. 

Case # Inputs CVRMSE (%) 

1 𝑇𝑜𝑢𝑡 , 𝑇𝑠𝑙𝑎𝑏𝑠 , 𝑇𝑐𝑎𝑣 , 𝑉𝑎𝑙𝑣𝑒𝑐𝑙 , 𝑉𝑎𝑙𝑣𝑒ℎ𝑡 , 
𝑅𝐶𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑅𝑒𝑎𝑙𝑇𝑖𝑚𝑒  6.73 

2 𝑇𝑜𝑢𝑡 , 𝑇𝑠𝑙𝑎𝑏𝑠 , 𝑇𝑐𝑎𝑣 , 𝑉𝑎𝑙𝑣𝑒𝑐𝑙 , 𝑉𝑎𝑙𝑣𝑒ℎ𝑡 , 
𝐹𝑙𝑜𝑤𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝐺𝐺𝑀𝑅 , 𝑅𝐶𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑅𝑒𝑎𝑙𝑇𝑖𝑚𝑒  6.43 

 
3.3 Performance Comparison for Proposed Models 
Based on the statistical results presented in Table 5, all three proposed models comply with ASHRAE Guideline 14 
(ASHRAE 2014). Moreover, this table demonstrates that the hybrid model is the most accurate model for predicting 
the energy consumption of radiant slab systems, as it incorporates information from both the RC and GGMR 
models. Specifically, the hybrid approach has an NRMSE of 15.46 percent (8.62 percent less than the RC-Model 3 
alone and 19.36 percent less than the GGMR alone), a CVRMSE of 6.43 percent (3.59 percent less than the RC-
Model 3 and 8.05 percent less than the GGMR), a MAE of 3.61 kW (2.13 kW and 3.87 kW less than the RC-Model 
3 and GGMR, respectively), and a MAPE of 5.28 percent (3.85 percent and 3.92 percent lower than the RC-Model 3 
and GGMR, respectively). 
 

Table 5 Hourly prediction performance comparison of proposed models. 

Models NRMSE (%) CVRMSE (%) MAE (kW) MAPE (%) 
RC-Model 3 24.08 10.02 5.74 9.13 

GGMR 34.82 14.48 7.48 9.20 
Hybrid 15.46 6.43 3.61 5.28 

 
4. CONCLUSIONS 
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In this paper, a novel hybrid modeling approach has been proposed to predict the energy consumption of a hydronic 
radiant slab system that incorporates the advantages of both RC and GGMR models. The hybrid approach involves 
using an output from one simplified RC model as an input to the GGMR. The proposed method was validated using 
measurements from a radiant slab system operating at Purdue University. According to the case study, the hybrid 
model significantly outperformed the RC and GGMR models in terms of prediction performance. The proposed hybrid 
model had  a CVRMSE of 6.43 percent (3.59 percent less than the RC-Model 3 and 8.05 percent less than the GGMR),  
which clearly meets the criteria for ASHRAE Guideline 14. In addition, it's worth noting that the case study makes 
use of a single onsite dataset source. In the future, we need to conduct additional case studies using a variety of data 
sources. 
 

ACKNOWLEDGEMENT 
 
This study was supported by the National Science Foundation EPSCoR Research Infrastructure program under 
Grant No. 1929209. Any opinions, findings, and conclusions, or recommendations expressed in this material are 
those of the authors and do not necessarily reflect the views of the National Science Foundation. 
 

REFERENCES 
 
Ahn, Byung-Cheon, and Jae-Yeob Song. 2010. “Control Characteristics and Heating Performance Analysis of 

Automatic Thermostatic Valves for Radiant Slab Heating System in Residential Apartments.” Energy 
35(4): 1615–24. 

Ambient Weather Network. 2022. Ambient Weather Network. https://ambientweather.net/ (April 11, 2022). 

ANSI/ASHRAE/IES 90.1-2010. 2010. Energy Standard for Buildings Except Low-Rise Residential Buildings. 
American Society of Heating, Refrigerating and Air-Conditioning Engineers. 

ASHRAE. 2014. “ASHRAE Guideline 14: Measurement of Energy, Demand and Water Savings.” : 150. 

Billard, Aude, Sylvain Calinon, Rüdiger Dillmann, and Stefan Schaal. 2008. “Robot Programming by 
Demonstration.” In Springer Handbook of Robotics, eds. Bruno Siciliano and Oussama Khatib. Berlin, 
Heidelberg: Springer, 1371–94. https://doi.org/10.1007/978-3-540-30301-5_60 (April 12, 2022). 

Bouchachia, Hamid, and Charlie Vanaret. 2011. “Incremental Learning Based on Growing Gaussian Mixture 
Models.” 

Braun, James E., and Nitin Chaturvedi. 2002. “An Inverse Gray-Box Model for Transient Building Load 
Prediction.” HVAC&R Research 8(1): 73–99. 

