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Abstract
We study subtrajectory clustering under the Fréchet distance. Given one or more trajectories, the
task is to split the trajectories into several parts, such that the parts have a good clustering structure.
We approach this problem via a new set cover formulation, which we think provides a
natural formalization of the problem as it is studied in many applications. Given a polygonal curve
P  with n vertices in fixed dimension, integers k, ‘  ³  1, and a real value Δ  >  0, the goal is to find k
center curves of complexity at most ‘  such that every point on P  is covered by a subtrajectory
that has small Fréchet distance to one of the k center curves ( £  Δ ) .  In many application
scenarios, one is interested in finding clusters of small complexity, which is controlled by the
parameter ‘ .  Our main result is a bicriterial approximation algorithm: if there exists a solution for
given parameters k, ‘,  and Δ ,  then our algorithm finds a set of k0 center curves of complexity at most
‘  with covering radius Δ0  with k0 Î O (k ‘2 log(k ‘)), and Δ 0  £  19Δ. Moreover, within these
approximation bounds, we can minimize k while keeping the other parameters fixed. If ‘  is a
constant independent of n, then, the approximation factor for the number of clusters k is O(log k)
and the approximation factor for the radius Δ  is constant. In this case, the algorithm has expected
running time in O km2 +  mn and uses space in O (n +  m), where m =  d L  e and L  is the total
arclength of the curve P .
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1 Introduction

Trajectories appear in many different applications in the form of recorded sequences of
positions of moving objects. A  trajectory is usually modelled as a piecewise linear curve by
interpolating between two consecutive location measurements. Standard examples include
trajectories of migrating animals, sports players on the field, and vehicles in traffic [37, 38].
Other examples include time series data from sensor measurements tracking the movement
of a hand for gesture analysis [36], or the focal point of attention during eye tracking [33, 28].
One particular question in trajectory analysis which has gotten much attention relates to
clustering this type of data; typically, one wishes to extract patterns that summarize the
data well. This necessitates a notion of similarity (or dissimilarity) to compare and evaluate
simplified representations of curves. The Fréchet distance is one such measure, which in
addition to geometric closeness also takes the flow of the curve into account; see Section 1.3
for the precise definition.

In this paper, we consider the problem of subtrajectory clustering. The main difference
to standard trajectory clustering is that the input curves may be broken into subcurves by
the clustering algorithm. Indeed, this approach is well motivated, as trajectory data is often
collected over longer periods of time, and the start and ending of the trajectories often do
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not carry any particular meaning. In a sense, then, any particular trajectory might naturally
break down into subtrajectories, for example when a car’s route involves several independent
stops as opposed to a single continuous trip. A  goal of subtrajectory clustering is to find
patterns within the trajectory data and to let an algorithm find the starting and ending
points of these patterns by means of solving an optimization problem. There is much work on
different variants of this subtrajectory clustering problem and many heuristics have been
proposed, see also the surveys [40, 19, 39] and references therein. However, there does not
seem to be a rigorous and commonly agreed upon definition of the underlying optimization
problem.

The purpose of this paper is to propose a class of problems that capture the nature
of the subtrajectory clustering problem and provide algorithmic solutions with provable
guarantees. Our work draws from ideas and techniques developed in works on the (k, ‘)-
clustering variant for trajectories [26, 16, 35, 17], where the complexity of centers is restricted
by a parameter. We develop algorithmic techniques that build upon fundamental work on
computing hitting sets of set systems for low VC-dimension. In particular, we use the set
cover framework algorithm by Brönniman and Goodrich [11]. This framework algorithm is
related to the multiplicative weights update method [10] and has been used in numerous
applications. In computational geometry, it has been used for projective clustering [6] and
the art gallery problem [30]. The basic sampling technique underlying these algorithms goes
back to Clarkson [22, 23], see also the survey by Agarwal and Sharir [7]. To  the best of
our knowledge, the framework has not been applied to subtrajectory clustering before. We
remark that the algorithm by Brönniman and Goodrich [11] has been revisited and improved
several times [5, 20], but our methods do not seem to profit from these improvements.

1.1 Related work

One of the earlier works on clustering subtrajectories is by Lee, Han and Whang [34]. They
were interested in computing a small set of line segments that describe the geometry of the
input trajectories well. Their algorithm works in two phases: (i) a partition phase where
they employ the minimum-description-length (MD L )  principle and (ii) a grouping phase
where they use a density based clustering algorithm similar to D B S C A N  [29].

In general, it is not obvious how to combine the two phases—partitioning and grouping—
into one optimization problem. Buchin et al. [15] focus on the problem of finding one single
cluster of subtrajectories that are similar to each other. More specifically, they define a
subtrajectory cluster with parameters s, Δ ,  and ‘ ,  as a set of s pairwise disjoint subtrajectories
with pairwise Fréchet distance at most Δ  and such that at least one of the
subtrajectories has complexity at least ‘.  They define three optimization problems that
each optimize one of the three parameters while keeping the other two fixed. The decision
problem where all three parameters are fixed is shown NP-complete via reduction from the
MaxClique problem. They give 2-approximation algorithms:

(i) for finding the longest subtrajectory cluster (max ‘ )  and
(ii) for finding the subtrajectory cluster with the maximum number of subtrajectories (max

s).
In subsequent work, these algorithms have been used as building blocks in several heuristic
algorithms for map construction [13, 14], where the task is to infer an underlying road map
from a set of trajectories.

A  natural way to define a global optimization criterion for subtrajectory clustering is by
using the set cover problem: given a set of elements X  and a set of subsets R  Í 2 X ,  select a
minimum number of sets from R ,  such that their union covers all of X .
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Indeed, set cover formulations are used implicitly and explicitly in many algorithms
for subtrajectory clustering. Buchin, Kilgus and Kölzsch [18] study migration patterns of
animals. They want to derive an augmented geometric graph (a so-called group diagram)
that captures the common movement of a group of migrating animals. An input trajectory
is represented in the group diagram if there exists a path in the graph that is similar to it
under some predefined similarity measure, such as the Fréchet distance. Their algorithm
constructs a set cover instance by extracting a linear number of subtrajectory clusters using
the algorithm of [15] (see the discussion above). Overall, the algorithm takes time in O(k3N 3)
given k trajectories, each of at most N  vertices. However, they use a preprocessing phase
that introduces additional vertices which may increase N  quadratically in the worst case
leading to an overall running time of O(k3N 6). The approximation factor for the number of
clusters selected is O(log kN ).

Agarwal et al. [3] proposed a problem formulation based on facility location for subtra-
jectory clustering under the discrete Fréchet distance. Their objective function is based on
the number of centers, the distances of subtrajectories to their assigned cluster centers and
penalties for subtrajectories that are not included in any cluster. They also consider a set
cover problem as an intermediate step of their algorithm, but their formulation leads to a
set system of exponential size. They present O(log n)-approximation algorithms, where n is
the total number of vertices of the input curves. Their algorithm runs in O ( |B |n3 ) if B  is a
set of candidate center curves given with the input. They show how to generate a suitable
set B  of size O(n2), and how to reduce the size to O(n) at the expense of an additional
O(log n)-factor in the approximation quality.

1.2 Organization

In the remainder of this section, we give some preliminary definitions in Section 1.3, we
define the problem statement in Section 1.4 and a modified problem statement in Section 1.5.
We give an overview of our main results in Section 1.6 and discuss other problem variants
in Section 8. We then discuss our main techniques in Section 2. In Sections 3 and 4 we
discuss solutions to the modified problem. In Sections 5 we discuss our solution to the main
problem stated in Section 1.4. In Sections 6 and 7 we discuss additional results.

1.3 Preliminaries

A  sequence of n points p1, . . . , pn Î Rd  defines a polygonal curve P  by linearly interpolating
consecutive points, that is, for each i, we obtain the edge {tpi +  (1 � t)pi+1 |t Î [0, 1]}. We may
think of P  as resulting from the concatenation of the edges in the given order as a
parametrized curve, that is, a function P  : [0, 1] ® Rd . Note that for any such parametrized
curve there exist real values s1 £   £  sn , such that P (s i )  =  pi . We call the ordered set of the pi

the vertices of P  and we denote it with V (P ). We call the number of vertices n the
complexity of the curve. For any two [a, b] Í [0, 1] we denote with P [a, b] the subcurve
of P  that starts at P (a) and ends at P (b). Let Xd  =  (Rd ) ‘ ,  and think of the elements of this
set as the set of all polygonal curves of ‘  vertices in Rd . For two parametrized curves P  and Q,
we define their Fréchet distance as

dF  (P, Q) =  
γ :[0,

inf 
[0,1] t

sup 
] 
kP (γ (t)) � Q(t)k,

where γ ranges over all strictly monotone increasing functions. A  curve Q Î X ‘  is called an
‘-simplification of a curve P  if its Fréchet distance to P  is minimum among all curves
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in X ‘  . We denote with TS (n, ‘) the time needed to compute such an ‘-simplification for a
polygonal curve of n vertices.

Let X  be a set. We call a set R  where any r  Î R  is of the form r  Í X  and X  = r Î R  r
a set system with ground set X .  Let R  be a set system with ground set X .  A  set cover
of R  is a subset S  Ì R  such that the ground set is equal to the union of the sets in S .  The
set cover problem asks to find a set cover for a given R  using a minimum number of sets.
In addition to the set cover problem, we define the hitting set problem. Let R  be a set
system with ground set X .  A  hitting set of R  is a subset S  Í X  such that every set of R
contains at least one element of S .  The hitting set problem is to find a hitting set for a given
R  of minimum size. We denote with R �  the set system dual to R .  The set system R �  has
ground set R  and each set r x  Î R �  is defined by an element x  Î X  as r x  =  {r Î R | x  Î r}.
The dual set system of R �  is again R .  The hitting set problem for R  is equivalent to the
set cover problem for the dual set system R �.  We say a subset A  Í X  is shattered by R  if
for any A0 Í A  there exists an r  Î R  such that A0 =  r  Ç A.  The VC-dimens ion  of R  is
the maximal size of a set A  that is shattered by R .  When stating asymptotic bounds, we
may use the O() notation hiding polylogarithmic factors to simplify the exposition.

1.4 Problem definition

Let P  : [0, 1] ® Rd  be a parametrized curve1 and let ‘  Î N and Δ  Î R  be fixed parameters.
Define the Δ-coverage of a set of center curves C  Ì Xd  as follows:

ΨΔ (P , C )  =  
[ [

{s Î [t, t0] |  dF  (P [t, t0], q) £  Δ} .
q ÎC 0 £ t £ t 0 £ 1

Note that this corresponds to the part of the curve P  that is covered by the set of all
subtrajectories that are within Fréchet distance Δ  to some curve in C .  The problem we
study in this paper is to find a set C  Ì X ‘  of minimum size such that the Δ-coverage of C
covers all of P . We define the radius of the clustering induced by C  as the smallest real
value Δ  such that ΨΔ (P , C )  =  [0, 1], and we denote the radius with ψ (P, C ). Note that our
problem definition requires center curves to be of complexity at most ‘,  which is given as a
parameter.2

1.5 Set system formulation

Our approach to the subtrajectory clustering problem (see Section 1.4) works via set covers
of suitable set systems. To  this end, we will first define a discrete variant of the problem.
Assume that the curve P  is endowed with a set of m real values 0 =  t1 <  t2 <   <  tm  =  1
which define a set of subcurves of the form P [ti , tj ]. We denote the set of values ti with T
and we refer to the respective points on the curve P (t i )  for 1 £  i  £  m as breakpoints. Note
that the vertices of the curve do not have to be breakpoints and vice versa. For a given curve
P  with breakpoints we define the Δ-coverage of a set of center curves C  Ì X ‘  with respect
to these breakpoints as follows

ΦΔ (P , C )  = {s Î [ti , tj ] |  dF  (P [ti , tj ], q) £  Δ}
q ÎC 1 £ i £ j £ m

1 We chose the setting of one input curve to keep the presentation of our algorithmic solutions as simple
as possible. A l l  of our algorithms can be easily extended to the setting of multiple input curves.

2 It is tempting to relax the restriction on the complexity of the center curves in our problem definition.
However, without any other regularization of the optimization problem, this would lead to the trivial
solution of the curve P  being an optimal center curve.
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Analogous to the problem definition in Section 1.4 we define the radius of the clustering in the
discrete case as the smallest real value Δ  such that ΦΔ (P , C )  =  [0, 1] and we denote this radius
with φ(P, C ). Consider the set system R  with ground set X  =  {1, . . . , m � 1} where each set
r Q  Î R  is defined by a polygonal curve Q Î X ‘  as follows

r Q  =  {z Î X  |  $i £  z <  j  with dF  (Q, P [ti , tj ]) £  Δ} (1)

In the discrete case, the problem of finding a minimum-size set of center curves that
cover P  now reduces to finding a minimum-size set cover for the set system R .  Stating the
problem in terms of set systems allows us to draw from a rich background of algorithmic
techniques for computing set covers (see Section 2).

