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Abstract: Generating safety-critical scenarios, which are crucial yet difficult to
collect, provides an effective way to evaluate the robustness of autonomous driving
systems. However, the diversity of scenarios and efficiency of generation methods
are heavily restricted by the rareness and structure of safety-critical scenarios.
Therefore, existing generative models that only estimate distributions from obser-
vational data are not satisfying to solve this problem. In this paper, we integrate
causality as a prior into the scenario generation and propose a flow-based generative
framework, Causal Autoregressive Flow (CausalAF). CausalAF encourages the
generative model to uncover and follow the causal relationship among generated
objects via novel causal masking operations instead of searching the sample only
from observational data. By learning the cause-and-effect mechanism of how the
generated scenario causes risk situations rather than just learning correlations from
data, CausalAF significantly improves learning efficiency. Extensive experiments
on three heterogeneous traffic scenarios illustrate that CausalAF requires much
fewer optimization resources to effectively generate safety-critical scenarios. We
also show that using generated scenarios as additional training samples empirically
improves the robustness of autonomous driving algorithms.
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1 Introduction

According to a recent report [1], several companies have made their autonomous vehicles (AVs)
drive more than 10,000 miles without disengagement. It seems that current AVs have achieved great
success in normal scenarios that cover most cases in daily life. However, we are still unsure about
their performance under unusual but critical cases, which could be too rare to collect in the real world.
For example, a kid suddenly running into the drive lane chasing a ball leaves the AV a very short time
to react. This kind of situation, named safety-critical scenarios, could be the last puzzle to evaluate
the safety of AVs before deployment.

Generating safety-critical scenarios with Deep generative models (DGMs), which estimates the
distribution of data samples with neural networks, is regarded as a promising way in recent works [2].
Existing literature either searches in the latent space to build scenarios [3, 4] or directly uses
optimization methods to find the adversarial examples [5, 6]. However, such a generation task is still
challenging since we are required to simultaneously consider fidelity to avoid conjectural scenarios
that will never happen in the real world, as well as the safety-critical level which is indeed rare
compared with normal scenarios. In addition, generating reasonable threats to vehicles’ safety can
be inefficient if the model purely relies on the unstructured observational data, as the safety-critical
scenarios are rare and follow fundamental physical principles. Inspired by the fact that humans are
good at abstracting the causation beneath the observations with prior knowledge, we explore a new
direction toward causal generative models for this generation task.

To have a glance at causality in traffic scenarios, we show an example in Figure 1(b). When a vehicle B
is parked in the middle between the autonomous vehicle A and pedestrian C, the view of A is blocked,
making A have little time to brake and thus have a potential collision with C. As human drivers, we be-
lieve B should be the cause of the accident. This scenario may take AVs millions of hours to collect [7].
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Figure 1: (a) Diagram of the generation pipeline
using CausalAF. (b) Two scenarios obtained by
two Behavioral Graphs shows the causality behind
scenarios. The top one is safety-critical because
the view of vehicle A is blocked by vehicle B.

Even if we use traditional generative models to
generate this scenario, the model tends to mem-
orize the location of all objects without learning
the reasons. As a remedy, we can incorporate
causality into generative models for the efficient
generation of such safety-critical scenarios.

In this paper, we propose a structured generative
model with causal priors. We model the causal-
ity as a directed acyclic graph (DAG) named
Causal Graph (CG) [8]. To facilitate CG in the
traffic scenario, we propose another Behavioral
Graph (BG) for representing the interaction be-
tween objects in scenarios. The graphical rep-
resentation of both graphs makes it possible to
use the BG to unearth the causality given by CG.
Based on BG, we propose the first generative
model that integrates causality into the graph
generation task and names it CausalAF. Specif-
ically, we propose two types of causal masks –
Causal Order Masks (COM) that modifies the
node order for node generation, and Causal Vis-
ibility masks (CVM) that removes irrelevant in-
formation for edge generation. We show the
diagram of CausalAF generation in Figure 1(a)
and summarize our main contributions as fol-
lowing:

• We propose a causal generative model CausalAF that integrates causal graphs with two novel
mask operators for safety-critical scenario generation.

• We show that CausalAF dramatically improves the efficiency and performance on three standard
traffic settings compared with purely data-driven baselines.

• We show that the training on generated safety-critical scenarios improves the robustness of 4
reinforcement learning-based driving algorithms.

2 Graphical Representation of Scenarios

We start by proposing a novel representation of traffic scenarios using a graph structure. Then, we
propose to generate such graphical representation with an autoregressive generative model.

2.1 Behavioral Graph

Traffic scenarios mainly consist of the behaviors and interactions of static and dynamic objects,
which can be naturally described by a graph structure. Therefore, we define Behavioral Graph GB to
represent driving scenarios with the following definition.

