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Abstract

The research in real-time segmentation mainly focuses on
desktop GPUs. However, autonomous driving and many other
applications rely on real-time segmentation on the edge, and
current arts are far from the goal. In addition, recent advances
in vision transformers also inspire us to re-design the net-
work architecture for dense prediction task. In this work, we
propose to combine the self attention block with lightweight
convolutions to form new building blocks, and employ latency
constraints to search an efficient sub-network. We train an
MLP latency model based on generated architecture configu-
rations and their latency measured on mobile devices, so that
we can predict the latency of subnets during search phase. To
the best of our knowledge, we are the first to achieve over 74%
mIoU on Cityscapes with semi-real-time inference (over 15
FPS) on mobile GPU from an off-the-shelf phone.

Introduction

Deep Neural Networks (DNNs) have achieved great success
in various tasks with extraordinary performance. In this work,
we investigate semantic segmentation. As a dense prediction
task, it aims to assign a class label to each pixel, and plays
an important role in many real-world applications like au-
tonomous driving. However, segmentation models usually
consume tremendous memory and computation resources,
leading to difficulties for deployment on the resource-limited
devices. The large feature size and complicated multi-scale
feature fusion limit the efficiency of segmentation models.

From the scope of architecture design, lightweight CNNs
(Yu et al. 2021) dominate the design space for efficient seg-
mentation. Recent advances in vision transformer (Dosovit-
skiy et al. 2021) inspires new research other than traditional
CNNs on segmentation task, specifically, based on self atten-
tion mechanism (Xie et al. 2021) with global receptive field.
However, neither vision transformers nor traditional CNNs
(Chen et al. 2018a; Yu et al. 2021) are computational efficient
enough for edge deployment. It is especially difficult for vi-
sion transformers to handle large resolution inputs, and we
observe that they even underperform CNNs in real-time com-
putation budget. The open question is, can we incorporate
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the strength of them, combine the efficiency of lightweight
convolutions and global receptive field of transformers, while
avoiding intensive computations? In this work, we take a step
toward this goal with a self attention block to extract spatial
dependencies in the low resolution segment branch, and a
lightweight CNN stem to reduce computation overhead.

In addition to new design, it is crucial to search for a com-
pact network for efficient deployment. Neural Architecture
Search (NAS) and network pruning have been extensively in-
vestigated to discover good architectures with lower memory
occupancy, reduced energy consumption, and faster infer-
ence speed. Though NAS and automatic pruning have been
proven to be successful on the classification task, it is non-
trivial to migrate them to dense image prediction, due to the
tremendous searching computation cost to train multiple can-
didate architectures in Reinforcement learning (RL)-based
NAS methods (Zoph and Le 2017; Zhong et al. 2018; Zoph
et al. 2018), or the huge memory cost to train all architectures
simultaneously in differentiable NAS methods (Brock et al.
2017; Bender, Kindermans et al. 2018; Liu, Simonyan, and
Yang 2018).

Firstly, state-of-the-art segmentation models usually incor-
porate complex contextual fusion, that is, utilizing informa-
tion from multiple spatial resolutions. As a result, unlike the
cell-level search on classification, the search space is hier-
archical for the segmentation task, which is quite large and
the policy is difficult to converge, and may even converge
to poor local minima. Secondly, there are no well-defined
proxy tasks in semantic segmentation. The general practice
is to directly search on the target dataset with early stopping.
The accuracy is usually very low and comparison among the
candidates may not reflect the final performance. Thirdly,
the current segmentation paradigm (Chen et al. 2018a), es-
pecially ViTs (Xie et al. 2021), highly relies on knowledge
transformation from larger scale datasets, e.g., pretraining on
ImageNet-1000 (Deng et al. 2009) or MS COCO (Lin et al.
2014). When performing architecture search, candidates are
not pretrained on ImageNet first but directly trained on dense
prediction, which may enlarge the accuracy gap between the
early-stopped model and well-trained model. Moreover, ex-
ternal knowledge makes the performance assessment unfair.

