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1 Introduction

Let F be a family of sets from some universe -. A common theme and extensively studied

phenomenon in combinatorics is the following: if the cardinality of F (when F is finite) or

the density of F (when F is infinite) is large enough, then some nice patterns will occur in

F. Well-known examples of this kind include (1) Szemerédi’s theorem [28], which asserts

that all subsets of the natural numbers of positive density contain arbitrarily long arithmetic

progressions; (2) Ramsey’s Theorem [12], which asserts that if one colors the edges of a large

enough complete graph with a finite number of colors, then there must exist a monochromatic

clique of a certain size; and (3) the Erdős–Rado Sunflower Theorem [11], which asserts that a

large enough family of sets of bounded size must contain a large sunflower.1

The study of these problems has resulted in many important tools (e.g., Szemerédi’s

Regularity Lemma [29] and the probabilistic method), which have found applications not

only in combinatorics, or mathematics more broadly, but also in theoretical computer science

(TCS). Conversely, ideas from TCS have influenced related research in combinatorics quite

often. For example, the first two problems we mentioned above, Szemerédi’s Theorem and

Ramsey’s Theorem, are intimately connected to the area of pseudorandomness in TCS. Indeed,

by constructing a certain sparse pseudorandom subset of natural numbers and proving an

appropriate Szemerédi-type theorem with respect to that subset, a celebrated result of Green

and Tao [15] shows that prime numbers contain arbitrarily long arithmetic progressions. As for

Ramsey’s Theorem, a recent line of work on randomness extractors [3–5, 7, 17, 18] gives strongly

explicit2 constructions of Ramsey graphs that get close to the probabilistic bound [10].

In this paper we study the Sunflower Theorem and its related variants. We show that

again there is an intimate connection to randomness extractors. In fact, using techniques

from randomness extractors, we build a general proof framework that can unify the Sunflower

Theorem and its variant known as the Robust Sunflower Lemma [27].

Sunflowers. A family is a set of sets. (Repeated sets are not permitted in counting the size of a

family.) A family F is F-uniform if every element of F has size F. An A-sunflower is defined to be

a family of A sets such that the intersection of any two sets in the family is the same set (which

can be the empty set). Choose any F-uniform family F, the main question of interest is, how

large F needs to be in order to ensure that there is an A-sunflower in F. Erdős and Rado proved

the following theorem.

Theorem 1.1 (Sunflower Theorm, Erdős–Rado [11]). LetF be aF-uniform family. If |F | > F!(A−1)F
then F contains an A-sunflower.

They also conjectured that the bound on |F | can be replaced by 2FA where 2A is a constant that

only depends on A for every A > 0. This conjecture is one of the most well-known open problems

in combinatorics, which remains open today despite extensive research.

1A sunflower is a family of sets whose pairwise intersection is constant, which we will formally define shortly.

2A class of graphs is strongly explicit if the vertices of each graph � = (+,�) in the class are encoded by (0,1)-strings
of length $(log |+ |) and a polynomial-time algorithm %(|+ |, 8 , 9) decides adjacency of any pair (8 , 9) of vertices of �
in polynomial (i. e., polylog(|+ |)) time.
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The Sunflower Theorem has applications in TCS, such as in the proof of strong lower

bounds for monotone circuits [26]. In addition, Alon, Shpilka and Umans [1] related the

Sunflower Conjecture and its variants to possible approaches to fast matrix multiplication.

Recently, following the breakthrough proof of the Cap-set Conjecture [8,9], a weaker version

of the Sunflower Conjecture was also proved using the same method [24] (concretely, the

Erdős–Szemerédi Sunflower Conjecture for F = 3). However, the general conjecture remains

open.

Robust sunflowers. Motivated by the applications of sunflowers to proving monotone circuit

lower bounds, robust sunflowers were introduced by Rossman [27] under the name “quasi-
sunflowers” to prove monotone circuit lower bounds for the :-clique problem on random graphs.

We denote by P(-) the family of all subsets of a finite set -.

Definition 1.2 (Robust sunflower [27]). Let - be a finite set and S ⊆ P(-) a family of size

|S| ≥ 2. Denote . =
⋂
)∈S
). Following Rossman [27], for ?,� ∈ [0,1], we say that S is a (?,�)-robust

sunflower if for a random set, ⊆ -, with each element of - present in, independently with

probability ?, it holds that

Pr [∃) ∈ S, () \.) ⊆,] ≥ 1−�.

As Rossman explains, the robust sunflower concept is a relaxation of the sunflower concept

where petals may overlap in a limited way. Indeed, if F is a F-uniform sunflower then for every

? ∈ [0,1], F is a (?,�)-robust sunflower with � = exp(−|F |?F) [27, Remark 13].

