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ABSTRACT

Accurately predicting the performance of radiant slab systems can be challenging due to the large thermal
capacitance of the radiant slab and room temperature stratification. Current methods for predicting heating and
cooling energy consumption of hydronic radiant slabs include detailed first-principles (e.g., finite difference) and
reduced-order (e.g., thermal Resistor-Capacitor (RC) network) models. Creating and calibrating detailed first-
principles models, as well as detailed RC network models for predicting the performance of radiant slabs require
substantial effort. To develop improved control, monitoring, and diagnostic methods, there is a need for simpler
models that can be readily trained using in-situ measurements.

In this study, we explored a novel hybrid modeling method that integrates a simple RC network model with
an evolving learning-based algorithm termed the Growing Gaussian Mixture Regression (GGMR) modeling approach
to predict the heating and cooling rates of a radiant slab system for a Living Laboratory office space. The RC network
model predicts heating or cooling load of the radiant slab system that is provided as an input to the GGMR model.
Three modeling approaches were considered in this study: 1) an RC network model; 2) a GGMR model, and 3) the
proposed hybrid modeling between RC and GGMR. The three modeling methods have been compared for predicting
the energy use of a radiant slab system of a Living Laboratory office space using measurement data from January 15th
to March 7th, 2022. The first two weeks of data were used for training, while the remaining data was used for testing
of all three modeling methods. The hybrid approach had a Normalized Root Mean Square Error (NRMSE) of 15.46
percent (8.62 percent less than the RC-Model 3 alone and 19.36 percent less than the GGMR alone), a Coefficient of
Variation of RMSE (CVRMSE) of 6.43 percent (3.59 percent less than the RC-Model 3 and 8.05 percent less than the
GGMR), a Mean Absolute Error (MAE) of 3.61 kW (2.13 kW and 3.87 kW less than the RC-Model 3 and GGMR,
respectively), and a Mean Absolute Percentage Error (MAPE) of 5.28 percent (3.85 percent and 3.92 percent lower
than the RC-Model 3 and GGMR, respectively).

1. INTRODUCTION

Hydronic radiant slab systems (HRSS) have significant benefits for thermal management of conditioned spaces,
including increased thermal comfort and energy savings (Joe and Karava 2019; Rhee and Kim 2015). Apart from
these benefits, the large thermal storage capacity of an HRSS has a few disadvantages. One disadvantage of the
large thermal time constant is that it causes cooling output to be delayed when supply water flow rates and
temperature are adjusted (Liu et al. 2011). Additionally, conventional control based on room temperature feedback
may consume more primary energy than a conventional air system (Sourbron et al. 2009). Moreover, an HRSS
frequently experiences concurrent thermal disturbances caused by solar radiation, internal heat, and air systems
(Koschenz and Dorer 1999) that when combined with conventional control approaches can lead to overcooling or
overheating issues. To address these issues, an HRSS should incorporate Model Predictive Control (MPC) with
accurate load prediction (Joe and Karava 2019). In general, load prediction methods for buildings fall into three
categories: first-principles models, reduced-order thermal Resistor-Capacitor (RC) network models, and data-driven
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models, as summarized in ASHRAE (Handbook 2001) and (Dong et al. 2016). The following subsections will
review those models followed by a brief statement of research objectives.

1.1 First-Principles Models

In this application, first-principles models refer to models that use Computational Fluid Dynamics (CFD) (Zhang et
al. 2013) or building energy simulation software such as EnergyPlus (Crawley et al. 2001), and ESP-r (Clarke 2001).
The computational cost of CFD makes them incompatible with large-scale simulation programs (Neumann, Gamisch,
and Gschwander 2021; Rodriguez Jara et al. 2016). Most current building energy software requires a detailed physical
and operational description of the building, as well as a well-mixed zone air assumption, to predict the performance
of a building and its heating, ventilation, and air conditioning (HVAC) system.

1.2 Thermal RC Network Models

An inverse grey-box RC model strikes a balance between a physically-based model and a data-driven model (Braun
and Chaturvedi 2002). An RC network model is considered as a collection of linear ordinary differential equations
(ODEs). RC models are typically in the form of 2R1C, 3R2C, or lumped RC parameter models with associated self-
adjusting methods (Rodriguez Jara et al. 2016). According to (O’Dwyer et al. 2016), when the resistance and
capacitance values are positive, there is theoretically a guaranteed thermal passivity solution for RC models. As for
the training of RC models, there is considerable research devoted to optimizing the trade-off between model accuracy
and complexity (Ahn and Song 2010; Goyal, Liao, and Barooah 2011; Koschenz and Dorer 1999; Liu et al. 2011).

