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Abstract

Stochastic Gradient Descent (SGD) based meth-
ods have been widely used for training large-scale
machine learning models that also generalize well
in practice. Several explanations have been offered
for this generalization performance, a prominent
one being algorithmic stability [Hardt et al., 2016].
However, there are no known examples of smooth
loss functions for which the analysis can be shown
to be tight. Furthermore, apart from properties of
the loss function, data distribution has also been
shown to be an important factor in generalization
performance. This raises the question: is the stabil-
ity analysis of [Hardt et al., 2016] tight for smooth
functions, and if not, for what kind of loss func-
tions and data distributions can the stability analy-
sis be improved?
In this paper we first settle open questions regard-
ing tightness of bounds in the data-independent set-
ting: we show that for general datasets, the existing
analysis for convex and strongly-convex loss func-
tions is tight, but it can be improved for non-convex
loss functions. Next, we give novel and improved
data-dependent bounds: we show stability upper
bounds for a large class of convex regularized loss
functions, with negligible regularization parame-
ters, and improve existing data-dependent bounds
in the non-convex setting. We hope that our results
will initiate further efforts to better understand the
data-dependent setting under non-convex loss func-
tions, leading to an improved understanding of the
generalization abilities of deep networks.

*These authors contributed equally to this work

1 INTRODUCTION

Stochastic gradient descent (SGD) has gained great pop-
ularity in solving machine learning optimization prob-
lems [Kingma and Ba, 2014, Johnson and Zhang, 2013].
SGD leverages the finite-sum structure of the objective func-
tion, avoids the expensive computation of exact gradients,
and thus provides a feasible and efficient optimization solu-
tion in large-scale settings [Bottou, 2012]. The convergence
and the optimality of SGD have been thoroughly studied
[Ge et al., 2015, Rakhlin et al., 2012, Reddi et al., 2018,
Zhou and Gu, 2019, Carmon et al., 2019a,b, Shamir and
Zhang, 2013].

In recent years, new research questions have been raised
regarding SGD’s impact on a model’s generalization power.
The seminal work [Hardt et al., 2016] tackled the problem
using the algorithmic stability of SGD, i.e., the progressive
sensitivity of the trained model w.r.t. the replacement of
a single (test) datum in the training set. They showed that
the generalization error of an SGD-trained model is upper
bounded by a uniform stability parameter "stab, and relate
"stab to the divergence of the two parameter vectors obtained
by training on twin datasets.

This stability-based analysis of the generalization gap allows
one to bypass classical model capacity theorems [Vapnik,
1998, Koltchinskii and Panchenko, 2000] or weight-based
complexity theorems [Neyshabur et al., 2017, Bartlett et al.,
2017, Arora et al., 2018]. This framework also provides
theoretical insights into many phenomena observed in prac-
tice, e.g., the “train faster, generalize better” phenomenon,
the power of regularization techniques such as weight de-
cay [Krogh and Hertz, 1992], dropout [Srivastava et al.,
2014], and gradient clipping. Other works have developed
the stability notion with advanced analysis [Bassily et al.,
2020, Feldman and Vondrak, 2019, Kuzborskij and Lampert,
2018, Lei and Ying, 2020b, Lei et al., 2021a, Lei and Ying,
2020a] and adapted it into more sophisticated settings such
as Stochastic Gradient Langevin Dynamics and momentum
SGD [Mou et al., 2018, Chaudhari et al., 2019, Chen et al.,
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2018, Li et al., 2020, Lei et al., 2021b].

Despite the promises of this stability-based analysis, it re-
mains open whether the analysis in [Hardt et al., 2016] can
be further improved to reveal the full potential of the stability
method, either in general or for specific data-distributions.

Our results: We provide three kinds of results (see Table 1)
that complement each other: a) tight lower bounds that show
settings where stability analysis cannot be improved fur-
ther for general datasets, b) weaker lower bounds that hint
at a possible improvement, along with complementary im-
proved upper bounds, also for general datasets and c) in
settings where existing data-independent analysis cannot
be improved, we derive improved data-dependent bounds.
Below we summarize some of the existing open questions
in this line of research, grouped according to properties of
the loss function, along with our results addressing these
problems.

1.1 CONVEX AND STRONGLY CONVEX LOSS

The following are the main results presented in [Hardt et al.,
2016] for convex and strongly-convex loss functions (with
certain Lipschitz and smoothness conditions), when opti-
mized using SGD. Here n denotes the size of the sample,
T the number of steps in SGD, and ↵t the size of the SGD
step in the t-th iteration.

1. For convex loss functions, the stability is upper bounded
by

PT
i=1 ↵t/n. The smaller the number of iterations T is,

the lower this upper bound. Hence “train faster, generalize
better".

