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Abstract

We are interested in learning scalable agents for reinforcement learning that can
learn from large-scale, diverse sequential data similar to current large vision and
language models. To this end, this paper presents masked decision prediction
(MaskDP), a simple and scalable self-supervised pretraining method for reinforce-
ment learning (RL) and behavioral cloning (BC). In our MaskDP approach, we
employ a masked autoencoder (MAE) to state-action trajectories, wherein we ran-
domly mask state and action tokens and reconstruct the missing data. By doing so,
the model is required to infer masked-out states and actions and extract information
about dynamics. We find that masking different proportions of the input sequence
significantly helps with learning a better model that generalizes well to multiple
downstream tasks. In our empirical study, we find that a MaskDP model gains
the capability of zero-shot transfer to new BC tasks, such as single and multiple
goal reaching, and it can zero-shot infer skills from a few example transitions.
In addition, MaskDP transfers well to offline RL and shows promising scaling
behavior w.r.t. to model size. It is amenable to data-efficient finetuning, achieving

competitive results with prior methods based on autoregressive pretrainin

1 Introduction

Self-supervised pretraining has made tremendous successes for unsupervised representation learning
in natural language processing (NLP) and vision [[13} 9} 3| !4]. These methods work by predicting a
removed portion of the data, which is often referred to as masked token prediction. By varying the
masking patterns and architectures, different methods have been developed for NLP and vision, e.g.,
Transformer [34], GPT [4], BERT [9], and MAE [13]. These methods are simple to implement and
scalable to large Internet-scale datasets and deep neural networks, leading to excellent flexibility and
generalization for downstream tasks [9, [13} [1]].

In this work, we explore the generality of masked token prediction for generalizable and flexible
reinforcement learning (RL). Prior work has explored sequence modeling for sequential decision
making in the context of offline RL e.g. decision transformer (DT) [6] and trajectory transformer
(TT) [l14], and black-box optimization e.g. transformer neural processes (TNP) [20]]. These methods
are based on autoregressive next token prediction, similar to GPT [4]. While promising, these works
do not leverage diverse unlabeled data for generalization across various downstream tasks. In addition,
DT [6] needs reward-labeled high quality datasets, while TT [14] requires discretizing states and
actions, further limiting its applicability. The flexibility of applying arbitrary masks for executing
various task specifications in RL significantly lags behind NLP and vision.

!The implementation of MaskDP is available at https://github.com/FangchenLiu/MaskDP_public
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Figure 1: Illustration of MaskDP. During pretraining stage, we perform the masked token prediction task. And
after pretraining, the model can be deployed to various downstream tasks using different mask patterns.

We propose Masked Decision Prediction (MaskDP), a pretraining method to learn generalizable mod-
els that achieve data-efficient adaptation to various downstream tasks. MaskDP is a self-supervised
pretraining method that can leverage unlabeled diverse data. With MaskDP pretraining, the model
can generalize well to both goal reaching and offline RL, two distinctive and popular RL paradigms.

Our first key observation is that masked token prediction with random masking similar to BERT [9]]
and MAE [13] provides a general and flexible way for learning from unsupervised data. Unlike
autoregressive action prediction used in prior works, random masking is strictly more general and
requires the model to infer masked out states and actions, and thus leads to a single model that can
reason about both the forward and inverse dynamics from each sample.

Our second key observation is that since states and actions are highly correlated temporally, trajecto-
ries have significantly lower information density, i.e, it is easier to predict action or state based on
nearby states and actions. Consequently, a high mask ratio (95%) is necessary to make reconstruction
task meaningful. Unlike in MAE [13]] and BERT [9] where the goal is learning representations,
we want to directly apply MaskDP to various downstream tasks, and different mask ratios induce
different pre-train and downstream gaps. For example, consider the goal-reaching task within certain
time limit. Given current state, future goal and mask tokens between them, the model should be
able to inpaint intermediate actions as the goal-reaching plan. The mask ratio varies from short-term
plans to long-term plans. Therefore, we combine multiple different mask ratios (e.g. 15%, 35%,
75%, and 95%), and mask a portion of data using a randomly sampled mask ratio. Our experiments
show that doing so is crucial to achieving high performance. We show that self-supervised pretrained
MaskDP achieves high performance in challenging multiple goals reaching setting, outperforming
strong baselines in a zero-shot manner.

We highlight our key results here:
* Single goal reaching: MaskDP achieves performance that exceeds or matches both training
from scratch task-specific methods and other pretraining based methods.

* Sequential multiple goal reaching: MaskDP can reach a sequence of goals effectively,
even without closed-loop execution, while outperforming iterative baselines significantly.

