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Abstract 

Deep-learning-based clinical decision support using structured electronic health records (EHR) has been an active 
research area for predicting risks of mortality and diseases. Meanwhile, large amounts of narrative clinical notes 
provide complementary information, but are often not integrated into predictive models. In this paper, we provide a 
novel multimodal transformer to fuse clinical notes and structured EHR data for better prediction of in-hospital 
mortality. To improve interpretability, we propose an integrated gradients (IG) method to select important words in 
clinical notes and discover the critical structured EHR features with Shapley values. These important  words and 
clinical features are visualized to assist with interpretation of the prediction outcomes. We also investigate the 
significance of domain adaptive pretraining and task adaptive fine-tuning on the Clinical BERT, which is used to 
learn the representations of clinical notes. Experiments demonstrated that our model outperforms other methods 
(AUCPR: 0.538, AUCROC: 0.877, F1:0.490).  

Introduction 

Electronic health record (EHR) systems are widely used in the United States1 and the large amount of EHR data 
generated provides an opportunity for machine learning based predictive modeling to improve clinical decision 
support. In particular, deep learning based techniques,2,3 have been used for prediction of in-hospital mortality,4,5 
diagnoses,6,7 length of stay,8 readmission.9 

EHRs include structured data and clinical notes, which are often unstructured10. Structured clinical variables, such as 
the vital signals (e.g., heart rate, respiration rate, temperature, and blood pressure), can be easily converted to time 
series data and are well explored by researchers.11,12,13 For example, Harutyunyan et al.14 establishes a benchmark on 
how to pre-process the MIMIC III dataset, and proposed various baselines for different tasks, e.g., Logistic Regression, 
Random Forest, Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), and Convolutional Neural 
Network (CNN). Dong et al.6 develops a machine learning based opioid overdose prediction method with different 
clinical variables. Unstructured clinical notes are often in free narrative form, but  contain complementary and rich 
contextual information, such as a patient’s symptoms, disease course and treatment15. Though the normally pre-trained 
natural language model Bidirectional Encoder Representations from Transformers (BERT)16 cannot handle specific 
clinical notes, there are different variants of BERTs,14,17,18 that are pretrained on biomedical and clinical data, which 
can better handle  clinical notes. For example, Clinical BERT19 pretrains the BERT using MIMIC III clinical notes 
with masked language modeling (MLM) and next sentence prediction (NSP), to predict hospital readmission. 
BEHRT20 incorporates age and position information when modeling the clinical notes. BioBERT15 is pretrained on 
biomedical notes like PubMed abstracts and PubMed Central full-text articles to significantly improve biomedical text 
mining task performance. BioRoBERTa17 points out that in-domain pretraining leads to performance gains. BLURB21 
benchmark is a recent work that released state-of-the-art pretrained and task-specific models for the community. 
Despite these advances, how to  leverage and interpret the information included in unstructured clinical notes remains 
a challenging problem.  

Multimodal fusion is a promising direction to address the aforementioned challenge. However, naively concatenating 
features from different modalities might result in worse performances.22 It is challenging to embed data from the 
structured clinical variables and unstructured clinical notes  together because they are two totally different domains. 
Si et al.13 provides a comprehensive survey on deep representation learning from single and multiple domains of EHR 
data. Some works merely extract features from structured and unstructured data separately, and then concatenate the 
two features.23 For example, Khadanga et al.24 extracts clinical notes with convolutional neural networks and 
incorporates time series data to improve the performance. Deznabi et al.25 models two modalities with Long short-
term memory (LSTM) and BERT. Yang et al.7 implements Multimodal Adaptation Gate (MAG)26 techniques to best 
utilize information from two modalities. Teixeira et al.27 tested different combinations of several different modalities. 
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Huang et al.28 discuss fusion strategies of structured data and imaging data. However, these methods naively 
concatenate without considering complexity of modality and time information. While transformers are gaining 
popularity for use in different domains,  there is limited work using  transformers on EHR based predictive modeling.  