In this work, we first combine the advantage of ViTs and
CNNs and design a mixed supernet building block that wields



global receptive field and detailed local features, and over-
comes the intensive computation of pure transformers. Be-
sides the architecture design, we propose a new search and
training paradigm to resolve the aforementioned problems. (i)
To address the hierarchical search space, we design a block
and width search starting from a dedicate human-designed
architecture, which saves considerable searching cost com-
pared to those searching on densely connected grid (Liu et al.
2019; Zhang et al. 2021; Chen et al. 2019). Width search
is achieved by automatic channel pruning from a wide su-
pernet. We perform block search by gradient-based gamble
softmax sampling, which is capable of choosing or remov-
ing building blocks through backpropagation. (ii) We per-
form proxyless search, which directly trains and evaluates
sub-networks for image dense prediction without external
knowledge. We perform self knowledge distillation and add
auxiliary losses along with the search process. The distillation
not only stabilizes the candidate training, but also enables
us to fully exploit the potential of the sub-net and directly
deploy an accurate model within single phase training. (iii)
Since we aim at real-time inference on the edge, we design
a new latency-aware regularization that directly assesses the
inference speed/latency of candidate.

Our contributions include:
• We incorporate the merits of lightweight convolution and

self attention to design a new segment branch for efficient
and accurate segmentation.

• We propose an efficient search paradigm. Starting from a
good dual branch supernet, we can automatically optimize
the block selection and width in less than 16 GPU hours
under latency constraints. The search cost is significantly
reduced compared to hierarchical grid search.

• We utilize self knowledge distillation and auxiliary losses
to fully exploit the potential of the subnet without external
knowledge, making our method fair and reliable.

• To the best of our knowledge, we are the first to achieve
semi-real-time segmentation on a mobile GPU (15 FPS)
with competitive accuracy (> 74 mIoU on Cityscapes).

Related Work
Real-Time Semantic Segmentation. CNN-based semantic
segmentation (Zhao et al. 2017; Chen et al. 2018b; Fu et al.
2019; Huang, Zhu, and Huang 2019) achieves great success,
but generally suffers from intensive computation cost and
slow inference speed. Current research in real-time segmen-
tation mainly focuses on desktop GPUs, and can be classified
into two categories, human designs (Yu et al. 2018; Li et al.
2020; Yu, Gao et al. 2020; Fan et al. 2021) or neural architec-
ture search (NAS) methods (Liu et al. 2019; Li et al. 2019b;
Chen et al. 2019; Zhang et al. 2021).

As pioneer in handcrafted real-time segmentation,
ENet (Paszke et al. 2016) incorporate a lightweight network
to achieve high inference speed. DeepLabV3+ (Chen et al.
2018b) utilizes atrous separable convolution to reduce FLOPs
and uses the light-weight MobileNetV2 (Sandler et al. 2018)
as the backbone. BiSeNet (Yu et al. 2018; Yu, Gao et al. 2020)
and STDC (Fan et al. 2021) adopt a two-branch architecture,
where one extracts spatial information with a deeper network,
and the other utilizes a shallower network to learn details.

SFNet (Li et al. 2020) uses flow alignment module to fuse
context information and spatial information.

Inspired by NAS, many works investigate the poten-
tial of searching segmentation models automatically. Auto-
DeepLab (Liu et al. 2019) presents a hierarchical search
space to achieve extremely high segmentation performance
regardless of computation budgets. FasterSeg (Chen et al.
2019) incorporates a latency regularization to search for effi-
cient models. DCNAS (Zhang et al. 2021) proposes a densely
connected search space with gradient-based searching.

Vision Transformers. Vision Transformers (ViTs) intro-
duced in (Dosovitskiy et al. 2021) employ a self attention-
based transformer architecture in visual recognition tasks to
achieve comparable performance against CNN counterparts.
ViT is then adopted in dense prediction tasks. SETR (Zheng
et al. 2021) uses ViT as the encoder to get high-level feature
map. Segmenter (Strudel et al. 2021) uses mask transformer
as the decoder. Segformer (Xie et al. 2021) uses a hierarchi-
cal transformer encoder to produce multi-scale feature map
and a lightweight MLP based decoder for efficient semantic
segmentation. MaskFormer (Cheng, Schwing, and Kirillov
2021) abandons per-pixel prediction and used mask-based
model to predict a series of masks, with a customize backbone
and a transformer based decoder. Mask2Former (Cheng et al.
2021) uses a transformer decoder with masked attention and
proposed a universal architecture for all segmentation tasks
including instance segmentation, semantic segmentation and
panoptic segmentation, with SOTA performance.