Nevertheless, there are some limitations in terms of the application of the RC model. The accuracy of lumped
parameter methods is highly dependent on the estimation and calibration of their characteristic parameters (Rodriguez
Jara et al. 2016), which requires substantial effort. Moreover, the accuracy of the RC model applied to a radiant slab
degrades when the slab is subjected to rapid thermal disturbances (Neumann, Gamisch, and Gschwander 2021; Rhee
and Kim 2015).

1.3 Data-driven Models

Many data-driven/machine learning algorithms have been evaluated for building energy models such as Partial Least
Squares (PLS), Principal Component Analysis (PCA), Gaussian Process Regression (GPR) and Gaussian Mixture
Model (GMM). For example, GPR has been used to capture the complex and highly subjective relationships between
room temperature and subjective thermal perception (Guenther and Sawodny 2019). Also, GMM is widely recognized
for its ability to model multimode characteristics and deal with process uncertainty (Billard et al. 2008; Li and Song
2020).

Considerable efforts have been made in the field of incremental learning Gaussian Mixture Regression (GMR), or
Growing GMR (GGMR), to develop a mechanism for GMR adaptation (Bouchachia and Vanaret 2011; Cederborg et
al. 2010; Karami and Wang 2018; Li and Song 2020; Wang, Kubichek, and Zhou 2018).

In this study, we propose a hybrid approach, in which the output from a simpler RC model is used as one of the inputs
to a GGMR model. The proposed hybrid model combines the benefits of both the GGMR and RC models. The
methodology and performance metrics for model evaluation are detailed in Section 2. Section 3 presents model
development and a case study for an existing office at Purdue University followed by conclusions in Section 4.

2. METHODOLOGY

This section discusses the development of RC network models, the GGMR approach, and the hybrid modeling
approach along with describing the model prediction performance criteria metrics.

2.1 RC Network Model

An RC network model is based on heat balance equations applied to temperature state variables (Braun and
Chaturvedi 2002; Joe and Karava 2017). A general state-space model for estimating a radiant slab systems load is of
the form

x J—
E_AX+Bu (1)
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y=c'x+dTu

where estimated resistances, capacitances and heat flux coefficients (such as the ratio of solar radiation to the
envelope state) form matrices 4, B and vectors c, d. The variables x, u, y, f represent vectors of state, input, output
variable and sampling time, respectively. For an HRSS, a single output variable is the cooling and heating load. The
state vector contains all the temperature nodes. The input vector contains all the driving conditions, such as the
heating or chilled water temperature, exterior air temperature, solar radiation, lighting, and occupancy schedule.
The discrete version of the above state-space model can be written in terms of a recursive formula as

Xk+1)r = AaXier + Ballyr 2)

Yier = €a" Xer + dg’ Uer €)

where the subscript d indicates these variables are the discretized forms of 4, B, ¢, d in equation (1). A typical
objective function for training an RC network model is to minimize the Root-Mean-Square Error (RMSE) for the
training duration, denoted as the following, where N stands for the number of samples.

Ntrain 2

minimize Zk;1 (ymeasured,k - Ypredicted,k) (4)
Ntrain -1

2.2 GGMR Method

GMR(Sung 2004) is a regression approach that models probability distributions rather than functions. Assume the

data follow the joint density
K

fx,y(x:J’) = Z T cl)(x,y; P—j:zj) Q)

j=1
. . . . . . Hjx .
where K is the number of Gaussian mixtures, T; is the weight coefficient mean p; = [Ll 'y]’ covariance Z; =
j

Sx X
/ / Y]. The Gaussian mixture probability function shown in equation (5) can be presented as

Tyx  Zyy «
fey(x,y) = Z T d)(ylx; mj(x): Gf)c])(x; Mjx, ij) (6)
j=1
where
mj(x) = Wjx + ijxzﬁrl(x - P—jx) 7
07 = Zivy — ZiyxZix Zixy (8)

From equation (6), the marginal density of X is
K

fx(x) = Z T ¢(xi Wjix, ij) )

j=1

The conditional probability density function of Y| X is
K

Frx @10 = ) w0 d(yimy (), ) (10)
=1

with the mixing weight

b (% 1)

w;j(x) = (In
! Jeam 006 1ix, Zix)
In the current study, we are interested in the expectation of y among all gaussian components:
K
Ypredicted|x = m(x) = E[Y|X =x] = Z Wj(x)mj(x) (12)
k=1
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To accommodate new data in an online setting, control model complexity and allow modeling of time-varying
processes, GGMR has been proposed by (Bouchachia and Vanaret 2011) with growing and shrinking mechanisms.
We utilized its updating Gaussians algorithm in the present paper. More details can be seen in (Bouchachia and

