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Abstract

Deep-learning-based clinical decision support using structured electronic health records (EHR) has been an active
research area for predicting risks of mortality and diseases. Meanwhile, large amounts of narrative clinical notes
provide complementary information, but are often not integrated into predictive models. In this paper, we provide a
novel multimodal transformer to fuse clinical notes and structured EHR data for better prediction of in-hospital
mortality. To improve interpretability, we propose an integrated gradients (IG) method to select important words in
clinical notes and discover the critical structured EHR features with Shapley values. These important words and
clinical features are visualized to assist with interpretation of the prediction outcomes. We also investigate the
significance of domain adaptive pretraining and task adaptive fine-tuning on the Clinical BERT, which is used to
learn the representations of clinical notes. Experiments demonstrated that our model outperforms other methods
(AUCPR: 0.538, AUCROC: 0.877, F1:0.490).

Introduction

Electronic health record (EHR) systems are widely used in the United States' and the large amount of EHR data
generated provides an opportunity for machine learning based predictive modeling to improve clinical decision
support. In particular, deep learning based techniques,>* have been used for prediction of in-hospital mortality,*>
diagnoses,%’ length of stay,® readmission.’

EHRs include structured data and clinical notes, which are often unstructured'’. Structured clinical variables, such as
the vital signals (e.g., heart rate, respiration rate, temperature, and blood pressure), can be easily converted to time
series data and are well explored by researchers.!’!>!3 For example, Harutyunyan et al.'* establishes a benchmark on
how to pre-process the MIMIC 111 dataset, and proposed various baselines for different tasks, e.g., Logistic Regression,
Random Forest, Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), and Convolutional Neural
Network (CNN). Dong et al.® develops a machine learning based opioid overdose prediction method with different
clinical variables. Unstructured clinical notes are often in free narrative form, but contain complementary and rich
contextual information, such as a patient’s symptoms, disease course and treatment'®. Though the normally pre-trained
natural language model Bidirectional Encoder Representations from Transformers (BERT)!¢ cannot handle specific
clinical notes, there are different variants of BERTs,!*!7!2 that are pretrained on biomedical and clinical data, which
can better handle clinical notes. For example, Clinical BERT'" pretrains the BERT using MIMIC 1II clinical notes
with masked language modeling (MLM) and next sentence prediction (NSP), to predict hospital readmission.
BEHRT? incorporates age and position information when modeling the clinical notes. BloBERT" is pretrained on
biomedical notes like PubMed abstracts and PubMed Central full-text articles to significantly improve biomedical text
mining task performance. BioRoBERTa!” points out that in-domain pretraining leads to performance gains. BLURB?!
benchmark is a recent work that released state-of-the-art pretrained and task-specific models for the community.
Despite these advances, how to leverage and interpret the information included in unstructured clinical notes remains
a challenging problem.

Multimodal fusion is a promising direction to address the aforementioned challenge. However, naively concatenating
features from different modalities might result in worse performances.?? It is challenging to embed data from the
structured clinical variables and unstructured clinical notes together because they are two totally different domains.
Si et al.!* provides a comprehensive survey on deep representation learning from single and multiple domains of EHR
data. Some works merely extract features from structured and unstructured data separately, and then concatenate the
two features.?® For example, Khadanga et al.?* extracts clinical notes with convolutional neural networks and
incorporates time series data to improve the performance. Deznabi et al.?> models two modalities with Long short-
term memory (LSTM) and BERT. Yang et al.” implements Multimodal Adaptation Gate (MAG)?® techniques to best
utilize information from two modalities. Teixeira et al.?’ tested different combinations of several different modalities.
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Huang et al.?® discuss fusion strategies of structured data and imaging data. However, these methods naively
concatenate without considering complexity of modality and time information. While transformers are gaining
popularity for use in different domains, there is limited work using transformers on EHR based predictive modeling.