In the same paper, Rossman also proved the following lemma, which says there is always a

robust sunflower in a large family.

Lemma 1.3 (Robust Sunflower Lemma, Rossman [27]). Let F be a F-uniform family. If

|F | ≥ F! · (1.71log(1/�)/?)F ,

then3 F contains a (?,�)-robust sunflower.

Besides the original application, Rossman’s Robust Sunflower Lemma was also used by

Gopalan, Meka and Reingold [14] to study the problem of DNF sparsification. Given a DNF

formula 5 on = variables, there are two natural ways to measure the complexity of 5 : the

number of clauses (also called size) B( 5 ), and the maximum width of a clause F( 5 ). It is easy to

show that any DNF of small size can be approximated well by another DNF of small width, by

truncating clauses of large width. Gopalan et al. [14] used Rossman’s Robust Sunflower Lemma

to show the reverse direction, that any DNF with small width can also be approximated well by

another DNF with small size. In particular, they showed that any width-F DNF formula can

be �-approximated by another DNF formula with size at most (F log(1/�))$(F). This kind of

sparsification has applications in constructing pseudorandom generators and approximately

counting the number of satisfying assignments for DNF formulas.

3Throughout this paper, “log” refers to base-2 logarithms.
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Similarly to the Sunflower Conjecture, one can also ask whether the bound on |F | in the

Robust Sunflower Lemma can be improved. This question was further studied by Alweiss,

Lovett, Wu and Zhang [2] and Rao [25]. We discuss further details in Section 1.4.

1.1 Our contribution

We provide a general framework to prove both the Sunflower Theorem and the Robust Sunflower

Lemma. In fact, we reduce both of these problems to the construction of a certain type of

randomness extractors. To state our results, we first formally define the notions that are going

to be used in our extractors.

A random variable -, taking values in a finite set Σ, defines a probability measure on Σ,

namely, for every subset Δ ⊆ Σ we have the measure �(Δ) = Pr(- ∈ Δ). Risking some confusion,

we shall also refer to - as a “distribution over Σ,” reducing the meaning of - to the probability

measure it defines on Σ. We refer to Σ as the sample space. The support of -, denoted Supp(-), is
the smallest subset Δ ⊆ Σ such that Pr(- ∈ Δ) = 1.

Definition 1.4. Let - be a distribution over a finite sample space Σ. The min-entropy of - is

defined as

H∞(-) =min

G∈Σ

{
log

(
1

Pr[- = G]

)}
.

A distribution over {0,1}= is said to be an (=, :) source if the distribution has min-entropy at

least :.

Definition 1.5 (Block min-entropy source). Let -1 , . . . , -< be random variables with sample

space {0,1}= . Consider the random variable - = (-1 , . . . , -<) (with sample space {0,1}=<). The
distribution - is an (<,=, :) block min-entropy source if for every non-empty subset ( ⊆ [<], the
joint distribution of (-8 : 8 ∈ () has min-entropy at least : |( |.

We note that the definition of block min-entropy sources was initiated in [13] as a tool to

prove lifting theorems in communication complexity.

Definition 1.6 (Block min-entropy extractor). A function � : {0,1}= × {0,1}B → {0,1}3 is a

(:, �, 3, B) block min-entropy extractor if for any <,= ∈ N and any (<,=, :) block min-entropy

source - = (-1 , . . . , -<), it holds that

(�(-1 , '1), . . . , �(-< , '<)) ≈� *3< .

Here, each '8 ∈ {0,1}B is an independent uniform random string,*3< is the uniform distribution

over (3<)-bit strings, and ≈� means �-close in statistical distance. If in addition it holds that

(�(-1 , '1), '1 , . . . , �(-< , '<), '<) ≈� *(3+B)< ,

then we say that the function � is a strong (:, �, 3, B) block min-entropy extractor.

We also define a weaker object called a disperser.
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Definition 1.7 (Block min-entropy disperser). A function

� : {0,1}= ×{0,1}B→ {0,1}3

is a (:, �, 3, B) block min-entropy disperser if for any <,= ∈ N and any (<,=, :) block min-entropy

source - = (-1 , . . . , -<), it holds that

|Supp(�(-1 , '1), . . . , �(-< , '<))| ≥ (1− �)23< .

Here, each '8 ∈ {0,1}B is an independent uniform random string. If in addition there exists at

least one way to fix '1 = A1 , . . . , '< = A< such that

|Supp(�(-1 , A1), . . . , �(-< , A<))| ≥ (1− �)23< ,

then we say that the function � is a strong (:, �, 3, B) block min-entropy disperser.

In this paper, we make connections between the block min-entropy disperser and sunflower

and robust sunflower structures. Formally, we prove the following result.