We first discuss how solutions to the discrete problem help solving the initial problem
defined in Section 1.4. We can choose breakpoints for the input curve P , such that the
distance between two consecutive breakpoints is at most Δ  for any fixed  >  0. This is
always possible with m =  d  L  e breakpoints, where L  is the arclength of P . The resulting
instance of the discrete problem variant approximates the continuous version of the problem in
the following way.

I  Lemma 1. Assume there exists a set C �  Ì Xd  of size k, such that ψ (P, C �) £  Δ .  Then we
have φ(P, C �) £  (1 +  )Δ .  Additional ly for each C  Ì Xd  with φ(P, C )  £  (1 +  ) Δ  we have
ψ (P, C �) £  (1 +  )Δ .

Proof. We show that for any set of center curves C  Ì X ‘  we have ψ (P, C )  £  φ(P, C )  £  (1
+  )ψ (P, C ). Indeed, if C  covers the curve P  in the discrete setting, then it also covers the
curve P  in the continuous setting. Therefore, ψ (P, C ) £  φ(P, C ). For showing the other

inequality we observe that the distance between two consecutive breakpoints is at most Δ .
Therefore, for any interval [s, t] Ì [0, 1] we can choose breakpoints ti £  s and t j

 
³  t such

that dF  (P [s, t], P [ti , tj ]) £  εΔ .  The claim now follows from the triangle inequality.             J

1.6 Main results

We study the problem of subtrajectory clustering in the concrete form as defined in Section 1.4.
We think that this problem formulation provides a natural formalization of the problem as it
is studied in many applications (see also the discussion in Section 8). We develop bicriterial
approximation algorithms for this problem, where the approximation is with respect to the
following two criteria

(i) the number of clusters k, and
(ii) the radius of the clustering Δ .

In Sections 3 and 4 we describe our approach for the discrete variant of the subtrajectory
clustering problem defined in Section 1.5, before we turn to the main problem in Section 5.
We first discuss the special case where cluster centers are restricted to be directed
line segments (the case ‘  =  2). In this case we get the following result.

I  Theorem 2. Let P  : [0, 1] ® Rd  be a polygonal curve of complexity n with breakpoints 0 £
t1, . . . , tm £  1 and let Δ  >  0 be a parameter. Assume there exists a set C �  Ì Xd  of size k £
m, such that φ(P, C �) £  Δ .  There exists an algorithm that computes a set C  Ì Xd  of size
O(k log2(m)) such that φ(P, C )  £  6Δ .  The algorithm has expected running time in O km2

+  mn and uses space in O(n +  m2).

The main idea is to define a suitable set system that preserves optimal solutions up to
approximation and at the same time allows for efficient set system oracles. A  set system

C G T



‘

‘
˜  

‘

Δ

‘
e  

Δ Δ

˜

˜

e
 

λ λ λ

‘ 0
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oracle is a data structure that answers queries with a set r  and an element of the ground set x
and returns whether x  Î r. We solve this by defining a linear number of “proxy” curves
which are simplifications of subcurves that are locally maximal. The proxy curves allow to
solve a set system query by computing a partial Fréchet distance with some additional
conditions. In the more general case, where cluster centers can be curves of complexity ‘  >  2, we
use the bi-criterial simplification algorithm of Agarwal et al. [4] to define suitable proxy
curves. This is described in Section 4 and leads to the following result.

I  Theorem 3. Let P  : [0, 1] ® Rd  be a polygonal curve of complexity n with breakpoints
0 £  t1, . . . , tm £  1. Assume there exists a set C �  Ì Xd  of size k £  m, such that φ(P, C �) £  Δ .
Then there exists an algorithm that computes a set C  Ì Xd  of size O(k log(m) log2(m)) such
that φ(P, C ) £  50Δ.  The algorithm has expected running time in O k‘2m2 +  mn and uses
space in O(n +  m ‘  +  m2).

Finally, in Section 5, we present our solution to the main problem of subtrajectory
clustering, where subtrajectories can start and end at any two points along the curve (see
Section 1.4).     We use the techniques developed in Section 4, but we obtain better
approximation factors and running times, compared to a naive application of Lemma 1. The
improved running time results from the fact that we do not need to keep track of breakpoints
explicitly in the set system oracle. Crucial to obtaining better approximation factors is the
analysis of the VC-dimension of the dual set system. We obtain the following theorem.

I  Theorem 4 (Main Theorem). Let P  : [0, 1] ® Rd  be a polygonal curve of complexity n,
let ‘  Î N and Δ , ε  >  0 be parameters. Assume there exists a set C �  Ì Xd  of size k, such that
ψ (P, C �) £  Δ .  Let m =  d  L  e and δ =  O(d2 ‘2 log(d‘))), there exists an algorithm that
computes a set C  Ì Xd  of size O(kδ log(δk)), such that ψ (P, C ) £  (18 +  )Δ .  The algorithm has
expected running time in O km2 +  mn and uses space in O(n +  m), where we assume that
‘  and d are constants independent of n.

In particular, in the above theorem, when the complexity of center curves ‘  and the
ambient dimension d are constants, the VC-dimension δ is constant, and the approximation
factor for the size of the set cover is O(log k). For a comparison, using Theorem 3 and
Lemma 1 directly would result in an approximation factor of O(log L  log2 L  )  which could be
large even if ‘  and d are small. We summarize our results in Table 1.

Size k0 Δ0 Running time Space Setting Reference

O(k log2 (m)) 6Δ             O km2 +  mn              O(n +  m2 )        ‘  =  2, discrete         Thm. 2

O(k log(m) log2 (m)) 50Δ O km2 +  mn O (n +  m2 ) ‘  ³  1, discrete Thm. 3

O(k log(k)) 19Δ O (kd Δ  e
2 +  d Δ  e)n) O (n +  d Δ  e) ‘  ³  1, contin. Thm. 4

Table 1 For optimal C  Ì ( R d ) ‘  of size k, covering P  Î ( R d ) n  under distance Δ ,  we design
bicriteria-approximation algorithms that compute C 0 Ì X d      of size k0, covering P  under distance Δ0 .
Here, we assume that ‘  and d are constant, n is the complexity of P  and λ  is the arclength of P .

The improved approximation factors that are obtained in the continuous case in Theorem 4
raise the question if the approximation factor could be improved in the discrete case.
Unfortunately, this does not seem to be the case. In Section 6 we study lower bounds to the
VC-dimension for two natural problem variants. We study the dual set system (i) in the
discrete case and (ii) the set system directly corresponding to our main clustering problem.
For (i) we show a lower bound of Ω(log m) directly corresponding to the upper bound, see



e e

e
Δ

e
Δ

H. A. Akitaya, F. Brüning, E. Chambers, A. Driemel 1:7

Theorem 47. For (ii) we show that—surprisingly—it inherently depends on the number of
vertices of the input curve n, even when cluster centers are restricted to be line segments, see
Theorem 46 for the exact statement. Thus, ultimately, our modified set system with proxy
curves not only makes the algorithm faster, but also has the benefit of a significantly lower VC-
dimension, compared to the exact set system inherent to the problem.

Finally, we also investigate the question of hardness for the discrete problem defined in
Section 1.5. If the complexity of center curves ‘  can be large, then NP-hardness follows from
the hardness of the shortest common superstring problem, see also the result by Buchin et al.
[16] on (k, ‘)-center clustering under the Fréchet distance. In particular, in this case the
problem is also hard to approximate. In Section 7 we show that even if we require cluster
centers to be points by setting ‘  =  1, the problem remains NP-hard, via a reduction from
Plana r -Mono t one-3S AT.

1.7 Subsequent work

Subsequent to our work, Driemel, Brüning and Conradi [12] showed several improvements to
Theorem 4. Using the same general approach combined with a new auxiliary set system,
which is based on a different simplification algorithm, they show that one can generate a
set of candidates of size independent of the relative arclength. This approach circumvents
the use of breakpoints altogether. As a result, they show that there exists an algorithm
with expected running time in O(k2n +  kn3) using space in O(kn +  n3) for the continuous
case. Secondly, they show that, when using breakpoints to approximate the curve and using
implicit weight updates, one can improve the running time with respect to the relative
arclength resulting in an algorithm of expected running time in O(nk3 log4d λ  e) and using
space in O(nk logd λ  e). Furthermore, in both algorithms, they improve the dependency on ‘  in
the term that bounds the approximation factor (with respect to the number of clusters k) from
quadratic to linear. Refer to [12] for the exact theorem statements.

Another paper that appeared subsequently is the paper by Gudmundsson and Wang [31].
This is a follow-up to the line of work initiated by Buchin et al. [15] where the focus is on
detecting a single subtrajectory cluster that satisfies certain criteria: a minimum number of
disjoint subtrajectories, minimum length, and maximum Fréchet distance between any pair
of subtrajectories within the cluster. They consider the discrete and the continuous Fréchet
distance and show tight bounds on the fine-grained complexity of this problem which exhibit a
separation between the discrete and the continuous case.

2 Setup of techniques

In this section we introduce the main ideas and concepts that we use in our algorithms.
We start in Section 2.1 with a simple algorithm that illustrates our general approach

in a nutshell: we derive an auxiliary set system that has a simpler structure and smaller
size compared to the set system of Section 1.5, while preserving optimal solutions up to
approximation. A  preliminary result that follows by applying the greedy set cover algorithm
is stated in Theorem 6. Then, in Section 2.2 we recapitulate the algorithmic framework by
Brönniman and Goodrich [11] which we use in our main algorithm. In order to obtain efficient
algorithms from this framework, we need to adapt the framework to our specific needs. The
approximation quality of the resulting algorithm strongly depends on the VC-dimension of
the dual set system. Therefore, we aim for auxiliary set systems with constant VC-dimension.
Alas, this is not always possible when breakpoints are given with the input. We discuss
this in Section 2.3.
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2.1 A  set system for approximation

In this section we discuss a simple algorithmic solution to the discrete variant of the problem we
study. We emphasize that the approach works for any choice of breakpoints and is thus
interesting in its own right. The algorithm yields a bicriteria approximation in the radius Δ  and
the number of clusters k. Although this algorithm is suboptimal, we include it here as an
illustration of our general approach to the subtrajectory clustering problem: modify the set
system in a way that preserves the initial structure up to approximation but allows for more
efficient algorithms for the clustering problem.

Let S  =  {( i, j ) Î N2 |  1 £  i  <  j  £  m}. For any ( i , j )  Î S  let μ‘ (P [ti , tj ]) denote the
‘-simplification of the corresponding subcurve of P . Consider a set system R 0  defined on
the ground set X  =  {1, . . . , m � 1}, where each set r i , j  Î R 0  is defined by a tuple ( i , j )  Î S
and is of the form

r i , j  =  {z Î X  |  $i0 £  z <  j0 with dF  (P [ti0  , tj 0 ], μ‘ (P [ti , tj ])) £  3Δ}

We will see (Lemma 5, below), that R 0  approximates the structure of R  as defined in
(1) to the extent that a set cover for R 0  corresponds to an approximate solution for our
clustering problem. The well-known greedy set cover algorithm, which incrementally builds a
set cover by taking the set with the largest number of still uncovered elements in each step, yields
an O(log m) approximation for a ground set of size m [21]. Applying this algorithm to the set
system R 0 ,  we obtain a set C  consisting of ‘-simplifications μ‘ (P [ti , tj ])) for each r i , j ,  such
that φ(P, C ) £  3Δ .

2.1.0.1 Building the incidence matrix

To  this end, we compute the binary incidence matrix M of the set system R 0  explicitly in
O(m3(n‘ +  m) +  m2TS (n, ‘)) time, as follows. Initially we set all entries of the matrix to 0.
In the first step we compute the O(m2) simplifications μ‘ (P [ti , tj ]) of all subcurves between
two breakpoints. For each simplification μ, we compute the Δ-free space with the curve P ,
which is defined as the level set

F Dδ (P, μ)  =  (x, y ) Î [0, 1]2 |  kP (x)  � μ(y)k £  δ .

Computing the associated diagram can be done in O (n‘) time and space [8]. Note that
the simplification μ corresponds to the vertical axis of the Δ-free space diagram and P
corresponds to the horizontal axis. Now, for each breakpoint ti0 we compute the maximal
breakpoint tj 0  that is reachable by a monotone path from the bottom of the diagram at
(ti0 , 0) to the top of the diagram at (tj 0  , 1). This can be done in O(n‘) time using
standard techniques [8]. For all i0 £  q <  j0, we set the entry corresponding to q and μ to
1. This takes O(m) time. We do this for all simplifications. After that, each entry of M is
1 if the corresponding element is contained in the corresponding set and 0 otherwise.

2.1.0.2 Applying greedy set cover

We initially scan the incidence matrix to compute the number of uncovered elements ni , j  for
every range r i , j  Î R 0 .  After this, we can compute the set with the highest number of
uncovered elements in O(m2) time. Then, we can update all ni , j  on the fly every time we
select a new set for the set cover. To  do so, we scan for each newly covered element all the m2

entries of the incidence matrix corresponding to this element and reduce ni , j  by 1 if the entry
corresponding to r i , j  is equal to 1. Since each of the m elements gets covered for the first time
only once, this can be done in a total time of O(m3).
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I  Lemma 5. For any r Q  Î R ,  there is a r i , j  Î R 0  such that r Q  Í r i , j .