In this paper, we propose a multimodal transformer to fuse time series data from clinical variables with textual
information from clinical notes to boost performance of in-hospital mortality prediction. We leverage clinical notes
to provide auxiliary information by adjusting the representation from two modalities to a sharable space across
different times, then jointly learn the representation from two modalities. Further, we implement the transformer on
the time series EHR data to fully consider the information across time, combined with the fine-tuned Clinical BERT
model, which is a novel application of EHR feature representation learning. We also show that pre-training of various
BERT models results in different prediction ability with regard to clinical tasks, and the BERT models fine-tuned on
the specific in-hospital prediction task brings further performance improvements. Furthermore, we extend our fine-
tuned Clinical BERT model with the integrated gradients (IG) method to interpret and visualize the important words
in clinical notes. Our results demonstrate that by leveraging the clinical notes, our proposed Multimodal Transformer
provides highly promising prediction results (with AUCPR: 0.538, AUCROC: 0.877, F1:0.490). To our best
knowledge, our Multimodal Transformer is the first work utilizing the transformer block to fuse clinical notes
information and clinical variable information, while including time series EHR data.

Methods
Study Dataset

We extract inpatient EHR data from the Medical Information Mart for Intensive Care (MIMIC-III) dataset.>” The
clinical variables are pre-processed as time series signals from ICU instruments following Harutyunyan et al.’s'
benchmark setup. Seventeen clinical variables remained after preprocessing: capillary refill rate; diastolic blood
pressure; fraction inspired oxygen; the eye opening, motor response, verbal response, and total value of the Glasgow
Coma Scale; glucose; heart rate; height; mean blood pressure; oxygen saturation; respiratory rate; systolic blood
pressure; temperature; weight; and pH.

For the clinical notes, similar to the setup from Khadanga et al.?*, we extract notes from the NOTEEVENTS.csv file,
and remove all clinical notes that do not have any chart time associated and remove patients that do not have any
clinical notes. While Khadanga et al. kept only the first visit for each patient, we treat every visit as a single sample.
Therefore, in the following paper, we use ‘patient’ to indicate ‘visit’. After the above data processing, our dataset for
in-hospital mortality prediction contains 14068 training samples, 3086 validation samples, and 3107 test samples. Due
to this step, our results are not directly comparable to the benchmark from Harutyuanyan et al..'*

S Twe S vame

Capillary refill rate 1

Categorical Glascow coma scale eye opening 3
Clinical
Variables Diastolic blood pressure 59.1
Numerical Fraction inspired oxygen 0.21
Clinical Notes Text Neitos chest ( portable ap ) clip # reason : pt had a left

sided picc line placed...

Figure 1. An example of MIMIC III EHR data for ICU patients, containing two modalities: clinical variables and
clinical notes. The clinical variables can be further split into categorical and numerical variables, while the clinical
notes are domain specific text.

Single Model Embedding

We aim to predict in-hospital mortality with multi-modal EHR data. First, we process two single modalities (clinical
notes and clinical variables) separately to obtain the initialized embeddings from the raw data. We introduce Notes
Embedding and Variables Embedding to achieve the initialized single modality embedding.

Clinical Notes Embedding. Though BERT models dominate increasing numbers of domains in NLP, BERT-based
models do not necessarily offer strong clinical text mining ability with regard to a specific clinical task. Rather, the
power of BERT-family models relies on domain adaptive pretraining and task adaptive fine-tuning. Pre-training on
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proper clinical biomedical corpora enables the BERT-based model to better learn clinical contextual meaning
representations, and fine-tuning on downstream tasks can further boost this ability and establish a specialized Clinical
BERT model. To illustrate this point, we compare the representation ability of four different BERT models (Table 1)
using only single clinical notes modality, namely BERT,!® BioBERT,!* BioRoBERTa,'” Clinical BERT,® pertained
on four types of corpora, respectively English Wikipedia / BooksCorpus, PubMed Abstracts / PMC Full-text articles
(initialized from BERT), S20RC,* and entire MIMIC III notes (initialized from BioBERT). Detailed results are
shown in Table 4.

We select Clinical BERT' as our pre-trained language model since it is a more proper domain-specific model trained
on all MIMIC-III clinical notes. We further fine-tune the Clinical BERT with the in-hospital mortality prediction task
on MIMIC-III, called MIMIC BERT (MBERT), which enables the Clinical BERT to learn better clinical specific
contextual embeddings on specific MIMIC data. For each patient, we extract an embedding of the clinical notes for
every associated hour to represent the clinical notes data with time information. In the following experiments, we
freeze the weights of MBERT when extracting unstructured clinical notes embeddings in multimodal transformer,
since the MBERT already preserves a good clinical meaning representation.

Table 1. Four BERT models and their respective corpora used for pretraining. Initialized model indicates the
starting point before pretraining.