In this paper, we propose a multimodal transformer to fuse time series data from clinical variables with textual 
information from clinical notes to boost performance of  in-hospital mortality prediction. We leverage clinical notes 
to provide auxiliary information by adjusting the representation from two modalities to a sharable space across 
different times, then jointly learn the representation from two modalities. Further, we implement the transformer on 
the time series EHR data to fully consider the information across time, combined with the fine-tuned Clinical BERT 
model, which is a novel application of EHR feature representation learning. We also show that pre-training of various 
BERT models results in different prediction ability with regard to clinical tasks, and the BERT models fine-tuned on 
the specific in-hospital prediction task brings further performance improvements. Furthermore, we extend our fine-
tuned Clinical BERT model with the integrated gradients (IG) method to interpret and visualize the important words 
in clinical notes. Our results demonstrate that by leveraging the clinical notes, our proposed Multimodal Transformer 
provides highly promising prediction results (with AUCPR: 0.538, AUCROC: 0.877, F1:0.490). To our best 
knowledge, our Multimodal Transformer is the first work utilizing the transformer block to fuse clinical notes 
information and clinical variable information, while including time series EHR data. 

Methods 

Study Dataset 

We extract inpatient EHR data from the Medical Information Mart for Intensive Care (MIMIC-III) dataset.29 The 
clinical variables are pre-processed as time series signals from ICU instruments following Harutyunyan et al.’s14 
benchmark setup. Seventeen clinical variables remained after preprocessing: capillary refill rate; diastolic blood 
pressure; fraction inspired oxygen; the eye opening, motor response, verbal response, and total value of the Glasgow 
Coma Scale; glucose; heart rate; height; mean blood pressure; oxygen saturation; respiratory rate; systolic blood 
pressure; temperature; weight; and pH.  

For the clinical notes, similar to the setup from Khadanga et al.24, we extract notes from the NOTEEVENTS.csv file, 
and remove all clinical notes that do not have any chart time associated and remove patients that do not have any 
clinical notes. While Khadanga et al. kept only the first visit for each patient, we treat every visit as a single sample. 
Therefore, in the following paper, we use ‘patient’ to indicate ‘visit’. After the above data processing, our dataset for 
in-hospital mortality prediction contains 14068 training samples, 3086 validation samples, and 3107 test samples. Due 
to this step, our results are not directly comparable to the benchmark from Harutyuanyan et al..14  

 
Figure 1. An example of MIMIC III EHR data for ICU patients, containing two modalities: clinical variables and 
clinical notes. The clinical variables can be further split into categorical and numerical variables, while the clinical 
notes are domain specific text. 

Single Model Embedding 

We aim to predict in-hospital mortality with multi-modal EHR data. First, we  process two single modalities (clinical 
notes and clinical variables) separately to obtain the initialized embeddings from the raw data. We introduce Notes 
Embedding and Variables Embedding to achieve the initialized single modality embedding. 

Clinical Notes Embedding. Though BERT models dominate increasing numbers of domains in NLP, BERT-based 
models do not necessarily offer strong clinical text mining ability with regard to a specific clinical task. Rather, the 
power of BERT-family models relies on domain adaptive pretraining and task adaptive fine-tuning. Pre-training on 
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proper clinical biomedical corpora enables the BERT-based model to better learn clinical contextual meaning 
representations, and fine-tuning on downstream tasks can further boost this ability and establish a specialized Clinical 
BERT model. To illustrate this point, we compare the representation ability of four different BERT models (Table 1) 
using only single clinical notes modality, namely BERT,16 BioBERT,15 BioRoBERTa,17 Clinical BERT,19 pertained 
on four types of corpora, respectively English Wikipedia / BooksCorpus, PubMed Abstracts / PMC Full-text articles 
(initialized from BERT), S2ORC,33 and entire MIMIC III notes (initialized from BioBERT). Detailed results are 
shown in Table 4.  