Theorem 1.8. Suppose that there exists a strong (:,0, 3, B) block min-entropy disperser, � : {0,1}= ×
{0,1}B→ {0,1}3 for any (F,=, :) block min-entropy source. Then the following holds.

Let F be a F-uniform family. Assume that |F | ≥ 2
(:+2)F . Then:

(i) F contains a 2
3-sunflower.

(ii) F contains a
(
?,F(1− ?)23

)
-robust sunflower.

Observe that the seed length B of the extractor does not play a part in the conclusion of

Theorem 1.8. We then show that we can construct strong zero-error blockmin-entropy extractors.

As a corollary, we are able to construct strong block min-entropy dispersers. Specifically, we

have the following result.

Theorem 1.9. There is a constant 2 > 1 such that for any <,=, : ∈ N with : ≥ 2 log<, we have:

• There is an explicit4 strong (:, �, 3, B) block min-entropy extractor � : {0,1}= ×{0,1}B→ {0,1}3
for (<,=, :) block min-entropy sources, where B = =, 3 = :/2 and � = 2

−Ω(:).

• There is an explicit strong (:,0, 3, B) block min-entropy disperser � : {0,1}= ×{0,1}B→ {0,1}3
for (<,=, :) block min-entropy sources, where B = =, 3 = :/2.

Combined with Theorem 1.8, this gives the Sunflower Theorem and the Robust Sunflower

Lemma. In Theorem 1.9, we give explicit constructions. We also note that the existence of block

min-entropy dispersers is also enough to prove sunflower lemmas.

4 A class of finite functions is explicit if a polynomial-time algorithm evaluates each function in the class on each

of its inputs. The class of bipartite graphs corresponding to an explicit class of functions is strongly explicit in the

sense of Footnote 2.
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Corollary 1.10 (Sunflower Theorem, this paper). There is a constant 2 such that for any F-uniform
family and any A > 1, if |F | ≥ (FA)2F , then F contains an A-sunflower.

The reader will note that this result is weaker than Theorem 1.1, the original result by Erdős

and Rado. The point we are making here is that our result is comparable, and it is obtained

using a different approach that may lead to improved bounds. Indeed, a variant of our method

did lead to improved bounds [2, 25].

Corollary 1.11 (Robust Sunflower Lemma, this paper). There is a constant 2 such that for any
F-uniform family F, if |F | ≥

(
F+log(1/�)

?

) 2F
, then F contains a (?,�)-robust sunflower.

1.2 Overview of the techniques

Our reduction from sunflower/robust sunflower problems to block min-entropy dispersers is as

follows. Suppose the family F ⊆ P(-) for some set -, where each set in F has size F. We first

show that without loss of generality we can assume F is a F-partite family.

Definition 1.12 (F-partite family). Let - be a finite set and let F = {*8}8∈� be a family of subsets

of -.We say that F is a F-partite family if

• F is F-uniform;

• there is a partition -1 , . . . , -F of - such that for every* ∈ F, we have |-9 ∩* | = 1 for each

9 ∈ [F].

Consider the uniform distribution over a F-partite family F. There are two possible cases:

• Case 1: there is a subset ( which is a subset of many elements of F, specifically,��{* ∈ F : ( ⊆*}
�� ≥ ��F��

A |( |
,

where A is a parameter to be determined.

• Case 2: every set ( does not appear in too many sets of F.

In Case 1, ( is already like a core in a sunflower or robust sunflower, thus we can apply

induction on the subfamily F( := {* \( : ( ⊆* ∈ F}. In Case 2, the condition basically implies

that the distribution is relatively flat, which equivalently translates into a block min-entropy

source as we defined above. One can naturally imagine that the worst-case situation here is

that the distribution is actually the uniform distribution over -1× · · · ×-F , and we show that

indeed this is the case by using our zero-error block min-entropy disperser (Theorem 1.9). It is

then easy to see that in the worst case, the empty set is a robust sunflower, or one can choose a

sunflower with size 2
3
(the support size in the output of the disperser) whose core is the empty

set.
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1.3 The role of extractors in our reduction

One can view the block min-entropy extractor/disperser used in our reduction as a gadget,

which reduces the sunflower/robust sunflower problem in the general case to the much easier

case of a uniform distribution (or full support) on -1× · · · ×-F . This is similar to the role of

extractors in recent work that showed lifting theorems from query complexity to communication

complexity [13], and linear programming lower bounds for constraint satisfaction problems [16].

In fact, the extractors used in these articles are essentially the same as the extractors used in

the present paper (although here we need to show that the extractor/disperser is strong, while

in [13] and [16] this is not necessary), and the barriers to further improvement are also similar.

