


module, which is the main cost of computations and latency
(over 60%). To achieve this, we first formulate the problem
with pruning parameterization to build a pruning framework
with a soft mask as a representation of the pruning policy.
With this soft mask, we further adopt thresholding to con-
vert the soft mask into a binary mask so that the model is
trained with actual pruned weights to obtain pruning results
directly. This is significantly different from other meth-
ods [27, 47] to train with unpruned small non-zero weights
and use fine-tuning to mitigate the performance degradation
after applying pruning. Besides, to update the soft mask as
long as the pruning policy, we adopt to straight though es-
timator (STE) method to make the soft mask differentiable.
Thus, we can build the pruning parameterization framework
with minimal overhead.

Based on this framework, we need to search the best-
suited layer width for each layer in the token pyramid mod-
ule. It is non-trivial to perform the search. As the to-
ken pyramid module needs to extract multi-scale informa-
tion from multiple spatial resolutions, the large hierarchical
search space leads to difficulties of convergence. To resolve
this problem, we adopt a bi-level optimization method. In
the outer optimization, we try to obtain the pruning pol-
icy based on the pruning parameters (the soft mask). In
the inner optimization, the optimized model weights with
the best segmentation performance under this soft mask can
be obtained. Compared with a typical pruning method, our
work incorporates the implicit gradients with second-order
derivatives to further guide the update of the soft mask
and achieve better performance. Our experimental results
demonstrate that we can achieve 38.9 mIoU (mean class-
wise intersection-over-union) on the ADE20K dataset with
a speed of 56.5 FPS on Samsung S21, which is the highest
mIoU under the same computation constraint with real-time
inference speed. As demonstrated in Figure 1, our models
can achieve a better tradeoff between the mIoU and speed.

We summarize our contributions below,
• We propose a pruning parameterization method to build

a pruning framework with a soft mask. We further use
a threshold-based method to convert the soft mask into
the binary mask to perform actual pruning during model
training and inference. Besides, STE is adopted to update
the soft mask efficiently through gradient descent opti-
mizers.

• To solve the pruning problem formulated with the frame-
work of pruning parameterization, we propose a bi-level
optimization method to utilize implicit gradients for bet-
ter results. We show that the second-order derivatives in
the implicit gradients can be efficiently obtained through
first-order derivatives, saving computations and memory.

• Our experimental results demonstrate that we can achieve
the highest mIoU under the same computation constraint
on various datasets. Specifically, we can achieve 38.9

mIoU on the ADE20K dataset with a real-time inference
speed of 56.5 FPS on the Samsung S21.

2. Related Work
Real-Time Semantic Segmentation. Though semantic
segmentation based on CNNs [6, 22, 33, 58, 71] can achieve
great performance, it typically costs large amounts of com-
putations with slow inference speed. Furthermore, with the
ever-increasing popularity of edge devices such as mobile
phones, it is necessary to achieve fast inference speed for
semantic segmentation on edge devices [4]. Besides human
designed lightweight models [21,40,67], neural architecture
search (NAS) methods [1, 7, 42, 45, 69] are also adopted to
search lightweight models.

As a pioneer in handcrafted real-time segmentation,
ENet [50] designs a lightweight model for fast inference.
DeepLabV3+ [6] adopts atrous separable convolution to
reduce computation counts and uses the lightweight Mo-
bileNetV2 [56] as the backbone. BiSeNet [66, 67] and
STDC [21] utilizes a two-branch architecture, where the
deep branch extracts spatial information, and the shallow
branch learns details. SFNet [40] uses flow alignment mod-
ule to fuse context and spatial information.

Inspired by the recent success of NAS, some works au-
tomatically search lightweight segmentation models. To re-
duce the computation cost, FasterSeg [7] incorporates la-
tency regularization during search. DCNAS [69] uses a
densely connected search space and employs a gradient-
based direct search method. NASViT [24] proposes a gra-
dient projection algorithm to deal with the gradient con-
flict issues and improve the convergence performance. HR-
NAS [15] keeps high-resolution representations in its en-
coder and the search process to maintain high accuracy in
dense prediction. RTSeg [43] redesigns backbone and pro-
poses a latency-driven search framework.