We select Clinical BERT19 as our pre-trained language model since it is a more proper domain-specific model trained 
on all MIMIC-III clinical notes. We further fine-tune the Clinical BERT with the in-hospital mortality prediction task 
on MIMIC-III, called MIMIC BERT (MBERT), which enables the Clinical BERT to learn better clinical specific 
contextual embeddings on specific MIMIC data. For each patient, we extract an embedding of the clinical notes for 
every associated hour to represent the clinical notes data with time information. In the following experiments, we 
freeze the weights of MBERT when extracting unstructured clinical notes embeddings in multimodal transformer, 
since the MBERT already preserves a good clinical meaning representation. 

Table 1. Four BERT models and their respective corpora used for pretraining. Initialized model indicates the 
starting point before pretraining. 

Pretrained Model Pretraining Corpora Initialized Model Domain 

BERT English Wikipedia,  BooksCorpus  General 

BioRoBERTa S2ORC RoBERTa Biomedical 

BioBERT PubMed Abstracts, PMC Full-text articles BERT Biomedical 

Clinical BERT MIMIC notes BioBERT Biomedical 

 

Clinical Variables Embedding. Given that clinical variables contain numerical and categorical data, we apply one-hot 
encoding to the clinical variables, illustrated in Figure 2. Following Harutyunyan's setup, the 17 clinical variables are 
embedded to a 76-dimension time series embedding after the one-hot encoding. The categorical variables are 
converted to one-hot vectors while the numerical variables are converted to a single continuous value. 

For a formal mathematical representation, we denote the clinical notes data as 𝑋𝑛𝑜𝑡𝑒𝑠 ∈ ℛ𝐿×𝐷1, where 𝐿 represents the 
length of ICU stay counted by hours, and 𝐷1 represents the maximum length of clinical notes. And we denote the 
clinical variables data as 𝑋𝑡𝑠 ∈ ℛ𝐿×𝐷2, where 𝐷2 represents the number of variables. The clinical notes are embedded 
with Fine-tuned Clinical BERT (MBERT), as 𝐸𝑛𝑜𝑡𝑒𝑠 = 𝑀𝐵𝐸𝑅𝑇(𝑋𝑛𝑜𝑡𝑒𝑠), and the clinical variables are embedded as 
𝐸𝑡𝑠 = 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒_𝐸𝑛𝑐𝑜𝑑𝑖𝑛𝑔(𝑋𝑡𝑠). 

 
Figure 2. An illustration of Clinical Variables Encoding. 

Multimodal Embedding  

We introduce a transformer to integrate two different modalities. Specifically, we introduce three encoders inside the 
transformer block: Notes Encoder and Time Series (TS) Encoder for clinical notes and clinical variables modalities 
separately, and Multimodal (MM) Encoder to fuse two modalities while projecting them into a shared space: 

Encoders. (1) Notes Encoder. Given that the clinical notes embedding 𝐸𝑛𝑜𝑡𝑒𝑠  is already well presented, we only use a 
single linear layer to project 𝐸𝑛𝑜𝑡𝑒𝑠  to a universal space. (2) Time Series (TS) Encoder. Since the clinical variables 
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embedding contains  simple numerical and categorical information, we also use linear layers to project 𝐸𝑡𝑠  to a 
universal space. (3) Multimodal (MM) Encoder. We do not simply concatenate the clinical notes and clinical variables 
because the two modalities are  conceptually different. We use a Multimodal Encoder to compact the two different 
modalities into a universal space before we feed them into the transformer model, so that the information from clinical 
notes and clinical variables can be jointly learned. The formal mathematical representation is as follows: 

{
𝐼𝑛𝑜𝑡𝑒𝑠 = 𝐸𝑛𝑐𝑜𝑑𝑒𝑟𝑛𝑜𝑡𝑒𝑠(𝐸𝑛𝑜𝑡𝑒𝑠)