Cederborg, Thomas, Ming Li, Adrien Baranes, and Pierre-Yves Oudeyer. 2010. “Incremental Local Online Gaussian 
Mixture Regression for Imitation Learning of Multiple Tasks.” In 2010 IEEE/RSJ International Conference 
on Intelligent Robots and Systems, , 267–74. 

Clarke, Joseph. 2001. Energy Simulation in Building Design. 2nd ed. London: Routledge. 

Crawley, Drury B. et al. 2001. “EnergyPlus: Creating a New-Generation Building Energy Simulation Program.” 
Energy and Buildings 33(4): 319–31. 

Dong, Bing, Zhaoxuan Li, S. M. Mahbobur Rahman, and Rolando Vega. 2016. “A Hybrid Model Approach for 
Forecasting Future Residential Electricity Consumption.” Energy and Buildings 117: 341–51. 

Goyal, Siddharth, Chenda Liao, and Prabir Barooah. 2011. “Identification of Multi-Zone Building Thermal 
Interaction Model from Data.” In 2011 50th IEEE Conference on Decision and Control and European 
Control Conference, , 181–86. 



 
 3470, Page 10 

 

7th International High Performance Buildings Conference at Purdue, July 10 – 14, 2022 

Guenther, Janine, and Oliver Sawodny. 2019. “Feature Selection and Gaussian Process Regression for Personalized 
Thermal Comfort Prediction.” Building and Environment 148: 448–58. 

Handbook, ASHRAE. 2001. “Fundamentals SI Edition.” American Society of Heating, Refrigerating and Air-
Conditioning Engineers, Inc., Atlanta, GA. 

James V. Miranda, Lester. 2018. “PySwarms: A Research Toolkit for Particle Swarm Optimization in Python.” The 
Journal of Open Source Software 3(21): 433. 

Joe, Jaewan, and Panagiota Karava. 2017. “Agent-Based System Identification for Control-Oriented Building 
Models.” Journal of Building Performance Simulation 10(2): 183–204. 

Joe, Jaewan, and Panagiota Karava. 2019. “A Model Predictive Control Strategy to Optimize the Performance of 
Radiant Floor Heating and Cooling Systems in Office Buildings.” Applied Energy 245: 65–77. 

Karami, Majid, and Liping Wang. 2018. “Fault Detection and Diagnosis for Nonlinear Systems: A New Adaptive 
Gaussian Mixture Modeling Approach.” Energy and Buildings 166: 477–88. 

Koschenz, Markus, and Viktor Dorer. 1999. “Interaction of an Air System with Concrete Core Conditioning.” 
Energy and Buildings 30(2): 139–45. 

Li, Deyang, and Zhihuan Song. 2020. “A Novel Incremental Gaussian Mixture Regression and Its Application for 
Time-Varying Multimodal Process Quality Prediction.” In 2020 IEEE 9th Data Driven Control and 
Learning Systems Conference (DDCLS), , 645–50. 

Liu, Kuixing et al. 2011. “Establishment and Validation of Modified Star-Type RC-Network Model for Concrete 
Core Cooling Slab.” Energy and Buildings 43(9): 2378–84. 

Neumann, Hannah, Sebastian Gamisch, and Stefan Gschwander. 2021. “Comparison of RC-Model and FEM-Model 
for a PCM-Plate Storage Including Free Convection.” Applied Thermal Engineering 196: 117232. 

O’Dwyer, Edward et al. 2016. “Modelling and Disturbance Estimation for Model Predictive Control in Building 
Heating Systems.” Energy and Buildings 130: 532–45. 

Rhee, Kyu-Nam, and Kwang Woo Kim. 2015. “A 50 Year Review of Basic and Applied Research in Radiant 
Heating and Cooling Systems for the Built Environment.” Building and Environment 91: 166–90. 

Rodríguez Jara, Enrique Á. et al. 2016. “A New Analytical Approach for Simplified Thermal Modelling of 
Buildings: Self-Adjusting RC-Network Model.” Energy and Buildings 130: 85–97. 

Sourbron, M. et al. 2009. “Efficiently Produced Heat and Cold Is Squandered by Inappropriate Control Strategies: A 
Case Study.” Energy and Buildings 41(10): 1091–98. 

Sung, Hsi Guang. 2004. “Gaussian Mixture Regression and Classification.” Ph.D. Rice University. 
https://www.proquest.com/docview/305155652/abstract/8C63788CCF824897PQ/1 (April 12, 2022). 

Wang, Liping, Robert Kubichek, and Xiaohui Zhou. 2018. “Adaptive Learning Based Data-Driven Models for 
Predicting Hourly Building Energy Use.” Energy and Buildings 159: 454–61. 

Zhang, Rui, Khee Poh Lam, Shi-chune Yao, and Yongjie Zhang. 2013. “Coupled EnergyPlus and Computational 
Fluid Dynamics Simulation for Natural Ventilation.” Building and Environment 68: 100–113. 

 


	A Novel Hybrid Modeling Method for Predicting Energy Use of Hydronic Radiant Slab Systems
	

	21ST INTERNATIONAL CONGRESS OF REFRIGERATION