* Offline RL: MaskDP achieves competitive results as specialized approaches. Notably, we
demonstrate that non-autoregressive architecture works well for offline RL tasks.

2 Related work

Masked modeling in language and vision. Large-scale language models are highly successful [9]
4]-after pretraining on a large amount of data, these pretrained representations generalize well to
various downstream tasks. Taking inspiration from the success in NLP, Transformer [34] based



methods have been proposed to model images [7, 10, 3, [13]. iGPT [7] operates on sequences of
pixels and predicts unknown pixels. BEiT [3] proposes to predict discrete tokens [33)123]. MAE [13]
proposes to randomly mask patches of the input image and reconstruct the missing pixels. Since
we apply random mask across states and actions, our work is also related to prior work on masked
prediction across multiple input modalities [see e.g. 35]].

Sequence modeling in RL.  Sequence modeling for decision making has been studied in RL
and other applications [22} 24} |6l 14, 40, [11]. MVP [36] studies transferring pretrained visual
representations to RL tasks. MWM [26] studies masked prediction over convolutional features, and
learn a latent dynamics model. Modeling inverse dynamics has also been studied for robot learning
from demonstrations and sim-to-real transfer [8, 31]. TT [14] studies autoregressive next token
prediction for model-based RL applications. DT [6, |40]] study masking autoregressive next token
prediction conditioned on return. TNP [20] and BONET [15]] study autoregressive masking for
sequential decision making for black-box optimization. ICM [22] and SPR [24] study predicting
masked state and action in a transition tuple for exploration. Different from these works, MaskDP
randomly masks a portion of trajectories and generalizes prior masking strategies such as inverse
dynamics. In addition, MaskDP generalizes well to downstream tasks while prior work is task-specific.
Concurrent to our work, Uni[MASK] [3]] proposes using the bidirectional transformer to predict
masked states and actions and demonstrates that the resulting model performs well on a large variety
of tasks. The main difference between our works is that Uni[MASK] is more interested in comparing
the performance between training regimes with different masking schemes, while our work focuses
on solving a range of downstream tasks with minimal task-specific designs during pretraining.

Unsupervised pretraining in RL.  Our work falls under the category of self-supervised pretraining
in RL. Self-supervised discovery of a set of task-agnostic behaviors by means of seeking to maximize
an intrinsic reward has been explored as intrinsic motivation [2]], often with the goal of encouraging
exploration [28} 21]. APT [19] studies nonparametric entropy maximization for pretraining and is
extended to learning skills [18]]. Proto-RL [37] further improves pretraining by representation
learning. CIC [17] combines contrastive learning with skill discover and improves results on
URL benchmarks [16]. APV [27] shows successful transfer of pretrained representation across
domains. Many of these methods are used to pretrain agents that are later adapted to specific
reinforcement learning tasks. Using offline data for pretraining agents has also been explored in
prior work [25 129, [39]]. SGI [25]] proposes combining self-predictive representation [24] and inverse
dynamics prediction. ATC [29] studies contrastive pretraining on trajectories and shows transferring
the representations to downstream tasks.

3 Method

The key idea in MaskDP is to mask and reconstruct state-action sequences during the pretraining
stage. Post pretraining, MaskDP can be zero-shot deployed or finetuned for various downstream
tasks. The paradigm of the model for pretraining and finetuning is summarized in Figure

3.1 MaskDP Pretraining

Random masking. For sequences with low information density, a 2igh masking ratio is typically
applied to eliminate information redundancy and make the task sufficiently difficult to avoid trivial
interpolation from visible neighbor tokens. However, unlike vision and language, where the goal
is to learn good representations; we also consider directly deploying this model by leveraging its
inpainting capability for various downstream tasks. For example, we can give the model a goal at
timestep 7" and mask all the future inputs, the model can generate intermediate actions by inpainting
the mask tokens. The mask ratio varies from goal to goal, depending on the time budget. To reduce
the gap between training and deployment, we keep a set of mask ratios (i.e. 15%, 35%, 50%, 75%,
and 95%), and the data is randomly masked with a ratio sampled from this set. We find that masking
multiple proportions of the input yields a meaningful self-supervisory task.

We apply random masking on state tokens and action tokens independently. By doing so, the model
is implicitly learning both forward and inverse dynamics. This also provides more flexibility as we
can provide state or action-level inputs but not transition-level.



Architecture Our encoder is a Transformer [34] but applied only on visible, unmasked states
and actions, similar to MAE [13]]. The states and actions are first embedded by separated linear
layers, positional embeddings are then added, and lastly, the embeddings are processed by a series of
self-attentional blocks. The decoder operates on the full set of encoded visible state and action tokens
and mask tokens. Each mask token is a shared, learned vector that indicates the presence of a missing
token to be predicted. Similar to the encoder, the masked whole sequence will pass through separated
linear projections added with positional embedding prior to being passed to the decoder. Both the
encoder and decoder are bidirectional.