Neural Architecture Search and Pruning. NAS is proposed
to identify high-performance network architectures from a
given search space automatically. Reinforcement learning
(RL) based NAS (Zoph and Le 2017; Pham et al. 2018) and
evolution-based NAS (Elsken, Metzen, and Hutter 2018; Real
et al. 2019) usually need to train and evaluate each candidate
model, leading to tremendous searching cost. Another direc-
tion is the gradient-based NAS (Liu, Simonyan, and Yang
2018; Cai, Zhu, and Han 2018; Chu et al. 2019; Guo et al.
2020), which relax the discrete architecture representation
into a continuous and differentiable form, to enable a more
efficient search with gradients descents, at the cost of huge
memory budget to cover all candidate architectures.

Network pruning is another compression technique that
can effectively reduce the DNN storage and computation cost.
Specifically in this work, we refer to structured pruning (Wen
et al. 2016; Li et al. 2019a; Cai et al. 2019) which removes
entire filters or channels of the convolution layer. Recent
work (Li et al. 2022) employs reparameterization technique
(Ding et al. 2021) to enable a flexible pruning policy.

Method

In this section, we introduce our new design of supernet block
and search algorithm. Moreover, we utilize auxiliary losses
and self-distillation to fully exploit the potential of the subnet
without access to external knowledge.

Supernet Design

As discussed in BiseNetV2 (Yu, Gao et al. 2020), mixing
convolution and attention in each building block is not desired
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Figure 1: Illustration of the proposed method. We search from a dual branch supernet with a shallow detail path and a deep
segment path with mixed block, and we demonstrate auxiliary losses and the method of self distillation.

for efficient inference. Following the dual branch design, we
keep the detail branch built with convolutions and introduce
mixed block only in segment branch, as shown in Fig. 1.
Detail Branch. To extract low-level features, the detail
branch in supernet is built with shallow 3× 3 convolutions,
including 3 downsampling layers with stride = 2 to obtain
H
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2
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4
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4
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features.

Segment Branch. Segment branch is the key to extract
spatial dependency and guarantee sufficient large receptive
field. As a result, it is often deep and computation intensive.
To address this, we follow BiSeNet to employ a stem block
that quickly downsamples feature size to H

4
× W

4
.

Following the stem block, we append downsampling
blocks (Fig. 2 (a)), as well as the newly designed mixed block
which combines lightweight inverted residual block (LIR)
and multi-head self-attention (MHSA) (Fig. 2 (b)). Different
from the inverted residual block in BiSeNet, we change the
group-wise convolution into consecutive 1×1 and depth-wise
convolution. The benefits come two-fold. We observe that
this mobile-like design boosts accuracy as it preserves the
5×5 receptive field achieved by 2 consecutive 3×3 convolu-
tions, while offering more channel combinations. In addition,
group-wise convolution is not well-supported on compilers
and is hard to accelerate. As for the MHSA branch, we firstly
divide 2D images (4D tensor) with size (B,C,H,W ) into
patches (B,N, P 2C) and apply global attention,

Xl = MHSA(Ql,Kl, Vl) = Softmax(
Ql ·KT

l√
dim

) · Vl,

(1)
where the Queries (Q), Keys (K) and Values (V) are computed
by linear projection

[Ql : Kl : Vl] = Wdim×3 ·Xl−1. (2)

Similar to the standard configuration from ViT (Dosovitskiy
et al. 2021), we apply pre-MHSA layer normalization, and
post-MHSA MLP projections. We then transform the output
patches back to 4D tensor and add them with the output of

LIR through gamble softmax sampling to form a new dual-
path supernet building block, as shown in Fig. 2 (b).