𝐼𝑡𝑠 = 𝐸𝑛𝑐𝑜𝑑𝑒𝑟𝑡𝑠(𝐸𝑡𝑠)
𝐼𝑀𝑀 = 𝐸𝑛𝑐𝑜𝑑𝑒𝑟𝑀𝑀(𝐸𝑛𝑜𝑡𝑒𝑠⨁𝐸𝑡𝑠)

 

where ⨁ denotes concatenate operation, 𝐼𝑛𝑜𝑡𝑒𝑠 ∈ ℛ𝐿×𝐷3 , 𝐼𝑡𝑠 ∈ ℛ𝐿×𝐷4,  𝐼𝑀𝑀 ∈ ℛ𝐿×𝐷5 denotes outputs from associate 
encoders, and 𝐷3, 𝐷4, 𝐷5 represent the corresponding embedding dimension. 

Transformer. Our transformer block is the key to handle time series embeddings and integrate knowledge. The 
transformer is a popular model developed for natural language processing (NLP), and has emerged as a promising 
tool in other domains. In LSTM, if the time sequence is too long, then when the information is passed to the final 
timestamp, the model forgets the information in the earlier timestamps. The powerful attention mechanism in the 
transformer enables the model to better leverage the information from all the timestamps. However, more research is 
needed to determine how best to apply the transformer in clinical tasks, especially when using multimodal data. We 
successfully implement the transformer in our study to show the capability of the transformer model. 

 
Figure 3. An illustration of the Transformer architecture. A. Adding the position embedding to consider time 
information. B. Details of the transformer block. The fused transformer embedding is fed into the transformer encoder, 
and we only select the ‘T0’ token as the final multimodal representation. 

In the NLP context, if one sentence has 48 tokens after tokenization, then the input of the NLP model would be a 48-
length sequence. Similarly, in the clinical time series context, we treat each hour as one token. Since we consider the 
first 48 hours in the ICU, there are 48 ‘tokens’ for one patient. In Figure 3, the multimodal embedding of one patient 
is shown. The position embedding encodes the time information. In this way, the transformer block is able to consider 
information from all the time sequences when learning the representations. We use sinusoidal positional embedding 
in our model. Similar to the NLP techniques, we insert the ‘CLS’ token at the beginning of the time sequences and 
use the T0 as the final multimodal representation. Figure 4  illustrates the detailed architecture of the whole transformer 
block, with a formal mathematical presentation: 

𝐼𝑀𝑢𝑙𝑡𝑖𝑚𝑜𝑑𝑎𝑙 =  𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟(𝐼𝑀𝑀) 

Then we concatenate the multimodal representations 𝐼𝑀𝑢𝑙𝑡𝑖𝑚𝑜𝑑𝑎𝑙  and notes embedding 𝐸𝑛𝑜𝑡𝑒𝑠  to get the final 
prediction:  

𝑃𝑟𝑒𝑑 = 𝑀𝐿𝑃(𝐼𝑀𝑢𝑙𝑡𝑖𝑚𝑜𝑑𝑎𝑙⨁𝐸𝑛𝑜𝑡𝑒𝑠) 
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Figure 4. An illustration of the Transformer block. 

Overview Architecture 

The overall architecture of our Multimodal Transformer is shown in Figure 5. 
 

 
Figure 5. The overview architecture of our proposed Multimodal Transformer.  

Implementation. In our experiment, a rectified linear unit (ReLU) function is used as the non-linear projection function 
across different layers to prevent vanishing gradient and sparse activation problems. The sigmoid function is applied 
in the last layer. We use cross entropy loss and L2 regularization as the loss function and the Adam optimization to 
minimize the loss. We use Python Programming Language (Version3.8). Models are implemented with Python 
Pytorch30 and HuggingFace Transformers.31 The training was performed on an NVIDIA RTX A5000 (24GB RAM). 
Our codes are available at https://github.com/weimin17/Multimodal_Transformer. 