Specifically, in all such constructions one needs the min-entropy : ≥ 2 log< for some constant

2 > 1, where < is equal to the size of the sets (i.e., F) in our applications. It is interesting to ask

whether : =Ω(log<) is necessary. Any improvement of such extractors leads to improvements

of both sunflower theorems and lifting theorems. Subsequent to the conference version of this

paper [19], Meka [23] gave a counterexample showing that such extractors do not exist.

1.4 Subsequent work

In this section we report work done after the publication of the conference version of this

paper [19].

Connection to DNF sparsification: The connection of sunflowers and DNF sparsification was

first discovered by Gopalan, Meka and Reingold [14]. Building on the Robust Sunflower Lemma,

Gopalan et al. [14] proved any width-F DNF (with arbitrary size) can be �-approximated by a

DNF of size at most (F · log(1/&))$(F). Similarly to the Sunflower Conjecture, Gopalan et al. also

believed the DNF compression bound can be improved to (log(1/&))$(F). This conjecture was

confirmed by subsequent work by Lovett, Wu and Zhang [21,22].

In another piece of subsequent work Lovett, Solomon and Zhang [20] also proved that the

reverse direction is also true. That is, an improved upper bound on DNF sparsification implies

an improved sunflower bound.

Progress on the Sunflower Conjecture. In this paper, we show that any F-uniform family F

of size |F | ≥ F2F
for some constant 2 > 1 contains a 3-sunflower. Furthermore, we show that any

family F with the following spread condition must contain 3 pairwise disjoint sets.

Definition 1.13. Given a family F and A > 0, we say that F is A-spread, if for any set (,��{* ∈ F : ( ⊆*}
�� ≤ ��F��

A |( |
.

The following corollary follows directly from the proof of Theorem 1.8.

Corollary 1.14. There is a constant 2 > 0, such that for any F-partite family F, if F is F2-spread then it
contains F pairwise disjoint sets.
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This F2
-spread condition actually comes from the requirement of our disperser that

: ≥ 2 logF . As discussed above, it is interesting to ask whether this is necessary. In an article

subsequent to the conference version of this paper [19], Alweiss, Lovett, Wu and Zhang [2]

improved the F2
bound on the spread to (logF)$(1) and Rao [25] further improved it to$(logF).

Lemma 1.15 ( [2, 25]). There is a constant 2 > 0, such that for any F-partite family F, if F is
(2A · log(FA))-spread then it contains A pairwise disjoint sets.

This lemma finally leads to an improved sunflower lemma.

Corollary 1.16 ( [2, 25]). There is a constant 2 > 0 such that, for each F-uniform family F, if
|F | > (2A · log(FA))F then F contains an A-sunflower.

Discussion of robust sunflowers. In this paper, we also study robust sunflower structures.

In particular, we have the following corollary. Below, we use the notation $?,�(·) to hide the

specific dependency on the parameters ?,�, which is of less interest to us here.

Corollary 1.17. There is a constant 2 > 0 such that, for any F-partite family F, if F is A-spread where
A = ($?,�(F))2 , then F is a (?,�)-robust sunflower with empty kernel.

The subsequent work of Alweiss, Lovett, Wu and Zhang [2], and its improvement by Rao [25],

gives an improved robust sunflower lemma.

Lemma 1.18 ( [2], [25]). There is a constant 2 > 0 such that, for any F-partite family F, if F is
(2 log(F/�)/?)-spread then F is a (?,�)-robust sunflower with empty kernel.

Furthermore, the logF term is tight by the following example. Fix ? = � = 1/2 for convenience.
Let -1 , . . . , -F be F disjoint sets each of size 2 logF for some large enough 2 > 0. Define the

family F := -1× · · · ×-F . By this we mean, with some abuse of notation, the complete F-partite

hypergraph on {-1 , . . . , -F}. Then F does not contain a (?,�)-robust sunflower. This example

also sets a barrier to proving the Sunflower Conjecture via robust sunflowers.

Discussion of the block min-entropy extractor and the disperser construction. In this paper,

we construct explicit strong block min-entropy extractors and dispersers. However, in our

constructions, we require the min-entropy : to be as large asΩ(log<). In the conference version

of this paper we asked whether the min-entropy condition could be improved to be >(log<).
The following counterexample due to Raghu Meka [23] shows that this is impossible. Therefore

it sets a barrier to improving (robust) sunflowers via extractors.

