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ABSTRACT

Faults in components (valves, sensors, etc.) of radiant floor heating and cooling systems affect the efficiency, cooling
and heating capacity as well as the reliability of the system. While various fault detection and diagnostic (FDD)
methods have been developed and tested for building systems, FDD algorithms for radiant heating and cooling systems
have previously not been available. This paper presents an evolving learning-based FDD approach for a radiant floor
heating and cooling system based on growing Gaussian mixture regression (GGMR). The experimental space was
controlled with a building automation system (BAS) in which the operating conditions can be monitored, and control
parameters can be overridden to desired values. Trend data for normal operation and faulty operation were collected.
A total of six fault types with different severities in a radiant floor system were emulated through overriding control
parameters.

An FDD model based on the GGMR approach was developed with training data and the performance of the model
was tested for "known" faults that were including in the training and new "unknown" faults that were implemented in
the fault testing. The prediction accuracy for each known fault was extremely high with the lowest prediction accuracy
of 98% for one of the faults. The algorithm was successful in detecting the new fault as an unknown state before
evolving the model and in diagnosing it as a new fault after evolving the model.

1. INTRODUCTION

Hydronic radiant systems have been adopted as an alternative to conventional HVAC systems for achieving higher
thermal comfort and energy savings (Fabrizio et al., 2012; Joe & Karava, 2019). Heating or cooling in a radiant system
is provided by circulating water through pipes installed within the structure (floors, ceilings, beams, etc.). Hydronic
radiant heating and cooling systems consist of several components, including hot and cold-water sources, valves
controlling water flow, pumps, temperature sensors, flow sensors, pressure sensors, thermostats, efc. Faults in any of
these components, errors in the sensors and instruments, and degradation due to normal wear or lack of maintenance
deteriorates the performance of the system. Identifying aberrations from normal operation plays an important role in
reducing energy use, maintaining a healthy indoor environment, and prolonging the equipment service life
(Chakraborty & Elzarka, 2019). Although a significant amount of data is available from sensors installed in buildings
which contains information about faults, it is difficult and time-consuming to analyze and detect faults manually (West
et al., 2011). Automated fault detection and diagnostics (AFDD) procedures present the potential to reduce energy
waste (Wall et al., 2011).

Methods for fault detection can be categorized into data-driven or process history-based methods, quantitative physical
model-based, and qualitative rule and physics-based methods (Katipamula & Brambley, 2005). Qualitative rule and
physics-based methods use certain if-then-else rules which can be obtained from first principles or expert knowledge.
Rule-based methods are inefficient in real-time computation and in detecting and diagnosing sudden faults if the
system requires a long time to reach a steady-state (Yu et al., 2014). Quantitative physical model-based methods are
based on physical laws that regulate the system's behavior. The system behavior is predicted for a given set of
measured input and model parameters which is compared to measured outputs. The key advantage of a quantitative
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(data-driven) model over other FDD methods is that it makes predictions using historical data, does not require detailed
building information, and has lower complexity (Katipamula & Brambley, 2005).

The limitation of existing data-driven models is that the models are static. Although data-driven models have been
extensively used in the field of fault detection and diagnosis of the HVAC system, the FDD method cannot properly
handle the unknown faults in the system. Most of the existing FDD methods can diagnose the faults which are used
during the training. When new faults occur in the system, identifying this as an unknown state and integrating its
information into the model is crucial to prevent the fault from being misdiagnosed. This limitation can be handled by
using adaptive learning which is capable of processing new measurements and performing runtime updates of model
parameters in response to the changes in the building system (Karami & Wang, 2018).

Although extensive research is available on the FDD of HVAC systems and components, FDD for radiant heating and
cooling system is still lacking. Also, the methods of evolving the FDD algorithm and model in response to the detection
of an unknown fault in the system are yet to be explored in the radiant heating and cooling systems and such studies
are very rare in the HVAC system as well. In this study, learning based Gaussian mixture model (GMR) model is used
for fault detection and diagnosis for the radiant floor heating and cooling systems.