Results 

Prediction Results Analysis 

We predict in-hospital mortality based on the first 48 hours of an ICU stay, which is a binary classification task. We 
use the same train-test setting defined in the benchmark14 with  15% of the training data as a validation set, and similar 
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to Khadanga et al, we remove all clinical notes that do not have any chart time associated and patients that do not have 
any clinical notes. The statistics on the post-processed data are shown in Table 2.  

Table 2. Statistics  of the post-processed MIMIC III data for the in-hospital mortality prediction task. 

 Train Validation Test 
Negative 12216 2682 2748 
Positive 1852 404 359 

Total 14068 3086 3107 
 

To comprehensively evaluate the performance of our model, we compute the metrics AUCROC, AUCPR, and F1. As 
the dataset is imbalanced, other metrics such as accuracy may be misleading. We run all experiments five times with 
different initialization and report the mean and standard deviation of the results. 

Results in Table 3 demonstrate that our models outperform other methods in classifying in-hospital mortality. We 
achieve an AUCPR score of 0.538, an AUCROC score of 0.877, and an F1 score of 0.490.  

Table 3. Experiment Results of different methods on MIMIC III In-Hospital Mortality Prediction Task. 

 Prediction Model AUCPR AUCROC F1 
Only 

Variables 
LSTM 0.460(+-0.013) 0.821(+-0.006) 0.392(+-0.038) 

Transformer 0.473(+-0.011) 0.827(+-0.005) 0.406(+-0.025) 
Only Notes MBERT 0.482(+-0.012) 0.851(+-0.005) 0.382(+-0.079) 

Fusion MBERT+LSTM 0.508(+-0.002) 0.859(+-0.001) 0.478(+-0.023) 
Multimodal Transformer (Ours) 0.538(+-0.004) 0.877(+-0.001) 0.490(+-0.036) 

 

In the following section, we first investigate variants of BERT models with regard to pretraining and fine-tuning. 
Then, we visualize the important words in clinical notes by Integrated Gradient. Finally, we analyze the important 
clinical variables with the Shapley value.32 

Domain adaptive pretraining and task adaptive fine-tuning on BERT models 

In order to show the importance of domain adaptive pretraining and task adaptive fine-tuning in BERTs, we conduct 
an ablation study with only the pretrained models versus with fine-tuning using a single modality - clinical notes. The 
results are shown in Table 4. As expected, the general-purpose ‘BERT’ achieves the poorest result, whereas the 
MBERT achieves the best performance. These experiments suggest that clinical notes with proper trained language 
model are able to provide helpful information in clinical tasks, which enables deep learning techniques to leverage 
rich textual information to better understand the patient situation.  

Table 4. Experiments on various Pre-trained and Fine-tuned BERTs. Use only MIMIC III clinical notes for in-
hospital mortality prediction without considering clinical variables information. Freeze indicates only training the 
final classifier while keeping the BERT models unchanged. Fine-tuned indicates fine-tuning the BERTs for the in-
hospital mortality downstream task. 

 AUCPR AUCROC F1 AUCPR AUCROC F1 

 Freeze Fine-tuned 

BERT 0.182(+-0.016) 0.649(+-0.020) 0(+-0) 0.417(+-0.023) 0.829(+-0.005) 0.342(+-0.054) 

BioRoBERTa 0.182(+-0.013) 0.661(+-0.016) 0(+-0) 0.455(+-0.010) 0.841(+-0.005) 0.419(+-0.044) 

BioBERT 0.191(+-0.005) 0.664(+-0.011) 0(+-0) 0.444(+-0.027) 0.843(+-0.006) 0.377(+-0.045) 

Clinical BERT 0.265(+-0.006) 0.731(+-0.004) 0(+-0) 0.482(+-0.012) 0.851(+-0.005) 0.382(+-0.079) 

 