Definition 1 (Behavioral Graph, BG). Suppose a scenario have m objects with n types. Then the
Behavioral Graph GB = (V B

, E
B) contains a node matrix V

B 2 Rm⇥n representing the types of
objects and an edge matrix E

B 2 Rm⇥m⇥(h1+h2) representing the sequential interaction between
objects, where h1 is the number of edge types and h2 is the dimension of edge attributes.

According to this definition, GB works as a high-level planner that controls the behaviors of objects in
the scenario based on the pre-defined types of nodes V B and edges EB . Specifically, a self-loop edge
(i, i) represents that one object takes one action irrelevant to other objects (e.g., a car goes straight
or turns left with no impact on other road users), while other edges (i, j) means object i takes one
action related to object j (e.g., a car i moves towards a pedestrian j). The edge attributes represent the
properties of actions. For instance, the attribute [x, y, vx, vy] of one edge has the following meaning:
x and y are positions, and vx and vy are the velocities.
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2.2 Behavioral Graph Generation with Autoregressive Flow

Generally, there are two ways to generate graphs; one is simultaneously generating all nodes and
edges, and the other is iteratively generating nodes and adding edges between nodes. Considering the
directed acyclic nature of GB , we utilize the Autoregressive Flow model (AF) [9], which is a type
of DGMs that sequentially generate dimensions, to generate nodes and edges of GB step by step. It
uses a invertible and differentiable transformation F� parametrized by � to convert the graph GB to a
latent variable z that follows a base distribution p(z) (e.g., Normal distribution N (0, I)). According
to the change of variables theorem, we can obtain

p�(GB) = p(F�(GB))

����det
@F�(GB)

@GB

���� . (1)

To increase the representing capability, F� usually contains multiple functions fi for i 2 {0, . . . ,K}.
Thus, the entire transformation is represented as GB = zK = f

�1
K � · · · � f�1

0
�
= F�1

� (z0) by
repeatedly substituting the variable for the new variable zi, where � means the composition of two
functions. Eventually, we obtain the likelihood

log p�(GB) = p(z0)�
KX

i=1

log

����det
df

�1
i

dzi�1

���� , (2)

which will be used to learn the parameter � based of an empirical distribution of GB . After training,
we can sample from p�(GB) by using the reverse function F�1

� . Let V B
[i] 2 Rn and E

B
[i,j] 2 Rh1+h2

represent node i and edge (i, j) of GB , then we can generate them with the sampling procedure:

V
B
[i] ⇠ N

�
µ
v
i , (�

v
i )

2
�
= µ

v
i + �

v
i � ✏ and E

B
[i,j] ⇠ N

�
µ
e
ij , (�

e
ij)

2
�
= µ

e
ij + �

e
ij � ✏, (3)

where � denotes the element-wise product and ✏ follows a Normal distribution N (0, I). Variables
µ
v
i , �v

i , µe
ij , and �

e
ij are obtained from F� in an autoregressive manner:

µ
v
i ,�

v
i = F�

⇣
V

B
[0:i�1], E

B
[0:i�1,0:m]

⌘
and µ

e
ij ,�

e
ij = F�

⇣
V

B
[0:i], E

B
[0:i,0:j�1]

⌘
, (4)

where [0 : i] represents the elements from index 0 to index i. After the sampling, we obtain the node
and edge type by converting V

B and part of EB from continuous values to one-hot vectors:

V
B
[i]  onehot

h
argmax(V B

[i] )
⌘i

, E
B
[i,j,0:h1]

 onehot
h
argmax(EB

[i,j,0:h1]
)
i
8i, j 2 [m]. (5)

Intuitively, the generation of the one node depends on all previously generated nodes and edges. One
node only has edges pointing to the nodes that are generated before it. To illustrate this autoregressive
generation process, we provide an example with three nodes in Figure 2(a).

3 Causal Autoregressive Flow (CausalAF)

In this section, we discuss how to integrate causality into the autoregressive generating process of
the Behavioral Graph GB . In general, we transfer the prior knowledge from a causal graph to GB by
minimizing the distance between them. However, calculating such distance is not easy because of the
directed nodes in graphs. To solve this problem, we propose CausalAF with two causal masks, i.e.,
Causal Order Masks (COM) and Causal Visible Masks (CVM), that make the generated GB follow
the causal information.