Pretrained Model Pretraining Corpora Initialized Model Domain

BERT English Wikipedia, BooksCorpus General
BioRoBERTa S20RC RoBERTa Biomedical
BioBERT PubMed Abstracts, PMC Full-text articles BERT Biomedical
Clinical BERT MIMIC notes BioBERT Biomedical

Clinical Variables Embedding. Given that clinical variables contain numerical and categorical data, we apply one-hot
encoding to the clinical variables, illustrated in Figure 2. Following Harutyunyan's setup, the 17 clinical variables are
embedded to a 76-dimension time series embedding after the one-hot encoding. The categorical variables are
converted to one-hot vectors while the numerical variables are converted to a single continuous value.

For a formal mathematical representation, we denote the clinical notes data as X, pres € RE*P1, where L represents the
length of ICU stay counted by hours, and D; represents the maximum length of clinical notes. And we denote the
clinical variables data as X, € RL*P2, where D, represents the number of variables. The clinical notes are embedded
with Fine-tuned Clinical BERT (MBERT), as E, ptes = MBERT (Xp0tes), and the clinical variables are embedded as
E;s = Variable_Encoding (X;s).

Clinical Variables Encoding

e Capillary refill rate DRSS Frac't ion .
Visit ID (One-Hot) blood | inspired Glascow Coma Scale eye opening (One-Hot) (Other Variables)
pressure | oxygen
Visit 1 0 1 59.1 0.21 0 0 0 1 0 0 0 0
Visit 2 1 0 58.7 0.23 1 0 0 0 0 0
Visit 3 1 0 46.3 0.35 0 0 1 0 0 0 0 0

(OthermVisits)
Figure 2. An illustration of Clinical Variables Encoding.

Multimodal Embedding

We introduce a transformer to integrate two different modalities. Specifically, we introduce three encoders inside the
transformer block: Notes Encoder and Time Series (TS) Encoder for clinical notes and clinical variables modalities
separately, and Multimodal (MM) Encoder to fuse two modalities while projecting them into a shared space:

Encoders. (1) Notes Encoder. Given that the clinical notes embedding E,, .5 is already well presented, we only use a
single linear layer to project E,, s to a universal space. (2) Time Series (TS) Encoder. Since the clinical variables
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embedding contains simple numerical and categorical information, we also use linear layers to project E;s to a
universal space. (3) Multimodal (MM) Encoder. We do not simply concatenate the clinical notes and clinical variables
because the two modalities are conceptually different. We use a Multimodal Encoder to compact the two different
modalities into a universal space before we feed them into the transformer model, so that the information from clinical
notes and clinical variables can be jointly learned. The formal mathematical representation is as follows:

Lnotes = Encoderyores (Enotes)
Iis = Encoder;s(Es)
Iym = Encoderyy (Enores DErs)

where @ denotes concatenate operation, I, € RE*P3, I, € RL*P4 [y, € RL*Ps denotes outputs from associate
encoders, and D3, D,, D5 represent the corresponding embedding dimension.

Transformer. Our transformer block is the key to handle time series embeddings and integrate knowledge. The
transformer is a popular model developed for natural language processing (NLP), and has emerged as a promising
tool in other domains. In LSTM, if the time sequence is too long, then when the information is passed to the final
timestamp, the model forgets the information in the earlier timestamps. The powerful attention mechanism in the
transformer enables the model to better leverage the information from all the timestamps. However, more research is
needed to determine how best to apply the transformer in clinical tasks, especially when using multimodal data. We
successfully implement the transformer in our study to show the capability of the transformer model.

Multimodal
Hour1 Hour2 Hourd$ Representation

[ e | G S S G ) D -
—
+ + o+ + FOWE KA 1

Position = = —-— o — -
o 2 PO Pr1 P2 ss s P48
Embedding | Transformer Encoder

i i —

Figure 3. An illustration of the Transformer architecture. A. Adding the position embedding to consider time
information. B. Details of the transformer block. The fused transformer embedding is fed into the transformer encoder,
and we only select the ‘T0O’ token as the final multimodal representation.