2. In practice, one often uses constant step size: ↵t = ↵.
For convex loss functions the upper bound would then scale
linearly in the number of iterations T , which seems to be
too pessimistic. [Hardt et al., 2016] show that by adding
a µ

2 ||w||
2
2 regularization term to the convex loss function,

where w is the vector of weights and µ 2 ⇥(1) is a small
constant, one gets much better stability upper bound for
constant step size that does not depend on T , and is O(1/n).

This gives rise to the following questions:

Question 1: Are the upper bounds of [Hardt et al., 2016]
for convex and strongly-convex functions tight? That is, can
one construct loss functions that satisfy the hypotheses and
exhibit the claimed worst-case stability performance?

We remark that, to the best of our knowledge, the only
construction available in the literature is [Bassily et al.,
2020]. The authors analyze the stability of a loss function
in order to derive lower bounds, but unfortunately, the loss
function is not smooth and therefore does not satisfy the
hypothesis in [Hardt et al., 2016].

Question 2: How important is the regularization term in
order to make the transition from convex to strongly-convex,

and therefore the improvement from an O(T/n) upper
bound to an O(1/n) upper bound for constant step-size
SGD?

We provide the following answers to the above questions:

Result 1: The answer to question 1 is yes, i.e., there ex-
ist smooth, convex and strongly-convex loss functions that
achieve the worst-case stability upper bound, In Theorem 1,
we construct a Huber function which is quadratic in a certain
area and linear outside. Under certain restricted assumptions,
we proved the tightness of upper bounds in [Hardt et al.,
2016] for convex loss which strengthens the lower bound
of [Bassily et al., 2020] for the non-smooth case. In Theo-
rem 2, our construction shows the tightness of upper bounds
in [Hardt et al., 2016] for strongly convex loss.

Result 2: (Data-dependent bounds) We answer question
2 by introducing Theorem 3. In Theorem 3, we derive an
upper bound on the stability for linear model loss function
that is independent of T (the number of iterations), even
when the weight µ of the regularization term is very small
(of the order of 1/n4), as long as the data satisfies a natural
condition related to the Second Moment. Sharing a simi-
lar spirit with [Kuzborskij and Lampert, 2018], our result
suggests that the property of distribution plays an important
role in generalization of SGD, and nice properties of the
data can almost replace the need for regularization.

1.2 NON-CONVEX LOSS

[Hardt et al., 2016] also prove an upper bound for non-
convex loss functions, and one wonders again whether the
bound is tight. After only being able to prove a slightly
weaker lower bound, we realized that this was because one
can actually improve the analysis in [Hardt et al., 2016]!

Result 3: We provide matching lower ( Theorem 4) and
upper bounds ( Theorem 5) on the stability of SGD for
non-convex functions, that are tighter than the upper bound
in [Hardt et al., 2016] for a wide and interesting range of
values of T (e.g., when n < T < n

10).

In the non-convex setting, the bounds in both [Hardt et al.,
2016] and our Result 3 assume a decreasing step-size ↵t /
1/t in SGD. However, in practice the constant step-size case
is very important. Although it is not derived formally, the
techniques in [Hardt et al., 2016] can be employed to show
an exponential upper bound for non-convex loss functions
minimized using SGD with constant-size step, raising the
question of the existence of better analysis.

Result 4: Also by Theorem 7, we show that without any
additional assumptions on either the loss function or the
data distribution, improving on this analysis is hopeless by
providing a lower bound that is exponential in T .

Data-dependent bounds: This naturally raises the question
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Table 1: Current landscape of stability bounds. [H] indicates results in [Hardt et al., 2016], [K] indicates results in [Kuzborskij
and Lampert, 2018] and * indicates results in this paper. � is the smoothness parameter. ⇣ is a data-dependent constant
defined in Lemma 5. b"stab is on-average stability defined in Def 7. a, b are small constants free of T and n. We only keep T

and n term in the bounds.

SGD Step Size Constant ↵t = a/� ↵t = a/(�t) ↵t = b/t

Loss function Strongly Convex Convex Non-Convex Non-Convex with b"stab

Upper Bound O( 1n ) [H] O(T/n) [H] O
�
T

a
1+a /n

�
[H]

O
�
T

a
/n

1+a
�
*

O

⇣
T

⇣b
1+⇣b /n

⌘
[K]

O(T ⇣b
/n

1+⇣b)⇤

Lower Bound ⌦( 1n )
⇤ ⌦(T/n)* ⌦(T a

/n
1+a)* Open

of deriving data-dependent bounds on stability in the non-
convex setting. The work in [Kuzborskij and Lampert, 2018]
took the first step in this direction by analyzing SGD using
concept of “average stability” from [Bousquet and Elisse-
eff, 2002, Shalev-Shwartz et al., 2010], and deriving upper
bounds on it. Finally, we show:

Result 5: The improved analysis for uniform stability of
SGD on non-convex and smooth loss functions can also be
applied to improve on the result in [Kuzborskij and Lampert,
2018] and obtain a tighter bound for the average stability of
SGD. We present Theorem 6 as the data-dependent version
of Theorem 5.