Proof. Let Y be the set of tuples ( i , j )  Î N2 with 1 £  i  <  j  £  m and dF  (Q, P [ti , tj ]) £  Δ .
We have that r Q  = ( i , j ) Î Y  [ i, j ) Ç N. Let (i, j ), (i0 , j 0 ) Î Y . Using the triangle inequality, we
can upper bound dF  (P [ti0 , tj 0 ], μ‘ (P [ti , tj ])) by

dF  (P [ti0  , tj 0 ], Q) +  dF  (Q, P [ti , tj ]) +  dF  (P [ti , tj ], μ‘ (P [ti , tj ])) £  3Δ .

By the definition of r i , j ,  we have [i0, j0) Ç N Í r i , j  and therefore r Q  Í r i , j .  In other words,
we can choose any maximal set of covered intervals within r Q  and use the simplification of
the corresponding subcurve of P  to cover all parts of P  that are covered by Q. J

I  Theorem 6. Given a polygonal curve P  : [0, 1] ® Rd  with breakpoints 0 £  t1, . . . , tm £  1.
Assume there exists a set of curves C �  Ì Xd  of size k, such that φ(P, C �) £  Δ .  There
exists an algorithm that computes a set C  Ì Xd  of size O(k log m) and has running time in
O(m3n‘ + m4 + m2 TS (n, ‘))) such that φ(P, C ) £  3Δ ,  where TS (n, ‘) denotes the the running
time for computing an ‘-simplification of a polygonal curve of n vertices.

Proof. The algorithm builds the incidence matrix of the set system and applies greedy set
cover, as described above. The bound of the running time is immediate. It remains to
argue correctness. The existence of a set of curves C �  of size k with φ(P, C �) £  Δ  implies
that there exists a set cover of R  of size k. Lemma 5 implies that for any set cover of R ,
there exists a set cover of R 0  of the same size. Thus, the O(log m)-approximate set cover S
computed by the algorithm for R 0  has size at most O(k log m). Let

C  =  {μ‘ (P [ti , tj ]) |  r i , j  Î S}.

Since S  is a set cover for R 0 ,  and by the definition of r i , j ,  we have φ(P, C )  £  3Δ . J

2.2 The framework for the set cover algorithm

For obtaining our main results we use an idea that goes back to Clarkson [22, 23] and was
later also applied and extended by Brönniman and Goodrich [11] for set systems of low VC-
dimension. We first describe the framework algorithm and then show how to adapt it to
our needs. The idea of the framework algorithm is best explained by taking the point of view
that it computes a hitting set of the dual set system. We need the following definition of an ε-
net.

I  Definition 7. Let R  be a set system with finite ground set X  and with an additive weight
function w on X .  An ε-net is a subset S  Ì X ,  such that every set of R  of weight at least ε
w ( X )  contains at least one element of S .

Note that, if w (x) =  1 for each x  Î X ,  then an ε-net is a hitting set for the “heavy” sets
of R  that contain at least an ε-fraction of the ground set. The framework algorithm needs
the following subroutines.

I  Definition 8 ([11]). A  net finder of size s for a set system ( X ,  R )  is an algorithm A  that,
given ρ Î R  and a weight function w on X ,  returns an (1/ρ)-net of size s(ρ) for ( X ,  R )  with
weight w. Also, a verifier is an algorithm B  that, given a subset H  Í X ,  either states
(correctly) that H  is a hitting set, or returns a nonempty set r  of R  such that r  Ç H  =  Æ.
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2.2.0.1 Framework

Given these two subroutines and a finite set system ( X ,  R ) ,  the algorithm proceeds as follows.
Assume we know there exists a hitting set of size k. The algorithm calls the net finder to
compute an ε-net S  of R  (for a specific value of ε). Then, the algorithm calls the verifier to
test if S  is also a hitting set for R .  If yes, we return S .  If no, then the verifier returns a
witness set r  that does not contain any element of S .  We double the weight of each element
of r. Then, we repeat until we find a hitting set.

Since the algorithm does not know the optimal value of k, it does a doubling search
starting with k =  2. To  take care of the case that there may not exist a hitting set of size k,
the algorithm terminates after 4k log( | X | )  weight-updates if no hitting set has been found. If

this happens, we double the value of k, reset the weights, and start over.

In the following, we describe an adaptation of this framework algorithm that suits our
needs. Our adaptation uses the following definition of a set system oracle. The resulting
theorem is stated below.

I  Definition 9 (Set system oracle). For a given set system R  with ground set X  a set system
oracle is a data structure D  that can be queried with any r  Î R  and z Î X  and answers
whether z Î r .  We denote with TP ( D )  the preprocessing time to build the data structure D  for
the oracle and with TQ ( D )  the time needed to answer the query. We denote with S O ( D )  the space
required by the data structure.

I  Theorem 10. For a given finite set system ( X ,  R )  with finite VC-dimension δ, assume there
exists a hitting set of size k. Then, there exists an algorithm that computes a hitting set of size
k0 Î O(δk log δk) with expected running time in O (k 0 |R |  +  |X | ) k log ( |X | ) T Q ( D ) + T P  ( D )  and
using space in O | X |  +  S O ( D )  .

In the remainder of this section we show how to prove Theorem 10 following Brönniman
and Goodrich [11]. Theorem 10 and the proof of it differ slightly from their results because we
do not use a deterministic net finder. Let R  be a set system with finite ground set X  and
finite VC-dimension δ. An effective way to implement the net-finder is via a random sample
from the ground set, as guaranteed by the ε-net theorem [32] by Haussler and Welzl.

I  Theorem 11 ([32]). For  any ( X ,  R )  of finite VC-dimension δ, finite A  Í X  and 0 <  ,
α <  1, if N  is a subset of A  obtained by at least

 
max     

3 
log     

α     
, 

 
log

random independent draws, then N  is an -net of A  for R  with probability at least 1 � α.

Thus, the net-finder can be implemented to run in O ( |X | )  time and O ( |X | )  space, by
taking a sample from X  where the weights correspond to probabilities. We call this the
probabilistic net-finder. While verifying that a set is an ε-net could be costly in our setting, we
can observe that this is actually not necessary. Indeed, we can modify the behaviour of the
verifier as follows.

I  Definition 12 (Extended verifier). Given a set S  Í X ,  the extended verifier returns one of
the following:

(i) S  is a hitting set.
(ii) A  witness set r  with r  Ç S  =  Æ, and w(r ) £  ε  w (X ) .
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(iii) A  witness set r  with r  Ç S  =  Æ, and w(r ) >  ε  w (X ) .

To  implement the extended verifier we assume that we have a set system oracle D  for
( X ,  R ) .  After reprocessing the oracle, the extended verifier can be implemented to run in

O ( |S |   | R |   TQ ( D )  +  | X |   TQ (D ))

time by using | R |  linear scans over S ,  one for each set in R .  We determine for every set
r  Î R  whether it is hit by an element of S ,  by calling the set system oracle on r  and the
corresponding set and elements in S .  If we find a set that is not hit by any of the elements in
S ,  we compute its weight explicitly by using | X |  calls to TQ ( D )  and return the appropriate
answer (ii) or (iii). In case (ii), we return the witness set that we have just computed
explicitly, that is, we return all elements of this set, in order for the reweighting to be applied.
If we do not find such a set, then S  is a hitting set and we return (i).

2.2.0.2 Algorithm.

Using the above implementation of the probabilistic net-finder and the extended verifier,
the algorithm for computing a hitting set for a given parameter k now proceeds as follows.
In each iteration we use the probabilistic net-finder to sample a candidate set S  Í X .  The
sample size is chosen large enough that S  is an ε-net with probability greater 1 for  =   1 .
Given S ,  we apply the extended verifier. If the verifier returns that S  is a hitting set (case
(i)) then the algorithm terminates with S  as a result. If the verifier returns a witness set r
with r  Ç S  =  Æ, and w (r ) £  ε  w ( X )  (case (ii)) then we double the weight of each element
of r. The algorithm keeps track of the weight of each element and the total weight of the
ground set. If the verifier returns a witness set r  with r  Ç S  =  Æ, and w (r ) >  ε  w ( X )  (case

(iii)) then S  is not an ε-net and we repeat the sample without performing a weight-update.
If after 4k log( | X | )  steps that performed a weight-update the algorithm did not find a hitting
set, we return that there is no hitting set of size k.

Proof of Theorem 10. We first build a data structure D  for the oracle in TP ( D )  time. Then,
we use the above algorithm in a doubling search on k, starting with k =  2.

In the remaining proof, we analyse the running time of the algorithm described above
for a fixed k in detail. In each iteration of the algorithm, the computed random sample of
size O(kδ log(δk)) is an -net with probability greater 1 . Therefore, the expected number of
iterations until we find an -net between any two weight-update steps is at most 2. Once we find
an -net, we are either in case (i) or (ii). As soon as we are in case (i) the algorithm
terminates and outputs a hitting set of size O(δk log(δk)). By construction, the number of
times we can be in case (ii) is bounded by 4k log( |X | ), as this is the maximum number of

weight-update steps before the algorithm terminates. By the analysis in [11], this number of
weight-update steps suffices for the algorithm to find a hitting set (assuming there exists a
hitting set of size k). We include the analysis here and verify that it also holds in our setting.

Let H  be a hitting set of R  with |H |  =  k. Let r  be the set returned by the verifier in one
iteration of being in case (ii). Since H  is a hitting set, we have H  Ç r  =  Æ. Let w be our
weight function and let zh be the number of times the weight of h Î H  has been doubled
after i  iterations in case (ii). Then we have after i  iterations in case (ii) that

w (H )  =  
X  

2 z h  , where 
X  

zh ³  i.
h Î H h Î H
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By the convexity of the exponential function, we get w (H )  ³  k2 k  . Since  =   1 , we also
have for the ground set X  that

i

w ( X )  £  | X |  1 +  
2k

£  |X |e 2 k  .

Because H  is a subset of X  and therefore w (H )  £  w (X ) ,  we get in total

k2 k     £  |X |e 2 k      £  |X |2 4 k  .

It directly follows that i  £  4k log( |X | ). Combining this result with the expected number
of iterations until we find an -net, we conclude that the expected number of iterations before
the algorithm terminates is smaller than 8k log( |X | ).

In each iteration, the algorithm computes a random sample in O ( |X | )  time and applies
the extended verifier in O ( |R |kδ  log(k )TQ (D) +  |X |T Q ( D ) )  time. If a reweighting needs to be
applied (case (ii)) this can be done in O ( |X | )  time. So each iteration of the algorithm has a
running time of O ( |R |δk log(δk)TQ (D) +  |X |TQ ( D ) ) .  In total we get an expected running
time of

O(k log(
|X |

)TQ (D )(δk log(δk ) |R |  +  | X | )  +  TP (D )) .

Note that this running time is at least linear in k, so by a geometric series argument, the
doubling search incurs only a constant factor in the total running time.

The theorem follows by the observation that both the net-finder and the verifier need
O ( |X | )  space.                                                                                                                                                  J

2.3 Bounding the VC-dimension

In order to use Theorem 10 of Section 2.2, we need to bound the VC-dimension of the dual set
system. In our case, this will be a set system that has similar structure as a set system of
metric balls under the Fréchet distance studied by Driemel et al. [27]. In a nutshell, they
showed a bound of O(d2s2 log(ds)) for polygonal curves in Rd  of complexity at most s. Using
this result directly would not gain us any useful bounds, as the subcurves P [ti , tj ] in the
definition of the set system may have linear complexity in n—even for the simpler variant of
Section 2.1. In fact, it turns out that the VC-dimension of the dual set system for the main
problem defined in Section 1.4 does indeed inherently depend on n, as we show in Theorem
46 in Section 6.1.

In Section 5 we instead define an auxiliary set system that preserves solutions up to
approximation and—more importantly—which has low VC-dimension in the dual. We show
this by using the approach of Driemel et al. [27]. They derive a set of geometric predicates
which specify sufficient information for evaluating whether the Fréchet distance is below a
certain threshold. Based on this, they define a composite set system that uses the geometric
predicates as building blocks. The VC-dimension can then be bounded using standard
composition arguments in combination with a theorem by Anthony and Bartlett [9]. Our
analysis of the VC-dimension is given in Section 5.3 and relies on the same set of geometric
predicates. We relate these predicates to the distance evaluation of a certain type of partial
Fréchet distance with specific conditions that occur in our set system with proxy curves.
The result is stated in Theorem 40 and implies that the VC-dimension is constant, if the
complexity of the center curves ‘  and the ambient dimension d is constant.