Although many lightweight segmentation models are de-
veloped, it is still hard for them to run real-time inference
on resource- and power-limited GPUs of edge devices.
Vision Transformers. By utilizing the self-attention mech-
anism, ViTs [17] can achieve competitive results against
CNN models in vision tasks. Inspired by the great
success of ViTs, many research efforts are devoted to
dense prediction tasks with ViTs on complex datasets.
SETR [72] utilizes a ViT-based encoder to extract high-
level semantic information. Instead of per-pixel predic-
tion, MaskFormer [11] performs mask-based prediction
with a customize backbone and a transformer-based de-
coder. With a transformer decoder to explore masked atten-
tion, mask2Former [10] proposes a universal architecture
and achieves SOTA performance for various segmentation
tasks. MobileViT [48] and MobileFormer [9] mix CNN and
ViT in their architectures, but they are not fast enough for
real-time inference on edge devices. TopFormer [68] uti-
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lizes c CNN-based token pyramid module to extract multi-
level tokens and lightweight ViT blocks to extract semantic
information. It achieves low latency and high accuracy on
complex datasets.
Neural Architecture Search and Pruning. NAS and prun-
ing are commonly used to find lightweight models and re-
duce the computation overhead. Given a search space, NAS
tries to identify a superior model automatically. Reinforce-
ment learning (RL) based NAS [51,75] and evolution-based
NAS [18, 53] usually need to train and evaluate each candi-
date model, leading to tremendous searching cost. To mit-
igate this, gradient-based NAS [5, 12, 29, 46] is proposed
to formulate a supernet with all candidate architectures and
search the outstanding architecture through gradient descent
methods. But it costs huge memory to incorporate all can-
didate architectures.

Network pruning is a compression technique to effec-
tively reduce the DNN storage and computation cost [31].
In this work, we focus on structured pruning [39, 61] to re-
move entire filters or channels of CONV layers, which can
be accelerated effectively for fast inference.

3. Problem Formulation with Pruning Param-
eterization

In our method, we first formulate the pruning problem
with pruning parameterization. Previous pruning methods
usually depend on the magnitudes of model weights and
adopt the in-differentiable sorting operations, leading to in-
consistent performance after applying pruning with sorting
and additional overhead with fine-tuning. To mitigate this,
we propose a pruning parameterization method, which uses
a soft mask (rather than magnitudes of weights) to indicate
whether to prune and get rid of sorting operations. With
the STE method [3], we are able to represent the pruning
with parameters and directly train the pruning like a typi-
cal model training. Then we formulate our problem with
pruning parameterization and introduce our solution.

3.1. Soft Mask Construction
We first introduce how to construct the soft mask. To ac-

celerate the inference, we adopt channel pruning to search
for a suitable width for each convolution (CONV) layer.
Specifically, we insert a depth-wise CONV layer following
each CONV layer that is supposed to be pruned as below,

al = sl ⊙ (wl ⊙ al−1), (1)

where ⊙ denotes the convolution operation. wl ∈
Ro×i×k×k is the weight parameters in l-th CONV layer,
with o output channels, i input channels, and kernels of size
k × k. al ∈ Rn×o×t×t′ represents the output features of
the l-th layer, with o channels and t × t′ feature size. n
denotes batch size. sl ∈ Ro×1×1×1 is the weights of the
depth-wise CONV layer. Each output channel of wl⊙al−1

corresponds to one single element of sl. Thus sl can serve
as a soft mask or pruning indicator for the l-th CONV layer
to indicate whether to prune the corresponding channels.

3.2. Forward and Backward Propagation
Since sl is only a soft mask with continuous values, it

can not represent the binary operation of pruning. To solve
this, we adopt a threshold, and the forward pass with the
mask is represented as

bl =

{
1, sl > τ

0, sl ≤ τ
(element-wise), al = bl ⊙ (wl ⊙ al−1),

(2)
where bl ∈ {0, 1}o×1×1×1 is the binarized sl, and τ is a
threshold which is simply set to 0.5 in our case. Each ele-
ment of bl corresponds to one output channel of wl⊙al−1.
In the forward pass, we first convert the soft mask into
a binary mask through a threshold and then perform the
depth-wise CONV to perform actual pruning. Thus the out-
put channels corresponding to the zero elements in bl are
pruned, and the rest channels are preserved. We show the
proof in Appendix A.
Advantages of the Binary Operation. With the binary op-
eration to obtain the binary mask, the pruned weights be-
come zero during computations of both training and infer-
ence. This is different from some pruning works [27,30,47]
to perform training with small but non-zero weights and in-
ference with binary weights, which has inconsistent perfor-
mance between training and inference, and requires addi-
tional finetuning.
Why τ = 0.5. Since the sl parameters in Equation (2) are
initialized randomly between 0 and 1, we set τ = 0.5 as
a threshold for the binary operation. τ can be set to other
values (such as 0.3 or 0.6). The key point is that sl can
be updated to increase above τ to keep the corresponding
channel or decrease below τ to prune the channel.