In summary, we essentially close the open questions of
tightness in data-independent settings for all three classes of
functions, and improve upper bounds in the data-dependent
setting. We hope that our results will initiate further ef-
forts to better understand the data-dependent setting under
non-convex loss functions and analyze the conditions under
which one can expect better upper bounds on stability and
generalization of SGD.

2 RELATED WORKS

The stability framework suggests that a stable machine learn-
ing algorithm results in models with good generalization
performance [Kearns and Ron, 1999, Bousquet and Elis-
seeff, 2002, Elisseeff et al., 2005, Shalev-Shwartz et al.,
2010, Devroye and Wagner, 1979a,b, Rogers and Wagner,
1978, Bousquet and Elisseeff, 2002]. It serves as a mecha-
nism for provable learnability when uniform convergence
fails [Shalev-Shwartz et al., 2010, Nagarajan and Kolter,
2019]. The concept of uniform stability was introduced in
order to derive high probability bounds on the generalization
error [Bousquet and Elisseeff, 2002]. Uniform stability de-
scribes the worst-case change in the loss of a model trained
on an algorithm when a single data point in the dataset is
replaced. In [Hardt et al., 2016], a uniform stability analysis
for iterative algorithms is proposed to analyze SGD, general-
izing the one-shot version in [Bousquet and Elisseeff, 2002].
Algorithmic uniform stability is widely used in analyzing
the generalization performance of SGD [Mou et al., 2018,

Feldman and Vondrak, 2019, Chen et al., 2018]. The worst-
case leave-one-out type bounds also closely connect uniform
stability with differential private learning [Feldman et al.,
2018, 2020, Dwork et al., 2006, Wu et al., 2017], where
the uniform stability can lead to provable privacy guaran-
tees. Beside uniform stability, [Liu et al., 2017] proposed
argument stability to capture stability of selected hypothesis
function space.

While the upper bounds of algorithmic stability of SGD
have been extensively studied, the tightness of those bounds
remains open. In addition to uniform stability, an average
stability of the SGD is studied in [Kuzborskij and Lam-
pert, 2018] where the authors provide data-dependent up-
per bounds on stability1. Our analysis framework for deriv-
ing improved bounds in [Hardt et al., 2016] can also be
applied to improve the data-dependent stability results in
[Kuzborskij and Lampert, 2018].

In [Bassily et al., 2020], a lower bound on the stability of
SGD for nonsmooth convex losses is proposed. The lower
bound is designed to illustrate the tightness of the stabil-
ity analysis without smoothness assumptions. In this work,
we report for the first time lower bounds on the uniform
stability of SGD for smooth loss functions. Our tightness
analysis suggests the necessity of additional assumptions
for analyzing the generalization of SGD for deep learning.

3 PRELIMINARIES

In this section we introduce the notion of uniform stabil-
ity and establish notation. We first introduce the quanti-
ties empirical risk, population risk, and generalization gap.
Given an unknown distribution D on labeled sample space
Z = X ⇥R, let S = {z1, ..., zn} denote a set of n samples
zi = (xi, yi) drawn i.i.d. from D. Let w 2 Rd be the param-
eter(s) of a model that predicts y given x, and let f be a loss
function where f(w; z) denotes the loss of the model with

1While it is an interesting open problem to get data-dependent
lower bounds by lower bounding the average stability, we construct
lower bounds on the worst-case stability. Thus our lower bounds
are general and not data-dependent.
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parameter(s) w on sample z. Let f(w;S) denote the em-
pirical risk f(w;S) = Ez⇠S [f(w; z)] =

1
n

Pn
i=1 f(w; zi)

with corresponding population risk Ez⇠D[f(w; z)]. The
generalization error of the model with parameter(s) w is de-
fined as the difference between the empirical and population
risks:

|Ez⇠D[f(w; z)]� Ez⇠S [f(w; z)]|.

Next we introduce stochastic gradient descent (SGD). We
follow the setting of [Hardt et al., 2016]: starting with ini-
tialization w0 2 Rd, an SGD update step takes the form

wt+1 = wt � ↵trwf(w; zit)

where it is drawn from [n] = {1, 2, · · · , n} uniformly and
independently in each round. Let W be a convex and com-
pact set to be optimized over. For projected SGD we let

wt+1 = ⇧w2W

✓
wt � ↵trwf(w; zit)

◆

where ⇧W(v) = argminw2W kw � vk.