One may ask if a similar bound can be proven in the case where breakpoints are given
with the input. Trivially, the size of the set system already gives a bound of O(log m),
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however this depends on the number of breakpoints m and can be large even if ‘  is small.
We study this problem in Section 6.2. For the set system defined in Section 1.5 we show a
lower bound of Ω(log m) even in the case that d =  1 and ‘  =  2 (see Theorem 47). Technically,
this does not rule out the existence of an auxiliary set system with low VC-dimension in the
dual. However, it is not clear what such a set system would look like as Theorem 47 makes
only few assumptions on the set system. Thus, perhaps surprisingly, the discretization with
breakpoints which was supposed to simplify the problem, actually makes it more difficult.
Therefore, our approximation guarantee in the continuous case is better to what we can
currently achieve in the discrete case, when breakpoints are given with the input.

3 Warm-up —  Clustering with line segments

In this section, we show how to apply Theorem 10 to the discrete problem where we are given a
curve P  with breakpoints. We assume in this section that cluster centers are restricted to
be line segments (the case ‘  =  2). The general case ( ‘  ³  2) is discussed in Section 4. In
contrast to the solution described in Section 2.1, our algorithm finds an approximate set
cover without computing the set system explicitly leading to better running times.

3.1 The set system

We start by defining the set system R 2  with ground set Z  =  {1, . . . , m�1}. For a subsequence
i1 , . . . , im0 of 1, . . . , m, denote

π(i1 , . . . , im0 ) =  P (t i 1  )P (t i 2  )  Å P (t i 2  )P (t i 3  )  Å  Å P (t i m 0 �1  )P (t i m 0  ).

A  tuple ( i , j )  with 1 £  i  £  j  £  m defines a set r i , j  Î R 2  as follows

r i , j  =  {z Î Z  |  $x Î [xz , z], y Î [z +  1, yz ] with dF  (π(x, z, z +  1, y ), P (ti )P (tj )) £  2Δ},

where x z  £  z <  yz are indices which we obtain as follows. We scan breakpoints starting from
z in the backwards order along the curve and to test for each breakpoint x, whether

dF  (P (tx )P (tz ), P [tx , tz ]) £  4Δ . (2)

If x  satisfies (2), then we decrement x  and continue the scan. If x  =  0 or if x  does not
satisfy (2), then we set x z  =  x  +  1 and stop the scan. To  set yz

 
we use a similar approach: We

scan forwards from z + 1 along the curve and test for each breakpoint y the same property with
P (tz + 1 )P (ty )  and P [tz +1 , ty ]. If y satisfies the property, we increment y and continue the
scan. If y =  m +  1 or if y does not satisfy the property we set yz =  y � 1 and stop the scan.
Figure 1 shows an example of z, xz

 
and yz .

3.2 Analysis of the approximation error

In this section we show how we use a set cover of the set system R 2  to construct an
approximate solution for our clustering problem and analyse the resulting approximation
error. In particular, we prove Lemma 14 and Lemma 15. To  prove them, we first prove the
following simple lemma.

I  Lemma 13. Let 1 £  i  £  j  £  m and let I  =  i1 , . . . , im0 be a subsequence of i, . . . , j . If there
exists a line segment Q Î X2  such that it holds dF  (Q, P [ti , tj ]) £  α, then we have dF

(π (I ), P [ti 1  , ti m 0  ]) £  2α.
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P x z

i ; j

x
Q

j

i z
z +  1 y

(x; z; z +  1; y)

yz

Figure 1 Example of a curve P  and index z , such that z Î r i , j  for some r i , j  Î R 2 .  Also shown is
a line segment Q, such that z Î r Q  of the initial set system R .  After preprocessing, we can test
z Î r i , j  in constant time.

Proof. For any pair (i0, j0) of indices in I ,  there exists a line segment Q[a, b] with [ai0 , bj 0 ] Í
[0, 1] such that dF  (Q[ai0 , bj 0 ], P [ti0 , tj 0 ]) £  α. Since shortcutting cannot increase the Fréchet
distance to a line segment, we also have dF  (Q[a, b], P (ti0 )P (tj 0  )) £  α. By triangle inequality it
now follows that

dF  (P (ti 0  )P (tj 0  ), P [ti0 , tj 0 ]) £  dF  (P (ti 0  )P (tj 0  ), Q[ai0 , bj 0 ]) +  dF  (Q[ai0 , bj 0 ], P [ti0 , tj 0 ]) £  2α.

Since the inequality holds for all (i0, j0) Î I ,  we have dF  (π (I ), P [ti 1  , tim 0  ]) £  2α. J

I  Lemma 14. Assume there exists a set cover for R  with parameter Δ .  Let S  be a set cover of
size k for R 2 .  We can derive from S  a set of k cluster centers C  Í X2  and such that φ(P, C )
£  6Δ .

Proof. We set C  =  {P (t i )P (t j ) |  r i , j  Î S}. Let r i , j  Î S  and let z Î r i , j .  By the definition of
r i , j  there are x  Î [xz , z] and y Î [z +  1, yz ] such that dF  (π(x, z, z +  1, y ), P (ti )P (tj ))) £  2Δ .
In the following we show that dF  (P (ti )P (tj ), P [tx , ty ]) £  6Δ .  With the triangle inequality
we get that dF  (P (ti )P (tj ), P [tx , ty ]) is at most the sum of

dF  (P (ti )P (tj ), π (x, z , z +  1, y))

and

max(dF (P (tx )P (tz ), P [tx , tz ]), dF (P (tz )P (tz +1 ), P [tz , tz +1 ]), dF (P (tz +1 )P (ty ), P [tz +1 , ty ])).

By the choice of x  and y we have that

max(dF (P (tx )P (tz ), P [tx , tz ]), dF (P (tz +1 )P (ty ), P [tz +1 , ty ])) £  4Δ .

It remains to show that dF  (P (tz )P (tz +1 ), P [tz , tz +1 ]) £  4Δ .  Since there exists a set cover
of R  with parameter Δ ,  there exists a line segment Q Î Xd  and 1 £  i0 £  z £  z +  1 £  j0 £  m
such that dF  (Q, P [ti0 , tj 0 ]) £  Δ .  Therefore we get with Lemma 13, that

dF  (P (tz )P (tz +1 ), P [tz , tz +1 ]) £  2Δ .

Since S  is a set cover, it holds for the ground set Z ,  that Z  =  
S

( i , j ) Î S  r i , j .  Therefore, if
we choose C  =  {P (ti )P (t j ) |  r i , j  Î S}, then φ(P, C )  £  6Δ . J

I  Lemma 15. If there exists a set cover S  of R ,  then there exists a set cover of the same
size for R 2 .
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Proof. We claim that for any set r Q  Î R  there exists a set r  Î R 2 ,  such that r Q  Í r. This
claim implies the lemma statement. It remains to prove the claim.

Let Y be the set of tuples ( i , j )  Î N2 with 1 £  i  <  j  £  m and dF  (Q, P [ti , tj ]) £  Δ .  We
have that r Q  = ( i , j ) Î Y  [ i, j ) Ç N.

Let ( i , j )  Î Y . We show that r Q  Í r i , j  Î R 2 .  Let z Î rQ .  By the definition of r Q
 
we

have

$ x  £  z <  y s.t. dF  (Q, P [tx , ty ]) £  Δ .

To  show that z Î r i , j ,  we prove that the following two conditions hold:
(i) x  Î [xz , z ] and y Î [z +  1, yz ],

(ii) dF  (π(x, z, z +  1, y ), P (ti )P (tj )) £  2Δ .

Since dF  (Q, P [tx, ty ]) £  Δ  and shortcutting cannot increase the Fréchet-distance to a
line segment, we also have

dF  (Q, π(x, z, z +  1, y)) £  Δ .

Similarly, we can conclude dF  (Q, P (ti )P (tj )) £  Δ .  It now follows from the triangle
inequality, that

dF  (π(x, z, z +  1, y ), P (ti )P (tj )) £  dF  (π(x, z, z +  1, y), Q) +  dF  (Q, P (ti )P (tj )) £  2Δ .

This implies condition (ii).
The first condition (i) follows in a similar way. Since r Q  Î S ,  there exists [a, b] Í

[0, 1], such that dF  (Q[a, b], P [tx, tz ]) £  Δ .  Therefore, by Lemma 13, for all x0 Î [x, z]
dF  (P (tx 0  )P (tz ), P [tx0  , tz ]) £  2Δ .  As such, x  is encountered in the scan and ends up being
contained in the interval [xz , z].

We can make a symmetric argument to show that dF  (P (tz +1 )P (ty ), P [tz +1 , ty ]) £  2Δ
and conclude using Lemma 13 that y Î [z +  1, yz ]. This proves condition (i).

Together, the above implies that z Î r i , j  for r i , j  Î R 2 .  Therefore r Q
 
Í r i , j  for some

r i , j  Î R 2 .                                                                                                                                                           J

3.3 The algorithm

We intend to use the algorithm of Theorem 10 to find a set cover of the set system R 2 ,  since
such a set cover gives a 6-approximation for our clustering problem; see Section 2.2.0.1 for
details on the algorithm. The algorithm requires a set system oracle for R 2 .  In this section, we
describe such a set system oracle. In particular, we show how to build a data structure that
answers a query, given indices i , j  and z, for the predicate z Î r i , j  in O(1) time.

3.3.0.1 The data structure.

To  build the data structure for the oracle, we first compute the indices x z  and yz for each 1
£  z £  m � 1, as specified in the definition of the set system in Section 3.1. Next, we
construct a data structure that can answer for a pair of breakpoints i  and z if there is a
breakpoint x  with x z  £  x  £  z such that kP (ti ) �P (tx )k £  2Δ  in O(1) time. For this we build an
m ´ m matrix M in the following way. For each breakpoint i  we go through the sorted list of
breakpoints and check if kP (ti ) � P (tj )k £  2Δ  for each 1 £  j  £  m. While doing that, we
determine for each j  which is the first breakpoint zi , j  ³  j  with kP (ti ) �P (tz i , j  )k £  2Δ .  The
entries zi , j  are then stored in the matrix M at position M (i, j ). Given the Matrix M the
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x (x; z; z +  1; y) y
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Figure 2 Illustration of Observation 16. The figure on the right shows the 2Δ-free-space diagram
of the two curves on the left. A  monotone path from the bottom left to the upper right corner of
the diagram is feasible iff the three conditions stated in the observation are satisfied. We slightly
abuse notation by referring to the vertex P (tz )  with z in all figures, when context is clear.

oracle can answer if there is a breakpoint x  with x z  £  x  £  z such that kP (ti ) �P (tx )k £  2Δ  by
checking if M ( i, xz ) £  z. The data structure can also answer if there is a breakpoint y with z
+  1 £  y £  yz such that kP (t j ) � P (ty )k £  2Δ  by checking if M (j, z +  1) £  yz . The final data
structure stores the matrix M only.

3.3.0.2 The query.

We answer queries as follows. Given z, i and j ,  we want to determine if z Î r i , j .  We return
“yes”, if the following three conditions are satisfied:

(i) M ( i, xz ) £  z
(ii) M (j, z +  1) £  yz

(iii) ks � P (tz )k £  2Δ ,  where s is the intersection of the bisector between the points P (tz )
and P (tz + 1 )  and the line segment P (t i )P (tj ).

Otherwise, the algorithm returns “no”.

3.3.0.3 Correctness.

The above described set system oracle returns the correct answer. Correctness is implied by
the following observation, which follows from the analysis of Alt and Godau [8]. See also
Figure 2.

I  Observation 16. dF  (π(x, z, z +  1, y ), P (ti )P (tj )) £  2Δ  if and only if the following three
conditions are satisfied:

(i) kP (tx ) � uk £  2Δ
(ii) kP (ty ) � vk £  2Δ

(iii) min λ , λ 0 Î [ 0 , 1 ]  (ka � (λv +  (1 � λ)u)k, kb � (λ0v +  (1 � λ0)u)k) £  2Δ
λ £ λ 0

where a =  P (tz ) ,  b =  P (tz + 1 ) ,  u =  P (t i ) ,  and v =  P (t j ) .

3.3.0.4 Running time.

Next, we analyse the running time of constructing an oracle for the case ‘  =  2 and query
time O(1). In particular we analyse the running time of the scan for the indices x z  (or yz )
with 1 £  z <  m and the running time for building the matrix M .

As described above the index-scan for xz ,  given z, can be done by checking for break-
points x  Î {z � 1, . . . , 1} in backwards order from z if dF  (P (tx )P (tz ), P [tx , tz ]) £  4Δ .
Since P (tx )P (tz ) has complexity 2 and P [tx , tz ] has complexity at most n, the check
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dF  (P (tx )P (tz ), P [tx , tz ]) £  4Δ  can be done in O(n) time and O(n) space for any x, z Î
{1, . . . , m} using standard methods [8]. The scan for yz is analogous, so we need a total time of
O(mn) to scan for all indices.

For building the matrix M , the algorithm computes the Euclidean distances of all m

pairs of breakpoints and while doing that records for each breakpoint t j  the smallest index
of a breakpoint after t j

 
that lies within distance 2Δ  to this breakpoint. In total, this it takes

O(m2) time. Together with the scan for the indices we get the following runtime for building
the oracle.