3.1 Causal Generative Models

Definition 2 (Structural Causal Models [10], SCM). A structural causal model (SCM) C := (S,U)
consists of a collection S of m functions, Xj := fj(PAj , Uj), 8j 2 [m], where PAj ⇢
{X1, . . . , Xm}\{Xj} are called parents of Xj; and a joint distribution U = {U1, . . . , Um} over
the noise variables, which are required to be jointly independent.
Definition 3 (Causal Graphs [10], CG). The causal graph GC of a SCM is obtained by creating
one node for each Xj and drawing directed edges from each parent in PAj(GC) to Xj . The
representation of GC = (V C

, E
C) consists of the node vector V

C 2 {0, 1}m and the adjacency
matrix E

C 2 {0, 1}m⇥m⇥h1 . Each edge (i, j) represents a causal relation from node i to node j.
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Figure 2: (a) The generation process of a Behavioral Graph. (b) The Causal Graph and Behavioral
Graph used in the example of (a). (c) The explanation of CVM when generating edges for c, where
irrelevant node b is masked out in both V

B and E
B .

We formally describe the causality based on the above definitions of SCM and CG. In fact, the
generative model p�(GB) mentioned in Section 2 shares a very similar definition with SCM except
that GB does not follow the order of causality. This inspires us that we can convert p�(GB) to an
SCM by incorporating the causal graph GC into the generation process. In this paper, we assume the
causal graph GC can be summarized by expert knowledge. Therefore, we incorporate a given GC

into p�(GB |GC) by regularizing the generative process with two novel masks as shown in Figure 2.

3.2 Causal Graph Integration

Causal Order Masks (COM) The order is vital during the generation of GB since we must ensure
the cause is generated before the effect. To achieve this, we maintain a priority queue Q to store the
valid child types according to the causal relation in GC . Q is initialized with Q = {i| PAi(GC) =
; , 8i 2 [m]}, which contains all nodes that do not have parent nodes. Then, in each node generation
step, we update Q by removing the generated node i and adding the child nodes of i. Since one node
may have multiple parents thus it is valid only if all of its parents have been generated. We use Q to
create a k-hot mask M

0,i 2 Rn, where the element is set to 1 if it is a valid type. Then, we apply
COM to the node matrix by V

B
[i]  M

0,i � V
B
[i] , where V

B
[i] is the node vector obtained from F�

for node i. Intuitively, this mask sets the probability of the invalid node types to 0 to make sure the
generated node always follows the correct order.

Causal Visible Masks (CVM) Ensuring a correct causal order is still insufficient to represent the
causality. Thus, we further propose another type of mask called CVM, which filters the non-causal
information when generating edges. Specifically, we generate two binary masks M1,i 2 Rm⇥n and
M

2,i 2 Rm⇥m⇥(h1+h2) with M
1,i
[j,:] = 0 and M

2,i
[j,i,:] = 0 , 8j /2 PAi(GC). Then, we apply them to

update node matrix and edge matrix by V
B  M

1,i � V
B and E

B  M
2,i � E

B . We illustrate
an example of this process in Figure 2(c). Assume we are generating edges for node c. We need to
remove node b since GC tells us that B does not have edges to node C. After applying M

v and M
e,

we move the features of node c to the previous position of b. This permuting operation is important
since the autoregressive model is not permutation invariant.

3.3 Optimization of Safety-critical Generation

After introducing the generative process of CausalAF, we now turn to the optimization procedure.
The target is to generate scenarios ⌧ = E(GB) with an executor E to satisfy a given goal, which is
formulated as an objective function Lg. We define Lg(⌧) = 1(D(⌧) < ✏), where D(⌧) represents
the minimal distance between the autonomous vehicle and other objects and ✏ is a small threshold.
Therefore, the optimization is to solve the problem max� EGB⇠p�(GB |GC)[Lg(E(GB))]. Usually, Lg

contains non-differentiable operators (e.g., complicated simulation and rendering), thus we have to
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utilize black-box optimization methods to solve the problem. We consider a policy gradient algorithm
named REINFORCE [11], which obtains the estimation of the gradient from samples by

r�EGB⇠p�(GB |GC)[Lg(E(GB))] = E[r� log p(GB |GC)Lg(E(GB))] (6)

Overall, the entire training algorithm is summarized in Algorithm 1. In addition, we can prove that
the CausalAF guarantees monotonicity of likelihood in Theorem 1 at convergence. The detail of the
proof is given in Appendix A.

Theorem 1 (Monotonicity of Likelihood). Given the true causal graph GC⇤
= (V C

, E
C⇤

) and
distance SHD [12], for CG GC

1 = (V C
, E

C
1 ) and GC

2 = (V C
, E

C
2 ), if SHD(GC

1 ,GC⇤
) <

SHD(GC
2 ,GC⇤

), and 9 e, s.t. EC
1 [ {e} = E

C
2 , CausalAF converges with the monotonicity of likeli-

hood for collision samples, i.e. p�(D(⌧) < ✏ | GC
2 ) < p�(D(⌧) < ✏ | GC

1 ) < p�(D(⌧) < ✏ | GC⇤
).