2. METHODOLOGY

To develop the proposed FDD model, experiments were conducted to collect normal operation data that was used to
train a baseline model and FDD model under fault-free conditions and faulty data through the implementation of
individual faults in the system. A GMR model was developed as a baseline model for predicting radiant slab (RS)
flow and heating and cooling capacity. Next, using a feature selection algorithm the features which showed promising
characteristics in detecting and diagnosing faults were selected from a list of features measured during the experiments.
The features were used to develop an FDD model based on GGMR trained with the normal operation and faulty data
collected during the experiments. The GGMR model was tested with known and unknown fault data and if any
unknown state was detected and was verified as a new fault, the FDD model was evolved to incorporate the
information of the new fault.

2.1.System description

The Living Lab 1 at the Herrick Laboratories, Purdue University was used as the case study to evaluate the proposed
learning based FDD method. Living Lab 1 is equipped with a hydronic radiant floor system that provides both cooling
and heating. The system diagram of the radiant slab system is shown in Figure 1. The concrete slabs and heat
exchangers have RTD sensors to measure the slab temperature and the supply and return water temperatures. The
main supply water pipe is divided into 10 channels with individual control valves which supply water to the 10 slabs
(A-K) in parallel. The 10 valve positions are determined using a PI feedback loop with space temperature as the
controlled variable with a setpoint temperature of 73°F (22.78 °C). The maximum valve position of all the valves is
set at 100% and the minimum valve position is set at 35%. The water flow is maintained in the loops by a VFD pump.
The supply water temperature is controlled through a heat exchanger connected to a district cool water supply and hot
water supply. The cool water flow and hot water flow are controlled using cool water and hot water valves on the
supply side of the heat exchanger. Both the cool water valve position and hot water valve position are determined
using individual PID loops with supply water temperature as the controlled variable and the supply water temperature
setpoint. If the space temperature is above 73 °F (22.78 °C), the system will be in the cooling mode and if it is lower
than 73 °F (22.78 °C), the system will be in heating mode. During the cooling mode, the maximum of either the space
dew point temperature plus 3 °F (1.7 °C) or 58 °F (14.4 °C) is used as the supply water setpoint temperature to calculate
the cool water valve position. During the heating mode, 85 °F (29.44 °C) is used as the supply water setpoint
temperature to calculate the hot water valve position. The supply water pump is enabled if either the cool water loop
or hot water loop is enabled. The supply water pump position is also controlled based on the output of a PI loop with
differential pressure in the supply pipe as the controlled variable with a setpoint pressure of 10 psi (68947.6 pa). The
maximum pump output is set at 100% and the minimum is set at 0%.

7t International High Performance Buildings Conference at Purdue, July 10 — 14, 2022



3490, Page 3

A
Supply water ‘ ‘

Cold water
source
:@: Heat exchanger
Hot water Nié%i

source ~_ \_& )‘ Return water [M Control valve

VFD Pump

= Pipes embedded in

e

—] concrete floor

Figure 1: System diagram of the Living Lab 1 radiant floor

2.2. Gaussian Mixture Regression (GMR)

Gaussian mixture regression (GMR) was used to create a baseline model for flow through the radiant slabs, a baseline
model heating capacity and cooling capacity of the radiant slab system, and an FDD model. Gaussian Mixture Model
(GMM) is a model-based clustering method where the data is identified as a population with K different components.
Each component of the GMM is approximated by a Gaussian distribution characterized by a mean as the center of the
cluster and a variance. The Gaussian mixture probability density function is a weighted sum of Gaussian probability
density functions (pdfs) and is given by Equation 1.

k (1)
G yim b, 8) = ) NGyl &)

j=1

where N(¥, y|W;, 8;) is a multivariate Gaussian density function, k is the number of Gaussian mixtures, y; is the mean
vector, §; is the covariance matrix of j-th Gaussian component and T; is the weight of the j-th component.

GMM is trained using a training dataset to find the unknown parameters of the mixture model (T, W, 6;) using the
Expectation-Maximization (EM) algorithm in which the maximum likelihood estimates of the GMM parameters are
predicted. A k-means clustering algorithm is used in the EM process to get the initial values for the parameters. When
the new input (x) is provided, Gaussian Mixture Regression (GMR) is used for the prediction of the dependent variable
Y which can be obtained by computing expectation over [Y|X = x| as equation 2. §(x) is the prediction of the
dependent variable Y.

k )
960 = EYIX = x] = ) w;(Im;(x)
=1

where mj is the regression function derived from the joint mixture Gaussian density and w; is the weight of each
regression model which is extracted using the Bayes rule. The detailed equations and working mechanism of the
Gaussian mixture model and Gaussian mixture regression are presented in (Sung, 2004).