Clinical Notes Visualization and Interpretation 

To provide an interpretation for the clinical notes and to better visualize the information, we evaluated the words that 
were important for prediction in our MBERT model using Integrated Gradients (IG).34 We apply the IG method to 
study the problem of attributing the prediction of a deep network to its input features, as an attempt towards explaining 
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individual predictions. IG is computed based on the gradient of the prediction outputs considering the input words. 
Higher IG values indicate that a word is more important to the model’s prediction, while smaller IG values indicate 
that a word is less important. We compute the IG value of all tokens in the clinical notes for all patients in the test 
data, and list the tokens with the highest IG values. Note that due to the BERT tokenization mechanism, the inputs are 
tokens instead of words. For example, the phrase “the patient has been extubated” would be tokenized to “the patient 
has been ex ##tub ##ated” as the input. To make the results more readable, we remove all the numbers,  tokens that 
only have one or two characters, and separators in post processing. The tokens and their IG values are evaluated by a 
clinician for their clinical meaningfulness for mortality prediction. The tokens are sorted by those that are “Clinically 
Meaningful Indicators” of symptoms, prognosis, or care; “Unclear Tokens” which are difficult to attribute a single 
meaning to; and Headers/Common Words that are parts of structured notes or ubiquitously words used in medical 
notes, illustrated in Table 5.  

Table 5. Top 20 Features Integrated Gradient Values Sorted for interpretability. The results come from patients in test 
data.  

Rank 
Clinically 

Meaningful 
Indicators 

Unclear 
Tokens 

Headers 
/Common 

Words 
Rank 

Clinically 
Meaningful 

Indictors 

Unclear 
Tokens 

Headers 
/Common 

Words 

1 pain ##tub with 11 sob cab possible 

2 pulmonary ate year 12 status ##nea let 

3 respiratory ##ated condition 13 seizure ##ation without 

4 vent con diagnosis 14 increasing ##pot end 

5 cough ##hea old 15 fever ##eep history 

6 pneumonia ##tour medical 16 arrest ##hage from 

7 insulin ##ion impression 17 commands ##ody not 

8 acute des admitted 18 care ##ing will 

9 clear ##yper the 19 heart ##opy male 

10 pulses ##ril man 20 mental hem this 

 

Several words with high IG values appear to be parts of structured headers, such as “medical condition,” “diagnosis” 
or “impression,” so are categorized separately from text that was unstructured. Additional words that are used 
ubiquitously in clinical notes, such as “year,” “old,” and “with” are also categorized separately as they were less likely 
to distinguish prognostic differences. Evaluating the top 20 clinically meaningful indicators that are important for 
mortality prediction, there are some interesting observations for clinical interpretation. “Pain”, which is the indicator 
most important for prediction, is a common symptom in ICU care and can correlate with disease severity or disability. 
Indicators 2-6 correspond to pulmonary pathology, and the attribution of high importance to these indicators is in line 
with severity of respiratory illness and the need for ICU level care such as mechanical ventilation. Other indicators, 
such as “fever” or “seizure”, are manifestations of acute illness, which could also have prognostic significance in 
predicting mortality. Clinical indicators such as “status,” “commands,” “mental,” and “agitation” corresponded to 
mental status, and as delirium is associated with worse prognosis, it is not surprising that these indicators have 
prognostic importance in prediction.35,36 Additional words such as “care” had multiple contexts when reviewing the 
notes; phrases such as “plan of care” or “resp care” are often used as headers, but used in other contexts it could be 
interpreted as a poor prognostic signal (e.g. “withdrawal of care”)  or a favorable prognostic signal (e.g. “ response to 
care”). 

Figure 6.A is the word cloud visualization of the top 200 important words. We select the top 10 words with highest 
IG in every note, and compute all the notes. Says there are 10000 notes, then there would be 10*10000 top words 
(repeatable), and we compute the frequency of each unique word. The font size reflects the frequency. Figure 6.B is a 
demo illustration of word importance among the clinical notes. 

725



  

 

Figure 6. A: Word Cloud for clinical tokens with high IG values. Larger font indicates the word is more likely to 
appear as a top-ten IG value in clinical notes. B: Illustration of word importance in clinical notes based on IG value. 
The darker green color indicates the words that are more important (higher IG value) to the prediction, while the black 
color is background color. 