Note that our design differs from (Ding, Lian et al. 2021)
for the following reasons. Firstly, we do not apply the mixed
block to the shallow detail branch, as it is neither necessary
for accuracy, nor computation efficient to perform MHSA
on large feature sizes. Secondly, in our search pipeline, only
one operator in the mixed block is preserved during inference
stage, that is, either to perform the LIR or MHSA path. This
is because frequent patchify and reshaping operations incur
large overhead on edge devices with difficulties to parallelize.
Feature Aggregation and Decoder. Despite naive addition
or concatenation, we employ Bilateral Guided Aggregation
(BGA) as proposed in (Yu et al. 2021). With appropriate
upsampling to match the spatial resolution of segment path
and detail path, segment features are encoded as attention
map by sigmoid activation and then multiplied with features
from detail branch.

We use a light decoder as many efficient segmentation arts
(Chen et al. 2018a; Yu et al. 2021) do, which consists of
bilinear upsampling and convolutions.

Width Search by Parameterized Pruning

In width search, we aim to shrink convolution filters. Specif-
ically, we need to determine unimportant feature channels
and eliminate them. To achieve this, we create a depth-wise
binary convolution (DWBC) layer as a trainable indicator
to denote the pruning strategy of each CONV layer. The
DWBC layer is built on a depth-wise 1× 1 CONV layer and
is inserted following each CONV layer. The width search
workflow is shown in Fig. 2 (c). The forward pass of the
DWBC layer can be defined as follows,

bl =

{

1, cl > Th. (element-wise)

0, cl ≤ Th.
(3)

al = bl ⊙ (wl ⊙ al−1), (4)

where cl ∈ Ro×1×1×1 is the weights of the depth-wise 1×
1 CONV layer with o output channels. Th is a threshold,
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Figure 2: (a) Downsample block in segment branch. (b) Mixed branch with lightweight inverted residual and multi-head self
attention. (c) Illustration of DWBC channel shrinking.

which is simply set as 0.5 here. ⊙ is the CONV operation.
wl ∈ Ro×i×k×k is the l-th CONV layer weights, with o
output channels, i input channels, and kernel size k × k.

al ∈ RB×o×s×s′ is the output features with s × s′ feature
size. B denotes the batch size.

In the forward pass, for the l-th CONV layer wl, the
DWBC layer first quantize its weights of depth-wise 1 ×
1 CONV layer into binary values bl. Then it performs
CONV operation for the outputs of the previous CONV
layer wl ⊙ al−1 with the binarized weights bl. Let bl =
{0}o0×1×1×1 ⊕ {1}o1×1×1×1, where o0 and o1 denote the
number of zeros and ones in bl, respectively (o0 + o1 = o),
and ⊕ refers to channel-wise concatenation. Thus we have

al =b
o×1×1×1

l ⊙ (wo×i×k×k
l ⊙ al−1)

=({0}o0×1×1×1 ·wo0×i×k×k

l ⊙ al−1)

⊕ ({1}o1×1×1×1 ·wo1×i×k×k

l ⊙ al−1)

=w
o1×i×k×k

l ⊙ al−1,

(5)

where zero channels are removed in the last equality. With
DWBC, where each element in bl corresponds to an output
channel of wl ⊙ al−1, non-zero elements mean that the cor-
responding channels are kept while zero elements denote that
the corresponding channels are pruned. Thus, the DWBC
layer serves as a binary mask to show the pruning status of
each channel and is optimized through gradient descent.

The next problem is how to train the DWBC layers.
Since bl is determined through binarization of cl, we only
need to train cl. However, the binarization operation is non-
differentiable, leading to difficulties for back-propagation
with gradients. To overcome this, we propose to adopt
Straight Through Estimator (STE) (Bengio, LÂeonard, and
Courville 2013) to pass gradients and enable gradient de-
scent. Specifically, the gradient with reference to bl is directly
passed to cl as shown below,

∂L

∂cl
=

∂L

∂bl
, (6)

where ∂L
∂bl

can be obtained through back-propagation with-

out difficulties. With STE, cl can be updated with gradient
descent optimizers in a typical training.

STE is originally proposed to avoid the non-differentiable
problem in quantization tasks. We have several advantages
to integrate STE with DWBC layers in channel shrinking: (i)

The pruning strategy is decoupled from model parameters
magnitudes. It is not determined by the weight magnitude.
Instead, we have a separable variable to determine whether to
prune each channel. (ii) The information in pruned channels
is preserved since zeros in DWBC layers do not zero out the
weights of pruned channels. Different from weight magnitude
based pruning to keep all pruned weights zero, the pruned
channels in our method do not necessarily become zero. As a
result, the pruned channels are free to recover and contribute
to accuracy if later its corresponding mask is changed from 0
to 1. (iii) We can train the model parameters W = {wl} and
the pruning policy parameters C = {cl} simultaneously.