3.4 Scenario Sampling and Execution Algorithm 1: Training process of CausalAF
Input: Causal Graph GC , Goal Lg , Learning

rate ↵, Maximum node number m
while � not converged do

// Sample a BG GB ⇠ p�(GB |GC)
for i < m do

Sample node matrix V
B
[i] by (3)

Get node type V
B
[i] by (5)

Apply COM M
0,i to V

B
[i]

Apply CVM M
1,i, M2,i to V

B
[i] , EB

[i,j]

for j  i do
Sample edge matrix E

B
[i,j] by (3)

Get edge type E
B
[i,j] by (5)

Collect one scenario GB = {V B
, E

B}
// Learn model parameters
Calculate the likelihood p�(GB |GC)
Execute ⌧ = E(GB) and get Lg(⌧)
Use (6) to update � �� ↵r�Lg(⌧)

Thanks to the autoregressive generation of
CausalAF, we are able to conduct generation
conditioned on arbitrary numbers or types of
nodes. Instead of generating from the scratch,
we can start from an existing GB

c for the genera-
tion with GB ⇠ p�(·|GB

c ,GC). The conditional
generation can be used for interactive scenarios,
e.g., using the autonomous vehicle’s informa-
tion or the data of partial scenarios in the real
world as conditions to generate diverse and re-
alistic scenarios. After sampling the scenarios,
the physical properties (e.g., position and veloc-
ity) defined in the generated GB are executed
in the simulator E to create sequential scenarios
⌧ . After the execution, the simulator outputs the
objective function Lg(⌧) as the result.

4 Experiment

We evaluate CausalAF using three top pre-crash traffic scenarios defined by U.S. Department of
Transportation [13] and Euro New Car Assessment Program [14]. Our empirical results show that it
may not be trivial for the generative models to learn the underlying causality even if such causality
seems understandable to humans. Particularly, we conduct a series of experiments to answer the
following main questions: Q1: How does CausalAF perform compared to other scenario generate
methods? Q2: How does causality help the generation process? Q3: How can we use the generated
safety-critical scenarios? In this section, we will first introduce the designed environment and baseline
methods. Then we will answer the above questions by carefully investigating the experiment results.

4.1 Experiment Design and Setting

Scenario. We consider three safety-critical traffic scenarios (shown in Figure 3) that have clear
causation. The causal graph GC for each scenario is displayed on the upper right of the scenario.

• Traffic-light. One potential safety-critical event could happen when the traffic light T turns from
green to yellow to give the road right to an autonomous vehicle A. Here, A and R are influenced
by T . R runs the red light, colliding with A perpendicularly, therefore, causing the collision C

together with A. I does not influence other objects.
• Pedestrian. A pedestrian P and an autonomous vehicle A are crossing the road in vertical

directions. There also exists a static vehicle S parked by the side of the road. Then a potentially
risky scenario could happen when S blocks the vision of A. In this scenario, S is the parent of A,
and P and A cause the collision C. I does not influence other objects.

• Lane-changing. An autonomous vehicle A takes a lane-changing behavior due to a static car
S parked in front of it. Meanwhile, a vehicle R drives in the opposite lane. Since S blocks the
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Figure 3: Three causal traffic scenarios are used in our experiments. The corresponding causal graphs
are shown on the upper right of each scenario. Please refer to Section 4.1 for details.

Table 1: Results of safety-critical scenario generation. Bold font means the best.
Environment L2C [5] MMG [4] SAC [15] Baseline Baseline+COM CausalAF

Traffic-light 0.63±0.28 0.31±0.54 0.47±0.61 0.29±0.84 0.69±0.52 0.98±0.01
Pedestrian 0.69±0.41 0.43±0.56 0.38±0.49 0.35±0.65 0.57±0.48 0.83±0.13

Lane-changing 0.85±0.10 0.56±0.36 0.58±0.41 0.53±0.69 0.88±0.04 0.91±0.06

vision of A, A is likely to collide with R. In this scenario, S is the parent of A, and R and A

cause the collision C. I does not influence other objects.

Simulator. We implement the above scenarios in a 2D simulator, where all agents have radar sensors
and are controlled by a simple vehicle dynamic. During the running, the autonomous vehicle is
controlled by a rule-based policy, which will decelerate if it detects any obstacles in front of it within
a certain range Thus, the safety-critical scenario will not happen unless the radar of one agent is
blocked and the distance is smaller than the braking distance, avoiding the creation of unrealistic
scenarios. The action space contains the acceleration and steering of all objects, and the state space
contains the position and heading of all objects and the status of traffic lights if applicable.