The binary operation in Equation (2) is non-differential,
leading to difficulties for back-propagation. To solve this,
we propose to use STE [3, 64] for back-propagation below,

∂L
∂sl

=
∂L
∂bl

, (3)

where we directly pass the gradients of bl to sl so that we
can update the soft mask.
Why Named Pruning Parameterization. With the bina-
rization and STE method, the pruning process can be rep-
resented with the soft mask s = {sl}. We can update the
soft mask to update the pruning policy based on its gradi-
ents. Thus s is the pruning parameters to denote and control
pruning, i.e., pruning parameterization.
Difference with Other Pruning Works. Based on prun-
ing parameterization, we decouple the pruning policy from
model parameter magnitudes so that pruning does not fur-
ther depend on the weight magnitudes. Unlike previous
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works on pruning to force pruned weights to be or as close
as to zeros [27,30,47], our method does not have such a con-
straint that pruned weights should be zero. Instead, once the
corresponding binary mask is turned from 1 to 0, the infor-
mation in pruned channels is preserved rather than zeroed
out since zeros in bl can block gradient flow to the corre-
sponding weights. As a result, pruned channels are free to
recover and contribute to accuracy if their corresponding el-
ements in bl switch from 0 to 1.
Difference with Other Mask Methods. Although some
other works also adopt indicator/mask-based pruning such
as [27, 28, 36, 37], our method is more straightforward and
effective. For example, unlike our method to train the soft
mask with STE directly, DAIS [27] relaxes the binarized
channel indicators to be continuous. To bridge the non-
negligible discrepancy between the continuous model and
the target binarized model, it further uses an annealing-
based procedure to steer the indicator convergence toward
binarized states. Some works [36, 65] adopts batchnorm
(BN) layers and uses the cumulative density function (CDF)
of a Gaussian distribution as the mask variable, with a CDF-
based loss function and the Gumbel-Softmax trick to up-
date the mask at the cost of additional random sampling and
complex gradient revision. Besides, the works [23, 65] cre-
ate a mask to multiple the channels weights. This is differ-
ent from our design with the depth-wise CONV operation
for easy mask creation and direct mask training.

3.3. Training Loss with Pruning Parameterization
Based on the soft mask, we can train and prune the model

with the following loss function,

Lm(w, s) = L(w, s) + β · Lreg(s), (4)

where L(w, s) is the cross-entropy loss, and Lreg is the
regularization term related to the sparsity or pruning ra-
tio. For simplicity, we take Multiply-Accumulate opera-
tions (MACs) as the regularization rather than parameter
number to estimate the on-device execution cost more pre-
cisely. β can weight the loss and stabilize training. Lreg can
be defined as the squared ℓ2 norm of the difference between
current MACs and target MACs C,

Lreg =

∣∣∣∣∣∑
l

o′l × il × tl × t′l × k2 − C

∣∣∣∣∣
2

, (5)

where o′l is the number of remaining channels after pruning,
and tl × t′l is the output feature size.

3.4. Problem Formulation
With pruning parameterization, the per-layer width

search problem can be formulated as follows

min
s

Lm(w∗, s), (6)

s.t. w∗ = argmin
w

L(w, s) +
1

2λ
∥w∥22. (7)

It is a bi-level optimization problem [25, 35]. In the inner
optimization of Equation (7), we optimize the model pa-
rameters under a given soft mask with a commonly used
squared ℓ2 norm as a regularization to mitigate the over-
fitting problem. In the outer optimization of Equation (6),
we optimize the soft mask to minimize the loss. Each time
before updating s, we first need to obtain w∗.

4. Proposed Method with Bi-level Optimiza-
tion

The objective is to find the soft mask (search a suitable
width) for each layer to minimize the loss with optimized
model weights. We adopt a bi-level pruning method to solve
this problem. Compared with a typical gradient descent
method to update the parameters with first-order derivatives,
the bi-level optimization method incorporates implicit gra-
dients with second-order derivatives to adjust the first-order
term, leading to higher training efficiency with better con-
vergence results. For easy of expression, since each channel
has a corresponding mask, in this section, we broadcast the
masks s and b so that the masks have the same dimension
as the model weights w.