Differentiable Block Search

Besides width search, for the mixed block, we need to select
desired block type or eliminate unnecessary blocks to avoid
computations. Thus, we adopt Gumbel softmax sampling to
automatically search the block number and block type.

To perform block search, we add a skip connection from
input to output for each mixed block. Thus each block needs
to choose one path from a skip connection and the other two
branches (LIR and MHSA), leading to various block num-
bers and types in the model. The illustration of block search
is shown in Fig. 2 (b). The path selection is usually non-
differentiable, leading to difficulties for model training with
optimizers. Therefore, we adopt the differentiable Gumbel-
softmax sampling (Jang, Gu, and Poole 2016). At each op-
timization step, we sample one path with Gumbel-softmax
and train the model with the selected path.

With Gumbel-softmax, the forward pass is expressed as

gn = h
s
n · gn−1 + h

l
n · gl

n ++h
m
n · gm

n , (7)

where gn is the output features of the n-th block. gl
n is the out-

put features of LIR and gm
n is the MHSA output features. hs

n,
hl
n and hm

n (usually one hot) are the corresponding path se-
lection variables in the n-th block. Thus H = {hs

n, h
l
n, h

m
n }

denotes the path selection for mixed block search.

Though pruning all channels results in an entirely vanished
block, we do not employ DWBC layer and STE method in
depth search because eliminating all channels of a CONV
layer leads to mutation in regularization loss for adjacent
layers and introduces instability.



Latency-Aware Constraints
With the proposed method, we can train the model and search
a suitable width and block simultaneously with the loss,

min
W ,C,H

L(W ,C,H) + β · Lreg(C,H), (8)

where Lreg is the regularization term related to the computa-
tion complexity or on-chip latency. β is a hyper-parameter to
weight the relative importance.

In this work, we target to assess the model with its real
latency on mobile GPUs. Prior works (Wu, Dai et al. 2019;
Dai, Zhang et al. 2019; Yang, Howard et al. 2018) either
collect on-device latency data to build a lookup table for la-
tency estimate, or deploy each candidate on chip to gather
real latency data. Clearly, these methods either suffer from
large estimation errors or introduce additional overhead in
search process waiting for real on-chip latency data. Conse-
quently, we propose a new solution to generate a sufficient
amount of different candidate building blocks in the search
space and measure their latency on the mobile device. Then,
we train a DNN (named as the latency model) based on the
collected data to predict the speed/latency of candidate ar-
chitectures. We find that a tiny DNN composed by a few
fully connected layers is sufficient for this objective. Plus,
this paradigm enables a once-for-all benefit, which means
we can reuse the latency model as long as targeting on the
same device. As a result, searching new sub-networks under
different constraints will not introduce extra evaluation cost.
The latency based regularization term becomes

LLAT
reg =

∣

∣

∣

∣

∣

∑

b

S{o1, i, s, s
′
, k} − S

∣

∣

∣

∣

∣

2

, (9)

where S denotes the DNN to predict latency based on block
characteristics (feature size, input and output channel, etc.).
S is the target latency, and

∑

b denotes latency measured
by blocks. This latency model is just a multi-layer percep-
tron (MLP) model with 5 fully connected layers and ReLU
functions. Since the latency prediction is not a very complex
regression problem, the latency model can be trained fast to
achieve high accuracy (<4% error-rate).

Performance Boosters

In order to further improve the performance of the searched
compact network, we utilize auxiliary losses and self distilla-
tion to boost its performance without learning external knowl-
edge from extra datasets or distillation with additional high-
performance models. The performance boosters are comple-
mentary and add no additional cost at inference time. For the
auxiliary loss, We plug several auxiliary segmentation heads
after each downsampling stage of the semantic branch and
compute the auxiliary loss with the ground truth label.