Baselines. We consider 6 algorithms as baselines, including 4 scenario generation methods and 2
variants of our CausalAF. Learning to collide (L2C) [5] and Multi-modal Generation (MMG) [4]
are two algorithms designed for safety-critical scenario generation. L2C uses a Bayesian network to
describe the relationship between objects, while MMG uses an adaptive sampler to increase sample
diversity. SAC is a standard RL algorithm using the objective as the reward function. To further
investigate the contribution of COM and CVM, we design two variants that share the same network
structure as CausalAF. Baseline does not use COM or CVM, and Baseline+COM only uses COM.

4.2 Results Discussion

How does CausalAF perform on safety-critical scenario generation? (Q1) We train all generation
methods in 3 environments and report the final objective values in Table 1. We observe that CausalAF
achieves the best performance among all methods. L2C performs better than MMG and SAC because
it also considers the structure of the scenario. We also notice that both Baseline and Baseline+COM
have performance drops compared to CausalAF, indicating that the COM and CVM modules
contribute to the autoregressive generating process. Baseline+COM performs a little better than
Baseline, which validates our hypothesis that COM is not powerful enough to represent causality. To
investigate the training procedure, we plot the training objectives in Fig 4 with two different sampling
temperatures T , which controls the sampling variance in ✏ ⇠ N (0, T ). A large temperature provides
strong exploration but causes slow convergence. However, we find that using a small temperature
leads to unstable training with high variance due to the poor exploration capability.

How does causality help the generation process? (Q2) The design of the Baseline represents the
model that uses the full graph. Therefore, the results in Table 1 also demonstrate that the causal graph
is more helpful than the full graph. To investigate the reason why the causal graph helps the learning,
we conduct an ablation study on the number of irrelevant nodes (I node), which does not have edges
in the causal graph. In Figure 5, we can see that adding more irrelevant vehicles enlarges the gap
between CausalAF and Baseline – the performance of Baseline gradually drops as the number of I
nodes increases but CausalAF has consistent performance. The reason is that CausalAF is able to
diminish the impact of irrelevant information with COM and CVM.
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Figure 4: Training objective Lg(GB) of CausalAF and two variants under two sampling temperatures.
The higher the sampling temperature is, the more diverse the generated scenarios are.

Table 2: Comparison of RL algorithms evaluated on safety-critical scenarios

Method Traffic-light Pedestrian Lane-changing
Random Generated Random Generated Random Generated

SAC [15] 0.35±0.23 0.91±0.03 0.30±0.41 0.92±0.03 0.49±0.37 0.95±0.04
PPO [16] 0.27±0.33 0.86±0.10 0.23±0.49 0.80±0.12 0.37±0.38 0.92±0.04

DDPG [17] 0.42±0.49 0.89±0.07 0.27±0.52 0.85±0.09 0.48±0.39 0.95±0.02
MBRL [18] 0.62±0.11 0.98±0.02 0.50±0.11 0.97±0.01 0.73±0.13 0.98±0.01

Figure 5: The training objectives in the
Pedestrian scenario from different num-
bers of irrelevant vehicles.

How can we use the generated scenarios? (Q3) After
generating the safety-critical scenarios, we explore how
to use them to improve the performance of AV algorithms.
We train 4 RL agents SAC, PPO, DDPG, and MBRL un-
der two different kinds of scenarios: (1) Random: ran-
domly sample the parameters of objects in the scenario;
(2) Generated: use the scenarios generated by CausalAF.
Then, we evaluate both sets of agents under the Generated
setting to test the performance under safety-critical sce-
narios. Based on the results in Table 2, we can tell that
the agents trained with generated scenarios have better
performance in safety-critical scenarios, which illustrates
the importance of generating scenarios that are rare in the
real world.

5 Related Work

Goal-directed generative models. DGMs, such as Generative Adversarial Networks [19] and
Variational Auto-encoder [20], have shown powerful capability in randomly data generation tasks [21].
Among them, goal-directed generation methods are widely used [22]. One line of research leverages
conditional GAN [23] and conditional VAE [24], which take as input the conditions or labels during
the training stage. Another line of research injects the goal into the model after the training. [25]
proposes a latent space optimization framework that finds the samples by searching in the latent
space. This spirit is also adopted in other fields: [26] finds the molecules that satisfy specific chemical
properties, [27] searches in the latent space of StyleGAN [28] to obtain targeted images. Recent
works combine the advantages of the above two lines by iteratively updating the high-quality samples
and retraining the model weights during the search [29]. [30] pre-trains the generative model and
optimizes the sample distribution with reinforcement learning algorithms.