Prediction target Our MaskDP reconstructs the input by predicting the whole action and state
sequences. The last layer of the decoder consists of two MLPs to decode states and actions separately.
The loss function computes the mean squared error (MSE) between the reconstructed whole sequence
and original inputs. Different from other masked prediction variants [13|9], we found mask loss is
not useful in our setting, as our goal is to obtain an scalable decision making model but not only for
representation learning.

3.2 MaskDP Downstream Tasks

MaskDP for goal reaching We consider the problem of reaching one goal or multiple goals from a
given state. The model has to generate a sequence of actions to reach goals within a certain amount
of steps. MaskDP denoising pretraining objective fits the goal reaching scenario well as the model
must learn to inpaint masked actions based on remaining states. In this task, the MaskDP encoder
input is a concatenation of initial state and goals, and the decoder input is a concatenation of initial
state embedding, masked token sequence, and goal embeddings. Note that the number of masked
tokens determines the number of timesteps the model is expected to reach the given goals. The model
then generates a state-action sequence, where we can directly execute the whole action sequence
(namely "open-loop"), or only execute the first action and forward the model again with the obtained
new observation (namely "closed-loop").

MaskDP for skill prompting Skill prompting requires the model to generate a trajectory condi-
tioned a given context. For example, consider a walker agent: if we prompt it with a few state-action
pairs of walking/running/standing, it should continue to generate a trajectory in the same skill pattern.
Accordingly, we append the observed initial state-action sequences with masked tokens for the future.
The model can be rolled out once to generate the whole future sequence, or queried repeatedly to
refill the masked tokens at each time step. Similar to goal-reaching task, we refer to these strategies
as "open-loop" and "closed-loop" respectively.

MaskDP for offline RL  In offline RL, the objective is to learn one model for maximizing the return
for a task specified by a reward function. This is different from our self-supervised pretraining target,
so extra finetuning is needed. We adopt a standard actor-critic framework similar to TD3 [12] by
adding a critic head and actor head, where the actor takes a state sequence as input, and the critic
takes the state-action sequence as input. Both are mask-free. To match the setting in RL, we change
the bidirectional attention mask in the transformer to a causal attention mask. More details about RL
finetuning can be found in section [#.2.3]

4 Experiments

In our experiments, we evaluate transfer learning in downstream tasks using MaskDP. Section{.1]
introduces the environments, pretraining, and the baselines compared in experiments. Section
summarizes the results of MaskDP on goal reaching, skill prompting, and offline RL. Through further
analysis in Section[4.3] we present an ablation study on various design choices of our model.

4.1 Experiments Setup

Environments: domains vs. tasks We adopt the environment setup used in EXoRL [38]], based
on DeepMind control suite [30], where a domain describes the type of agent (e.g. Walker) but tasks
are specified by rewards (e.g., Walker walk, Walker run). We use 3 domains (Walker, Cheetah and
Quadruped) with 7 tasks in total. More details about the environments can be found in the Appendix.



Pretraining datasets Real-world pretraining data generally varies greatly in quality. To mimic this,
we construct two different pretraining datasets to approximate different data quality scenarios.

* Near-expert: For every task, we train a TD3 agent [[12]] for 1M steps and freeze its parameters.
We rollout the policy with Gaussian random noise and collect 4M experience on each task.

* Mixed: This dataset consists of diverse data collected from various agents, including 2K near-
expert trajectories for each task. Similar to ExoRL [38]], we collect 10M exploratory trajectories
using intrinsic reward from Proto-RL [37]] for each domain. We also to use a TD3 [12] agent
to maximize the sum of extrinsic reward and the Proto-RL intrinsic reward, and store its 2M
experience on each task.

For more details about the above datasets and more ablations on the dataset quality, please refer
to Section[A and Section [B.T|respectively. We perform both single-task and multi-task pretraining
using the above datasets. The former leverages task-specific data while the latter utilizes data from
all tasks within the same domain. We pretrain agents for 400K gradient steps. Specifically, for the
model pretrained on the near-expert dataset, we perform zero—sho evaluation of goal reaching and
skill prompting, and finetuning for offline RL; for model trained on the mixed dataset, we provide the
finetuning results in Section#.3]and Section [A.

Baselines

* GPT. We train an autoregressive model similar to GPT [4] which takes the past states and actions
as input to predict the next state or action.

* Goal-GPT. We specifically modify GPT to Goal-GPT to evaluate its performance on goal
reaching tasks. The model takes current goal and observations as input, and predicts the action
to reach this goal. The model is trained using a behaviour cloning loss as [6].