4.1. Bi-level Optimization with Implicit Gradients
From the inner optimization, w∗ is a function of s and

different s can lead to different w∗. Thus, to minimize
Lm(w∗, s) in Problem (6), we need to compute the gra-
dients with reference to s as below,

dLm(w∗, s)

ds
=

dw∗

ds
∇wLm(w∗, s) +∇sLm(w∗, s), (8)

where ∇w and ∇s denote the partial derivatives of the loss
function with reference to w and s, respectively. dw∗

ds repre-
sents the vector-wise full derivative, and we omit the trans-
pose expression. Since w∗ is implicitly defined as an opti-
mization problem in Equation (7), dw∗

ds is also known as im-
plicit gradients [52, 54, 55, 70]. With g(w, s) = L(w, s) +
1
2λw

Tw, dw∗

ds can be obtained through the following,

dw∗

ds
= −∇2

swg(w∗, s)∇2
wg(w∗, s)−1, (9)

where ∇2
sw and ∇2

w are the second-order partial deriva-
tives. We show the proof in Appendix B.

The Hessian matrix ∇2
wg(w∗, s) can be given by

∇2
wg(w∗, s) = ∇2

wL(w∗, s) +
1

λ
I = 1

λ
I, (10)

where we adopt a Hessian-free approximation that
∇2

wL(w∗, s) = 0 as DNNs usually have piece-wise lin-
ear decision boundary with ReLU functions. Thus, Equa-
tion (8) can be transformed to

dLm(w∗, s)

ds
=∇sLm(w∗, s)− λ∇2

swL(w∗, s)∇wLm(w∗, s).

(11)
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Compared with a typical gradient descent method, the bi-
level optimization incorporates the second-order derivatives
∇2

swL(w∗, s)∇wLm(w∗, s) to adjust the first-order term
∇sLm(w∗, s).

It is difficult to obtain the second-order derivatives
∇2

swL(w∗, s). Usually certain approximation methods
such as finite difference [8, 20] may be adopted to save
computation cost. But here we show that in this specific
problem, we can directly obtain the analytical solution with
first-order derivatives, which greatly saves computation ef-
forts without approximation. Note that each channel has its
corresponding mask, and we denote the masked channels as
wb = w∗ ·b where · means the element-wise multiplication
and b is defined in Equation (2). We can obtain that

∇2
swL(w∗, s) = diag(∇wbL(wb)) (12)

where diag(·) represents formulating a diagonal matrix with
the diagonal vector. We show the proof in Appendix C.
Then we can transform Equation (11) into the following,
dLm(w∗, s)

ds
=∇sLm(w∗, s)− λ∇wbL(wb) · ∇wLm(w∗, s).

(13)

Thus although the implicit gradients incorporate second-
order derivatives, it can be analytically expressed with first-
order derivatives, greatly saving computation cost without
any approximations.

In Equation (13), we need to create two copies wb and
w to obtain their derivatives, which are still not memory
efficient. To further reduce the complexity, we can obtain
∇wb

L(wb) in the following,

∇wbL(wb) =

{
∇wLm(w), b = 1

0, b = 0
(element-wise) (14)

The pruned weights (b = 0) do not contribute to the loss,
so their gradients are zero. The difference between L(·)
and Lm(·) is just the regularization term Lreg(·), which only
relates to the sparsity and does not care the weight values.
So ∇wb

L(wb) and ∇wLm(w) are equal if their weights
are not pruned (b = 1). Combining Equation (13) and (14),
we can obtain the following,
dLm(w∗, s)

ds
=∇sLm(w∗, s)− λb · [∇wLm(w∗, s)]

2
. (15)

We can see that there is no need to keep a copy and compute
the gradients of wb, thus saving memory. During practical
implementation, since s and b are the channel-wise masks,
we accumulate the gradients of all weights in each channel
to update the channel mask following Equation (15).
The Case without Implicit Gradients. In Equation (8),
we can omit the first term with implicit gradients. Thus we
have dLm(w∗,s)

ds = ∇sLm(w∗, s) and there is no need to
deal with the second-order term. It is easier to solve. But
we demonstrate in the experiments that our method with
implicit gradients can help to boost the performance without
a significant increase of the computation cost in Section 5.4.