I  Theorem 17. One can build a data structure of size O(m2) in time O(m(m +  n)) and
space O(n +  m2) that answers for an element of the ground set Z  and a set of R 2 ,  whether this
element is contained in the set in O(1) time.

3.4 The result

For the set system (Z,  R 2 ) ,  we have | Z |  =  m and | R 2 |  =  O(m2). Thus, the VC-dimension δ of
the dual set system is trivially bounded by O(log m). We combine this with the result for
constructing the oracle in Theorem 17 and apply Theorem 10 to get the following lemma on
computing set covers of R 2 .  Note that we must have k <  m, since there are only m � 1
elements in the ground set.

I  Lemma 18. Let k be the minimum size of a set cover for R 2 .  There exists an algorithm
that computes a set cover for R 2  of size O(k log2(m)) with an expected running time in
O km2 +  mn and using space in O(n +  m2).

As a direct consequence we get the following result for our clustering problem in the case
‘  =  2 with the help of Lemma 14 and Lemma 15.

I  Theorem 2. Let P  : [0, 1] ® Rd  be a polygonal curve of complexity n with breakpoints 0 £
t1, . . . , tm £  1 and let Δ  >  0 be a parameter. Assume there exists a set C �  Ì Xd  of size k £
m, such that φ(P, C �) £  Δ .  There exists an algorithm that computes a set C  Ì Xd  of size
O(k log2(m)) such that φ(P, C )  £  6Δ .  The algorithm has expected running time in O km2

+  mn and uses space in O(n +  m2).

4 The main algorithm

In this section we extend the scheme described in Section 3 to the case ‘  >  2. As in the
previous section, we only consider the discrete problem, where the input is a polygonal
curve with breakpoints. Again, the crucial step is a careful definition of a set system for
approximation which allows for an efficient implementation of a set system oracle. The main
idea is to replace the edges of the proxy curve π from Section 3 by simplifications of the
corresponding subcurves. We show that we can do this in a way that ensures that these
simplifications are nested in a certain way. This in turn will allow us to build efficient oracle
data structures for this set system. We will later show how to use the main elements of this
algorithm for the continuous case in Section 5.

4.1 Simplifications

We begin by introducing the following slightly different notion of simplification. A  curve
Q Î X ‘  is an (, ‘)-simplification of a curve P  if Q has at most ‘  vertices and its Fréchet
distance to P  is at most . We call the simplification vertex-restricted if V (Q) Í V (P )

C G T
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P (s z + 1 2 ‘  )
P

z
z +  1 y1

yz + 1

y2

: + (z  +  1; y1)
: + (z  +  1; y2)
: + (z  +  1; yz +1 ) 4 :

(z; z +  1)

Figure 3 Example of the generated (4Δ, 2‘)-simplifications for a curve P  with breakpoints
z, z +  1, y1, y2 and y z + 1  in the case ‘  =  2.

and the vertices of Q have the same order as in P . In this context, we say that a point p of
P  corresponds to an edge e of a vertex-restricted simplification of P  if it lies in between
the two endpoints of e in P . The main purpose of this section is to define simplifications
σ + ( i , j ) ,  σ�(i, j ) and σ�(i, i +  1) for i , j  Î {1, . . . , m} that we will use in the definition of the
set system in the next section. Concretely, the simplifications will be defined as the output
of the algorithm by Agarwal et. al. [4]. In a nutshell, their algorithm works the following
way: Let P  be a curve with vertices P (s1 ), . . . , P (sn ). Let f (  )  denote the minimum number
of vertices in a vertex-restricted (  , n)-simplification of P . To  compute a vertex-restricted
( , f (  ))-simplification P 0 of the curve P , the algorithm iteratively adds new vertices to
the simplification starting with the first vertex P (s1 ) of the curve. In each step it takes
the last vertex P (s i )  of the simplification and determines with an exponential search the
last integer j  ³  0 such that dF  (P (s i )P (s i + 2 j  ) , P [s i , s i + 2 j  ]) £  . After determining j  it finds
with a binary search the last integer r  Î [2 j , 2 j +1 ] such that dF  (P (s i )P (s i + r ) , P [s i , s i + r ] )
£  . The algorithm terminates when it reaches P (sn ).

4.1.0.1 Generating simplifications.

We now describe how to generate a set of simplifications that will be used in the definition of our
set system in Section 4.2. We apply the above described algorithm on subcurves of P  in the
following way: Consider the parameterization P  : [0, 1] ® Rd  of P  where P (t i )  gives the i-th
breakpoint of P  for 1 £  i  £  m and P (s j )  gives the j-th vertex of P  for 1 £  j  £  n. For each
z Î {1, . . . , m} we apply the algorithm with  =  4Δ  on P [tz , 1] to get a simplification P + .
We stop the algorithm early if the complexity of the simplification reaches 2‘. If |P z  |  =  2 ‘  let
P (s z 2 ‘  )  be the 2‘-th vertex of P + .  Otherwise set P (s z 2 ‘  )  =  P (sn ).  Let yz be the last
breakpoint of P  before P (s z 2 ‘  ). Let z £  y £  yz . Since P +  is a (4Δ, 2‘)-simplification of
P [tz , 1], there exists a subcurve σ+ (z, y ) of P +  such that dF  (σ+ (z, y), P [tz , ty ]) £  4Δ .  From
each possible subcurve with the above property let σ+ (z, y ) be the longest subcurve that
does not contain any vertex P (s i )  with s i  ³  ty ", except for the last vertex of this subcurve.
This subcurve σ+ (z, y ) is therefore a uniquely defined (4Δ, 2‘)-simplification of P [tz , ty ] that
ends in a point of the edge of P +  corresponding to P (ty ). Analogously we generate the curve
σ�(z, z +  1) by running the algorithm for the curve P [tz , tz +1 ] and the σ�(x, z) by running
the algorithm for the direction-inverted curve P [tz , 0]. We define P [tz , 0] to be the curve Q
: [0, 1] ® Rd  with Q(t) =  P ((1 � t)tz ). Note that it is possible that the algorithm does not
find a simplification at all for a specific subcurve. In this case we say the simplification is
empty (and we denote this with ^). See also Figure 3 for an example of the generated
simplifications.

We summarize crucial properties of the generated simplifications in the following two
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lemmata. These properties will help to construct an efficient oracle for our set system later.

I  Lemma 19. Let i , j  Î {1, . . . , m} with i  <  j .  The curve σ + ( i , j )  is either a uniquely
defined (4Δ, 2‘)-simplification of P [ti , ti ], or it is σ + ( i , j )  =  ^. In the latter case there
exists no Q Î Xd  such that dF  (Q, P [ti , tj ]) £  Δ .  Moreover, for any non-empty simplification
σ + ( i , j )  and for any i  <  j0 <  j ,  the simplification σ + ( i, j 0 ) is non-empty and is a subcurve of
σ + ( i , j ) .

We get symmetric lemmas for the other simplifications. We will see in the next section
why it is convenient to have these properties in both directions, forwards and backwards
along the curve.

I  Lemma 20. Let i , j  Î {1, . . . , m} with i  <  j .  The curve σ�( i, j ) is either a uniquely
defined (4Δ, 2‘)-simplification of P [ti , tj ], or it is σ�( i, j ) =  ^. In the latter case there
exists no Q Î Xd  such that dF  (Q, P [ti , tj ]) £  Δ .  Moreover, for any non-empty simplification
σ�(i, j ) and for any i  <  i0 <  j  it holds that the simplification σ�(i0 , j ) is non-empty and is a
subcurve of σ�(i, j ).

I  Lemma 21. Let z Î {1, . . . , m � 1}. The curve σ�(z, z +  1) is either a uniquely defined
(4Δ, 2‘)-simplification of P [tz , tz +1 ], or it is σ�(z, z +  1) =  ^. In the latter case there exists no
Q Î X ‘  such that dF  (Q, P [tz , tz +1 ]) £  Δ .

Lemma 19 follows directly from the following lemma. Lemma 20 and Lemma 21 follow by
using symmetric arguments.

I  Lemma 22. Consider the generating process described in Section 4.1. Let y be a breakpoint
of P  with ty >  s z 2 ‘  . There exists no Q Î X ‘  such that dF  (Q, P [tz , ty ]) £  Δ .

Proof. Let 1 £  v £  n such that sv�1 £  ty £  sv . So P (sv )  is the first vertex of P  after the
breakpoint y. Assume there exists a Q Î X l  such that dF  (Q, P [tz , ty ]) £  Δ .

To  get a contradiction we will show that, with this assumption, we can construct a
vertex-restricted (2Δ , 2 ‘  � 1)-simplification of P [tz , sv ]. Let f ( 2Δ )  denote the minimum
number of vertices in a vertex-restricted (2Δ, n)-simplification of P [tz , sv ]. Note that v >  z2‘ .
So the vertex-restricted (4Δ, f (2Δ))-simplification P 0 of the subcurve P [tz , sv ] computed
with the algorithm of Agarwal et. al. has a complexity of at least 2 ‘  +  1. This follows
by the definition of P (s z 2 ‘  ). Therefore we have f ( 2Δ )  ³  2 ‘  +  1. But our constructed
vertex-restricted (2Δ , 2 ‘  � 1)-simplification then would directly contradictict f ( 2Δ )  ³  2 ‘  +  1.

For the construction of the (2Δ , 2 ‘  � 1)-simplification let P  =  P [tz , sv�1]. Since Q is a
(Δ, ‘)-simplification of P [tz , ty ], there exists a subcurve Q of Q with dF  (Q, P ) £  Δ .  Let
e1, . . . , ek be the edges of Q and p̃  , . . . , p̃  be the vertices of P . It is k £  l  � 1 and j  £  n.
Let γ be a strictly monotone increasing function such that

dF  (P , Q) =  sup kP (t) � Q(γ (t))k £  Δ .
tÎ[0,1]

Let further

ti 1  =  min{t Î [0, 1] |  Q(γ (t)) Î ei , P (t) Î {p̃  , . . . , p̃  }}

be the first vertex of P  that gets mapped to ei and

ti 2  =  max{t Î [0, 1] |  Q(γ (t)) Î ei , P (t) Î {p̃  , . . . , p̃  }}

C G T
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be the last vertex of P  that gets mapped to ei . By construction we have

dF  (P (t i 1  )P (t i 2  ), Q(γ (ti1 ))Q(γ (ti2  ))  £  Δ

and therefore with the use of triangle inequality

dF  (P (t i 1  )P (t i 2  ), P [ti1 , ti2 ])

£  dF  (P (t i 1  )P (t i 2  ), Q(γ (ti1 ))Q(γ (ti2  ))  +  dF  (Q(γ (ti1  ))Q(γ (ti2  ), P [ti1  , ti2 ])

£  Δ  +  Δ

=      2Δ

Since P (t i 2  )  and P (t ( i + 1 ) 1  )  are consecutive vertices of P , we also have

dF  (P (t i 2  )P (t ( i + 1 ) 1  ), P [ti2 , t ( i + 1) 1  ]) =  0.

So we can construct a (2Δ , 2 ‘  � 1)-simplification of P [tz , sv ] by concatenating the vertices

P (t11  ), P (t12 ), P (t21 ), P (t22 ), . . . , P (tk1 ), P (tk 2  ), P (sv ).

To  see that the resulting curve is indeed a vertex-restricted simplification, we observe that
P (t11  ) =  P (0) =  P (tz ) and that the edge from P (tk 2  )  =  P (sv �1 ) to P (sv )  is entirely included in
P . J

4.2 The set system

We are now ready to define the new set system R 3  with ground set Z  =  {1, . . . , m �1}. The
set system depends on the simplifications of subcurves of P  defined in the previous section.
Let ( i , j )  be a tuple with 1 £  i  £  j  £  m. We say r i , j  =  Æ if there is no Q Î X ‘  such that
dF  (Q, P [ti , tj ]) £  Δ .  Otherwise, we define a set r i , j  Î R 3  as follows

r i , j  =  {z Î Z  |  $x Î [xz , z], y Î [z +  1, yz +1 ] with dF  (κ z (x, y ) , σ + ( i , j ))  £  10Δ},

where

κz (x, y ) =  σ�(x, z) Å σ�(z, z +  1) Å σ + (z +  1, y)

and x z  £  z is the smallest index such that σ�(x, z) =  ^ for all x z  £  x  £  z and yz + 1  ³  z +  1 is
the highest index such that σ + (z +  1, y) =  ^ for all z +  1 £  y £  yz +1 . For an example of a
curve P  with breakpoints z, i, j such that z Î r i , j  see Figure 4. Note that, by Lemma 21 the
curve σ�(z, z +  1) is non-empty for all z Î {1, . . . , m � 1} if there exists a set of cluster centers
C  Ì X ‘  such that Φ(P, C ) £  Δ .  So in this case the set system is well-defined as implied by
the Lemmas 19, 20 and 21.

4.3 Analysis of the approximation error

We show correctness in the same schema as in Section 3.2. In particular, we prove Lemma 23
and Lemma 24.