* Goal-MLP. Standard behavior cloning method that conditions on the goal. The major difference
between this and Goal-GPT is here we do not use the causal Transformer architecture to make
the history visible.

By default, MaskDP uses a 3-layer encoder and 2-layer decoder, and the baselines based on GPT use
5 attention layers. MaskDP and all the above models are comparable with similar architecture design
and size, and share the same training hyper-parameters. Details about the architecture and training of
MaskDP and the above baselines can be found in Section[A.

4.2 Main Results
4.2.1 Goal Reaching

We consider both single and multiple goal-reaching settings. The agent is required to reach one
or multiple goals from a given state, which are all sampled from the same trajectory to guarantee
reachabilty within a reasonable time budget. During evaluation, the agent rolls out to reach the given
goal(s) within a time budget. The evaluation dataset is also collected by the same RL agent in 3
environments with different seeds, which is unseen during pretraining. The detailed settings are:

* single-goal reaching: For every trajectory in the validation set, we randomly sample a start state
and a future state in T' € [15, 20) steps as the goal. All the methods are evaluated on the same
set of 300 state-goal pairs with a given budget of 7" + 3. We set the agent to the start state and
report the L2 distance between the goal and the closest rollout state within this budget.

* multi-goal reaching: For every trajectory in the validation set, we randomly sample a start
state and 5 goal states at random future timesteps from [12, 60). We evaluate the same set of
100 state-goal sequences and add additional 5 timestep budgets for all the goals. Similar to
single-goal reaching, We report the L2 distance between every goal and the closest rollout state
before running out of its corresponding budget.

We show the zero-shot performance of MaskDP and baselines pretrained with the near-expert data
(both in single-task and multi-task settings). We report L2 distance averaged over the states and goals

2We directly evaluate the model on some unseen state-goal pairs in the validation dataset



MaskDP (closed-loop)
MaskDP (open-loop)

_
: TT (J cos

quadruped_run quadrup‘ediwa\k walker_run walker_walk walker_stand cheetah_run cheetah_run_backward

Average goal distance

Figure 2: Single task pretraining followed by single goal reaching downstream task. MaskDP with closed-loop
execution achieves the best performance on all the tasks, and get the most significant improvements in the
Quadruped domain, which is higher dimensional.
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Figure 3: Single task pretraining followed by multiple goals reaching downstream task. MaskDP achieves
significant improvement on all the tasks with better flexibility in sequential goal reaching.

sampled based on the above rules. Tables of run numbers and standard derivations can be found
in Section[Cl

Figure [2] show the results of reaching single goal. The y-axis is the L2 distance (the lower the better).
We observe that both MaskDP (open-loop) and MaskDP (closed-loop) outperform Goal-GPT and
Goal-MLP. Despite Goal-GPT being a natural formulation for goal reaching, MaskDP reaches a
lower distance to the goal. We attribute the effectiveness to learning a better understanding of the
forward and inverse dynamics implicitly. We also observe that the advantages of MaskDP are even
more significant in higher dimensional environments, such as Quadruped.

For the more challenging multi-goal reaching task, MaskDP has a significant advantage in flexibility:
we can just provide the goals at specific time budgets with interleaved masks and get an executable
plan; however, for Goal-MLP and Goal-GPT, we have to change goals at certain timesteps to fulfill
future multiple goals. As shown in Figure[3] MaskDP outperforms both goal-GPT and BC by a large
margin. In Figure [I4, we showed that having "foresight" about future goals can help the agent to
generate a better plan.

We can get similar conclusions from the multi-task pretrained models in Figure [ and Figure[5] where
our method consistently works well on all domains, with the most visible advantage in multi-goal
reaching setup.

4.2.2 Skill Prompting

We are interested in the learned behavior of pretrained models. We use prompting, which has become
popular in analyzing models ever since GPT [4]]. To do so, we give the agent a short state-action
segment randomly cropped from an expert trajectory, set the agent to the last state of the segment, and
let the model continue to generate consecutive behaviors. We evaluate the quality of the generated
sequence by comparing its obtained rewards with the rollout of a skilled expert.
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Figure 4: Multiple tasks pretraining followed by single goal reaching downstream task, where MaskDP with
closed-loop execution works the best, especially in the Quadruped domain.
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Figure 5: Multiple task pretraining followed by multiple goals reaching downstream task.
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Figure 6: Qualitative results on for skill prompting in the Walker domain. Given 5 initial states, the model learns
to forecast future trajectories as in the expert-level behaviour.