Clinical Variables Feature Analysis 

Next, we implement Shapley values to rank the important clinical variables. Shapley values31 involve a game theory-
based approach to explain the prediction of deep learning models. They measure the contribution of a given feature 
value to the difference from the actual prediction to the mean prediction. The top 10 out of 17 clinical variables (Table 
6) show that for structured EHR data, the highest ranked variables also correlate with disease severity and poorer 
prognosis. These variables represent clinically important information such as mental status using the Glasgow Coma 
Scale, respiratory status and oxygenation, and hemodynamic measurements. They also provide interpretability of the 
directionality of impact for continuous variables, with poor prognostic variables like higher need for supplemental 
oxygen (Fraction inspired oxygen) increasing the likelihood for predicting  death, and favorable prognostic variables, 
like higher blood systolic and blood pressure decreasing the likelihood of predicting death. 

Table 6. Top 10 Features of Clinical Variables based on Shapley Value. 

Rank Shapley 
Value Feature Rank Shapley 

Value Feature 

1 0.0374  Glascow Coma Scale total 6 0.0299  Diastolic blood pressure 

2 0.0315  Fraction inspired oxygen 7 0.0296  Heart Rate 

3 0.0312  Oxygen saturation 8 0.0288  Weight 

4 0.0308  Glucose 9 0.0282  Mean blood pressure 

5 0.0299  Glascow Coma Scale eye opening 10 0.0282  Systolic blood pressure 

 

Discussion 

Vast clinical datasets provide the opportunity for deep learning techniques to study the problem of in-hospital mortality 
prediction. Compared to previous related work, which mostly considers single modality or only naively concatenates 
embeddings from different modalities, our work demonstrates a novel way to integrate multimodal knowledge and 
leverage clinical notes information for better predictions. Meanwhile, the novel application of transformers on clinical 
data enables the model to consider information from all other time stamps when fusing the multimodal information 
because of the unique attention mechanism in the transformer block. To our best knowledge, this is the first work 
utilizing a transformer block to fuse clinical notes and clinical variable information while dealing with time series data 
in EHR data. We also conduct comprehensive experiments to demonstrate that our proposed method outperforms 
other methods by achieving high performance (AUCPR: 0.538, AUCROC: 0.877, F1:0.490). 

The ablation study of domain adaptive pretraining and task adaptive fine-tuning on various BERTs verifies the 
significance of pretraining and fine-tuning when we implement the BERT models on natural language text, especially 
on domain-specific clinical notes. 
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The analysis and visualization of important words in clinical notes also provide interesting findings. The ranking of 
words by IG values provides face validity that many of the important words used for prediction are clinically related 
to diseases or processes that are prognostically important, such as severity of respiratory disease or mental status. 
Other words, such as “care,” may be used in multiple contexts, and are more difficult to interpret as isolated words.  

One important information source that could enhance our model’s interpretability is considering the negation. The 
clinical meaning of notes can change significantly with negation, such as “crackles” indicating abnormal lung exam 
findings, and “not crackles” indicating a normal lung exam. In the future, we will employ techniques like the NegEx 
algorithm37 to consider negation of  key words to better explain the clinical words' meaning. 

Conclusion 

In this paper, we demonstrate a novel transformer based model, Multimodal Transformer, to leverage clinical notes 
and fuse multimodal knowledge from clinical data. We implement a transformer block to integrate both clinical notes 
and clinical variables while considering the time series information. The results demonstrate that our proposed 
Multimodal Transformer outperforms other methods. Additionally, we conduct different studies to further investigate 
the importance of domain adaptive pretraining and task adaptive fine-tuning for the Clinical BERTs. We also provide 
methods to interpret and visualize the important words in clinical notes using IG and Shapley methods, which 
demonstrate interesting findings on important features in clinical variables. 
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