Vanaret 2011). The best match Gaussian is updated using the following formulas:
pj

= Dk=1..k Pk (13)
T(t) =1 —-ar(t—1) + aq; (15)
1—«a
nj = q}'( P 0‘) (16)
j
wi®) =(1—n)pit -1 +n;x (17)

in which p; is the match probability calculated with new input x; and best match Gaussian ¢ ]-(uj,Zj), q; is the
expected posterior, ¢; is the sum of the expected posterior for the best match Gaussian, T; are the weights of the best
match Gaussian, 1; is the on-going learning rate for the j-th Gaussian, a is the converging learning rate.

2.3 Hybrid Approach

In the present study, we have designed the hybrid modeling approach schema as shown in Figure 1, which illustrates
the underlying structure of the hybrid approach. For each timestamp, the real-time predicted load from the RC model
is used as one of inputs for the GGMR model (equations (13) — (18)). GGMR predicts system performance by updating
key GMM parameters such as weighting factors, mean vectors, and covariance matrices. Sec. 3 described the detailed
hybrid model inputs. In practice, the trained RC model should be started with a reasonable estimate of the initial states.
As a result of non-optimal state initialization, it is expected that the first few predictions from the RC model will be
chaotic. The current study proposed a warming-up period to minimize the errors caused by imperfect states
initialization, and subsection 3.3 detailed how the warming-up steps were determined.

L[‘LJ;AJ..._EDM% RCmodel |
jun input ] warming up :

GGMR
Module RC predicted load at @
timestamp j, RCpredicted.;

| ‘ RC model prediction ‘

\ RC Module /

Figure 1 Underlying communication for hybrid approach.

Current timestamp, j

2.4 Model Performance Evaluation Criteria

Four indices, Normalized Root Mean Square Error (NRMSE), Coefficient of Variation of RMSE (CVRMSE), and
Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE), are used for model performance
evaluation.

2
RMSE = \/Z?:l(ymeasured,k - ypredicted,k) (19)
n—1

7t International High Performance Buildings Conference at Purdue, July 10 — 14, 2022



3470, Page 5

NRMSE RMSE
_ 20
s(abs (ymeasured)) 0
CVRMSE RMSE
= 21
mean(abs (Ymeasured)) b
MAE - > abs(ymeasure?l kK~ ypredicted,k) (22)
_ l Ymeasured,k~Ypredicted k
MAPE n Z abs ( abs(}’measured.k) ) (23)

where n is the number of observations, s(abs (ymeasured)) is the standard deviation of absolute measured values, and
mean(abs(ymeaswed)) is the average of absolute measured values. Both Vineasured i and Ypregictea x are signed
energy uses, with positive representing heating loads and negative representing cooling loads. It should be noted that
the absolute prediction difference is determined using signed energy use values, whereas the prediction difference is
normalized using absolute energy uses.

3. CASE STUDY

This section presents a case study that investigates the performance of the RC, GGMR and hybrid modeling
approaches.

3.1 Testbed

The dataset included in-situ measurements for a living laboratory office space from January 15th to March 7th, 2022,
with a 5-minute sampling rate. The first two weeks of data were used for training and the rest of the data was used for
testing. The dataset was divided into two categories, onsite sensor data and estimated data. Onsite sensor data includes
the following: outdoor air temperature denoted by T,,,;, fagade cavity space temperature denoted by T, slab concrete
temperature denoted by T, flowing water temperature within slab pipe denoted by Ty, e, S0lar radiation retrieved
from a weather station denoted by Q4 (AmbientWeatherNetwork2022), and Air Handling Unit (AHU) consumed
heating power Q4yy. The estimated input values were determined using hourly schedules in accordance with
(ANSI/ASHRAE/IES 90.1-2010 2010, 1), such as internal heating radiation denoted by Q;,, based on occupancy
schedule, and lighting radiation Qlight based on lighting schedule.

3.2 RC Network Model Development

This subsection describes the design logic for the RC model, followed by a description of the target room's physical
structures and, finally, our consideration of various RC model designs and their associated performance. Ultimately,
the chosen design will be detailed.