2.3.Evolving Mechanism

The GMR model is trained with the baseline data and when there is new data available, the existing GMR is updated.
The evolving mechanism can be described using three steps.
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Step 1: Calculate the probability density of the new sample data for each Gaussian component, apply the distance
criterion and determine the best-matched component using equation 3.

[dO ~w©®] _1 (o) - (Ol
18, ke 18001 3)

0 , otherwise

P = TN(d(®)|p;(D), 6;(D),

Step 2: If a match is found ( B # 0), the parameters (T, y;, §;) of the matching Gaussian are updated.

Step 3: If no existing Gaussian mixture component matches the new sample data ( B, = 0) and the number of existing

components is less than a maximum threshold provided, a new Gaussian component is generated and the parameters
prior, mean, and covariance matrix of the newly generated component are initialized using equation 4.

(m, ¢, 1, 8) = (o, 1, %;, 8) 4)
As shown in equation (5), after implementing all the steps of the evolving learning approach, the priors of the new
Gaussian mixture model are normalized to satisfy the condition of forming a standard Gaussian mixture model which
requires the sum of components' priors to be one.
) . '
= (forj=1..k" (5)

ks .
=1

K’ is the number of components in the updated Gaussian mixture model. The evolving process is described briefly in
section 2.6 and in detail in the research work by (Bouchachia & Vanaret, 2011).

2.4.Selection of number of Gaussian components

In GMM it is crucial to determine the number of Gaussian components (k) to group the data into an optimal number
of clusters. In this study, Akaike Information Criterion (AIC) was used as a model selection criterion. The data was
fitted to a Gaussian mixture model and the model was tested for several k values. The model with the smallest AIC
and its corresponding k value was chosen as the number of parameters in the Gaussian model. The equation for
computing AIC for parameters in the fitted model (k) is given by equation 6 (Akaike, 1998). Here, L is the maximum
value of the likelihood function. This criterion was used to select the number of Gaussian components for the flow
prediction, heating and cooling capacity prediction, and the FDD model.

AIC = —2InL + 2k (6)
2.5.Fault selection and implementation

The experimental space is controlled with a building automation system (BAS) in which the operating conditions can
be monitored, and control parameters can be overridden to desired values. Normal operation and faulty data were
collected through experiments performed using an RS system in a real open-plan office setting. A total of 6 fault types
with different severities were emulated by overriding control parameters which were selected considering the
likeliness of their occurrence in a radiant floor system and the feasibility of implementation using the BAS. The fault
types include stuck water flow valves for the radiant floor, hot water supply, cool water supply; sensor offsets for the
space thermostat and supply water temperature sensors; and a VFD pump that is stuck at a fixed speed. The
implemented faults with varying severity levels along with the dates of implementation are listed in Table 1.
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Table 1: Implemented faults

Fault ID | Description (Implementation dates) | FaultID | Description (Implementation dates)
Space temperature sensor offset of o

F1 15 °F (2.78 °C) (12/10-12/2021) F8 Hot water valve stuck at 0% open (12/6-8/2021)
Space temperature sensor offset of - o

F2 5 °F (2.78 °C) (12/4-6/2021) F9 Hot water valve stuck at 50% open (12/8-10/2021)

M RS valves stuck at 0% open (12/14- F10 Hot water valve stuck at 100% open (12/12-
16/2021) 14/2021)

F4 RS valves stuck at 50% open (12/16- Fl1 Cold water valve stuck at 0% open (12/25-
18/2021) 27/2021)
RS wvalves stuck at 100% open o

F5 (12/18-202021) F12 Cold water valve stuck at 50% open (1/7-9/2022)
Supply water temperature sensor o

F6 offset of +9 °F (5 °C) (12/20- | F13 1C20/12d 02‘;];1 ter valve stuck at 100% open (1/9-
22/2021)
Supply water temperature sensor o . .

F7 offset of -9 °F (5 °C) (12/22- | F14 }7/1;]2)_11;2312115)225‘;uck at 50% of its maximum speed
25/2021)

2.6. Fault detection and diagnosis method

The fault detection and diagnosis process along with evolving mechanism is shown in Figure 2 and proceeds
through steps 1 to 8.