Our customized self distillation has two stages: The output
of supernet will give soft constraint to both the output of the
main network and the auxiliary classifiers. Self distillation
transfers knowledge from the strong supernet to the searched
compact subnet, at not additional access to external data
or knowledge. We use label-wise distillation to transfer the
knowledge from the powerful supernet T to a sub-network S.
In order for network S to learn the probability distribution of
teacher network T , we use Kullback±Leibler (KL) divergence
to compute the loss between two outputs:

Ld =
∑

i∈R

KL
(

q
s
i∥q

t
i

)

, (10)

where q
s
i denotes class distribution for each pixel i from

the output of student network, qt
i denotes class distribution

for each pixel i from the output of teacher network, R de-
note all pixels from the output image and KL(·) denotes KL
divergence which is calculated as,

KL(P∥Q) =
∑

x∈X

P (x) log

(

P (x)

Q(x)

)

, (11)

where P and Q are probability distributions on space X .
The final loss function after we apply auxiliary classify

losses and self distillation becomes:

L = min
W ,C,H

L+ β · Lreg + γLaux + λLd, (12)

where Laux is the auxiliary loss between the output of branch
segment heads and ground truth labels, Ld is the label-wise
distillation loss with respect to both that output of main
branch, as well as the output of branch segment heads. β, γ, λ
are hyperparameters to scale loss and stabilize training.

Experiments

Datasets and Metrics

Cityscapes. Cityscapes(Cordts, Omran et al. 2016, 2015)
is a dataset of urban street scenes from the perspective of
cars collected in 50 cities. It includes 5000 finely annotated
image, in which 2,975 images are used for training, 500 for
validation, and 1,525 for testing. We exclude coarse training
data. This dataset has 30 label classes and 19 of them are used
for segmentation. The resolution of images are 2048× 1024.
Though intensively studied, it is challenging to perform real-
time inference with such a high resolution.
Pascal VOC. PASCAL Visual Object Classes (VOC)
2012(Everingham et al. 2010) is a widely used dataset for
semantic segmentation, classification, and object detection
tasks. It includes 20 classes for 4 categories: Person, Animal,
Vehicle and Indoor. In the segmentation task, there will be 21
classes including ªbackgroundº. There are 1464 images for
training and 1449 images for validation.
ADE20K. ADE20K (Zhou et al. 2017, 2019) is a finely-
annotated image dataset for object segmentations and part
segmentations. It has a training set of 20, 210 images and
validation set of 2, 000 dataset with 150 object and stuff
classes. We use the object segmentation part of the dataset.
Metrics. For Semantic Segmentation evaluation, we use the
mean of class-wise intersection-over-union (mIoU) to mea-
sure the accuracy performance.

mIoU =
1

n

n
∑

i

∑

P i
overlap

∑

P i
union

, (13)

where n is the class number (e.g., 19 for Cityscapes), and Pi

refers to pixels that are assigned to a specific class label i.

Experimental Settings

Train Settings. We start the latency aware search from a
fully pretrained supernet on the segmentation task. Note that
the aforementioned booster strategies are applied throughout
the gradient-based search process. We use stochastic gradient
descent (SGD) optimizer and momentum is set to 0.9, and set



Method Pretrain Resolution Parameters GMACs FPS Val mIoU (%) Test mIoU (%)