4.2. Bi-level Optimization Framework

In each iteration, our framework has two steps, including
the model weights training step and the mask updating step.
In the first step, we update the weights w with a few training
steps for a fixed mask s. Next in the second step, we update
s with implicit gradients following Equation (15). Then we
move on to the next iteration. In each step, we only update
w or s without changing the other parameter. We discuss
the advantages of the proposed method in the following.
No Need for Finetuning. After training with the proposed
method, we can obtain the final layer-wise pruning policy
following s and the sparse model. Since the model is al-
ready trained with the binary masks, it can achieve good
segmentation performance without further fine-tuning.
First-Order Optimization. During the computation, we
only adopt first-order optimization. Though we incorporate
second-order derivatives in implicit gradients, we show that
it can be analytically expressed with first-order derivatives
in Equation (12), which greatly saves computation cost. We
further optimize the computation process in Equation (15)
to save memory cost.
Recoverable Contribution. During pruning, though some
channels are pruned, their weights are not set to 0 due to the
protection of the mask. When their mask is updated from 0
to 1, they can recover and contribute the accuracy.

5. Experiments
5.1. Datasets and Evaluation Metrics

ADE20K. ADE20K [73,74] is a scene parsing dataset con-
taining 25k images in the training set and 2k images in the
validation set with 150 label classes.
Cityscapes. Cityscapes [14] is a dataset of urban street
scenes from cars collected in 50 cities. It includes 5,000
finely annotated images, in which 2,975 images are used
for training, 500 for validation, and 1,525 for testing. We
exclude the extra training data with coarse labels through-
out this paper. This dataset has 30 label classes, and 19 of
them are used for segmentation. The resolution of images
is 2048× 1024. Cityscapes dataset is an intensively studied
benchmark for semantic segmentation, but it is challenging
to perform real-time inference on such a high resolution.
Pascal VOC. PASCAL Visual Object Classes (VOC) 2012
[19] is a widely used dataset for semantic segmentation,
classification, and object detection tasks. There are 1,464
images for training and 1,449 images for validation. We
show the results on Pascal VOC in Table 4.
Evaluation Metrics. For semantic segmentation evalua-
tion, we use the mean of class-wise intersection-over-union
(mIoU) to measure the accuracy performance. We introduce
the details of mIoU in Appendix D. For our results, we run
our algorithm three times and report the mean and variance
of the mIoU performance. For the baseline methods, some
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Table 1. Comparison of our searched model and prior arts on the ADE20K val dataset. We compare with popular handcraft baselines in the
first segment, NAS-based models in the second segment, pruning-based methods in the third segment and lightweight ViT-based models
in the fourth segment. We measure the FPS on the Qualcomm Adreno 660 GPU of the Samsung Galaxy S21 mobile phone. Some FPS
results are not available due to unsupported operations on the mobile device.

Category Method Backbone Parameters GMACs FPS val mIoU (%)

Human
Design

PSPNet [71] ResNet50-D8 49.1M 178.8 0.4 41.1
DeepLabV3+ [6] EfficientNet 17.1M 26.9 5.9 37.6
BiSeNetV2 [66] N.A. 3.34M 12.4 9.1 25.7

SFNet [40] ResNet-50 − 75.7 − 42.8
HRNet-W18-S [60] HRNet-W18-S 4.0M 10.2 5.5 31.4

NAS

HR-NAS-A [15] Searched 2.5M 1.4 − 33.2
HR-NAS-B [15] Searched 3.9M 2.2 − 34.9

NASViT [24] Searched − 2.5 − 37.9
HRViT-b1 [26] Searched 8.2M 14.6 − 45.9

Prune

EagleEye [38] N.A. 3.4M 1.2 59.2 34.3
DMCP [28] N.A. 3.3M 1.2 63.8 33.9
ResPep [16] N.A. 3.3M 1.2 64.9 35.0
CHEX [32] N.A. 3.3M 1.2 64.2 35.2

ViT

Segmenter [57] Searched 6.7M 4.6 4.1 39.9
MobileViT [48] Searched 3.9M 2.2 41.8 34.9

SegFormer-B0 [63] MiT-B0 3.8M 8.4 2.6 37.4
TopFormer-Base [68] N.A. 5.1M 1.8 36.3 37.8
TopFormer-Small [68] N.A. 3.1M 1.2 54.7 36.1
TopFormer-Tiny [68] N.A. 1.4M 0.6 82.7 31.8

Ours
Ours-Base Searched 3.7M 1.8 56.5 38.9
Ours-Small Searched 3.3M 1.2 75.2 37.5
Ours-Tiny Searched 1.3M 0.7 98.0 33.5

methods cost too many resources and we can hardly rerun
their experiments. Some methods provide their well-trained
models, and we can test with the trained model.

5.2. Experimental Settings

Train Settings. We perform the pruning to search for a suit-
able width for each CONV layer in the TopFormer model.
To enable a larger search space, we adopt the TopFormer
architecture and use a larger per-layer width compared with
the TopFormer-Base model. So our unpruned model has
4.1GMACs (with 39.9 mIoU), larger than the 1.8GMACs
of the TopFormer-Base model.