The analysis of SGD requires the following crucial proper-
ties of the loss function f(·, z) at any fixed point z, viewed
solely as a function of the parameter(s) w:

Definition 1 (L-Lipschitz). A function f(w) is L-Lipschitz
if 8u, v 2 Rd: |f(u)� f(v)|  Lku� vk.

Definition 2 (�-smooth). A function f(w) is �-smooth if
8u, v 2 Rd: |rf(u)�rf(v)|  �ku� vk.

Definition 3 (�-strongly-convex). A function f(w) is �-
strongly-convex if 8u, v 2 Rd:

f(u) > f(v) +rf(v)>[u� v] +
�

2
ku� vk2.

Definition 4 (⇢-Lipschitz Hessian). A loss function f has a
⇢-Lispchitz Hessian if 8u, v 2 Rd, kr2

f(u)�r2
f(v)k 

⇢ku� vk.

Algorithmic Stability: Next we define the key concept
of algorithmic stability, which was introduced by [Bousquet
and Elisseeff, 2002] and adopted by [Hardt et al., 2016].
Informally, an algorithm is stable if its output only varies
slightly when we change a single sample in the input dataset.
When this stability is uniform over all datasets differing at a
single point, this leads to an upper bound on the generaliza-
tion gap. We now flesh this out more formally.

Definition 5. Two sets of samples S, S0 are twin datasets if
they differ at a single entry, i.e., S = {z1, ...zi, ..., zn} and
S
0 = {z1, ..., z0i, ..., zn}.

Now, let A be a (possibly randomized) algorithm which is
parameterized by a sample S of n datapoints as A(S).

Definition 6. (Stability) Define the algorithmic stability
parameter "stab(A, n) as

inf{" : sup
z,S,S0

EA|f(A(S); z)� f(A(S0); z)|  "}.

The expectation EA factors in the possible randomness of
A. For such an algorithm, one can define its expected gener-
alization error as

GE(A, n) := ES,A[ E
z⇠D

[f(A(S); z)]� E
z⇠S

[f(A(S
0
); z)]].

We also define a data-dependent stability which is an aver-
age stability that was introduced by [Rakhlin et al., 2005,
Shalev-Shwartz et al., 2010] and was applied for analyzing
algorithmic stability of SGD by [Kuzborskij and Lampert,
2018].

Definition 7 (On-average stability). Let D be the data dis-
tribution and w0 be the initialized weight. A randomized
algorithm A is b"stab(D, w0)-on-average stable if

ES,S0EA[f(AS ; z)� f(AS0 ; z)]  b"stab(D, w0),

where S
iid⇠ Dm and S

0
is its copy with i-th example re-

placed by z
iid⇠ D.

Throughout this paper, we will write "stab and b"stab omitting
dependencies that are clear in context.

Stability and generalization: It was proved in [Hardt
et al., 2016] that GE(A, n)  "stab(A, n). Furthermore,
the authors observed that an L-Lipschitz condition on
the loss function f enforces a uniform upper bound:
supz2Z |f(w; z) � f(w0; z)|  Lkw � w

0k. This im-
plies that for a Lipschitz loss, the algorithmic stability
"stab(A, n) (and hence the generalization error GE(A, n))
can be bounded by obtaining bounds on kw � w

0k. And in
[Kuzborskij and Lampert, 2018] they have similar results in
the notion of on-average stability.

Let wt and w
0

t be the parameters obtained by running SGD
on twin datasets S, S0 respectively for t iterations. The di-
vergence quantity is defined as �t := EA||wt � w

0

t||. While
[Hardt et al., 2016] reports upper bounds on �t for different
loss functions, e.g., convex and non-convex loss functions,
we investigate the tightness of those bounds.

4 MAIN RESULTS

In this section, we report our main results. We first consider
the convex case with constant step size, where we prove 1)
that the existing bounds in [Hardt et al., 2016] are tight, and
2) for linear models, we report a data-dependent analysis to
show that "stab does not increase with t. Then we move on
to the non-convex case, where a) for decreasing step size we
report a lower bound suggests that within a wide range of T ,
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existing bound in [Hardt et al., 2016] is not tight. We prove
a tighter upper bound which matches our lower bound thus,
and b) for constant step size we give loss functions whose
divergence �t increases exponentially with t.

4.1 CONVEX CASE

In this section we analyze the stability of SGD when the loss
function is convex and smooth. We begin with a construction
which shows that Theorem 3.8 in [Hardt et al., 2016] is
tight. Our lower bound analysis will require the quadratic
function

f(w; z) =
1

2
w

>
Aw � yx

>
w, (1)

where A is a d ⇥ d matrix. In the construction of lower
bounds, we carefully choose A and S so that the single data
point replaced in the twin data set will cause the instability
of SGD. In particular, we will choose A to be a PSD matrix
in the convex case in the construction of the lower bound
and choose A to be an indefinite matrix with some strictly
negative eigenvalues in the non-convex case. We first begin
with the following lemma which describes how kwt � w

0
tk

behaves for functions defined in Equation 1.