1. The baseline GMR model for energy use is trained with baseline data.

2. A GGMR FDD model is trained with faulty and normal operation training data.

3. The testing data containing known faults, normal operation, and the unknown fault is run through the Baseline
GMR model, and the difference between measured and predicted RS heating and cooling capacity use is
compared with the mean baseline difference.

4. Ifthe error is less than the threshold, it is regarded as normal operation and the existing baseline GMR model
is evolved with normal operation data. If the error is larger than the threshold, it is deemed as faulty data.

9,1

The testing data is then run through the GGMR FDD model to get the prediction of the fault label.

6. If the testing data has a predicted fault id that belongs to one of the labeled data, the fault id is reported. If
the testing data is predicted as 0 or other labels not included in the training data, it is deemed as an unknown
state.

7. The unknown state data is analyzed by an expert and if it is evaluated as a new fault, a new label for the new
fault is provided and the GGMR FDD model is evolved to incorporate the information of the new fault.

8. The performance of the GGMR FDD model is tested both before and after evolving the model with new fault
data.
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Figure 2: GGMR model generation, evolving, and Fault detection and diagnosis process diagram.

3. RADIANT SLAB SYSTEM HEATING AND COOLING CAPACITY
PREDICTION MODEL

The RS heating and cooling capacity was calculated based on the water flow rate, supply water, and return water
temperature using equation 7.

5 (7
q = 0.063 xaxMxCprT
where q is the calculated heating or cooling capacity (KW), M is the mass flow rate of supply water (gal/min), C,is
the specific heat capacity of water = 4.2 KI;—]K, and AT is the difference between supply and return water temperature.

0.063 is the factor to convert water flow rate (gal/min) to mass flow rate (kg/s), and g is the factor to convert °F to °C.

Negative values of q represent cooling capacity and positive values represent heating capacity. If the calculated q was
positive but the supply water temperature was less than the average slab temperature, the RS heating capacity was set
as 0. Similarly, if the calculated q was negative but the supply water temperature was greater than the average slab
temperature, the RS cooling capacity was set as 0.

RS heating and cooling capacity are predicted using the Gaussian mixture regression model. The input data used in
the heating and cooling capacity prediction model were identified using a correlation coefficient. GMR with evolving
was used to develop the model. Normal operation data were divided into training data (11/30 to 12/2 2021) which was
used to train the GMR model and testing data (1/14 to 2/3 2022) which was first used to test the model and later evolve
the model. The evolved model is then used as the baseline heating and cooling capacity prediction model. When faulty
data was collected, this model was used to get the heating and cooling capacity of the RS system under normal
operating conditions. Along with the heating and cooling capacity, the water flow rate through the RS system was also
predicted using GMR. The predicted water flow rate is one of the inputs for predicting the RS heating and cooling
capacity. The input parameters selected for the prediction of water flow rate are the space temperature, RS valve
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position, and differential pressure. The input parameters selected for the prediction of RS heating and cooling capacity
are the space temperature, RS valve position, average slab temperature, cold water valve position, hot water valve
position, and the GMR predicted water flow rate. Ten Gaussian components were selected for both the RS water flow
rate prediction model and the heating and cooling capacity prediction model. Both of those values were selected based
on the AIC discussed in the previous section. The selected values for learning rate and closeness threshold are 0.001
and 10, respectively. Comparisons between measured and predicted RS flows and measured and predicted heating
and cooling capacities during model testing are shown in Figure 3. The coefficient of determination R? between
predicted and measured RS flow for the training data was 0.95 and between predicted and measured RS heating and
cooling capacity was 0.98, which shows excellent prediction accuracies. For model testing data, the CV-RMSE for
the predicted RS flow was 6% and was 15.6% for the predicted heating and cooling capacities, which is within the
ASHRAE recommended threshold of 30% for the baseline model.