I  Lemma 23. Let S  be a set cover of size k for R 3 .  We can derive from S  a set of 3k
cluster centers C  Í X ‘  and such that φ(P, C )  £  14Δ .
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Figure 4 Example of a curve P  such that z Î r i , j  for some r i , j  Î R 3 .  Also shown is the 10Δ-free
space diagram of κ z (x, y )  and σ + ( i , j ) .  Simplification σ + ( i , j )  demonstrates that the simplifications
do not have to be vertex-restricted.
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Proof. To  construct C  from S  we take for each tuple r i , j  Î S  the center curve σ + ( i , j ) .
Let z Î r i , j .  By the definition of r i , j  there are x  Î [xz , z ] and y Î [z +  1, yz ] such that
dF  (κ z (x, y ) , σ + ( i , j ))  £  10Δ. In the following we show that dF  (σ + ( i, j ), P [tx , ty ]) £  14Δ.
With the triangle inequality we get

dF  (σ + ( i, j ), P [tx , ty ]) £  dF  (σ + ( i , j ), κz (x, y ))  +  dF  (κz (x, y ), P [tx , ty ])

£  10Δ  +  dF  (κz (x, y ), P [tx , ty ])

Here, the distance dF  (κz (x, y), P [tx , ty ]) is at most the maximum of dF  (σ�(x, z), P [tx, tz ]),
dF  (σ�(z, z +  1), P [tz , tz +1 ]) and dF  (σ + (z +  1, y), P [tz+1 , ty ])). Since σ�(x, z), σ�(z, z +  1)
and σ + (z +  1, y) are (4Δ, 2‘)-simplifications of the corresponding subcurves, we get

dF  (κz (x, y ), P [tx , ty ]) £  4Δ .

and in total dF  (σ + ( i, j ), P [tx , ty ]) £  14Δ.
Since S  is a set cover, it holds for the ground set Z  =  {1, . . . , m�1}, that Z  = ( i , j ) Î S  r i , j .

Therefore, if we choose C 0 =  {σ + ( i , j )  |  r i , j  Î S}, we get φ(P, C 0 ) £  14Δ. Note that C 0 Í Xd
‘ .

Let c Î C  with vertices c1, . . . , cN where N  £  2‘. We can arbitrarily split c into 3 curves
c(1) , c(2) , c(3) of complexity at most ‘.  Those 3 subcurves can cover the same parts of P , that c
can cover since each subcurve P 0 of P  with dF  (P 0, c) £  14Δ  can be split into 3 subcurves
P (1) , P (2) , P (3)  such that dF  (P (1) , c(1) ), dF  (P (2) , c (2) ) and dF  (P (3) , c (3) ) are each at most
14Δ. So, if we split each curve c Î C 0 as described above, we obtain a set C  Í Xd  with
|C |  =  3|C 0 | and φ(P, C ) £  14Δ.                                                                                                                J

I  Lemma 24. If there exists a set cover S  of R ,  then there exists a set cover of the same
size for R 3 .

Proof. We claim that for any set r Q  Î R  there exists a set r  Î R 3 ,  such that r Q  Í r. This
claim implies the lemma statement. It remains to prove the claim.

Let Y be the set of tuples ( i , j )  Î N2 with 1 £  i  <  j  £  m and dF  (Q, P [ti , tj ]) £  Δ .  We
have that r Q  = ( i , j ) Î Y  [ i, j ) Ç N.

Let ( i , j )  Î Y . We show that r Q  Í r i , j  Î R 3 .  Let z Î rQ .  By the definition of r Q
 
we

have

$ x  £  z <  y s.t. dF  (Q, P [tx , ty ]) £  Δ

To  show that z Î r i , j ,  we prove that the following two conditions hold:
(i) x  Î [xz , z ] and y Î [z +  1, yz ],

(ii) dF  (κ z (x, y ), σ + ( i , j ))  £  10Δ.
As stated above, we have dF  (Q, P [tx, ty ]) £  Δ .  Therefore we can subdivide Q into 3 subcurves
Qx, Qz , Qy such that

max(dF (Qx, P [tx , tz ]), dF (Qz , P [tz , tz +1 ]), dF (Qy , P [tz +1 , ty ])) £  Δ

Each of the subcurves has complexity at most ‘  since Q has complexity at most ‘.  By the
Lemmas 20 and 19, we have σ�(x0, z) =  ^ for all x  £  x0 £  z and σ + (z +  1, y0) =  ^ for all z
+  1 £  y0 £  yz +1 . We can conclude that x  Î [xz , z ] and y Î [z +  1, yz ] and therefore condition
(i) is fulfilled.

To  prove condition (ii) we can use the triangle inequality to get

dF  (κ z (x, y ) , σ + ( i , j ))  £  dF  (κz (x, y ), Q) +  dF  (Q, σ + ( i , j ))



e

e

e

H. A. Akitaya, F. Brüning, E. Chambers, A. Driemel 1:23

Since we have

dF  (κz (x, y ), Q) £  dF  (κz (x, y ), P [tx , ty ]) +  dF  (P [tx, ty ], Q)

£  4Δ  +  Δ

=  5Δ

and

dF  (Q, σ + ( i , j )) £  dF  (Q, P [ti , tj ]) +  dF  (P [ti , t j ], σ + ( i, j ))

£  Δ  +  4Δ

=  5Δ

we get in total

dF  (κ z (x, y ) , σ + ( i , j ))  £  10Δ

Together, the above implies that z Î r i , j  and therefore r Q  Í r i , j . J

4.4 The approximation oracle

To  find a set cover of the set system R 3  we want to use the framework described in
Section 2.2.0.1. But to apply Theorem 10 directly we would need to implement an oracle
that answers for an element of the ground set Z  =  {1, . . . , m � 1} and a set of R 3 ,  whether this
element is contained in the set. In this section we describe how to answer such queries
approximately. In the next section (Section 4.5) we then show how to apply Theorem 10.

The approximation oracle will have the following properties. Given a set r i , j  Î R 3  and
an element z Î Z  this approximation oracle returns either one of the following answers:

(i) "Yes", in this case there exists a breakpoint x  Î [xz , z ] and a breakpoint y Î [z + 1, yz +1 ]
with dF  (κ z (x, y ) , σ + ( i , j ))  £  46Δ

(ii) "No", in this case z Î/ r i , j .
In both cases the answer is correct.

To  construct the approximation oracle we build a data structure that answers a query,
given indices i , j  and z, for the predicate z Î r i , j  in O (‘2 ) time. In particular we need a data
structure that can build a free space diagram of the curves κ z (xz , yz + 1 )  and σ + ( i , j )  to
bound the distance dF  (κ z (x, y ) , σ + ( i , j ))  for every x  Î [xz , z ] and y Î [z +  1, yz+1]. In this
context we define active edges of the simplifications σ�(xz , z) and σ + (z +  1, yz +1 ) with respect
to r i , j  since the data structure needs to be able to find these efficiently to answer the query.
Recall that a point of P  is said to correspond to an edge e of a vertex-restricted simplification
of P  if it lies in between the two endpoints of e in P .

I  Definition 25. Let z , i, j be breakpoints of P .  An edge e of the simplification σ�(xz , z ) is
active with respect to r i , j  if there is a breakpoint x  Î [xz , z] corresponding to e with
d(P (tx ), P (ti )) £  18Δ. An edge e of the simplification σ + (z +  1, yz +1 ) is active with respect to
r i , j  if there is a breakpoint y Î [z +  1, yz +1 ] corresponding to e with d(P (ty ), P (tj )) £  18Δ.

So an active edge is an edge of the simplification that contains the image of a breakpoint
that is close to i  or j  respectively. The active edges will become relevant for answering a
query since in the case that z Î r i , j  there exist breakpoints x  and y on active edges such
that dF  (κ z (x, y ) , σ + ( i , j ))  £  10Δ. For an approximate solution it will suffice to check the
existence of a strictly monotone path in the free space diagram that start on an active
edge of σ�(xz , z ) and end in an active edge of σ + (z +  1, yz +1 ). The advantage is that this can
be done faster than checking if dF  (κ z (x, y ) , σ + ( i , j ))  £  10Δ  for each x  Î [xz , z] and y Î [z +
1, yz+1 ]. See Figure 5 for an example.
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Figure 5 Example of a curve P  and breakpoints xz ,  x,  z, z +  1, y, yz + 1 ,  i  and j .  The active
edges are e1, e8 and e9 since there are breakpoints corresponding to these edges within distance 18Δ  to
i  or j  respectively. There is, however, no strictly monotone path from e1 on the bottom to e8 or e9 on
the top in the 10Δ-free space of σ + ( i , j )  and κ z (x z , yz + 1 ) .  So we have z Î/ r i , j .
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4.4.0.1 The query.

Given z, i, j Î {1, . . . , m} the oracle is therefore checking if z Î r i , j  the following way:
First it builds a free space diagram of σ + ( i , j )  and κ z (xz , yz + 1 )  for the distance 10Δ.

Then it checks for each edge on σ�(xz , z ) and on σ + (z +  1, yz +1 ) if it is active. In the end,
the oracle checks if there is a monotone increasing path in the 10Δ-free space that starts on
an active edge of σ�(xz , z ) in one coordinate and σ + ( i , j )(0)  in the other coordinate and
ends on an active edge of σ + (z +  1, yz +1 ) in one coordinate and σ + ( i , j )(1)  in the other
coordinate. The oracle returns "Yes" if such a path exists. See Figure 6 for an example of a
"Yes" answer.

To  do the above steps efficiently an underlying data structure for the oracle has to be
built in the preprocessing. We will first show how the data structure is built and then prove the
correctness of the oracle and analyse its running time.

4.4.0.2 The data structure.

The data structure is built in two steps. The first step is to compute the simplifications. The
second step consists of constructing a data structure for the breakpoints that can be used to
determine active edges.

We compute the simplifications σ�(xz , z), σ�(z, z +  1) and σ+ (z, yz ) for every breakpoint z
Î {1, . . . , m} by running the algorithm of Agarwal et. al. [4] up to complexity 2‘. For each
edge e of σ�(xz , z) and σ+ (z, yz ), we save the first breakpoint xe and the last breakpoint ye

that corresponds to e.
In addition to these simplifications, the oracle also needs the simplification σ + ( i , j )  to

build the free space diagram. Note that σ + ( i , j )  does not need to be stored in the data
structure since for all i , j  Î {1, . . . , m}, the simplification σ + ( i , j )  can be constructed using
σ + ( i , j i ) .  To  do so, the oracle does binary search to find the edge e of σ + ( i , j i )  such that j
corresponds to e. Then, the oracle computes the last point of e that intersects the ball
B (t j , 4Δ) .  The subcurve of σ + ( i , j i )  up to this point is σ + ( i , j ) .

The oracle needs to determine which edges are active. For this we construct a data
structure in the same way as described for the case ‘  =  2 in Section 3.3. We build an m ´  m
matrix M which stores the following information. For each breakpoint i  we go through the
sorted list of breakpoints and check if d(P (ti ), P (tj )) £  18Δ  for each 1 £  j  £  m. While doing
that, we determine for each j  which is the first breakpoint zi , j  ³  j  with d(P (ti ), P (tj )) £  18Δ.
The entries zi , j  are then stored in the matrix M .

Let xe (ye ) be the first (last) breakpoint corresponding to the edge e. To  check if there is one
breakpoint z on an edge e of a simplification such that d(P (ti ), P (tz )) £  18Δ  for some other
breakpoint i, we only have to check if zi , x e  ³  ye. This is exactly what we need to check to decide
if an edge is active and can be done in constant time given the matrix M .

Overall, the data structure therefore consists of O(m) simplifications with pointers to the
first (last) element of each edge and the matrix M of size O(m2) containing the zi,j -entries.
This data structure is then used for each query to build a free space diagram and to find
the active edges. The existence of a monotone increasing path is then tested by computing
the reachability of active edges from active edges in the free space diagram. This can be
done using the standard methods described by Alt and Godau [8] in the following way.

The free space diagram of the 10Δ-free space F  can be divided into cells that each
correspond to a pair of edges, one from each curve κ z (xz , yz + 1 )  and σ + ( i , j ) .  Let us denote
with C s , t  the cell of the free space diagram corresponding to the s-th edge of σ + ( i , j )  and the
t-th edge et of κz (xz , yz + 1 ).  We further denote with L s , t  and B s , t  the left and bottom
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line segment bounding the cell Cs , t .  We also define L s , t  =  L s , t  Ç F  and B s , t  =  B s , t  Ç F .
We need to calculate the reachable space R  Í F  where a point p Î F  is in R  if and only

if there exists an active edge et of σ�(xz , z ) such that there exists a monotone increasing
path within F  from B1 , t  to p. We further define L s , t  =  L s , t  Ç R  and B s , t  =  B s , t  Ç R .

Note that given L R
t ,  B R

t , L s + 1 , t  and B s , t + 1 ,  we can construct L s + 1 , t  and L s , t + 1  in
constant time. So, given that we know for each edge et of σ (xz , z ), whether it is active or not,
we can compute L1 , t  and B1 , t  for all edges et. With these we can iteratively construct all L s , t
and Bs , t ,  proceeding row by row in the free space diagram.