To be specific, we prompt the multi-task model trained with expert data and sample a 5-timestep
state-action segment from 7" € [100, 900], where the agent can be walking/running at low or high
speeds. We prompt the model with this short segment and let the model generate rollouts for 20, 40,
60 timesteps. We provide both qualitative results and quantitative results in Figure[7 and Figure[6
respectively. We can see in Figure[7] both our method and GPT can match the expert return. It shows
that our method can perform as well as autoregressive model in generation task.

4.2.3 Offline Reinforcement Learning

Evaluation We provide a 2M buffer of the data collected by Proto-RL [37]] as in ExoRL [38] does,
where the overall return of the data is quite low and thus the BC-based method cannot work well.
ExoRL [38]] simply shows that an offline TD3 agent works the best on diverse low-return offline data.

We can modify MaskDP to this setting by adding additional actor and critic heads on top of the
pretrained encoder, and performing RL training. We evaluate the efficiency of the pretrained model
by its return after certain TD gradient steps. The results are shown in Figure [§ averaged over 3
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Figure 7: Quantitative results on learned behaviors using prompt. Both MaskDP and GPT can match or even
slightly surpass the expert-level performance (right grey bar) in trajectory forecasting.
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Figure 8: Offline RL results on Walker domain. The result of MaskDP matches the GPT-style pretraining
performance, and are all comparable to the SoTA in ExoRL [38].

seeds. We observe MaskDP is capable of adapting to downstream tasks quickly, outperforms training
from scratch, and achieves similar results as the GPT baseline. Note that in this setting, we need
to replace the bidirectional attention mask with the causal attention mask, so there is a larger gap
between pretraining and downstream tasks finetuning compared with GPT, which is trained with
causal masking. Note that MaskDP from scratch is almost the same as GPT from scratch (both with
causal masking). From Figure E, both MaskDP and GPT can match the best result in ExoRL [38]]
from their offline TD3 agent, where BC-based method cannot successfully solve this task.

4.3 Analysis
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Figure 10: Mask ratio ablation. We compare our multiple ratio pretrained model with models trained with fixed
ratios, where our masking strategy can achieve much better performance.

the better). We found for both zero-shot evaluation and finetuning, our model’s performance improves
when model size is enlarged, whereas for Goal-GPT the performance gain is not obvious.

Mask ratio ablation. Figure |10 shows the influence of the masking ratio. With a fixed mask ratio,
we observe that an extremely high mask ratio (95%) generally does not work well and the typical
mask ratio (15%) used in BERT seems to perform much worse than others. A middle mask ratio 50%
performs reasonably well, despite still being surprisingly high, similiar to the observations in MAE.
However, our mixed mask ratio strategy strictly outperforms all the above options.

Predicting unmasked tokens ablation. = i
We also compare the model trained with
mask loss vs. total loss. As shown in Fig-
ure [IT, empirically we do not find mask
loss has more advantages than total loss,
even on the relatively clean expert dataset, - o daved ! doned Walt
it converges slower than using total loss.
For the results on diverse data, please refer
to Section[C]
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Figure 11: Masked loss and total loss ablation on 20k pretrain-
ing gradient steps. The model trained with total loss converges
faster than the one trained with masked loss.

5 Conclusion

This paper presents masked decision prediction (MaskDP), a simple and scalable self-supervised
method for reinforcement learning (RL) inspired by current large language and vision models.
MaskDP is capable of learning scalable and generalizable agents for reinforcement learning that can
learn from diverse-quality data sources and infer tasks in goal-reaching and skill-execution settings.
Through our empirical study we find MaskDP models outperform past work in zero-shot goal
reaching and transfer well to downstream RL tasks, performing competitively with prior pretraining
and training from scratch methods.

Limitations and Future Work Computer vision and NLP domains have shown that the true
promise of masking architectures lies with their ability to ingest diverse, fully unsupervised data.
We study how MaskDP performs when trained without access to expert-level data, and evaluated on
unseen proprioceptive states. In the future, we can extend our method to pixel inputs, and pretrain the
model to adapt to far different downstream tasks.

The architecture used in MaskDP closely resembles a model-based method, as states are predicted
sequentially from actions. In this paper, we use use the predicted next actions directly as this is the
simplest and fastest approach. However, it is straightforward to extend MaskDP to plan through our
learned model and compare against related baselines.

Societal Impact This is an algorithm for training agents in the style of recent large-scale CV and
NLP models. While we do not anticipate particular social risks from our method, as algorithms
become capable of ingesting large-scale, in-the-wild data it is important to ensure the dataset does
not reinforce undesirable biases or promote harmful behaviors.
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A Experimental Details

A.1 Environments and Tasks

We provide the details about the environments and tasks used in our experiments in Table|[T]

Domain Quadruped Walker Cheetah
Task run walk | run walk stand | run  run_backward
State dim 79 18 24
Action dim 12 6 6

Table 1: Environments and tasks from the DeepMind control suite [30] used in our experiments.