Theorem 1.19. Let <,= be parameters and set : :=min(log(2= −1), log<). Then for any function
� : {0,1}= ×{0,1}B→ {0,1}, there is an (<,=, :) block min-entropy source - = (-1 , . . . , -<) such that,
for every A1 , . . . A< ∈ {0,1}B , the support of

(�(-1 , A1), . . . , �(-< , A<))

is not full.
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Proof. Let � : {0,1}= ×{0,1}B→ {0,1} be the given function. Fix an arbitrary string G∗ ∈ {0,1}= .
Define the distribution - = (-1 , . . . , -<) as follows. First, sample an index 8∗ ∈ [<] uniformly and

set -8∗ = G
∗
. For every 8 ≠ 8∗, sample -8 ∈ {0,1}= \ {G∗} uniformly and independently. Observe

that - is a (<,=, :) block min-entropy source for : =min(log(2= −1), log<).
Wewill show that for every A1 , . . . , A< ∈ {0,1}B , the random variable (�(-1 , A1), . . . , �(-< , A<))

does not have full support on {0,1}< . This is because ifwe let I = (�(G∗ , A1), �(G∗ , A2), . . . , �(G∗ , A<)),
then the output of (�(-1 , A1), . . . , �(-< , A<)) always agrees with I in at least one position. Thus

the string I ⊕ 1 is not in the support of (�(-1 , A1), . . . , �(-< , A<)).
�
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2 Preliminaries

We first review some basic definitions in probability.

Definition 2.1. Let � be a distribution over a finite sample space Σ. Its entropy is

H(�) =
∑
G∈Σ

Pr[� = G] · log

(
1

Pr[� = G]

)
.

Its min-entropy is

H∞(�) =min

G∈Σ

{
log

(
1

Pr[� = G]

)}
.

Its max-entropy is

H0(�) = log |Supp(�)|.

Definition 2.2 (Statistical distance). Let �0 and �1 be distributions over a finite sample space Σ.

The statistical distance between �0 and �1 is defined as

dist(�0 ,�1) =
1

2

∑
G∈Σ

��
Pr[�0 = G]−Pr[�1 = G]

��.
3 A construction of a block min-entropy extractor

We use the following well-known extractor based on the inner product function [6]. We denote

by F@ the finite field on @ elements. When @ = 2
ℓ
we identify F@ with {0,1}ℓ and FC@ with {0,1}Cℓ .
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Theorem 3.1. Let C , ℓ ≥ 1 and take @ = 2
ℓ , = = Cℓ . Let -,. be independent sources on FC@ � {0,1}=

with min-entropies :1 , :2, respectively. Let IP be the inner product function over the field F@ . Then:

dist ((IP(-,.), -), (*ℓ , -)) ≤ � and dist ((IP(-,.),.), (*ℓ ,.)) ≤ �

where � = 2
−(:1+:2−=−ℓ )/2.

Now we can construct a block min-entropy extractor as follows. Given parameters =, :,

choose a field F@ such that @ = 2
ℓ
with ℓ = 
: for some constant 0 < 
 < 1 to be determined later.

Without loss of generality we assume that = = Cℓ for some integer C. We view - ∈ {0,1}= as a
vector in FC@ and choose a uniform independent seed ' ∈ {0,1}= � FC@ .

A block min-entropy extractor

1. Given parameters <,=, : let @, C be as described above.

2. Sample (-1 , . . . , -<) ∈ (FC@)< from the block min-entropy distribution.

3. Sample ('1 , . . . , '<) ∈ (FC@)< uniformly and independently.

4. Output / := (IP(-1 , '1), . . . , IP(-< , '<)).

We are now ready to prove the following theorem.

Theorem 3.2 (Theorem 1.9 restated). Let - = (-1 , . . . , -<) be an (<,=, :) block min-entropy source.
Let / ∈ {0,1}ℓ< be the output of the above block min-entropy extractor applied to -. There exists a
constant 2 > 1 such that if : ≥ 2 log<, then the following holds for error � = 2

−Ω(:):

• With probability 1− � over the fixing of the seed ('1 , . . . , '<),��
Pr[/ = I]−2

−ℓ< �� ≤ � ·2−ℓ< ∀I ∈ {0,1}ℓ< .

In particular, in such casesH0(/) = ℓ<

• dist ((/,'1 , . . . , '<), (*,'1 , . . . , '<)) ≤ 2�.

Proof. We have a joint distribution (-1 , . . . , -<) that has block min-entropy :. The output of the

local extractor applied to (-1 , . . . , -<), using < independent uniform seeds ('1 , . . . , '<), is a
distribution (/1 , . . . , /<) over {0,1}ℓ< = F<@ where /8 = IP(-8 , '8) for each 8.

For any fixing of the seed ('1 = A1 , . . . , '< = A<), the distribution (/1 , . . . , /<) is a deterministic

function of (-1 , . . . , -<), and we will view this distribution as a function D : {0,1}ℓ<→ [0,1]
where the image of each input is its associated probability in the distribution. We now write

this function in its Fourier basis:

D(I) =
∑

(⊆[ℓ<]
D̂(()"((I),
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where I = (I1 , . . . , I<) ∈ {0,1}ℓ< , "((I) = (−1)
∑
8∈( I(8) ∈ {+1,−1}, and

D̂(() = 2
−ℓ< ·

∑
I

D(I)"((I) = 2
−ℓ< ·EI∼D["((I)].