20 30
18
25
g z 20 s =
= [
P = &
A 14 = o °
Q & op
T 12 = 15 S
z g
=} =
S 10 s 10
£ s o o et ; s
=] S e = R2=0.9807
L 6 £ z )
- - ° e
Aoy Ry 15 10 sSpd e, 5 10 15 20 25
‘g_p = Y
2 ‘-"J‘l R2=0.9493 & )
0 -10
0 2 4 6 8 10 12 14 is
Measured flow (GPM) Measured H/C capacity (kW)

Figure 3: Measured vs Predicted RS flow (left) and Measured vs Predicted RS heating and cooling capacity (right)
during model testing

4. FEATURE SELECTION FOR FDD MODEL

The features (input parameters) required for fault detection by GGMR were selected using the feature selection method
presented in the research work of (Fijany & Vatan, 2006). The features selected contain the required ability to
distinguish between all faults. In the first step, training data is used to recognize the symptoms associated with each
fault. In the second step, an optimization algorithm is applied to find the minimum number of features required to
diagnose the faults. The occurrence of each fault will have some effect on features that are correlated to the fault. This
effect on features could be used as a symptom to identify the faults by comparing the feature values during faulty
conditions with feature values during the fault-free condition. Table 2 lists the features used for the case study.

Table 2: Initial set of features

Initial features

1. Space temperature difference from the setpoint (AT) 10. 12-hour cumulative sum of AT

2. Differential pressure difference from setpoint (AP) 11. 12-hour cumulative sum of AP

3. Measured-predicted flow (AF) 12. 12-hour cumulative sum of AF

4. Measured — predicted Heating and Cooling capacity (AC) 13. 12-hour cumulative sum of AC

5. Slab temperature difference from setpoint (Tgjap—sp) 14. 12-hour cumulative sum of Tgjap,_sp
6. Supply water temperature-return water temperature (Tgy—rw) 15. 12-hour cumulative sum of Ty, _w
7. Change of RS valve signal (AV) 16. 12-hour cumulative sum of AV

8. The ratio of pump speed to maximum speed (P;) 17. 12-hour cumulative sum of P

9. Flow change rate for the 24 hours (Af) 18. 12-hour cumulative sum of Af
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Each data point for each feature was converted into a feature matrix by assigning 2 for symptoms resembling normal
operation with the consideration of uncertainties, 1 for symptoms of a faulty condition where the measured values
exceed the baseline upper limit, and -1 for symptoms of a faulty condition where the measured values are lower than
the baseline lower limit to form a signature matrix. The feature matrix for one of the faults (space temperature positive
sensor offset fault) is shown in Table 3 in which each column is an individual feature, and the rows represent each
data point obtained with the faulty condition. Only a few features are shown in the table but this process was followed
for all the features and all the faults and normal operation data.

Table 3: Feature matrix for space temperature positive sensor offset fault

AT AP AF AC AT(slab-sp) AT(sw-rw) AV Ps Af
2 2 2 2 -1 2 2 2 2
2 2 2 2 -1 2 2 2 2
2 2 2 2 -1 2 2 2 2
2 2 2 2 -1 2 2 2 2
2 2 2 2 -1 2 2 2 2

In the next step, key signatures for each fault are identified. If a feature column has the same number in each row for
a fault, the symptom is retained (2, 1, or -1), or else the symptom is represented by 0 meaning the feature does not
provide a clear symptom required to diagnose the fault. Following this process for all the faults, a sensor matrix (S) is
developed which has a key signature for each fault. Now, assuming S(x) is a vector containing the number of features
in each row of the sensor matrix S, the optimal sensor placement problem can be formulated as a constrained
optimization problem illustrated in equation 8 (Fijany & Vatan, 2006).

m
minimize Z S(x;) )
i=1

Constraint: Mx>1 ,x;,=0o0r1

The function in equation 8 minimizes the number of the sensors while the constraint assures that each row of sensor
matrix is non-zero and unique. A linear integer programming routine in MATLAB was used to obtain the solution to
the optimization problem.

Five different baseline scenarios as listed in Table 4 were developed with varying upper and lower limits to find the
best performing baseline threshold. Here, Max and Min represent the maximum and minimum value of the feature
respectively and SD is the standard deviation of the feature during the baseline period. The feature selection was done
for all five cases with 18 initial features. The selected features for FDD are features 9, 11, 12, 13, 14, 15, and 17 from
Table 2.

Table 4: Cases for baseline establishment and features selected for each case

Cases Upper limit Lower limit
1 Max Min

2 Max+0.5*SD Min-0.5*SD
3 Max+1*SD Min-1*SD

4 Max+2*SD Min-2*SD

5 Max+3*SD Min-3*SD
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5. FDD RESULTS

A total of 14 faults were implemented among which 13 known faults along with normal operation period were used
to train the FDD model. One of the faults (VFD pump stuck at 50% of its maximum speed) was treated as a new fault.
Five different GGMR FDD models with corresponding features and the number of Gaussian components were trained
using the criteria for the five cases discussed in

Table 4. The selection of the best case was done by evaluating the model training accuracy, false alarm rate, and fault
misdiagnosis. All five cases had excellent model training accuracy as all the faults were trained with 100% accuracy.