A.2 Datasets

Near-Expert Dataset We use TD3 agent [[12] trained with 1M steps in the above tasks. We then
freeze its parameters and rollout its policy with Gaussian noise N (0, 0.2) in every dimension of the
action space. For each task, we collect 4M steps of experience (4K episodes in total) using this
pretrained TD3 agent.

Mixed Dataset Mixed dataset consists of the following data from various RL agents:

» Near-expert data: Same as the above near-expert dataset, but we only include 2M steps experi-
ence (2K episodes in total) for each task.

» Unsupervised data: We use an unsupervised RL algorithm, Proto-RL [37], to collect diverse
unsupervised data. We train the agent for 10M steps in each domain and record all the 10M
steps (10K episodes).

» Semi-supervised data: We train a TD3 agent to optimize the sum of Proto-RL [37] intrinsic

reward and extrinsic reward. The agent is trained for 2M steps in each task and we record all the
2M steps (2K episodes) for each task.

A.3 Hyperparameters

We provide more details about the hyperparameters and other settings of model training and evaluation
in Table 2

A.4 Training Details

Goal-MLP Training We adapt the training of Goal-MLP to make it learn to reach goals with
varying time budgets. Given a state-action sequence (S, a¢, S¢+1, ---» St+m ), Goal-MLP randomly
sample two states s; and s; as starting state and goal, (where t < ¢ < j <t + m), and predicts the
action a;.

Goal-GPT Training Given a state-action sequence (S¢, Gt, St41s ---s St4+m), G0al-GPT treats
g = Si4+m as goal. Every state s; (where ¢ < ¢ < t 4+ m) is concatenated with g. Then Goal-GPT
predicts the action sequence ay, ... a;y.,—1 from the state-goal sequence (s¢, g), ... (S¢=m—1,9) by
passing through causal self-attention layers. In this way, all the goal-reaching baselines are pre-trained
to reach goals in various timesteps.

GPT Training Given a state-action sequence (S¢, G¢, S¢+1, ---» St+m ), GPT predicts the next token
(state or action) conditions on previous token sequence, i.e., predicting s; (j > t) from sy, ay, ...
Si_1,A5_1.

J J

A.5 Compute Resources

MaskDP is designed to be accessible to the RL research community. The whole pipeline, including
data collection, pretraining, and finetuning, only requires a single GPU. All experiments were run on
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MaskDP Value

# Context length 64

# Encoder layer 3

# Decoder layer 2

# Attention head 4

# Hidden dimension 256
Mask ratio [0.15, 0.35, 0.55, 0.75, 0.95]
GPT/Goal-GPT Value
# Context length 64

# Attention layer 5

# Attention head 4

# Hidden dimension 256
Goal-MLP Value
# Context length 64

# Linear layer 5

# Hidden dimension 1024
Training Value
Optimizer Adam
(81, 2) (.9,.999)
Learning rate le
Batch size 384

# Gradient step 400000
Evaluation Value
# seed 3

# Goals (single-goal reaching) per seed 300
# Goals (multi-goal reaching) per seed 100 x 5

Prompt context length 5
Discount (for RL) 0.99
Replay buffer size (for RL) 2M

Table 2: Hyperparameters used for model training and evaluation.

GPU clusters with 8§ NVIDIA TITAN Xp. The pretraining takes 6-8 hours for 400k gradient steps on
the collected datasets using a single GPU.

B Additional Experimental Study

B.1 Dataset Quality

MaskDP has no assumption about the pretraining dataset. To show it doesn’t rely on the expert data,
we reconstruct another highly diverse dataset called mixed-v2, which contains:

 unsupervised data: we train a TD3 [12] agent to maximize Proto-RL [37] intrinsic reward, and
store its 10M replay buffer on each domain.

 semi-supervised data: we train a TD3 agent to maximize the sum of extrinsic reward and the
Proto-RL intrinsic reward, and store its 2M replay buffer on each task.

 supervised data: we train a TD3 agent to maximize extrinsic reward and store its 2M replay
buffer on each task.

The mixed-v2 dataset is more diverse, as it replaces the near-expert data with TD3 training samples,
which are more suboptimal and noisy. After pretraining using mixed-v2, we evaluate its performance
on unseen state-goal pairs from near-expert dataset (dataset in the main paper). So the pretraining
and evaluation datasets are in different distributions.
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In Figure[12]and Figure[I3] we find our model consistently outperforms baselines on all the domains.
Compared with Figure |4 and Figure[5, it has more advantages when dataset is noisy, as BC-based
methods highly rely on the dataset quality.