Lemma 1 (Dynamics of divergence). Let f(w;x) =
1
2w

>
Aw � yx. Suppose [xi � x

0
i]/kxi � x

0
ik is an eigen-

vector of A, i.e., A[xi � x
0
i] = �xx0 [xi � x

0
i]. Let �t be

wt � w
0
t, ↵t  �xx0 be the step size of SGD and �0 = 0.

If one runs SGD on f(w, S) and f(w, S0) where S, S
0 are

twin datasets and x
0>
i xj = 0, x>

i xj = 0, 8j 6= i, then the
dynamics of �t are given by

EAk�t+1k = (1� ↵t�xx0)EAk�tk+
↵t

n
kxi � x

0
ik. (2)

Remark 1. In this work, we assume that the different en-
try data xi, x

0
i are orthogonal to all other samples. Such a

restrictive setting serves as a corner case to prove the tight-
ness, suggesting the necessity of additional assumptions to
improve the upper bound. Indeed in Theorem 5, we intro-
duce more realistic assumptions to avoid such corner cases,
and the upper bound can be improved accordingly.

The next lemma recursively applies Lemma 1. We will care-
fully chose �xx0 in the following lemma for lower bound
constructions in the convex and non-convex cases.

Lemma 2 (Lower bound on divergence). Let f(w;x) =
1
2w

>
Aw�yx. Suppose [xi�x

0
i]/kxi�x

0
ik is an eigenvector

of A where A[xi � x
0
i] = �xx0 [xi � x

0
i]. Let �t be wt �w

0
t,

↵t  �xx0 be the step size of SGD and �0 = 0. If one
runs SGD on f(w, S) and f(w, S0) where S, S

0 are twin
datasets and x

0>
i xj = 0, x>

i xj = 0, 8j 6= i, then we have

EAk�T k � kxi � x
0
ik

n

T�1X

t=1

T�1Y

⌧=t+1

↵t(1� ↵⌧�xx0).

Now we can present our tightness results. We begin with
the convex case. The main idea of the construction is to
leverage Equation 1 with specially designed A and S, S

0 to
ensure that EAkwT �w

0
T k will diverge. However, quadratic

function in general does not L-Lipschitz condition, which
does not match the assumpition used to derive upper bound
in Hardt et al. [2016]. To obtain the L-Lipschitz condition,
we trim f(w;S) to mimic the Huber loss function [Huber,
1992] so that the smoothness is maintained for the piecewise
function.

Theorem 1 (Lower bound for convex losses). Let wt, w
0
t be

the outputs of SGD on twin datasets S, S0 respectively. Let
�t = wt � w

0
t and ↵t be the step size of SGD. There exists

a function f which is convex, �-smooth, and L-Lipschitz,
and twin datasets S, S0 such that

"stab � L

2n

TX

t=1

↵t. (3)

The convex upper bound in Theorem 3.8 of [Hardt et al.,
2016] states that EAk�T k 

PT
i=1

↵tL
n , which implies

that the divergence increases throughout training. The lower
bound in Theorem 1 suggests the tightness of the upper
bound. However, in practice, this is not commonly ob-
served; the generalization performance does not deteriorate
as the number of training iterations increases. Under the �-
strongly-convex loss function condition, [Hardt et al., 2016]
provides an O( 1n ) uniform stability bound, which fits better
with empirical observations on classical convex losses. In
the next theorem, we show the tightness of the O( 1n ) bound
for strongly-convex losses.

Theorem 2 (Lower bound for strongly-convex losses). Let
wt, w

0
t be the outputs of SGD on twin datasets S, S0 respec-

tively, �t be wt � w
0
t and ↵ = 1

2� be the step size of SGD.
There exists a function f which is �-strongly-convex and
�-smooth, and twin datasets S, S0 such that the divergence
and stability of the two SGD outputs satisfies

"stab � 1

16�n
. (4)

Theorem 2 provides evidence for the tightness of the O( 1n )
stability bound on SGD. To obtain such stability, the loss
function must satisfy r2

wf(w; z) > �Id with � = ⌦(1). In
general this does not hold, e.g., the Hessian of an individual
linear regression loss term is xjx

>
j which is not strongly-

convex. In practice one can incorporate a strongly-convex
regularizer to impose strong convexity, often resulting in
improved generalization performance in practice [Shalev-
Shwartz et al., 2010, Bousquet and Elisseeff, 2002]. How-
ever, an O(1) regularization term will bias the loss function
away from achieving sufficiently low empirical risk. This
motivates us to investigate a weaker condition than strong
convexity which still can enforce an O

�
1
n

�
stability, without

substantially biasing the loss function.
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In the remainder of this section, we restrict ourselves to
a family of linear model loss functions and show that the
O( 1n ) stability results can be obtained under the framework
of average stability. The results of Theorem 3 have a de-
pendence on a property of the distribution, and are thus
distribution-dependent. We begin with the definition of a
⇠-bounded Second Moment. Essentially, a bounded Second
Moment dataset requires an average linear dependence of
Span{x1, ..., xn}. Recall that the i-th sample is of the form
zi = (xi, yi).