The major thermal components of the living laboratory office space include external walls, roof/ceiling, internal
wall, south-facing double fagade system, conditioned air from AHU system, and hydronic radiant floor system.
Generally, adding complexity to an RC model can improve accuracy over a wide range of operating conditions, but
at the expense of requiring additional input variables and more training data. In the present study, we considered
three RC network designs by considering model robustness and various levels of complexity or model orders. As
illustrated in Figure 2, the three RC network models considered are a four-state Model 1, a five-state Model 2 and a
six-state Model 3. In these network diagrams, T,C, Q, a represent temperatures, capacitances, resistances, heat
fluxes and corresponding coefficients, whereas the subscripts,

out, cav, slab, source, sink, env, room, intwall, sol, int, light, AHU, rad, represent outdoor air, facade cavity,
slab concrete, hot water or chilled water within tubes, insulation below tubes, envelope, room air, internal wall, solar
radiation, internal heat, lighting, air handling unit, and the amount of energy added to or extracted from the water
within radiant slab pipes to maintain the space thermal comfort, respectively.

Each of the three models is composed of two components: room and concrete slab. We chose the same RC network
model for the room portion of the model to effectively capture its thermal properties: a two-node envelope, one-node
internal wall, one node cavity for the double fagade system, and a room air node to capture disturbances due to
heating or cooling from the AHU system. It is worth noting that we used the envelope node to represent the external
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wall and roof/ceiling to keep the model simple. For the concrete slab portion of the model, we experimented with
various model orders. The detailed thermal structure of the radiant floor was omitted from Model 1 and we
considered the entire slab to be a single node. In comparison to Model 1, Model 2 included an additional source
node to represent the flow of water through slab pipes. Furthermore, Model 3 had one additional sink node
compared to Model 2 to represent heat transfer between the source node and another space.

Figure 3 depicts predicted and actual results obtained for the testing period (10656 sampling points for 37 days).
Model 1 has significantly higher errors than Models 2 and 3, which can be attributed to the oversimplified concrete
slab representation. Model 3 has a lower CVRMSE than Model 2, which is consistent with the addition of a sink
node. Table 2 contains a more detailed comparison of performance.

The Model 2 can be represented by a state-space model with the following state, input, and output variable
definitions:

xT = [Tenvlﬂ TenvZ: Troom: Tintwalll TslabZ' Tsink] (24)

. . . . dr.
uT = Tout' Tslablr Tcaw Tsource' Qsol' Qint' Qlight' QAHU' % (25)
y= Qrad (26)

As stated in equation (4), the RC network model training is essentially an optimization problem to determine those
unknown resistances, capacitances, and heat flux coefficients. The final converged values for those learning
parameters have been listed in Table 1. In the present paper, Particle Swarm Optimization (PSO) from python
package (James V. Miranda 2018) was used to solve the above optimization problem.
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Figure 2 Structure of RC network. Top: four states Model 1; Left: five states Model 2; Right: six states Model 3.
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Table 1 Final converged values of resistances (K/W), capacitances (J/K) and heat flux coefficients for Model 3.

Rout,envl = 311E'1 Renvz,envl = 5-45E'1 Renvz,room = 994E'] Rintwall,room :']-46E'2
Rslabl,room = 721E'] Rcav room — =4 69E 1 Rslabl slab2 = 5.64E-4 Rsource,slabz = 6.44E-4
Rsource,sink =9~07E'4 Cenvl 2.6E6 Cenvz 1.3E6 Croom = 1E8

Cyy = 1.2E6 Cslap2 = 6E6 Csinie = 2E4 Csource = 2.75E5
Xsolenvl = 1E2 Hsolenvz = 1.87E-1 Xint,envz = 1.52 Xiight,env2 = 2.46
aAHU,room =141 asol,intwall = 4.66E-1 aint,intwall = 1.01 alight,intwall =1.78
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Figure 3 Testing results for Model 1, Model 2 and Model 3.

Table 2 Hourly prediction performance statistical comparison for proposed RC models.