We use stochastic gradient descent (SGD) optimizer, and
momentum is set to 0.9, and set the batch size to 8 on
each GPU. For ADE20K, the initial learning rate is set to
1.2 × 10−4, and the “poly” learning rate policy is applied.
For the Cityscapes dataset, the initial learning rate is set
to 3 × 10−4, and we apply the “poly” learning rate policy.
For PASCAL VOC 2012, we set the initial learning rate as
0.01. Learning rate value is determined as

(
1− iter

total iter

)0.9
where iter refers to the current iteration number. For the
ADE20K dataset, we incorporate data augmentation by re-
sizing with the random ratio between 0.5 and 2.0 as well as
random flipping. On the Cityscapes dataset, multiple ran-
dom scaling {0.5, 0.75, 1.0, 2.0} and fixed size cropping of
512 × 1024 are adopted for data augmentation. We choose
the crop size for a better trade-off between mobile capac-
ity and accuracy. We set hyperparameters β = 0.01 and

λ = 0.1 in the experiments.
Test Settings. Instead of muti-scale testing, we employ sin-
gle scale testing for a fair comparison. For the ADE20K
dataset, we use 512 × 512 as the input resolution. For the
Cityscapes dataset, 512 × 1024 (rather than 1024 × 2048)
is used as the inference resolution during testing for the fol-
lowing reasons. (i) In practice, we cannot use the resolution
1024× 2048 since it causes memory overflow problems on
our selected mobile phone. (ii) Besides, since the screens
on edge devices such as mobile phones are not very large,
the resolution of 512× 1024 is good enough to serve on the
small screens. (iii) Moreover, we find that this 512 × 1024
resolution can greatly speedup the inference on the mobile
phones without significant accuracy degradation.
Experiment Environments. We train and prune the model
using PyTorch 1.9 and CUDA 11.1 on 8 NVIDIA RTX TI-
TAN GPUs. We measure the mobile latency on the GPU
of an Samsung Galaxy S21 smartphone, with Qualcomm
Snapdragon 888 mobile platform integrated with Qual-
comm Kryo 680 Octa-core CPU and a Qualcomm Adreno
660 GPU. Note that for most baseline works, even the re-
duced resolution (512× 1024) can cause an out-of-memory
problem on the selected mobile device.
Compiler Framework on Mobile Devices. We need to
compile the models before they can be executed on mobile
devices. For TopFormer, we adopt the compiler TNN [13]
to report the speed performance, which is also used in the
original TopFormer paper. To further improve the inference
speed, we adopt several compiler optimization methods and
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Table 2. Our search results on the Cityscapes val dataset. We compare with popular handcraft baselines, NAS-based models, pruning based
methods and lightweight ViT-based models. We measure the FPS on the Qualcomm Adreno 660 GPU of the Samsung Galaxy S21 mobile
phone. Some FPS results are not available due to unsupported operations on the mobile device.

Category Method Backbone Resolution #params GMACs FPS mIoU%

Human
Design

ENet [50] N.A. 512× 1024 354.9K 5.9 − 58.5
PSPNet [71] ResNet101 1024× 2048 68.07M 525.0 0.2 78.8

BiSeNetV2 [66] N.A. 512× 1024 3.34M 24.6 5.0 73.4
DeepLabV3+ [6] MBv2 512× 1024 2.26M 9.5 9.4 69.0

STDC1-Seg50 [21] STDC1 512× 1024 12.05M 31.1 4.3 72.2
STDC2-Seg50 [21] STDC2 512× 1024 16.08M 44.3 3.7 74.2

NAS
Auto-DeepLab-S [45] N.A. 1024× 2048 10.15M 333.3 − 79.7

FasterSeg [7] N.A. 1024× 2048 − 28.2 − 73.1
DCNAS [69] N.A. 1024× 2048 − 294.6 − 85.0

Prune

EagleEye [38] N.A. 512× 1024 3.6M 2.4 27.6 69.6
DMCP [28] N.A. 512× 1024 3.5M 2.4 32.0 70.3
ResPep [16] N.A. 512× 1024 3.5M 2.4 28.2 71.3
CHEX [32] N.A. 512× 1024 3.4M 2.4 35.5 71.7

ViT

HRViT-b1 [26] N.A. 512× 1024 8.1M 28.2 − 81.6
SegFormer-B0 [63] MiT-B0 512× 1024 3.8M 17.7 0.9 71.9

TopFormer-Base [68] N.A. 512× 1024 5.1M 2.7 21.5 70.6
TopFormer-Tiny [68] N.A. 512× 1024 1.4M 1.2 42.8 66.1

Ours
Ours-Base Searched 512× 1024 3.7M 3.6 30.8 74.7
Ours-Small Searched 512× 1024 3.3M 2.4 38.7 73.6
Ours-Tiny Searched 512× 1024 1.3M 1.4 52.6 71.5

develop an advanced compiler framework to compile our
models and test their on-mobile speed. We show the details
about our compiler optimization in Appendix E.