In the NLP context, if one sentence has 48 tokens after tokenization, then the input of the NLP model would be a 48-
length sequence. Similarly, in the clinical time series context, we treat each hour as one token. Since we consider the
first 48 hours in the ICU, there are 48 ‘tokens’ for one patient. In Figure 3, the multimodal embedding of one patient
is shown. The position embedding encodes the time information. In this way, the transformer block is able to consider
information from all the time sequences when learning the representations. We use sinusoidal positional embedding
in our model. Similar to the NLP techniques, we insert the ‘CLS’ token at the beginning of the time sequences and
use the TO as the final multimodal representation. Figure 4 illustrates the detailed architecture of the whole transformer
block, with a formal mathematical presentation:

Invuitimoaar = Transformer(Iyy)

Then we concatenate the multimodal representations Inyirimoda; @nd notes embedding E,,tes to get the final
prediction:

Pred = MLP (Iyuitimodar®Enotes)
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Figure 4. An illustration of the Transformer block.

Overview Architecture

The overall architecture of our Multimodal Transformer is shown in Figure 5.
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Figure 5. The overview architecture of our proposed Multimodal Transformer.

Implementation. In our experiment, a rectified linear unit (ReLU) function is used as the non-linear projection function
across different layers to prevent vanishing gradient and sparse activation problems. The sigmoid function is applied
in the last layer. We use cross entropy loss and L2 regularization as the loss function and the Adam optimization to
minimize the loss. We use Python Programming Language (Version3.8). Models are implemented with Python
Pytorch® and HuggingFace Transformers.?! The training was performed on an NVIDIA RTX A5000 (24GB RAM).
Our codes are available at https.//github.com/weiminl7/Multimodal_Transformer.

Results
Prediction Results Analysis

We predict in-hospital mortality based on the first 48 hours of an ICU stay, which is a binary classification task. We
use the same train-test setting defined in the benchmark!'# with 15% of the training data as a validation set, and similar
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to Khadanga et al, we remove all clinical notes that do not have any chart time associated and patients that do not have
any clinical notes. The statistics on the post-processed data are shown in Table 2.

Table 2. Statistics of the post-processed MIMIC III data for the in-hospital mortality prediction task.

Train Validation Test

Negative 12216 2682 2748
Positive 1852 404 359
Total 14068 3086 3107

To comprehensively evaluate the performance of our model, we compute the metrics AUCROC, AUCPR, and F1. As
the dataset is imbalanced, other metrics such as accuracy may be misleading. We run all experiments five times with
different initialization and report the mean and standard deviation of the results.

Results in Table 3 demonstrate that our models outperform other methods in classifying in-hospital mortality. We
achieve an AUCPR score of 0.538, an AUCROC score of 0.877, and an F1 score of 0.490.

Table 3. Experiment Results of different methods on MIMIC III In-Hospital Mortality Prediction Task.

Prediction Model AUCPR AUCROC F1
Only LSTM 0.460(+-0.013) 0.821(+-0.006) 0.392(+-0.038)
Variables Transformer 0.473(+-0.011) 0.827(+-0.005) 0.406(+-0.025)
Only Notes MBERT 0.482(+-0.012) 0.851(+-0.005) 0.382(+-0.079)
Fusion MBERT+LSTM 0.508(+-0.002) 0.859(+-0.001) 0.478(+-0.023)
Multimodal Transformer (Ours) 0.538(+-0.004) 0.877(+-0.001) 0.490(+-0.036)

In the following section, we first investigate variants of BERT models with regard to pretraining and fine-tuning.
Then, we visualize the important words in clinical notes by Integrated Gradient. Finally, we analyze the important
clinical variables with the Shapley value.*?

Domain adaptive pretraining and task adaptive fine-tuning on BERT models

In order to show the importance of domain adaptive pretraining and task adaptive fine-tuning in BERTSs, we conduct
an ablation study with only the pretrained models versus with fine-tuning using a single modality - clinical notes. The
results are shown in Table 4. As expected, the general-purpose ‘BERT’ achieves the poorest result, whereas the
MBERT achieves the best performance. These experiments suggest that clinical notes with proper trained language
model are able to provide helpful information in clinical tasks, which enables deep learning techniques to leverage
rich textual information to better understand the patient situation.

Table 4. Experiments on various Pre-trained and Fine-tuned BERTs. Use only MIMIC III clinical notes for in-
hospital mortality prediction without considering clinical variables information. Freeze indicates only training the
final classifier while keeping the BERT models unchanged. Fine-tuned indicates fine-tuning the BERTs for the in-
hospital mortality downstream task.