ENet (Paszke et al. 2016) Y 512× 1024 354.9K 5.9 − − 58.3
PSPNet (Zhao et al. 2017) Y 1024× 2048 68.07M 525.0 0.2 − 78.4
DeepLabV3+ (Chen et al. 2018b) Y 512× 1024 2.26M 9.5 9.4 69.0 68.6
CAS (Zhang et al. 2019) N 768× 1536 − − − 71.6 70.5
DF1-Seg (Li et al. 2019b) Y 1024× 2048 − − − 74.1 73.0
BiSeNetV2 (Yu et al. 2021) N 512× 1024 3.34M 24.6 5.0 73.4 72.6
BiSeNetV2-L (Yu et al. 2021) N 512× 1024 − − − 75.8 75.3
SFNet (Li et al. 2020) Y 1024× 2048 8.5M 132 4.6 76.4 74.5
STDC1 (Fan et al. 2021) Y 512× 1024 12.05M 31.1 4.3 72.2 71.9
STDC2 (Fan et al. 2021) Y 512× 1024 16.08M 44.3 3.7 74.2 73.4
Auto-DeepLab-S (Liu et al. 2019) N 1024× 2048 10.15M 333.3 − 79.7 79.9(MS)
FasterSeg (Chen et al. 2019) Y 1024× 2048 − 28.2 9.8 73.1 71.5
DCNAS (Zhang et al. 2021) N 1024× 2048 − 294.6 − − 84.3
Segformer-B0 (Xie et al. 2021) Y 512× 1024 3.8M 17.7 1.6 71.9 −
Mask2Former (Cheng et al. 2021) Y 1024× 2048 44M 568.0 − 79.4 −
TopFormer-B (Zhang et al. 2022) Y 512× 1024 5.1M 2.7 − 70.7 −
Supernet N 512× 1024 24.43M 136.0 − 79.1 −
RTSeg-L N 512× 1024 5.55M 20.8 13.2 75.3 74.6
RTSeg-M N 512× 1024 3.56M 9.2 15.5 74.4 73.8
RTSeg-S N 512× 1024 2.69M 5.7 17.9 73.1 72.3

Table 1: Comparison of our latency-driven searched model and prior arts in Cityscapes. The first segment includes popular
handcraft baselines, while the second segment is NAS-based models. FPS is measured on the Qualcomm Adreno 660 GPU of
Samsung Galaxy S21 mobile phone, all with our compiler support for fair comparison. Some FPS results are not available due to
unsupported operations on mobile device. MS denotes for multi scale test. Detailed configurations can be found in Section .

batch size to 8 on each GPU. For Cityscapes, the learning rate
is set to 0.1 initially with ªpolyº policy. For PASCAL VOC
2012, we set initial learning rate as 0.01. Learning rate value

is determined as
(

1− iter
total iter

)0.9
where iter refers to the

current iteration number. The pretraining of supernet takes
160k iterations, while the search and fine-tune process both
take 40k iterations. We incorporate multiple random scaling
{0.5, 0.75, 1.0, 2.0} and fixed size cropping of 512 × 1024
as data augmentation For Cityscapes. The crop size is chosen
based on the trade-off between mobile capacity and accuracy.
To enhance the training, we also use color jitter and random
horizontal flip. As for PASCAL VOC 2012, we randomly
crop the input image to 513× 513. We set hyperparameters
β as 0.01, γ as 1.0 and λ to be 0.001 in all experiments.

Test Settings. Despite some work incorporate muti-scale
testing, we employ single scale test for fair comparison.
We take 512 × 1024 as inference resolution for Cityscapes
dataset, which greatly speedup inference on the edge while
does not sacrifice too much accuracy. Plus, the resolution of
512× 1024 serves enough for the scenario of edge sensors
and monitors. We set inference resolution to 513× 513 for
PASCAL VOC 2012 dataset.

Experiment Environments. We search and train the neural
network on 8 NVIDIA RTX TITAN GPUs, with CUDA 11.1
and PyTorch 1.9. Mobile latency is measured on the GPU
of an Samsung Galaxy S21 smartphone, with Qualcomm
Snapdragon 888 mobile platform integrated with Qualcomm
Kryo 680 Octa-core CPU and a Qualcomm Adreno 660 GPU.

Experimental Results and Analysis

Based on our latency-driven search algorithm, we search on
the proposed dual branch backbone with mixed operators.

Method Proxyless GPU Days GMACs mIoU

Auto-DeepLab N 3 695.0 82.1
GAS - 6.7 - 73.5
FasterSeg N 2 28.2 71.5
Fast-NAS N 8 435.7 78.9
SparseMask N 4.2 36.4 68.6
DCNAS Y 5.6 294.6 84.3
RTSeg-L Y 0.7 20.8 75.3
RTSeg-M Y 0.7 9.2 74.4
RTSeg-S Y 0.7 5.7 73.1

Table 2: Comparison of search methods on Cityscapes.