Safety-critical driving scenario generation. Traditional scenario generation algorithms sample
from pre-defined rules and grammars, such as probabilistic scene graphs [31] and heuristic rules [32].
In contrast, DGMs [33, 34, 35, 36] are recently used to learn the distribution of objects to construct
diverse scenarios. One direction is directly searching for the adversarial scenarios, for example, [37]
modifies the light condition. [38, 39, 40] manipulate the pose of objects in traffic scenarios. [41, 42]
adds objects on the top of existing vehicles to make them disappear, and [3] generates the layout of the
traffic scenario with a tree structure integrated with human knowledge. Another direction generates
risky scenarios while also considering the likelihood of occurring of the scenarios in the real world.
[43, 44, 45] used various importance sampling approaches to generate risky but probable scenarios.
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[36] merges the naturalistic and collision datasets with conditional. [46] uses reinforcement learning
to search for risky cyclist encounters for victim cars with a penalty of rarity.

Causal generative models and representation learning The research of causality, mainly described
with probabilistic graphical models-based language [8], is usually divided into two aspects: causal
discovery finds the underlying mechanism from the data; causal inference extrapolates the given
causality to solve new problems. A toolbox named NOTEARs is proposed in [47] to learn causal
structure in a fully differentiable way, which drastically reduces the complexity caused by combinato-
rial optimization. [48] show the identifiability of learned causal structure from interventional data,
which is obtained by manipulating the causal system under interventions. Recently, causality has been
introduced into DGMs to learn the cause and effect with representation learning. CausalGAN [49]
captures the causality by training the generator with the causal graph as a prior, which is very similar
to our setting. In CausalVAE [50], the authors disentangle latent factors by learning a causal graph
from data and corresponding labels. Previous work CAREFL [51] also explored the combination of
causation and autoregressive flow-based model and is used for causal discovery and prediction tasks.

6 Conclusion and Limitation
This paper proposes a causal generative model that generates safety-critical scenarios with causal
graphs obtained from humans prior. To incorporate the causality into the generation, we use the causal
graph to regularize the generation of the behavioral graph, a novel traffic scenario representation.
The regularization is achieved by modifying the generating ordering and graph connection with two
causal masks. Through injecting causality into generative models, we are able to efficiently create
safety-critical scenarios that might be too rare to find in the real world. We evaluate our proposed
method The experiment results on three environments with clear causality demonstrate that CausalAF
outperforms all baselines in terms of efficiency and performance. We also show that training on our
generated safety-critical scenarios improves the robustness of RL-based driving algorithms.

The main limitation of this work is that the causal graph, usually summarized by human experts, is
assumed to be always correct, which may not be true for complicated scenarios. We will explore
methods robust to human errors or bias when attaining the causal graph, for example, automatically
discovering causal graphs from the observational or interventional datasets in the future. Although
this work is evaluated in simulations, we believe the autonomous driving area still benefits from
scenarios at the decision-making level, which shares an almost negligible sim-to-real gap.

8



Acknowledgments

We gratefully acknowledge support from the National Science Foundation under grants CAREER
CNS-2047454 and the Moonshot grant provided by the College of Engineering at CMU.

References
[1] California Department of Motor Vehicle Disengagement Report. https://www.dmv.

ca.gov/portal/vehicle-industry-services/autonomous-vehicles/
disengagement-reports/, 2022. [Online].

[2] W. Ding, C. Xu, H. Lin, B. Li, and D. Zhao. A survey on safety-critical scenario generation
from methodological perspective. arXiv preprint arXiv:2202.02215, 2022.

[3] W. Ding, H. Lin, B. Li, K. J. Eun, and D. Zhao. Semantically adversarial driving scenario
generation with explicit knowledge integration. arXiv e-prints, pages arXiv–2106, 2021.

[4] W. Ding, B. Chen, B. Li, K. J. Eun, and D. Zhao. Multimodal safety-critical scenarios generation
for decision-making algorithms evaluation. IEEE Robotics and Automation Letters, 6(2):1551–
1558, 2021.

[5] W. Ding, B. Chen, M. Xu, and D. Zhao. Learning to collide: An adaptive safety-critical
scenarios generating method. In 2020 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 2243–2250. IEEE, 2020.

[6] Q. Zhang, S. Hu, J. Sun, Q. A. Chen, and Z. M. Mao. On adversarial robustness of trajectory
prediction for autonomous vehicles. arXiv preprint arXiv:2201.05057, 2022.

[7] S. Feng, X. Yan, H. Sun, Y. Feng, and H. X. Liu. Intelligent driving intelligence test for
autonomous vehicles with naturalistic and adversarial environment. Nature communications, 12
(1):1–14, 2021.

[8] J. Pearl. Causality. Cambridge university press, 2009.

[9] C.-W. Huang, D. Krueger, A. Lacoste, and A. Courville. Neural autoregressive flows. In
International Conference on Machine Learning, pages 2078–2087. PMLR, 2018.

[10] J. Peters, D. Janzing, and B. Schölkopf. Elements of causal inference: foundations and learning
algorithms. The MIT Press, 2017.

[11] R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3):229–256, 1992.