. MaskDP (closed-loop) R
[ MaskDP (open-loop)
B Goal MLP
I s [0 Goal GPT

Average goal distance

[0

ol

Quadruped Run Quadruped Walk Walker Run Walker Walk Walker Stand Cheetah Run Cheetah Run Backward

Figure 12: The single goal reaching results on near-expert goal reaching, after pretraining MaskDP on mixed-
v2 dataset.
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Figure 13: The multiple goal reaching results on near-expert goal reaching, after pretraining MaskDP on
mixed-v2 dataset.

B.2 Foresight Helps Multi-goal Reaching

We add ablation about whether to provide multiple future goals to the agent for multi-goal reaching.
In contrast, We can also give the agent an individual goal at one time, and switch to a different goal
when the budget is exhausted.

B.3 Trajectory Length Affects Generation Quality

As in [13] 32]], we also use sinusoidal positional embedding and perform linear interpolation when
the trajectory is longer than the training time. Figure[I3]shows the results when we execute the agent
for 60, 90, and 120 steps with 5 context tokens, where the training trajectory length is 64. We found
on most environments, closed-loop MaskDP can achieve similar performance with GPT and the
expert return (the gray bar), except for Cheetah tasks. For longer trajectories, the mask ratio can be
extremely low at the beginning, which can cause some bad initial behavior. Meanwhile, GPT can
perform stably well as it’s not conditioned on masked inputs.

B.4 Additional Domain: Jaco

We also add a Jaco arm reaching task in the robotics domain. The training and evaluation both follow
Section[B.T As shown in Figure[T6] MaskDP still outperforms baselines on this task.
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Figure 14: We test the closed-loop performance of MaskDP to understand whether the visibility of future goals
can improve the performance. We found that on all the domains, MaskDP with foresight performs better.
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Figure 15: Skill prompting performance for longer rollouts.
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Figure 16: Multi-goal reaching results on Jaco reaching task. MaskDP outperforms baselines on this domain.
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C Full Experimental Results

C.1 Single-goal Reaching Results

We provide the single-goal reaching results in Table [3/and Table [ for single-task and multi-task

respectively.

Domain Task Goal-MLP Goal-GPT Ours (open-loop) | Ours (closed-loop)
Quadruped run 17.832+£0.321 | 18.313+0.171 13.753+0.255 12.912+0.018
walk 22.965+0.077 | 23.05140.055 15.456+0.176 15.116+0.396
run 8.1540.080 9.197+0.012 9.56540.157 7.78940.220
Walker walk 5.111+0.118 6.0294+0.415 5.82240.281 2.63+0.158
stand 3.979+0.293 4.1084+0.317 3.242+0.1527 2.393+0.076
Cheetah run 1.37740.037 2.8784+0.057 2.23440.145 1.385+0.122
run backward | 1.447+0.136 3.01140.095 1.752+0.052 0.86640.065
Table 3: single-task single-goal reaching results.
Domain Task Goal-MLP Goal-GPT Ours (open-loop) | Ours (closed-loop)
Quadruped run 17.825+0.218 | 18.224+0.551 13.214+0.230 12.926+0.382
walk 22.977+0.484 | 23.3614+0.201 14.892+0.140 15.428+0.203
run 8.600£0.095 8.977+0.181 10.242+0.149 6.233+0.149
Walker walk 5.550+0.170 6.08340.392 6.58440.487 4.042+0.148
stand 4.0961+0.015 4.13740.408 3.42240.161 2.2484+0.026
Cheetah run 1.63440.042 2.95340.085 1.92440.099 1.9394+0.125
run backward | 1.694+0.061 2.9804+0.076 1.378+0.055 1.395+0.011

Table 4: Multi-task single-goal reaching results.

C.2 Multi-goal Reaching Results

We provide multi-goal reaching results for multi-task pretrained models in Table[5] Table[6] Table
Table [§]and Table [0l

Domain Task Goal-MLP Goal-GPT Ours (open-loop) | Ours (closed-loop)
Quadruped run 15.644£0.193 | 15.925+0.726 10.396£0.152 10.21340.644
walk 21.963+0.241 | 22.114+0.445 13.413+0.545 12.99+0.073
run 7.56240.385 7.58840.243 5.9814+0.006 4.032+0.265
Walker walk 5.238+0.212 5.48140.172 4.256+0.080 2.7214+0.213
stand 4.295+0.050 4.483+0.189 2.998+0.271 2.29340.426
Cheetah run 1.38140.151 2.342+0.009 0.995+0.132 0.7384+0.041
run backward | 1.356+0.102 2.82940.058 0.811+0.089 0.647+0.007
Table 5: Distance to the first goal in multi-task multi-goal reaching.
Domain Task Goal-MLP Goal-GPT Ours (open-loop) | Ours (closed-loop)
Quadruped run 18.183£1.883 | 17.915+0.649 11.444+1.065 11.736+0.796
walk 22.628+1.006 | 23.225+1.325 13.986+0.515 14.487+0.937
run 8.1614+0.939 8.98+0.775 7.165+0.305 4.3984+0.599
Walker walk 5.576+0.778 6.4584+0.509 6.43540.507 2.886+0.217
stand 4.389+0.119 4.013+0.131 2.56640.508 2.0454+0.282
Cheetah run 1.814+0.126 2.75+0.115 1.2074+0.056 1.163+0.032
run backward | 1.802+0.118 3.34140.180 0.917+0.022 0.853+0.161