Here we use I(8) to stand for the 8-th bit of the string I. This is to distinguish between the

notation I8 , which refers to the 8-th block of the string I, that contains ℓ bits.
Note that D̂(∅) = 2

−ℓ<
since D is a probability distribution. Thus we have that ∀I ∈ {0,1}ℓ< ,

��D(I)−2
−ℓ< �� = ������ ∑

(⊆[ℓ<],(≠∅
D̂(()"((I)

������ ≤ ∑
(⊆[ℓ<],(≠∅

���D̂(()��� . (3.1)

Note that for any ( ⊆ [ℓ<], "((/) corresponds to the parity of a subset of the bits in /. For

each / 9 , 9 ∈ [<], this parity may or may not involve any bits in / 9 . We will be interested in the

number of indices 9 such that "((/) involves at least one bit from / 9 , and we call this number

Δ((). Note that Δ(∅) = 0 and 1 ≤ Δ(() ≤ < for any ( ≠ ∅.
We now have the following lemma.

Lemma 3.3. If Δ(() = ℎ, then with probability 1− 2
−ℎ(1−
):/4 over the fixing of the seed ('1 =

A1 , . . . , '< = A<), we have that |D̂(()| ≤ 2 ·2−ℓ<2
−ℎ(1−
):/4.

Proof. Without loss of generality assume that the / 9 from which "((/) involves at least one
bit are (/1 , . . . , /ℎ). Note that for any /8 ∈ {0,1}ℓ = F@ , any parity of the bits of /8 corresponds

exactly to the first bit of 0 ·/8 viewed as a vector in {0,1}ℓ , for some 0 ∈ F@ and where the

operation · is multiplication in the field F@ . Moreover this correspondence is a bĳection in the

sense that different parities correspond to different elements 0 ∈ F@ . The special case of parity
over the empty set corresponds to the case of 0 = 0. Thus,

∑
8∈(/(8) corresponds to the first bit

of

∑
9∈[ℎ] 0 9/ 9 viewed as a vector in {0,1}ℓ , for some non-zero {0 9 ∈ F@ : 9 ∈ [ℎ]}. Note that∑
9∈[ℎ]

0 9/ 9 =
∑
9∈[ℎ]

0 9IP(-9 , ' 9) =
∑
9∈[ℎ]

IP(0 9-9 , ' 9) = IP((01-1 , . . . , 0ℎ-ℎ), ('1 , . . . , 'ℎ)) . (3.2)

Since each 0 9 ≠ 0 the transformation from (G1 , . . . , Gℎ) to (01G1 , . . . , 0ℎGℎ) is a bĳection. Thuswe

know the distribution (01-1 , . . . , 0ℎ-ℎ) has min-entropy :ℎ, while ('1 , . . . , 'ℎ) has min-entropy

=ℎ. Thus by Theorem 3.1 applied over the field F
2
ℓ ℎ we have that

dist

©­«(
∑
9∈[ℎ]

0 9/ 9 , '1 , . . . , '<), (*ℓ ℎ , '1 , . . . , '<)ª®¬ ≤ 2

−(ℎ(:−ℓ ))
2 = 2

−ℎ(1−
):
2 . (3.3)

In particular, as "((/) is the first bit of
∑
9∈[ℎ] 0 9/ 9 , we have

dist ("((/), '1 , . . . , '<), (*1 , '1 , . . . , '<)) ≤ 2

−ℎ(1−
):
2 . (3.4)

By Markov’s inequality this means that with probability 1−2
−ℎ(1−
):/4

over the fixing of the

seed ' = ('1 , . . . , '<), we have |D̂(()| = |2−ℓ< ·EI∼D["((I)]| ≤ 2 ·2−ℓ<2
−ℎ(1−
):/4

. �
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Next, note that the number of ( with Δ(() = ℎ is

(<
ℎ

)
(2ℓ −1)ℎ ≤ 2

(ℓ+log<)ℎ
. Recall that ℓ = 
:

and : ≥ 2 log<. We can choose the constants 
, 2 such that 2
ℓ+log<

2
−(1−
):/4 ≤ 2

−:/8
. Now we

have as long as : ≥ 8,

<∑
ℎ=1

(
<

ℎ

)
(2ℓ −1)ℎ2

−ℎ(1−
):
4 ≤

<∑
ℎ=1

2
− ℎ:

8 ≤ 2
− :

8
+1 . (3.5)

Set � = 2
−:/8+2 = 2

−Ω(:)
.