Definition 8. A set S = {(x1, y1), ..., (xn, yn)} is de-
fined to have ⇠S- bounded Second Moment if 8v 2
Span{x1, ..., xn}

v
>(

1

n

nX

i=1

xix
>
i )v � ⇠Sv

>
v.

A distribution D has a (⇠, n, µ)-inversely bounded Second
Moment if there exists a constant ⇠ > 0 such that

ES⇠Dn


1

⇠S + µ

�
 1

⇠ + µ
.

Remark 2. The value of ⇠S is always lower bounded by the
minimum nonzero eigenvalue of 1

n

P
j xjx

>
j which is the

empirical second moment of data with size n.

Proposition 1 (Example of distribution with inversely
bounded Second Moment). Let Ex⇠D[xx>] = ⌃ and
⇠ be the minimum non-zero eigenvalue of ⌃. Suppose
S = {(x1, y1), ..., (xn, yn)} is sampled from D with the
x 2 Rd with kxk  1. Then, there exists universal con-
stant C, c so that if n � max{ 4C2d

⇠2 ,
512
c⇠2 log( 1⇠ )}, D has a

( ⇠3 , n, µ)-inversely bounded Second Moment if µ � 1
n4 .

In our next theorem, we leverage the inversely bounded
Second Moment property to prove a non-accumulated on-
average stability bound for SGD on linear models with a
regularized loss function. We characterize a linear model
by rewriting the loss function f(w; z) in terms of fy(w>

x)
where fy(·) is a scalar function depending only on the inner
product of the model parameter w and the input feature x.

Theorem 3 (Data-dependent stability of SGD with inversely
bounded Second Moment). Suppose a loss function f(w, z)
is of the form

f(w, S) =
1

n

nX

j=1

fyj (w
>
xj) +

µ

2
w

>
w ;w 2 W

where fy(w>
x) satisfies (1) |f 0

y(·)|  L , (2) 0 < � 
f
00
y (·)  �, (3) S, S0 are sampled from D with ⇠ be the min-

imum nonzero eigenvalue of Ex⇠D[xx>] and a uniformly
bounded support X : kxk  1,X ⇢ Rd and 4) µ � �

n4 .
Let W be a convex and compact set, wt and w

0
t be the out-

puts of SGD on S and S
0 after t steps, respectively. Let

the divergence �t := wt � w
0
t and ↵  µ

2�2 be the step
size of SGD. There exists universal constant C, c so that if
n � max{ 4C2d

⇠2 ,
512
c⇠2 log( 1⇠ )}, then

ESEAk�T k  12L

⇠�n
, and b"stab(D)  16L2

⇠�n
.

Remark 3. The inversely bounded Second Moment condi-
tion allows SGD to maintain an average stability guarantee
for a family of widely used models with a negligible regu-
larizer and large sample size. The theorem suggests that if
the dataset S is sampled from a ‘good’ distribution, one can
obtain an advanced generalization property which mainly
depends on the distribution. The theorem also justifies the
common choice of small values for the weight in the L2-
regularizer (also known as weight decay) when training
ridge regression type models. Note that the term µ

2w
>
w

makes the loss function strongly convex, and a O
�
1
n

�
is

established with µ = O(1) in [Hardt et al., 2016]. The
major difference of Theorem 3 is that the weight of the `2
penalty µ is O

�
1
n4

�
for uniformly bounded x. A small value

of µ will not bias the original loss function thus allow the
SGD to sufficiently minimize the empirical risk. In stead of
leveraging the `2 penalty, the stability of SGD is obtained
upon the ‘nice’ property of the distribution.

Example: Linear regression. Linear regression minimizes
the quadratic loss on w: f(w, S) = 1

2n

P
xj2S(x

>
j w �

yj)2, w 2 W , where W is a convex compact set that
contains the origin and has bounded radius R. The Hes-
sian of an individual linear regression loss term is xjx

>
j

which is not strongly-convex. However, one can rewrite
the loss function as fy(w>

x) where f
00
y (·) = 1. Next

we present certain conditions that are sufficient to make
|f 0(·)|  L. We assume kxik = 1, yi 2 [�1, 1], 8i 2 [n].
Let ⇧W(v) = argminw2Wkw�vk. Note that SGD updates

as wt+1 = ⇧w2W

✓
wt�↵t(x>

j wt�yj)xj

◆
. One can show

that supw2W supx,y2S f
0
y(w

>
x)  R+ 1.