AUCPR AUCROC F1 AUCPR AUCROC F1
Freeze Fine-tuned
BERT 0.182(+-0.016) 0.649(+-0.020) 0(+-0) 0.417(+-0.023) 0.829(+-0.005) 0.342(+-0.054)
BioRoBERTa 0.182(+-0.013) 0.661(+-0.016) 0(+-0) 0.455(+-0.010) 0.841(+-0.005) 0.419(+-0.044)
BioBERT 0.191(+-0.005) 0.664(+-0.011) 0(+-0) 0.444(+-0.027) 0.843(+-0.006) 0.377(+-0.045)
Clinical BERT 0.265(+-0.006) 0.731(+-0.004) 0(+-0) 0.482(+-0.012) 0.851(+-0.005) 0.382(+-0.079)

Clinical Notes Visualization and Interpretation

To provide an interpretation for the clinical notes and to better visualize the information, we evaluated the words that
were important for prediction in our MBERT model using Integrated Gradients (1G).** We apply the IG method to
study the problem of attributing the prediction of a deep network to its input features, as an attempt towards explaining
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individual predictions. IG is computed based on the gradient of the prediction outputs considering the input words.
Higher IG values indicate that a word is more important to the model’s prediction, while smaller IG values indicate
that a word is less important. We compute the 1G value of all tokens in the clinical notes for all patients in the test
data, and list the tokens with the highest IG values. Note that due to the BERT tokenization mechanism, the inputs are
tokens instead of words. For example, the phrase “the patient has been extubated” would be tokenized to “the patient
has been ex ##tub ##ated” as the input. To make the results more readable, we remove all the numbers, tokens that
only have one or two characters, and separators in post processing. The tokens and their IG values are evaluated by a
clinician for their clinical meaningfulness for mortality prediction. The tokens are sorted by those that are “Clinically
Meaningful Indicators” of symptoms, prognosis, or care; “Unclear Tokens” which are difficult to attribute a single
meaning to; and Headers/Common Words that are parts of structured notes or ubiquitously words used in medical
notes, illustrated in Table 5.

Table 5. Top 20 Features Integrated Gradient Values Sorted for interpretability. The results come from patients in test

data.
Clinically Headers Clinically Headers
Rank Meaningful I;,nof(l::: /Common Rank Meaningful I{,‘;g::: /Common

Indicators Words Indictors Words

1  pain #tub  with 11 sob cab possible

2 pulmonary ate year 12 status #nea  let

3 respiratory ##ated condition 13 seizure ##ation  without

4 vent con diagnosis 14 increasing  ##pot  end

5  cough ##hea  old 15 fever ##eep  history

6 pneumonia #ftour medical 16 arrest ##thage from

7  insulin ##on  impression 17 commands ##ody not

8 acute des admitted 18 care #ng  will

9 clear #ityper the 19 heart ##opy male

10 pulses H#ril man 20 mental hem this

Several words with high IG values appear to be parts of structured headers, such as “medical condition,” “diagnosis”
or “impression,” so are categorized separately from text that was unstructured. Additional words that are used
ubiquitously in clinical notes, such as “year,” “old,” and “with” are also categorized separately as they were less likely
to distinguish prognostic differences. Evaluating the top 20 clinically meaningful indicators that are important for
mortality prediction, there are some interesting observations for clinical interpretation. “Pain”, which is the indicator
most important for prediction, is a common symptom in ICU care and can correlate with disease severity or disability.
Indicators 2-6 correspond to pulmonary pathology, and the attribution of high importance to these indicators is in line
with severity of respiratory illness and the need for ICU level care such as mechanical ventilation. Other indicators,
such as “fever” or “seizure”, are manifestations of acute illness, which could also have prognostic significance in
predicting mortality. Clinical indicators such as “status,” “commands,” “mental,” and “agitation” corresponded to
mental status, and as delirium is associated with worse prognosis, it is not surprising that these indicators have
prognostic importance in prediction.’>-¢ Additional words such as “care” had multiple contexts when reviewing the
notes; phrases such as “plan of care” or “resp care” are often used as headers, but used in other contexts it could be
interpreted as a poor prognostic signal (e.g. “withdrawal of care”) or a favorable prognostic signal (e.g. “ response to
care”).

EEINT3

Figure 6.A is the word cloud visualization of the top 200 important words. We select the top 10 words with highest
IG in every note, and compute all the notes. Says there are 10000 notes, then there would be 10*10000 top words
(repeatable), and we compute the frequency of each unique word. The font size reflects the frequency. Figure 6.B is a
demo illustration of word importance among the clinical notes.
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to 10 with improvement of p ##h ...