Let s £  2 ‘  be the number of edges of σ ( i , j ). We get the following directly from the
definition of R .  There exists an active edge et of σ + (z +  1, yz +1 ) such that B s �+ 1 , t  =  Æ if and
only if there is a monotone increasing path starting and ending in an active edge. So we only
have to check for all active edges et of σ + (z +  1, yz +1 ) if B s �+ 1 , t  =  Æ.

4.4.0.3 Correctness.

To  show the correctness of the oracle we show the following lemma.

I  Lemma 26. Let z , i, j Î {1, . . . , m}. Consider the query z Î r i , j .  If the approximation
oracle returns the answer

(i) "Yes", then there exists x  Î [xz , z ] and y Î [z + 1, yz +1 ] with dF  (κz (x, y ), σ + ( i , j ))  £  46Δ
(ii) "No", then we have z Î/ r i , j .

Proof. i) Consider the 10Δ-free space diagram of κz (x, y ) and σ + ( i , j ) .  If the oracle returns
the answer "Yes" then there is a monotone increasing path in the 10Δ-free space that starts on
an active edge e and ends on an active edge e0.

We show that this path implicitly gives two breakpoints xe Î [xz , z ] and ye0 Î [z + 1, yz +1 ]
as well as a monotone increasing path from σ�(xe, z)(0) to σ + (z +  1, ye0 )(1) in the 46Δ-free
space of κz (x, y ) and σ + ( i , j ) .

Let xe be the first breakpoint corresponding to e such that d(P (tx e  ), P (ti )) £  18Δ. Since
e is active, xe has to exist. We distinguish between the cases that the path starts in a point
pe before or after σ�(xe, z)(0) on e:

( I )  The path starts in a point pe after σ�(xe, z)(0) on e:
We have

d(σ+ (i, j )(0), σ�(xe , z )(0))
£  d(σ + ( i , j )(0), P (ti )) +  d(P (ti ), P (tx e  ))  +  d(P (tx e  ), σ�(xe, z)(0))

£  4Δ  +  18Δ  +  4Δ

£  26Δ
The second inequality above follows by the choice of xe and the fact that σ + ( i , j )  and
σ�(xe, z) are (4Δ, 2‘)-simplifications of P [ti , tj ] and P [tx e  , tz ]. Since the path starts in
a reachable area of the free space diagram we have

d(σ+ (i, j )(0), pe ) £  10Δ

Since pe and σ�(xe, z)(0) lie on the same edge of σ�(xz , z) the segment pe, σ�(xe, z)(0) is
a subcurve of σ�(xz , z). The Fréchet distance

dF  (pe, σ�(xe , z )(0), σ+ (i, j )(0))

is at most

max(d(σ+ (i, j )(0), σ�(xe , z )(0)), d(σ+ (i, j )(0), pe )) £  26Δ
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Figure 6 Example for a curve P  and breakpoints z , i, j such that the approximation oracle
returns "Yes" for the query z Î r i , j .  The path from pe1 to pe2 in the 10Δ-free space diagram is a
monotone increasing path from the active edge e1 to the active edge e2. The edges are active since
d(P (t i ), P (tx        ) )  £  18Δ  and d(P (t j ), P (ty        ) )  £  18Δ.  The path from x0 =  σ�(xe , z )(0) to y0 =  σ + ( z
+  1, ye2 )(1) in the free space diagram gives a parametrization of κ z (x e 1  , ye2 )  and σ + ( i , j )  yielding d F

(κ z (x e 1  , ye2 ), σ ( i , j ) )  £  46Δ  as proven in Lemma 26.
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since the Fréchet distance of a line segment and a point is attained at the start or end
point of the line segment. The horizontal line segment from the point (pe , σ + ( i, j )(0))
to the point (σ�(xe , z )(0), σ+ (i, j )(0)) is therefore contained in the 46Δ-free space of
κz (x, y ) and σ + ( i , j ) .

(I I )  The path starts in a point pe before σ�(xe, z)(0) on e:
We again have

d(σ+ (i, j )(0), σ�(xe , z )(0)) £  26Δ

and

d(σ+ (i, j )(0), pe ) £  10Δ

Therefore we have

d(pe, σ�(xe, z)(0)) £  d(pe , σ + (i, j )(0)) +  d(σ+ (i, j )(0), σ�(xe , z )(0))

£  10Δ  +  26Δ

£  36Δ

The path has to pass the vertical line in the free space diagram through σ�(xe, z)(0) at
some height h. Note that the path is totally included in the 10Δ-free space. So for each
point p on σ+ (i, j )[0, h] there is a point q on σ�(xz , z ) between pe and σ�(xe, z)(0)
such that

d(p, q) £  10Δ.

Because q lies on the same edge of σ�(xz , z ) as σ�(xe, z)(0) and pe we have

d(σ�(xe, z)(0), q) £  d(σ�(xe, z)(0), pe) £  36Δ

and therefore

d(σ�(xe, z)(0), p) £  d(σ�(xe, z)(0), q) +  d(q, p)

£  36Δ  +  10Δ

£  46Δ

So we can replace the path in the 10Δ-free space starting at pe up to height h with a
vertical line segment from (σ�(xe , z )(0), σ+ (i, j )(0)) up to height h. This line segment is
then fully contained in the 46Δ-free space.

By symmetry, we can apply the same arguments for changing the path in the free space
diagram, so that the path ends in σ�(z +  1, y)(1) for some breakpoint y. Therefore we can
always find a monotone increasing path from σ�(xe, z)(0) to σ + (z + 1, ye0 )(1) in the 46Δ-free
space of κz (x, y ) and σ + ( i , j ) .  For an example of such a path see Figure 6. The vertical path
starting in x0 is an example for Case I I  and the horizontal path from pe2 to y0 is an example for
Case I  (by symmetry for the end of the path).

ii) We prove that the oracle returns the answer "Yes" if z Î r i , j :
So let z Î r i , j  Then we have dF  (κz (x, y ), σ + ( i , j ))  £  10Δ  for some x z  £  x  £  z and z + 1 £

y £  yz +1 . Therefore there is a path in the free space diagram from (σ+ (i, j )(0), σ�(x, z )(0)))
to ((σ + ( i , j )(1), σ + (z +  1, y)(1))). It remains to show that the edges corresponding to x  and
y are active. This follows by triangle inequality. In particular we have that d(P (ti ), P (tx )) is
at most

d(P (t i ), σ + ( i, j )(0)) +  d(σ+ (i, j )(0), σ�(x, z )(0)) +  d(σ�(x, z )(0), P (tx ))

and by the above this is at most 18Δ, and analogously d(P (tj ), P (ty )) £  18Δ. J
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4.4.0.4 Running time.

First we analyse the preprocessing time needed to build the data structure for the oracle
then we analyse the query time of the oracle.

Since one application of the algorithm of Agarwal et. al. [4] needs O(n log(n)) time and
O(n) space, we need O(mn log(n)) time and O (n + m ‘)  space to construct the simplifications
σ�(xz , z), σ�(z, z +  1) and σ + (z , yz ) for every z Î {1, . . . , m}. To  construct the pointers
from each edge to the first and last breakpoint on the edge we need additional O (m + ‘ )  time for
each simplification. In total this needs at most O(mn log(n) +  m2) time and O(n +  m ‘)  space.

To  construct the matrix M with the O(m2) entries of zi , j  we need for each breakpoint i
a time of O(m) and a space of O(m) to go through the list of all m breakpoints and save the
entries of zi, j . So in total we need O(m2) time and O(m2) space for all entries. Combined
with the time and space requirement for the simplifications we need O(m(n log(n) +  m +
‘ ) )  time and O(m‘ +  m2) space for the whole preprocessing.

To  answer a query the oracle builds a free space diagram of σ + ( i , j )  and κz (xz , yz + 1 ).
To  do that, it needs the simplifications σ + ( i , j ) ,  σ�(xz , z), σ�(z, z +  1) and σ + (z +  1, yz ).
The simplifications σ�(xz , z), σ�(z, z +  1) and σ + (z +  1, yz ) were already computed during
preprocessing. The simplification σ + ( i , j )  can be computed in O(log(l)) time with binary
searches on σ + ( i , y i )  and σ+ (z, yz ). With the matrix M , it can be checked if an edge of
σ�(xz , z ) or σ + (z +  1, yz ) is active in O(1) time. Therefore all active edges can be found in
O ( ‘)  time. The construction of the free space diagram of two curves with complexity O ( ‘)
can then be done with standard methods as described earlier in O (‘2 ) time. Testing the
existence of a monotone increasing path from any of the active edges is then done as
described above in the paragraph about the data structure. Note that given Ls , t ,  B s , t ,L s + 1 , t

and B s , t + 1 ,  we can construct L s + 1 , t  and L s , t + 1  in O(1) time. Therefore, given that we know
for each edge et of σ (xz , z ) if it is active, we can compute L1 , t  and B1 , t  for all edges et in O ( ‘)
time. So we can compute all L s , t  and B s , t  in O (‘2 ) time. Since σ + (z +  1, yz +1 ) has at most
2 ‘  edges, the check for each of the active edges et of σ + (z +  1, yz +1 ) if B s �+ 1 , t  =  Æ can then be
done in O ( ‘)  time. This implies that testing if there exists a monotone increasing path with
the described properties can be done in O (‘2 ) time. Therefore the total query time is O(‘2 ),
as well. These results for the running time imply the following theorem.

I  Theorem 27. One can build a data structure for the approximation oracle of size O (m‘+m2 )
in time O m2 +  mn log(n) and space O(n +  m ‘  +  m2) that has a query time of O(‘2 ).

4.5 Applying the framework for computing a set cover

In order to apply Theorem 10 directly, we technically need to define a set system based on
our data structure. Concretely, we define a new set system that is implicitly given by the
approximation oracle. Let I (z , ( i , j ))  be the output of the approximation oracle for z Î Z
and ( i , j )  Î T with

I (z , ( i , j )) =  1

I (z , ( i , j )) =  0

if the oracle answers "Yes"

if the oracle answers "No"

Let R 4  be the set system consisting of sets of the form

r̃  , j  =  {z Î Z  |  I (z , ( i , j )) =  1}

With Theorem 27 we immediately get
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I  Theorem 28. One can build a data structure of size O(m‘ +  m2) in O 
 
m2 +  mn log(n)

 
time

and O(n +  m ‘  +  m2) space that answers for an element of the ground set Z  and a set of R 4 ,
whether this element is contained in the set in O(‘2 ) time.

Since for all ( i , j )  we have that r i , j  Í r̃  , j  it holds that for each set cover of R 3 ,  there is
also a set cover of the same size for R 4 .  Together with Lemma 24 this directly implies

I  Lemma 29. If there exists a set cover S  of R ,  then there exists a set cover of the same
size for R 4 .

For the set system R 4  we further can derive a lemma corresponding to Lemma 23 using that for
z Î r̃  , j  we have dF  (κ z (x, y ) , σ + ( i , j ))  £  46Δ. The proof is in all other parts completely
analogous.

I  Lemma 30. Assume there exists a set cover for R  with parameter Δ .  Let S  be a set cover
of size k for R 4 .  We can derive from S  a set of k cluster centers C  Í X l  and such that
φ(P, C ) £  50Δ .

So if we apply Theorem 10 to the set system R 4  given by the approximation oracle we merely
lose a constant approximation factor for our clustering problem in comparison to the direct
application on the set system R 3 .  This leads to the following result.

4.6 The result
I  Lemma 31. Let k be the minimum size of a set cover for R 4 .  There exists an algo-
rithm that computes a set cover for R 4  of size O(k log2(m)) with expected running time in O
k‘2m2 +  mn and using space in O(n +  m ‘  +  m2).

Proof. Note that we must have k <  m if such a set C �  exists. Indeed, this is the case since for
each i  Î {1, . . . , m � 1} the subcurve P [ti , ti+1 ] has to be covered by only one element of C �.
So if we had k >  m � 1 then we would have more center curves in C �  than elements to cover.
We apply Theorem 10 to compute a set cover of (Z ,  R 4 ) .  For Theorem 10, we use Theorem
28, | Z |  =  m � 1 and | R 4 |  =  O(m2). Again, the VC-dimension of the dual set system is
bounded by O(log m). J

I  Theorem 3. Let P  : [0, 1] ® Rd  be a polygonal curve of complexity n with breakpoints
0 £  t1, . . . , tm £  1. Assume there exists a set C �  Ì Xd  of size k £  m, such that φ(P, C �) £  Δ .
Then there exists an algorithm that computes a set C  Ì Xd  of size O(k log(m) log2(m)) such
that φ(P, C ) £  50Δ.  The algorithm has expected running time in O k‘2m2 +  mn and uses
space in O(n +  m ‘  +  m2).