4.2 NON-CONVEX CASE

In this section, we construct a non-convex loss function
to analyze the tightness of the divergence bound in [Hardt
et al., 2016]. We first focus on the case where SGD applies
a step size that decreases with t. Define a hitting time to be
the time t that satisfies wt�1 �w

0

t�1 = 0 and wt �w
0

t 6= 0.
We first fix a hitting time t0 and prove Lemma 3.

Lemma 3 (Divergence of non-convex loss function). There
exists a function f which is non-convex and �-smooth, twin
datasets S, S

0 and constant a > 0 such that the follow-
ing holds: if SGD is run using step size ↵t = a

0.99�t for
1  t < T , and wt, w

0
t are the outputs of SGD on S and

S
0, respectively, and �t = wt � w

0
t, then 81  t0 

T, EA [k�T k|�t0 6= 0] � 1
2n

⇣
T
t0

⌘a
.
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The following theorem follows from Lemma 3 by optimiz-
ing over t0. The choice of hitting time t0 plays an important
role in the analysis, which is also illustrated in the “burn-in
Lemma” 3.11 in [Hardt et al., 2016].

Theorem 4 (Lower bound for non-convex loss functions).
Let wt, w

0
t be the outputs of SGD on twin datasets S, S0, and

�t = wt�w
0
t. There exists a function f which is non-convex

and �-smooth, twin datasets S, S
0 and constants a < 0.1

such that the divergence of SGD after T > n rounds using
constant step size ↵t =

a
0.99�t satisfies

"stab � T
a

6n1+a
. (5)

Remark 4. In the above theorem, we require ↵t =
a

0.99�t

with an extra constant factor 1
0.99 to apply the inequality

1 + ax
0.99 > e

ax with sufficiently small a. To remove the
constant 1/0.99 in the learning rate one need to avoid using
the inequality 1 + x < e

x at the first place in deriving the
upper bound. This can be done by a refined analysis for
upper bound via setting learning rate ↵t =

e
a
t �1
� .

Remark 5. Note in [Hardt et al., 2016], an assumption is
made on the non-convex loss function, namely that f(u, z) 2
(0, 1). In our lower bound construction, we do not have such
an assumption thus our lower bound can not be directly
compared with the upper bound in [Hardt et al., 2016]. The
bound in [Hardt et al., 2016] is of the form O

⇣
T

a
1+a

n

⌘
, for

T
a

1+a � n, our lower bound will exceed the upper bound
in [Hardt et al., 2016]. However, such a gap implies that
even with additional assumptions in [Hardt et al., 2016],
the upper bound still may not be tight. The lower bound
is derived by choosing the hitting time t0 < n, i.e., the
first time SGD picks the different entries z, z

0 in the twin
dataset before round n, suggesting additional space for
improvement on the analysis. We investigate this gap and
derive a tighter bound in the next theorem which improves
on Theorem 3.12 in [Hardt et al., 2016].

To prove a better upper bound for non-convex losses, we
need the following lemma, which gives us the expectation
of divergence for a given hitting time tk + 1, which is the
timestamp of SGD first selecting the k-th different sample.

Lemma 4. [Hardt et al., 2016] Assume f is �-smooth and
L-Lipschitz. Let wt, w

0
t be outputs of SGD on twin datasets

S, S
0 respectively after t iterations and let �t = [wt � w

0
t]

and �t = Ek�tk. Running SGD on f(w;S) with step size
↵t =

a
�t satisfies the following conditions:

• The SGD update rule is a (1 + ↵t�)-expander and
2↵tL-bounded.

• EA[k�tk|�t�1]  (1 + ↵t�) k�t�1k+ 2↵tL
n .

• EA[k�T k|�tk = 0] 
�
T
tk

�a 2L
n .

Lemma 4 bounds the case when the hitting time is equals
to tk. In the proof of Hardt et al. [2016] for non-convex
stability upper bound, the tk is chose to be T

a
1+a . However,

we observe that a choice of tk with additional care on the
analysis leads to an improved upper bound. Therefore, we
could obtain the upper bound for the stability of uniform
sampling SGD as follows:

Theorem 5 (Uniform sampling SGD). Assume f is
�-smooth and L-Lipschitz. Running T > n iterations of
SGD on f(w;S) with step size ↵t = a

�t , the stability of
SGD satisfies

"stab  16L2
T

a

n1+a
.