Survival Survival ..p ##timproved over next 45 minutes . c fi#x ##r
> || in ##fi ##lt #rate , no obvious pulmonary ed #
#ema . as re ##sp distress improved ...

Figure 6. A: Word Cloud for clinical tokens with high IG values. Larger font indicates the word is more likely to
appear as a top-ten IG value in clinical notes. B: Illustration of word importance in clinical notes based on IG value.
The darker green color indicates the words that are more important (higher IG value) to the prediction, while the black
color is background color.

Clinical Variables Feature Analysis

Next, we implement Shapley values to rank the important clinical variables. Shapley values®! involve a game theory-
based approach to explain the prediction of deep learning models. They measure the contribution of a given feature
value to the difference from the actual prediction to the mean prediction. The top 10 out of 17 clinical variables (Table
6) show that for structured EHR data, the highest ranked variables also correlate with disease severity and poorer
prognosis. These variables represent clinically important information such as mental status using the Glasgow Coma
Scale, respiratory status and oxygenation, and hemodynamic measurements. They also provide interpretability of the
directionality of impact for continuous variables, with poor prognostic variables like higher need for supplemental
oxygen (Fraction inspired oxygen) increasing the likelihood for predicting death, and favorable prognostic variables,
like higher blood systolic and blood pressure decreasing the likelihood of predicting death.

Table 6. Top 10 Features of Clinical Variables based on Shapley Value.

Rank Shapley Feature Rank Shapley Feature
Value Value

1 0.0374 Glascow Coma Scale total 6 0.0299 Diastolic blood pressure

0.0315  Fraction inspired oxygen 7 0.0296 Heart Rate

0.0312  Oxygen saturation 8 0.0288 Weight
9

0.0308  Glucose 0.0282  Mean blood pressure

[ R N VS AN S

0.0299  Glascow Coma Scale eye opening 10 0.0282  Systolic blood pressure

Discussion

Vast clinical datasets provide the opportunity for deep learning techniques to study the problem of in-hospital mortality
prediction. Compared to previous related work, which mostly considers single modality or only naively concatenates
embeddings from different modalities, our work demonstrates a novel way to integrate multimodal knowledge and
leverage clinical notes information for better predictions. Meanwhile, the novel application of transformers on clinical
data enables the model to consider information from all other time stamps when fusing the multimodal information
because of the unique attention mechanism in the transformer block. To our best knowledge, this is the first work
utilizing a transformer block to fuse clinical notes and clinical variable information while dealing with time series data
in EHR data. We also conduct comprehensive experiments to demonstrate that our proposed method outperforms
other methods by achieving high performance (AUCPR: 0.538, AUCROC: 0.877, F1:0.490).

The ablation study of domain adaptive pretraining and task adaptive fine-tuning on various BERTSs verifies the
significance of pretraining and fine-tuning when we implement the BERT models on natural language text, especially
on domain-specific clinical notes.
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The analysis and visualization of important words in clinical notes also provide interesting findings. The ranking of
words by IG values provides face validity that many of the important words used for prediction are clinically related
to diseases or processes that are prognostically important, such as severity of respiratory disease or mental status.
Other words, such as “care,” may be used in multiple contexts, and are more difficult to interpret as isolated words.

One important information source that could enhance our model’s interpretability is considering the negation. The
clinical meaning of notes can change significantly with negation, such as “crackles” indicating abnormal lung exam
findings, and “not crackles” indicating a normal lung exam. In the future, we will employ techniques like the NegEx
algorithm?” to consider negation of key words to better explain the clinical words' meaning.

Conclusion

In this paper, we demonstrate a novel transformer based model, Multimodal Transformer, to leverage clinical notes
and fuse multimodal knowledge from clinical data. We implement a transformer block to integrate both clinical notes
and clinical variables while considering the time series information. The results demonstrate that our proposed
Multimodal Transformer outperforms other methods. Additionally, we conduct different studies to further investigate
the importance of domain adaptive pretraining and task adaptive fine-tuning for the Clinical BERTs. We also provide
methods to interpret and visualize the important words in clinical notes using IG and Shapley methods, which
demonstrate interesting findings on important features in clinical variables.
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