By the union bound we have that with probability at least 1− � over the fixing of the seed

('1 = A1 , . . . , '< = A<), for every ( ≠ ∅ with Δ(() = ℎ, |D̂(()| ≤ 2 ·2−ℓ<2

−ℎ(1−
):
4 . Thus for any such

seed we have that ��D(I)−2
−ℓ< �� ≤ ∑

(⊆[ℓ<],(≠∅

���D̂(()��� ≤ � ·2−ℓ< . (3.6)

This concludes the proof of the first part of Theorem 1.9. For the second part, notice that

conditioned on the fixing of any seed '1 , . . . , '< , with probability 1− � the statistical distance is

at most �, and otherwise it is trivially bounded by 1. So overall the statistical distance between

(/,'1 , . . . , '<) and (*ℓ< , '1 , . . . , '<) is at most 2�. �

4 Compressing set systems by the block min-entropy extractor

In this section, we focus on the set systems that satisfy the spread condition, and show a

compression operator for such set systems. Our compression is based on the block min-entropy

extractor. We first show that it suffices to consider F-partite families (see Definition 1.12).

Lemma 4.1. Let F be a F-uniform family. Then F has a F-partite subfamily F′ of size |F′ | ≥ |F |/22F .

Proof. Let* ∈ F be a set, and let -1 , . . . , -F be a random partition of -. Then

Pr

-1 ,...,-F

[
∀9 ∈ [F], |* ∩-9 | = 1

]
=
F!

FF
.

Then, by averaging, there is a partition (-1 , . . . , -F) such that��{* ∈ F : ∀9 ∈ [F], |* ∩-9 | = 1

}�� ≥ |F | · F!

FF

The claim then follows since
F!

FF ≥ 2
−2F

. �

Nowwe can focus onF-partite families. Given a finite set-, we denote by-? the distribution

over subsets, ⊂ -, where each G ∈ - appears in, independently with probability ?.

Lemma 4.2. Let D ≥ F. Let 2 be the constant from Theorem 1.9. Then for every F-partite family which
is D2-spread (recall Definition 1.13), it holds that

Pr

,∼-?
[∃* ∈ F,* ⊆,] ≥ 1−F(1− ?)D .
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To prove this lemma, we first define a “worst case” instance, and then show that all other

instances behave better than this case. Let -∗
1
, . . . , -∗F be F disjoint sets each of size D. Define

the family U∗ as

U∗ =
{
{G1 , . . . , GF} : ∀9 ∈ [F], G 9 ∈ -∗9

}
.

Claim 4.3. Let U∗ as defined above. Then

Pr

,∼-?
[∃* ∈ U∗ ,* ⊆,] ≥ 1−F(1− ?)D .

Proof. By the definition of U∗, we have that

Pr

,
[∀* ∈ U∗ ,* *,] =Pr

,
[∃9 ∈ [F], -9 ∩, = ∅]

≤
∑
9∈[F]

Pr

,
[-9 ∩, = ∅]

=F(1− ?)D . �

Let -,. be finite sets, ℎ : -→ . a map. Given a set* ⊂ - define ℎ(*) = {ℎ(G) : G ∈*} ⊂ ..
Given a family F ⊆ P(-) define ℎ(F) ⊆ P(.) as

ℎ(F) =
{
ℎ(*) :* ∈ F and ℎ is injective on*

}
.

Lemma 4.4. Let - and . be sets, ℎ : -→ . a map, F ⊂ P(-). Then
Pr

,.∼.?
[∃* ∈ ℎ(F),* ⊆,.] ≤ Pr

,-∼-?
[∃* ∈ F,* ⊆,-].

Proof. Without loss of generality, we can assume the map ℎ is surjective, because elements

H ∈ . \ ℎ(-) do not affect the events. If |. | = |- | then ℎ is a bĳection and hence F and ℎ(F) are
the same, up to renaming the elements. So, assume |. | < |- |. It suffices to prove the lemma for

the case that |. | = |- | −1, as the general case follows from applying this case iteratively (namely,

decompose ℎ as a sequence of maps, each reduces the domain size by one).

So, assume |. | = |- | − 1. In this case, there is a unique pair G1 , G2 ∈ - such that ℎ(G1) =
ℎ(G2) = H. We may assume without loss of generality (by renaming the elements of .) that ℎ

is the identity map on -′ = - \ {G1 , G2}. This allows us to jointly sample (,- ,,.) as follows.

Sample, ′ ∼ -′? ,, ′- ∼ {G1 , G2}? ,, ′. ∼ {H}? and set,- =,
′∪, ′

-
,,. =,

′∪, ′
.
. We will show

that for every fixed, ′ = F′,

Pr

,.∼.?
[∃* ∈ ℎ(F),* ⊆,. |, ′ = F′] ≤ Pr

,-∼-?
[∃* ∈ F,* ⊆,- |, ′ = F′] . (4.1)

The lemma then follows by averaging over, ′.
To that end, fix , ′. Let F′ = {* \-′ : * ∈ F, (* ∩-′) ⊂, ′}. Note that F′ ⊆ P({G1 , G2}).