We remark that the above analysis is for uniform sampling
SGD, where the algorithm keeps sampling with replacement.
We also derive a version of Theorem 5 which samples with-
out replacement in the appendix, which also matches the
lower bound. Dividing our bound by the bound in Theorem

3.12 of [Hardt et al., 2016], we obtain the ratio ⌦̃

✓
T

a2
1+a

na

◆
.

This factor is less than 1 (and so we improve the upper
bound) exactly when T

a
1+a  n. Note that this is poten-

tially a large range as a is a small and positive constant.

In [Kuzborskij and Lampert, 2018], the data-dependent sta-
bility of SGD is analyzed, incorporating the dependence on
the variance of SGD curvature and the loss of the initial
parameter w0 in analyzing the divergence of SGD. This
framework has applications in transfer learning, as well as
implications including optimistic generalization error. We
observe that our analysis in Theorems 5 can be combined
with the data-dependent framework, and we now report our
data-dependent versions of Theorems 5.

The analysis requires the additional bounded variance as-
sumption for SGD such that

ES,z

⇥
krf(wt; z)�rEz(f(wt; z))k2

⇤
 �

2
, 8t.

In the rest of this section we assume the variance of SGD
satisfies this property.

We borrow the following lemma from [Kuzborskij and Lam-
pert, 2018] which is a data-dependent version of Lemma 4.

Lemma 5. [Kuzborskij and Lampert, 2018] Assume f is
�-smooth, L-Lipschitz, and has a ⇢-Lipschitz Hessian. With
w0 the initial weight and wt, wt0 the outputs of SGD on
twin datasets S, S0 respectively after t iterations, let �t =
[wt � wt0 ]. Running SGD on f(w;S) with step size ↵t =

b
t

where b  min{ 2
� ,

1
8�2 lnT 2 } has the following properties:

1. The SGD update rule is a (1 + ↵t t)-expander and
↵tL-bounded. Here  t = min{�, t} where
t = kr2

f(w0; zt)k2 + ⇢
2k

Pt�1
k=1 ↵krf(wS,k; zk)k

+⇢
2k

Pt�1
k=1 ↵krf(wS0 ;k, zk)k.
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2. EA[k�t+1k|�t0 = 0] 
{EA[k�tk|�t0 = 0][1 + (1� 1

n )↵t t]}+ 2↵tL
n .

3. ES,S0 {EA[k�T k|�t0 = 0]}  L
n

⇣
T
t0

⌘⇣b
, where

⇣ = Õ(min{�,Ez[kr2
f(w0; z)k2] + �⇤

1,�2}),
�⇤

1,�2 = ⇢(b� +
p
bEz[f(w0; z)]� k⇤

and k
⇤ = infw Ez[f(w; z)].

Based on the above lemma, we can prove an upper bound
of on-average stability with uniform sampling SGD using
the same technique as for Theorem 5.

Theorem 6. (Data-dependent version of Theorem 5) As-
sume f is �-smooth, L-Lipschitz, and has a ⇢-Lipschitz
Hessian. Let wt, wt0 be the outputs of SGD on twin datasets
S, S

0 respectively after t iterations and let �t = [wt � wt0 ]
and �t = EAk�tk. And let ⇣ follow the same definition
as in Lemma 5. Running SGD on f(w;S) with step size
↵t =

b
t where b < 1 satisfies

b"stab  16L2
T

⇣b

⇣n1+⇣b
. (6)

We conclude this section with the following lower bound
on the uniform stability of SGD with constant stepsize for
non-convex loss functions. We show that for non-convex
functions satisfying classical conditions �-smooth, we can-
not avoid a pessimistic bound. Thus, in order to analyze the
generalization power of SGD for deep learning loss func-
tions from an optimization perspective, different conditions
are necessary.

Theorem 7. Let wt, w
0
t be the outputs of SGD on twin

datasets S, S0, and let �t = wt � w
0
t. There exists a non-

convex, �-smooth function f , twin sets S, S0 and constants
a, � such that the divergence of SGD after T > n rounds us-
ing constant step size ↵ = a

0.99� satisfies "stab � e
aT/2

/n
2.

5 CONCLUSION AND FUTURE WORK

We first provided matching upper and lower data-
independent bounds on the stability of SGD for three kinds
of loss functions: convex, strongly-convex, and non-convex,
essentially closing the gap in all cases. We then provided
stronger data-dependent generalization bounds for both con-
vex and non-convex loss functions by analyzing average-
stability, showing that nice properties of data can both im-
prove generalization and also reduce the need for regular-
ization. At least two interesting open questions arise from
our work: a) Can one obtain data-dependent lower bounds
on average-stability that show the tightness of existing anal-
ysis? b) Can one devise properties of data-distributions or
loss functions (perhaps motivated by deep learning) that
imply better data-dependent stability bounds?
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