5.3. Experimental Results and Analysis

Segmentation Performance. Based on the TopFormer
model, we obtain three models (Ours-Base, Ours-Small,
and Ours-Tiny) with different computations. We show the
comparison results on ADE20K in Table 1 and Cityscapes
in Table 2. (i) For ADE20K, we can observe that the human-
designed segmentation models and NAS-based models usu-
ally consume many computations (such as DeepLabV3+
with 26.9GMACs) in terms of MACs (multiply–accumulate
operations). They can hardly achieve real-time inference
on edge devices. Some NAS-based models with a small
number of computations are not able to achieve high mIoU
(such as HR-NAS-A with 33.2 mIoU). (ii) For the compar-
ison with other pruning methods, we start from the same
dense model and set the target GMACs to the same number
(1.2GMACs) to make a fair comparison. We can see that
our small model can achieve higher mIoU given the same
GMACs. (iii) Compared with the ViT-based TopFormer,
our models can achieve higher mIoUs with non-trivial im-
provements under the same computation budget (such as
Ours-Small 37.5 mIoU v.s. 36.1 of TopFormer-Small under
the same 1.2GMACs). Our models can achieve a faster in-
ference speed (FPS higher than 50) on mobile phones com-
pared with TopFormer models. We show the comparison
with the baselines in terms of mIoU and FPS in Figure 1.
We can achieve a better trade-off between mIoU and FPS.

(i) On the Cityscapes dataset, compared with hand-
crafted CNN-based segmentation models, including

BiSeNetV2 and STDC, our searched base model greatly
reduces the GMACs (such as Ours-Base 3.6GMACs v.s.
24.6GMACs of BiSeNetV2) and achieves non-trivial
better accuracy (Ours-Base 74.7 mIoU v.s. 73.4 mIoU of
BiSeNetV2), as shown in Table 2. (ii) Compared with
NAS-based methods such as FasterSeg, our models can
achieve higher mIoU with much smaller computation costs.
Other NAS methods consume too many computations (e.g.,
DCNAS with 300GMACs) to be deployed on edge devices.
(iii) Compared with other pruning baselines, under the
same computation budgets (2.4GMACs), our small model
can achieve higher mIoU. (iv) Compared with transformer-
based methods such as SegFormer-B0, similarly, our
models achieve higher mIoU with less computations. Our
small and tiny models have similar computations compared
with TopFormer-Base and TopFormer-Tiny. But we can
achieve higher mIoU.
Speed Performance on Mobile Devices. Our base model
can achieve 56.5 FPS on the mobile device (Samsung
Galaxy S21), which implements real-time execution with
competitive segmentation performance, as shown in Ta-
ble 1. Other baseline methods except TopFormer can hardly
achieve real-time segmentation on edge devices, usually
with FPS lower than 10. Our faster inference speed than
TopFormer is achieved with the compiler optimization tech-
niques, detailed in Appendix E.
Search Overhead. We show the search cost in Table 3.
We only show the cost of our small model since our base,
small and tiny models have similar search costs. It takes ap-
proximately 1.3 GPU days, which is smaller than the search
cost of most other NAS-based segmentation methods. Our
method can efficiently search out a compact model with

15408



Table 3. Comparison of search cost on the Cityscapes val dataset.
Method GPU Days GMACs mIoU