Width search can be achieved by the proposed trainable indi-
cators, while the blocks are searched by Gumbel-softmax. On
Cityscapes, as shown in Table 1, compared with BiSeNetV2,
our RTSeg-M greatly reduces the GMACs (our 9.2GMACs
v.s. 24.6GMACs of BiSeNetV2) and achieves non-trivial bet-
ter accuracy (our 74.4 mIoU v.s. 73.4 mIoU of BiSeNetV2).
We have similar observations for STDC1 and STDC2. SFNet
consumes too many computations (132GMACs) to be de-
ployed on practical edge devices. Compared with the NAS-
based method FasterSeg, our RTSeg-L, RTSeg-M and RTSeg-
S achieve higher mIoU with much smaller computation costs.
Other NAS methods such as Auto-DeepLab-S and DCNAS
consume a huge amount of computations (about 300GMACs)
which are inapplicable in practical mobile deployment. Com-
pared with transformer-based methods such as Segformer-B0,
similarly, our RTSeg-S achieves higher mIoU with less com-
putations, while the SOTA Mask2Former is performance
oriented and very computation intensive. Our RTSeg-M can
achieve 15.5 FPS on the mobile device (Samsung Galaxy
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Figure 3: Visualization of segmentation results on the Cityscapes dataset.

Method Params (M) GMACs mIoU

PSPNet 13.7 52.2 29.6
DeepLabV3+ 15.4 25.8 38.1
Semantic FPN 12.8 33.8 35.8
RTSeg-L 5.6 10.5 38.7

Table 3: RTSeg results on ADE20K with 512× 512 inputs.

S21), which approaches real-time execution with competi-
tive segmentation performance, as shown in Table 1. Current
desktop GPU designated arts can hardly achieve real-time
segmentation on the edge device, with FPS lower than 10.

We show the results on ADE20K in Table 3. As observed,
our method can achieve high mIoU with less computations
compared with baseline methods on ADE20K. We also vali-
date our method on PASCAL VOC dataset in Appendix. The
search process takes approximately 0.7 GPU days and we fur-
ther fine-tune the result sub-network for the same iterations.
As shown in Table 2, our method efficiently search out a com-
pact model while greatly save search cost compared to pre-
vious methods. Moreover, different from (Chen et al. 2018a;
Xie et al. 2021), we do not incorporate pretraining on Ima-
geNet. Thanks to our booster recipe, we successfully transfer
label-wise knowledge from the supernet, saving search and
training cost and meanwhile reduce human interference.

In Figure 3, we show the visualization comparison of our
RTSeg-S and BiSeNetV2. RTSeg-S are better in quality than
BiSeNetV2, especially for the buildings in the second row,
the road under the pedestrians in the third row, and the tiny
traffic sign in the fourth row, which is not well recognized by
BiSeNetV2. These results indicate that our proposed method
can effectively reduce the model size and computation while
maintaining a good ability to recognize different objects.

Method Designs Search

LIR ✓ ✓ ✓ ✓ ✓ ✓

MHSA ✓ ✓ ✓ ✓ ✓ ✓

Booster ✓ ✓ ✓

Search ✓ ✓ ✓ ✓

GMACs 25.1 29.2 29.5 20.8 20.8 9.2 5.7

mIoU 74.0 73.8 74.2 74.5 75.3 74.4 73.1

Table 4: Ablation study on the proposed methods. The
BiSeNetV2 baseline model has 24.6 GMACs and 73.4 uIoU.

Ablation Study

We conduct ablation study to verify the effects of proposed
components, as shown in Table 4. From the model design
level, we test the performance with new LIR block as well
as MHSA. In addition, we also test the results with/without
boosters. We can observe that simply adopting LIR or MHSA
for the BiSeNetV2, the mIoU can be improved from 73.4 to
74.0 and 73.8, respectively, demonstrating their effectiveness.
During search, adding the booster can improve the mIoU
from 74.5 to 75.3, showing the necessity of our strategy.

Conclusion

In this work, we redesign the backbone of semantic segmen-
tation task and incorporate the merits of self attention. Plus,
we propose an efficient latency-driven search framework to
find compact segmentation models. Our search algorithm can
be finished within a simple training process and our infer-
ence speed proves to be significant faster than previous arts.
Further, we utilized performance boosters including auxiliary
losses and self distillation that effectively exploit the potential
of the compact subnet without external knowledge.
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