Table 6: Distance to the second goal in multi-task multi-goal reaching.
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Domain Task Goal-MLP Goal-GPT Ours (open-loop) | Ours (closed-loop)
Quad d run 18.377+£0.324 | 18.9114+1.58 12.334+1.26 12.085+0.710
vadrupe walk 22.787+0.269 | 23.907+0.946 |  14.7+0.166 14.069-0.498
run 9.054+0.3809 9.178+0.278 9.053+0.157 5.0454+0.179
Walker walk 6.1274+0.268 6.6034+0.489 5.8954+0.097 3.1134+0.106
stand 4.22740.193 4.093+0.225 2.8784+0.018 2.01240.115
Cheetah run 2.329+0.108 3.216+0.259 1.456+0.085 1.519+0.048
run backward | 2.11+0.114 3.80740.131 1.2914+0.102 1.2164+0.026
Table 7: Distance to the third goal in multi-task multi-goal reaching.
Domain Task Goal-MLP Goal-GPT Ours (open-loop) | Ours (closed-loop)
Quadruped run 19.564+0.142 | 19.227+0.156 12.9240.52 12.89+0.030
walk 23.475+0.342 | 24.119+0.165 14.235+0.800 14.607+0.698
run 8.37440.536 8.926+0.582 7.787+0.789 4.713+0.751
Walker walk 5.548+0.282 5.9884+0.193 6.248+0.402 2.884+0.007
stand 4.195+0.086 4.07+0.103 2.70440.043 2.1444+0.210
Cheetah run 2.501+0.130 3.5374+0.361 1.929+0.034 1.97140.047
run backward | 2.491+0.047 4.145+0.330 1.825+0.217 1.484+0.166
Table 8: Distance to the fourth goal in multi-task multi-goal reaching.
Domain Task Goal-MLP Goal-GPT Ours (open-loop) | Ours (closed-loop)
Quad d run 18.749+0.796 | 19.083+1.376 13.057+0.202 12.162+0.084
vadrupe walk 23.77240.668 | 24.15241.002 | 15.27540.910 15.2441.264
run 8.563+0.612 8.567+0.196 8.955+0.352 5.3384+0.392
Walker walk 6.876+1.103 8.334+1.613 7.231+1.101 3.664+0.276
stand 3.93+0.796 3.77540.648 2.53940.394 2.009+0.414
Cheetah run 3.375+0.456 | 4.623+0.609 2.769+0.232 2.716+0.335
run backward | 2.737+0.229 4.07+0.164 2.24440.118 1.981+0.002
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Table 9: Distance to the fifth goal in multi-task multi-goal reaching.
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Figure 17: Model scalability on walker domain. X-axis represents number of gradient steps. With MaskDP
pre-training, larger models outperform smaller models across all Walker tasks. In contrast, Goal-GPT does not
have such properties.

C.3 Finetuning Results on Model Scalability

We pretrain MaskDP using the diverse multi-task mixed dataset, and finetune it using near-expert
dataset on each task. In addition to the results in Figure the Quadruped domain, we also provide

results on the other two domains in Figure

attention layers, while “large” represents 5 attention layers.

and Figure|18| Here “small” represents a model with 3

We can see the large model with closed-loop evaluation always performs the best, while for Goal-GPT
the results are much worse, and the gain from the large model is not significant.

18




5.0 5.04
4.5 4.5+4
L 4.0 4.0
o
c
835 3.5
% MaskDP small (closed-loop)
= >0 3.0 MaskDP small (open-loop)
8 25 25 MaskDP large (closed-loop)
20 20l MaskDP large (open-loop)
’ GPT small
L5 159 GPT large

0 50k 0 50k
Number of gradient steps (Cheetah Run) Number of gradient steps (Cheetah Run Backward)

Figure 18: Model scalability on cheetah domain. X-axis represents number of gradient steps. With MaskDP
pre-training, larger models outperform smaller models across all Walker tasks. In contrast, Goal-GPT does not

have such properties.
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