All the faults except the ones presented in Table 5 did not have any misdiagnosed faults for all the cases. There were
no false alarms when normal operation data was presented to the FDD model for any of the five cases. The space
temperature negative sensor offset fault was misdiagnosed as supply water positive sensor offset fault (0.7%) and cool
water valve stuck at 100% open fault (3.5%) in Case 1. It was misdiagnosed as the space temperature positive sensor
offset fault (7.7%) in Case 5. The cool water valve stuck at 0% open was misdiagnosed as the hot water valve stuck
at 100% open fault (5.6%) in Case 2 and Case 3. The cool water valve stuck at 50% open fault was also misdiagnosed
in Case 2 and Case 3 as the cool water valve stuck at 0% open fault (20%). The cool water valve stuck at 100% open
fault was misdiagnosed as a different fault in all 5 cases where the lowest misdiagnosis percent was for Case 1 and
Case 4 (1.8%). Overall, Case 4 performed the best with the lowest misdiagnosis rates of the known faults. Hence, this
baseline case was adopted to test the model in the presence of an unknown fault.

Table 5: Misdiagnosis of known faults during model testing

Faults Case 1 Case 2 Case 3 Case 4 Case 5
F2 4.22 0 0 0 7.74

F11 0 5.6 5.6 0 0

F12 0 20 20 0 0

F13 1.796407 55.68862 55.68862 1.796407 16.16766

The performance of the FDD model determined using the criteria for Case 4 from

Table 4 was tested in presence of an unknown fault. All the unknown fault data was predicted as 0 which was not a
label for any fault. As there was no information regarding the data presented to the model, the prediction was 0 for all
data points. All the other faults had a testing accuracy of 100% except the cool water valve stuck at 100% open fault,
which was predicted as normal operation (1.8%). Upon recognition of the type of the new fault by an expert, the data
associated with the new fault was labeled (15) and fed to the evolving engine to update the Gaussian mixture regression
model in the diagnosis section. Values for learning rate (0.01) and the closeness threshold (10) that resulted in the
lowest prediction error were selected while evolving the GMR model. In the evolved diagnosis model, two new
components were created to learn the information about the new fault. Before evolving the model, the new fault data
fell into one of the 16 existing Gaussian components (Gaussian component 8) which was allocated to Fault 7 and Fault
8. After evolving the model, two new Gaussian components (17 and 18) were added to the model which had the
information about the new fault.

The performance of the evolved FDD model was evaluated using the same dataset used to test the model before
evolving. The results showed that the FDD model remains stable after being evolved since the accuracy of the true
diagnosis lies in the range of 98% to 100% for known faults. Only 1.8% of the cool water valve stuck at 100% open
fault was misdiagnosed as a normal operation. The evolved model also exhibits excellent performance in the diagnosis
of the new fault as the accuracy of true diagnosis for the new fault was 100%.
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6. CONCLUSIONS

The focus of this study was to develop a learning-based FDD model for radiant floor heating and cooling systems. An
experimental study was conducted to investigate the performance of the learning-based GGMR model for fault
detection and diagnostics of faults in an radiant slab system. A total of 6 common faults of different categories and
severities (14 total faults) were implemented and were divided into known and new faults. The performance of the
AFDD algorithm in the diagnosis of experimental fault data significantly improved after implementing the evolving
process. A GGMR model was developed and trained with normal operation and 13 known faults data and was evolved
using a new fault data. The performance of the model was tested using both known and new faults before and after
evolving the model. The prediction accuracy for each fault using test data was extremely high with the lowest
prediction accuracy of 98%. The algorithm was successful in detecting the new fault as an unknown state before
evolving the model and in diagnosing it as a new fault after evolving the model. Further research can be conducted to
evolve the model with the data from more than one new fault in the system. Another addition to this study would be
to modify and test the model if simultaneous faults occur in the system. Further study can be conducted to test the
performance of the model in presence of the data from the real buildings. This will also help to know if the model can
be transferred to a real building setting without compromising the fault detection accuracy.
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