Auto-DeepLab [45] 3 695.0 82.1
GAS [44] 6.7 - 73.5

FasterSeg [7] 2 28.2 73.1
Fast-NAS [49] 8 435.7 78.9

SparseMask [62] 4.2 36.4 68.6
DCNAS [69] 5.6 294.6 85.0

LDP [34] 4.3 − 75.8
Without implicit gradients 1.1 2.4 71.9

Ours-Small 1.3 2.4 73.6

fewer computations and better segmentation performance.
The low search cost is achieved by our pruning parameteri-
zation framework. Based on the soft mask and the low-cost
thresholding and STE method, we are able to directly train
the model weights and the pruning parameters. During the
training, the pruned channels are zeroed out by the binary
mask without the need of additional fine-tuning. Besides,
our bi-level optimization can efficiently address the second-
order derivatives with low computation complexity.
Visualization Comparison. We show the visualization
comparison of our base model and other baselines in Ap-
pendix F. We can achieve better segmentation performance.
Results on Other Datasets and Model Architectures. We
show the results on the Pascal VOC dataset in Table 4.
We can observe that handcrafted CNN-based methods usu-
ally require more computational cost (such as DeepLabV3+
with 5.7 GMACs for MobileNetV2 backbone and 37.8
GMACs for ResNet50 backbone). Compared with ViT-
based TopFormer, our method could achieve better mIoU
under the same computational cost (such as Ours-Small
73.4% v.s. 69.8% mIoU of TopFormer-S for 1.2 GMACs).

Our method is general and can be applied to other model
structures. We show the results for DeepLabV3+ [6] on
Cityscapes in Table 5. Our two searched models have fewer
parameters and computations with accelerated on-mobile
inference speed, while achieving better mIoU compared
with the original DeepLabV3+ model. Other models such
as BiSeNetV2 or STDC cost much more computations.

5.4. Ablation Study

In our bi-level optimization, we incorporate implicit gra-
dients in Equation (11). To demonstrate the advantages with
implicit gradients, we consider the case without implicit
gradients which omits the second term in Equation (11) with
just dLm(w∗,s)

ds = ∇sLm(w∗, s). We compare the perfor-
mance of the solution without implicit gradients and our bi-
level solution with implicit gradients on Cityscapes in Ta-
ble 3. We can observe that our solution with implicit gradi-
ents has a search cost slightly higher than the solution with-
out implicit gradients, demonstrating that our first-order so-
lution for the second-order derivatives in Equation (12) can
effectively save computation cost. For mIoU, our method

Table 4. Results on the PASCAL VOC 2012 test dataset. We com-
pare our results with popular CNN-based models and lightweight
ViT-based models.

Method #params GMACs mIoU% FPS

EfficientNet-B7 [59] 66.0M 194.0 85.2 0.1
EMANet [41] 10.0M 43.1 80.1 2.5
PSANet [2] 18.5M 56.3 78.5 1.4

DeepLabV3+ R101 [6] 43.9M 58.5 77.4 2.2
DeepLabV3+ R50 [6] 24.9M 37.8 76.3 3.1

DeepLabV3+ MBv2 [6] 2.3M 5.7 70.5 5.1
TopFormer-B [68] 5.1M 1.8 71.0 36.8
TopFormer-S [68] 3.1M 1.2 69.8 55.2
TopFormer-T [68] 1.4M 0.6 65.7 81.5

MobileViT-XXS [48] 1.9M 1.7 73.6 43.8

Ours-Base 3.7M 1.8 74.3 56.8
Ours-Small 3.3M 1.2 73.4 75.0
Ours-Tiny 1.3M 0.7 70.5 97.6

Table 5. Our searched results for DeepLabV3+ with MobileNetV2
backbone on Cityscapes val. The input resolution is 512× 1024.

Method #params GMACs mIoU% FPS

BiSeNetV2 [66] 3.34M 24.6 73.4 5.0
STDC1-Seg50 [21] 12.05M 31.1 72.2 4.3
STDC2-Seg50 [21] 16.08M 44.3 74.2 3.7
DeepLabV3+ [6] 2.26M 9.5 69.0 9.4

Ours-Base-DeepLab 1.21M 7.6 70.9 22.3
Ours-Small-DeepLab 569.0K 4.3 70.2 28.1

can achieve higher mIoU with non-trivial improvements,
demonstrating that incorporating implicit gradients can ef-
fectively boost the performance.
Hyperparameter Tuning. We show the results with var-
ious β and λ in Appendix G. To compare with baselines
under certain computations, we mainly show the results of
our three sparse models (Ours-Base, Ours-Small, and Ours-
Tiny). We show the results of more models under other
computations in Appendix H.

6. Conclusion
We propose pruning parameterization with the threshold-

ing and STE methods to build a pruning framework. Based
on the framework, we formulate the problem and propose
a bi-level optimization method with the implicit gradients.
Our experimental results demonstrate that we can achieve
the highest mIoU under the same computation constraint on
various datasets. Specifically, we can achieve 38.9 mIoU on
the ADE20K with a real-time inference speed of 56.5 FPS
on the Samsung S21.
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