[12] S. Acid and L. M. de Campos. Searching for bayesian network structures in the space of
restricted acyclic partially directed graphs. Journal of Artificial Intelligence Research, 18:
445–490, 2003.

[13] W. G. Najm, R. Ranganathan, G. Srinivasan, J. D. Smith, S. Toma, E. Swanson, A. Burgett,
et al. Description of light-vehicle pre-crash scenarios for safety applications based on vehicle-
to-vehicle communications. Technical report, United States. National Highway Traffic Safety
Administration, 2013.

[14] M. Van Ratingen, A. Williams, A. Lie, A. Seeck, P. Castaing, R. Kolke, G. Adriaenssens, and
A. Miller. The european new car assessment programme: a historical review. Chinese journal
of traumatology, 19(2):63–69, 2016.

[15] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu, A. Gupta,
P. Abbeel, et al. Soft actor-critic algorithms and applications. arXiv preprint arXiv:1812.05905,
2018.

[16] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

9

https://www.dmv.ca.gov/portal/vehicle-industry-services/autonomous-vehicles/disengagement-reports/
https://www.dmv.ca.gov/portal/vehicle-industry-services/autonomous-vehicles/disengagement-reports/
https://www.dmv.ca.gov/portal/vehicle-industry-services/autonomous-vehicles/disengagement-reports/


[17] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.
Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

[18] A. V. Rao. A survey of numerical methods for optimal control. Advances in the Astronautical
Sciences, 135(1):497–528, 2009.

[19] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio. Generative adversarial nets. Advances in neural information processing systems, 27,
2014.

[20] D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114,
2013.

[21] A. Brock, J. Donahue, and K. Simonyan. Large scale gan training for high fidelity natural image
synthesis. arXiv preprint arXiv:1809.11096, 2018.

[22] A. Mollaysa, B. Paige, and A. Kalousis. Goal-directed generation of discrete structures with
conditional generative models. arXiv preprint arXiv:2010.02311, 2020.

[23] M. Mirza and S. Osindero. Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784, 2014.

[24] K. Sohn, H. Lee, and X. Yan. Learning structured output representation using deep conditional
generative models. Advances in neural information processing systems, 28:3483–3491, 2015.

[25] J. Engel, M. Hoffman, and A. Roberts. Latent constraints: Learning to generate conditionally
from unconditional generative models. arXiv preprint arXiv:1711.05772, 2017.

[26] A. Mollaysa, B. Paige, and A. Kalousis. Conditional generation of molecules from disentangled
representations. 2019.

[27] R. Abdal, Y. Qin, and P. Wonka. Image2stylegan++: How to edit the embedded images? In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
8296–8305, 2020.

[28] T. Karras, S. Laine, and T. Aila. A style-based generator architecture for generative adversarial
networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 4401–4410, 2019.

[29] A. Tripp, E. Daxberger, and J. M. Hernández-Lobato. Sample-efficient optimization in the
latent space of deep generative models via weighted retraining. Advances in Neural Information
Processing Systems, 33, 2020.

[30] C. Shi, M. Xu, Z. Zhu, W. Zhang, M. Zhang, and J. Tang. Graphaf: a flow-based autoregressive
model for molecular graph generation. arXiv preprint arXiv:2001.09382, 2020.

[31] A. Prakash, S. Boochoon, M. Brophy, D. Acuna, E. Cameracci, G. State, O. Shapira, and
S. Birchfield. Structured domain randomization: Bridging the reality gap by context-aware
synthetic data. In 2019 International Conference on Robotics and Automation (ICRA), pages
7249–7255. IEEE, 2019.

[32] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun. Carla: An open urban driving
simulator. In Conference on robot learning, pages 1–16. PMLR, 2017.

[33] J. Devaranjan, A. Kar, and S. Fidler. Meta-sim2: Unsupervised learning of scene structure
for synthetic data generation. In European Conference on Computer Vision, pages 715–733.
Springer, 2020.

[34] S. Tan, K. Wong, S. Wang, S. Manivasagam, M. Ren, and R. Urtasun. Scenegen: Learning to
generate realistic traffic scenes. arXiv preprint arXiv:2101.06541, 2021.

[35] W. Ding, W. Wang, and D. Zhao. A new multi-vehicle trajectory generator to simulate vehicle-
to-vehicle encounters. arXiv preprint arXiv:1809.05680, 2018.

10



[36] W. Ding, M. Xu, and D. Zhao. Cmts: A conditional multiple trajectory synthesizer for
generating safety-critical driving scenarios. In 2020 IEEE International Conference on Robotics
and Automation (ICRA), pages 4314–4321. IEEE, 2020.

[37] X. Zeng, C. Liu, Y.-S. Wang, W. Qiu, L. Xie, Y.-W. Tai, C.-K. Tang, and A. L. Yuille. Adversarial
attacks beyond the image space. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 4302–4311, 2019.