Models NRMSE (%) CVRMSE (%) MAE (kW) MAPE (%)
Model 1 169.09 70.34 4224 52.33
Model 2 27.38 11.39 6.90 10.68
Model 3 24.08 10.02 5.74 9.13

3.2 GGMR Model Development
This subsection primarily discusses the determination of the input variables for the GGMR model. Correlation
coefficients R were used as an initial guess input variables. We experimented with various input combinations for
the GGMR model. Table 3 shows example correlation coefficients for one of the cases considered, whereas the
performance of the GGMR models with 3 different sets of inputs is shown in Table 4. It is worth noting that larger
correlation coefficients do not necessarily mean better prediction. For instance, the correlation coefficient of

Qso1ar 1s more significant than T,,;, while the inputs including Q4 did not provide additional prediction
performance as shown in cases 1 and 2 of Table 4. Moreover, it was found that better prediction performance is
achieved if we provide flow rate information as an additional input. In comparison to case 1, case 3 had a 2% lower
CVRMSE after adding FloWp,egicteq,cemr from another GGMR prediction. In the end, the case 3 inputs were
selected for the GGMR model.

Table 3 Correlation coefficients between radiant slab system load and input variables.

Tslabs

Tcav

Valve

Valvey,

Qsolar

RadiantSlab,, .4

-0.08

-0.16 -0.89

0.35

-0.16

1
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Table 4 Hourly prediction performance comparison for different GGMR inputs.

Case # Inputs CVRMSE (%)
1 Tout> Tsiaps: Teaw, Valvey, Valvey, 16.48
2 Tout' Tslabs' Tcavv Valvecl: Valveht! Qsolar 16.49
3 Tout' Tslabs' Tcavv Valveclv Valveht! FlOWPredicted,GGMR 14‘48

3.3 Hybrid Model Development

As mentioned in Sec. 2.3, the development of the hybrid approach is primarily concerned with the determination of
warming-up step for the RC model. As illustrated in Figure 4, the warming up step was statistically chosen as 15 to
minimize the prediction error. Consistent with GGMR model, different input combinations for the hybrid model were
also investigated as presented in Table 5 where RCpreqicted,rearrime Tepresents the predicted load from RC model.
Compared with case 1, case 2 had 0.30% lower CVRMSE, which was consistent with the results shown in Table 4. In
the end, the case 2 inputs were selected for the hybrid model.

] w v
=] (=] 8 =]
L L L

—
o
L

Mean Absolute Percentage Error (%)

0 T T v
0 5 10 15 20 25 30 35 40

Warming time steps (5 mins per step)
Figure 4 Determination of warming up step for RC model based on stepwise (5 minutes) prediction performance.

Table 5 Hourly prediction performance comparison for different hybrid model inputs.

Case # Inputs CVRMSE (%)
Tout' Tslabs: Tcav' Valvecl' Valveht:

1 6.73

RCpredicted,RealTime
Tout' Tslabsr Tcav' Valvecl: Valvehtr

Flowp,eqicted,cemrs R Cpredicted,RealTime

6.43

3.3 Performance Comparison for Proposed Models

Based on the statistical results presented in Table 5, all three proposed models comply with ASHRAE Guideline 14
(ASHRAE 2014). Moreover, this table demonstrates that the hybrid model is the most accurate model for predicting
the energy consumption of radiant slab systems, as it incorporates information from both the RC and GGMR
models. Specifically, the hybrid approach has an NRMSE of 15.46 percent (8.62 percent less than the RC-Model 3
alone and 19.36 percent less than the GGMR alone), a CVRMSE of 6.43 percent (3.59 percent less than the RC-
Model 3 and 8.05 percent less than the GGMR), a MAE of 3.61 kW (2.13 kW and 3.87 kW less than the RC-Model
3 and GGMR, respectively), and a MAPE of 5.28 percent (3.85 percent and 3.92 percent lower than the RC-Model 3
and GGMR, respectively).

Table 5 Hourly prediction performance comparison of proposed models.

Models NRMSE (%) CVRMSE (%) MAE (kW) MAPE (%)
RC-Model 3 24.08 10.02 5.74 9.13
GGMR 34.82 14.48 7.48 9.20
Hybrid 15.46 6.43 3.61 5.28
4. CONCLUSIONS
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In this paper, a novel hybrid modeling approach has been proposed to predict the energy consumption of a hydronic
radiant slab system that incorporates the advantages of both RC and GGMR models. The hybrid approach involves
using an output from one simplified RC model as an input to the GGMR. The proposed method was validated using
measurements from a radiant slab system operating at Purdue University. According to the case study, the hybrid
model significantly outperformed the RC and GGMR models in terms of prediction performance. The proposed hybrid
model had a CVRMSE of 6.43 percent (3.59 percent less than the RC-Model 3 and 8.05 percent less than the GGMR),
which clearly meets the criteria for ASHRAE Guideline 14. In addition, it's worth noting that the case study makes
use of a single onsite dataset source. In the future, we need to conduct additional case studies using a variety of data
sources.
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