Similarly, define F′′ = {* \-′ :* ∈ ℎ(F), (* ∩-′) ⊂, ′}. Note that F′′ ⊆ P({H}). Equation (4.1)

is equivalent to

Pr

,′
.
∼{H}?
[∃* ∈ F′′,* ⊆, ′.] ≤ Pr

,′
-
∼{G1 ,G2}?

[∃* ∈ F′,* ⊆, ′-] . (4.2)

We verify Equation (4.2) by a case analysis.
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(i) If F′′ is empty then the LHS of Equation (4.2) is 0, while the RHS is non-negative.

(ii) If ∅ ∈ F′′ then ∅ ∈ F′. In this case, both the LHS and RHS of Equation (4.2) equal 1.

(iii) If F′′ = {{H}} then either {G1} ∈ F′ or {G2} ∈ F′ (or possibly both). In either case, the LHS

of Equation (4.2) equals ?, while the RHS is at least ?.

�

We now prove Lemma 4.2. Let F be a family that satisfies the assumptions. We will show

there is a function ℎ such that ℎ(F) = U∗. The extractor from Theorem 1.9, with an appropriate

choice of seed, provides such a function ℎ.

Proof of Lemma 4.2. Let F be a F-partite family that satisfies the spread condition. We first define

the function ℎ. Since F is a F-partite family, there exists a partition of - to -1 , . . . , -F such that

for each* ∈ F and 9 ∈ [F], |-9 ∩* | = 1.

Define the sample space as -1 × · · · ×-F . With a slight abuse of notation, we identify

F ⊆ P(-1 × · · · ×-F), and let � be a uniform distribution over F. Since F is D2-spread, the

distribution � is a (F, log-, :) block min-entropy source with : = 2 logD ≥ 2 logF. Then by

Theorem 1.9, there exists seeds A1 , . . . , AF such that (IP(�1 , A1), . . . , IP(�F , AF)) has full support,
where � = (�1 , . . . ,�F). Note that the output of IP(·, ·) is in {0,1}:/2 � [D]. We can now define ℎ

as follows:

ℎ(G) = (IP(G, A 9), 9) ∀G ∈ -9 .
Note that by definition, ℎ is injective on any* ∈ -1× · · · ×-F . We identify elements of U∗ with

{(01 ,1), . . . , (0F ,F)} with 08 ∈ [D]. Thus ℎ(F) =U∗. The lemma now follows from Lemma 4.4 and

Claim 4.3. �

We will also need the following lemma.

Lemma 4.5. Let D ≥ F. Let 2 be the constant from Theorem 1.9. Then for every F-partite family F

which is D2-spread (recall Definition 1.13), it holds that F contains D pairwise disjoint sets.

Proof. The proof is very similar to the proof of Lemma 4.2. There is a map ℎ for which ℎ(F) =U∗.
Note that U∗ contains D pairwise disjoint sets, *′

1
, . . . ,*′D . By definition, *′

8
= ℎ(*8). But then

also*1 , . . . ,*D must be pairwise disjoint. �

4.1 Sunflowers and robust sunflowers from compression

Now we can prove Theorem 1.8.

Theorem 4.6 (Theorem 1.8 restated). Suppose that there exists a strong (:,0, 3, B)-block min-entropy
disperser, � : {0,1}= ×{0,1}B→ {0,1}3 for any (F,=, :)-block min-entropy source. Then the following
holds.

Let F be a F-uniform family. Assume that |F | ≥ 2
(:+2)F . Then:

(i) F contains a 2
3-sunflower.
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(ii) F contains a
(
?,F(1− ?)23

)
-robust sunflower.

Proof. By Lemma 4.1, there is a F-partite subfamily F′ ⊆ F of size |F′ | ≥ 2
:F
. There are two

possible cases.

Case 1: There is a subset ( ⊆ - such that

|{* ∈ F′ : ( ⊆*}| ≥ |F′ | ·2−: |( | .

Define the family F′
(

:= {* \( : ( ⊆* ∈ F′}. Notice that

• F′
(
is (F− |( |)-partite;

• |F′
(
| ≥ |F′ | ·2−: |( | ≥ 2

:(F−|( |).

By induction both (i) and (ii) hold.

Case 2: For all ( ⊆ -,

|{* ∈ F′ : ( ⊆*}| ≤ |F′ | ·2−: |( |

Notice that this is the spread condition for Lemma 4.2 and Lemma 4.5. Their conclusions are

precisely (i) and (ii). �
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