[38] M. A. Alcorn, Q. Li, Z. Gong, C. Wang, L. Mai, W.-S. Ku, and A. Nguyen. Strike (with) a pose:
Neural networks are easily fooled by strange poses of familiar objects. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 4845–4854, 2019.

[39] C. Xiao, D. Yang, B. Li, J. Deng, and M. Liu. Meshadv: Adversarial meshes for visual
recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 6898–6907, 2019.

[40] L. Jain, V. Chandrasekaran, U. Jang, W. Wu, A. Lee, A. Yan, S. Chen, S. Jha, and S. A. Seshia.
Analyzing and improving neural networks by generating semantic counterexamples through
differentiable rendering. arXiv preprint arXiv:1910.00727, 2019.

[41] J. Tu, M. Ren, S. Manivasagam, M. Liang, B. Yang, R. Du, F. Cheng, and R. Urtasun. Physically
realizable adversarial examples for lidar object detection. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 13716–13725, 2020.

[42] M. Abdelfattah, K. Yuan, Z. J. Wang, and R. Ward. Towards universal physical attacks on
cascaded camera-lidar 3d object detection models. arXiv preprint arXiv:2101.10747, 2021.

[43] D. Zhao, H. Lam, H. Peng, S. Bao, D. J. LeBlanc, K. Nobukawa, and C. S. Pan. Accelerated
evaluation of automated vehicles safety in lane-change scenarios based on importance sampling
techniques. IEEE Transactions on Intelligent Transportation Systems, 18(3):595–607, 2017.
doi:10.1109/TITS.2016.2582208.

[44] M. O’Kelly, A. Sinha, H. Namkoong, J. Duchi, and R. Tedrake. Scalable end-to-end autonomous
vehicle testing via rare-event simulation. arXiv preprint arXiv:1811.00145, 2018.

[45] M. Arief, Z. Huang, G. Koushik Senthil Kumar, Y. Bai, S. He, W. Ding, H. Lam, and D. Zhao.
Deep probabilistic accelerated evaluation: A robust certifiable rare-event simulation methodol-
ogy for black-box safety-critical systems. pages 595–603, 2021.

[46] W. Ding, B. Chen, B. Li, K. J. Eun, and D. Zhao. Multimodal safety-critical scenarios generation
for decision-making algorithms evaluation. IEEE Robotics and Automation Letters, 6(2):1551–
1558, 2021. doi:10.1109/LRA.2021.3058873.

[47] X. Zheng, B. Aragam, P. Ravikumar, and E. P. Xing. Dags with no tears: Continuous optimiza-
tion for structure learning. arXiv preprint arXiv:1803.01422, 2018.

[48] D. Heckerman, D. Geiger, and D. M. Chickering. Learning bayesian networks: The combination
of knowledge and statistical data. Machine learning, 20(3):197–243, 1995.

[49] M. Kocaoglu, C. Snyder, A. G. Dimakis, and S. Vishwanath. Causalgan: Learning causal
implicit generative models with adversarial training. arXiv preprint arXiv:1709.02023, 2017.

[50] M. Yang, F. Liu, Z. Chen, X. Shen, J. Hao, and J. Wang. Causalvae: disentangled representation
learning via neural structural causal models. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 9593–9602, 2021.

[51] I. Khemakhem, R. Monti, R. Leech, and A. Hyvarinen. Causal autoregressive flows. In
International Conference on Artificial Intelligence and Statistics, pages 3520–3528. PMLR,
2021.

11

http://dx.doi.org/10.1109/TITS.2016.2582208
http://dx.doi.org/10.1109/LRA.2021.3058873


Appendix

Table of Contents
A Theoretical Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

B Environment Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

C Model Training Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

A Theoretical Proofs

Lemma 1.

Proof of Theorem 1.

B Environment Details

Table 3: Parameters of Environments

Parameters Environment
Traffic-light Pedestrian Lane-changing

Max step size 5 15 30

C Model Training Details

Table 4: Parameters of CausalAF

Parameters Environment
Traffic-light Pedestrian Lane-changing

Max step size 5 15 30

12


	1 Introduction
	2 Graphical Representation of Scenarios
	2.1 Behavioral Graph
	2.2 Behavioral Graph Generation with Autoregressive Flow

	3 Causal Autoregressive Flow (CausalAF)
	3.1 Causal Generative Models
	3.2 Causal Graph Integration
	3.3 Optimization of Safety-critical Generation
	3.4 Scenario Sampling and Execution

	4 Experiment
	4.1 Experiment Design and Setting
	4.2 Results Discussion

	5 Related Work
	6 Conclusion and Limitation
	Appendix
	 Appendix
	A Theoretical Proofs
	B Environment Details
	C Model Training Details