Proof. The theorem follows directly by the combination of Lemma 31, Lemma 29 and
Lemma 30.                                                                                                                                                       J

5 Improving the algorithm in the continuous case

In the previous sections we considered the discrete variant of the subtrajectory clustering
problem, assuming we are given breakpoints that denote the possible start and end points of
subcurves that cover P . In the continuous case, we do not restrict the subcurves of P  to
start and end at breakpoints. Recall that a point of P  is covered by a center curve c if there
is any subcurve S  of P  that contains p and is in Fréchet distance at most Δ  to c. In the
continuous case we do not restrict S  to start and end at a breakpoint of P . The exact
problem statement is given in Section 1.4.
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In this section, we present an approximation algorithm that applies the algorithmic ideas
developed in the previous sections to the discretization described in Section 1.5. A  direct
application of Theorem 3 using Lemma 1, however, leads to a high dependency on the
arclength of the input curve, see also the discussion in Section 1.6. We will see that some
steps of the algorithm can be simplified for this particular choice of breakpoints, ultimately
leading to an improvement in the running time. Again, the crucial step is to choose the set
system and the set system oracle wisely.

5.1 The set system

We will again use the set system R 3  that was defined in Section 4.2. Here we choose m =  d  L  e
breakpoints to ensure that two consecutive breakpoints have a distance of at most Δ .  The
explicit choice of breakpoints was already described in Section 1.5. For the construction of
the approximation oracle we then can take advantage of the fact that two consecutive
breakpoints are close to each other. This will allow us to achieve better running time results
based on the simpler structure of the oracle. A  key factor here is the low VC-dimension of the
set system that is dual to the set system which is implicitly given by the oracle.

5.2 The approximation oracle

The new approximation oracle will have the following properties. Given a set r i , j  Î R 3  and
an element z Î Z  this approximation oracle returns either one of the answers below:

(i) "Yes", in this case there exists a breakpoint x  Î [xz , z ] and a breakpoint y Î [z + 1, yz +1 ]
with dF  (P [tx , ty ], σ + ( i, j )) £  (14 +  ) Δ

(ii) "No", in this case z Î/ r i , j .
In both cases the answer is correct. Furthermore, we say that the new approximation oracle
answers the query in the same way as the approximation oracle introduced in section 4.4
and therefore also needs the same data structures as before. There is only one exception.
The oracle does not need to check if any edge is active and only needs to check if there
is a monotone increasing path in the 10Δ-free space of σ + ( i , j )  and κ z (xz , yz + 1 )  that
starts before or at z and ends after or at z +  1. So it also does not need to build the data
structure for determining active edges. Neither does it have to save the first and last
breakpoint on the edge of each simplification. As a direct consequence we get the following
running time result for the new approximation oracle.

I  Theorem 32. One can build a data structure for the approximation oracle of size O (m‘)
in time O (mn log(n)) and space O(n +  m ‘)  that has a query time of O (‘2 ).

5.2.0.1 Correctness.

We want to show that the oracle is still correct, even though it does not check for active
edges. To  do so, we prove the following lemma.

I  Lemma 33. Let z , i, j Î {1, . . . , m}. Consider the query z Î r i , j .  If the approximation
oracle returns the answer

(i) "Yes", then there exists x  Î [xz , z ] and y Î [z +  1, yz+1 ] with dF  (P [tx , ty ], σ + ( i, j )) £
(14 +  ) Δ

(ii) "No", then we have z Î/ r i , j .

Proof. (i) If the oracle returns "Yes", then there exists a monotone increasing path in the
10Δ-free space of σ + ( i , j )  and κ z (xz , yz + 1 )  that starts before or at z and ends after or at
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z +  1. Let p be the start of the path on σ�(xz , z). Let q be a point of P  that gets mapped to p
by a strictly monotone increasing function from P [tx , tz ] to σ�(xz , z ) that realises the Fréchet
distance dF  (P [tx z  , tz ], σ�(xz , z)). So the last breakpoint q before q has distance at most Δ  to
q. Therefore we have by triangle inequality

d(p, q) £  d(p, q) +  d(q, q) £  (4 +  ) Δ

Since d(p, q) £  (4 +  ) Δ  and d(p, q) £  4Δ ,  we also have for the line segment qq that

dF  (p, qq) £  (4 +  ) Δ

An analogous argument can be made for the end point v of the path. So let v get mapped to a
point u on P  by a strictly monotone increasing function from σ�(xz , z ) to P [tx , tz ] that
realises the Fréchet distance dF  (P [tx z  , tz ], σ�(xz , z)). For the first breakpoint uε after u, we
therefore get

dF  (v, uu) £  (4 +  ) Δ

Let κe be the subcurve of κ z (xz , yz + 1 )  starting at p and ending at v and P  be the subcurve of P
starting at q and ending at u. By the definition of κ z (xz , yz + 1 )  as a (4Δ, 2‘)-simplification and
the choices of p, q, u and v, we get

dF  (κe, P ) £  4Δ

So by concetation we can get the curve

P  =  qq Å P  Å uu

which is a subcurve of P  with

dF  (κe, P) £  (4 +  ) Δ

By the use of triangle inequality, we now get

dF  (σ + ( i , j ) , P)  £  dF  (σ + ( i , j ) , κe) +  dF  (κe, P) £  (14 +  ) Δ

(ii) We prove that the oracle returns the answer "Yes" if z Î r i , j :
So let z Î r i , j  Then we have dF  (κ z (x, y ) , σ + ( i , j ))  £  10Δ  for some x z  £  x  £  z and

z +  1 £  y £  yz +1 . Therefore there is a path in the free space diagram that starts before or
at z and ends after or at z +  1. J

Now that we have shown that the oracle works correctly, we describe how we can use
the oracle to approximate our problem. Analogous to the approach in the discrete case, we
define a set system that is implicitly given by the new approximation oracle. Let I (z , ( i , j ))
be the output of the approximation oracle for z, i, j Î {1, . . . , m} with

I (z , ( i , j )) =  1

I (z , ( i , j )) =  0

if the oracle answers "Yes"

if the oracle answers "No"

Let R 5  be the set system consisting of sets of the form

r̃  , j  =  {z Î Z  |  I (z , ( i , j )) =  1}

With Theorem 32 we immediately get
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I  Theorem 34. One can build a data structure of size O (m‘) in time O (mn log(n)) and
O(n +  m ‘) space that answers for a breakpoint z Î {1, . . . , m} and a set of R 5 ,  whether z is
contained in the set in O(‘2 ) time.

We can also get the following results for the set system R 5  in the same way as before. We use
that each range in R 3  is contained in a range of R 5 .  Together with Lemma 24 this directly
implies

I  Lemma 35. If there exists a set cover S  of R ,  then there exists a set cover of the same
size for R 5 .

To  get the next result, we use that for z Î r̃  , j  we have dF  (κ z (x, y ) , σ + ( i , j ))  £  (14 +  )Δ .
Imitating the proof of Lemma 23 we then get

I  Lemma 36. Assume there exists a set cover for R  with parameter Δ .  Let S  be a set cover
of size k for R 4 .  We can derive from S  a set of 3k cluster centers C  Í X l  and such that
φ(P, C ) £  (18 +  )Δ .

These results imply that a minium set cover of R 5  can be used to find an approximate
solution for our clustering problem. But to apply Theorem 10 for finding a good set cover, we
first need to bound the VC-dimension of the dual of R 5 .

5.3 The VC-dimension

In our proof to bound the VC-dimension of the set system R 5  and its dual set system, we
follow Driemel, Phillips, Psarros, and Nusser [27]. In a nutshell, they use composition
arguments in combination with a set of geometric predicates that describe the metric ball of
the Fréchet distance which were previously introduced by Afshani and Driemel [1, 2] in the
context of range searching. We need to adapt the proof slightly, since the set system is defined
based on a partial alignment instead of a complete alignment. We first show a lemma that is
analogous to Lemma 9 in [1]. In particular, we show that the output I (z , ( i , j ))  of the
approximation oracle can be determined by the truth value of the following predicates P1 , P2 ,
P3 , P 4  for V =  σ + ( i , j )  and W =  κ z (xz , yz + 1 ).  Let v1, . . . , v‘1 be the vertices of a
polygonal curve V and w1, . . . , w‘2 be the vertices of a polygonal curve W . Note that we
have ‘1 =  O ( ‘)  and ‘2  =  O ( ‘)  for the case V =  σ + ( i , j )  and W =  κz (xz , yz + 1 ).  We define

i) (P 1 ) ( i , j )  (Vertex-edge (vertical)): Given an edge of V , vj v j + 1  and a vertex wi of W , this
predicate returns true iff there exists a point p Î vj vj + 1 , such that kp � wik £  10Δ.

ii) (P 2 ) ( i , j )  (Vertex-edge (horizontal)): Given an edge of W , wi wi + 1  and a vertex vj  of V ,
this predicate returns true iff there exists a point p Î wi wi+1 , such that kp � vj k £  10Δ.

iii) (P 3 ) ( i , j , t )  (Monotonicity (vertical)): Given two vertices of V , vj  and vt with j  <  t and
an edge of W , wi wi+1 , this predicate returns true if there exists two points p1 and p2

on the line supporting the directed edge, such that p1 appears before p2 on this line,
and such that kp1 � vtk £  10Δ  and kp2 � vj k £  10Δ.

iv) (P 4 ) ( i , j , t )  (Monotonicity (horizontal)): Given two vertices of W , wi and wt with i  <  t
and an edge of V , vj vj + 1 , this predicate returns true if there exists two points p1 and
p2 on the line supporting the directed edge, such that p1 appears before p2 on this line,
and such that kp1 � wtk £  10Δ  and kp2 � wik £  10Δ.

To  show our claim we use the following lemma.

C G T
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I  Lemma 37. Let V and W be two polygonal curves with vertices v1, . . . , v‘1 and w1, . . . , w‘2 .
Let further 1 £  a £  b £  ‘2 .  Given the truth value of all predicates P1, . . . , P4 ,  one can
determine if there exists a monotone increasing path in the 10Δ-free space of V and W that
starts in wa wa+1 at the bottom of the free space diagram and ends in wbwb+1 at the top of
the free space diagram.

The proof of Lemma 37 is analogous to the proof of Lemma 9 in [1] and much of the
argumentation can be applied verbatim. We include the proof here for the sake of completeness,
since there are some subtle differences.

Proof. As in the proof of Lemma 9 in [1], we first introduce the notion of valid sequence of
cells in the free space diagram. We as well denote the cell corresponding to the edges
wi wi + 1  and vj v j + 1  with C i , j .  The definition of a valid sequence, however, changes slightly for
our application. We call a sequence of cells C  =  ((i1 , j1 ), (i2 , j2 ), . . . , (ik , jk )) valid if i1 =
a, j1 =  1, ik =  b, jk  =  ‘1  �1 and if for any two consecutive cells ( i m , j m )  and ( i m + 1 , j m + 1 )  it holds
that either i m  =  i m + 1  and j m + 1  =  j m  +  1 or j m  =  j m + 1  and i m + 1  =  i m  +  1. Here each tuple
( i , j )  represents a cell C i , j .  The only difference to the definition in [1] is that we require i1 =  a
and i k  =  b.

In our application we say that a monotone increasing path in the 10Δ-free space of V
and W is feasible if it starts in wa wa+1 at the bottom of the free space diagram and ends in
wbwb+1 at the top of the free space diagram. It is easy to see that for any valid sequence
there exists a feasible path which passes the cells in the order of the sequence. On the
other hand, it is also true that for each feasible path there exists a valid sequence such that
the path passes the cells in the order of the sequence. In the following, we identify with
each sequence of cells C  a set of predicates P .  The set of predicates is different from the
predicates in [1] and consist of the following.

i) (P 1 ) ( i , j )  Î P  iff ( i , j  � 1), (i, j ) Î C .
ii) (P 2 ) ( i , j )  Î P  iff ( i  � 1, j ), ( i, j ) Î C .

iii) (P2 )( a,1)  Î P  and (P 2 ) ( b , ‘ 1 )  Î P
iv) (P 3 ) ( i , j , k )  Î P  iff ( i , j  � 1), (i, k) Î C  and j  <  k.
v) (P3 )( a ,1 , k )  Î P  iff (a, k) Î C  and 1 <  k.

vi) (P3 )(b , j , ‘ 1 �1)  Î P  iff (b, j ) Î C  and j  <  ‘1 � 1.
vii) (P 4 ) ( i , j , k )  Î P  iff ( i  � 1, j ), (k, j ) Î C  and i  <  k.
As in [1], we say that a valid sequence of cells is feasible if the conjunction of its induced
predicates is true. We claim that any feasible path through the free-space induces a feasible
sequence of cells and vice versa. To  prove the claim we use the following helper lemma
from [1].

I  Lemma 38 ([1], Lemma 10). Let C  be a feasible sequence of cells and consider a mono-
tonicity predicate P  of the set of predicates P  induced by C .  Let a1 and a2 be the vertices and
let e be the directed edge associated with P .  There exist two points p1 and p2 on e, such that
p1 appears before p2 on e, and such that kp1 � a1k £  10Δ  and kp2 � a2k £  10Δ .

Lemma 38 holds for our definition of feasible sequences of cells in the same way as in the
original work. For the proof, we refer to [1]. To  continue the proof of Lemma 37, we claim
that any feasible path induces a feasible sequence of cells and vice versa. Assume there exists
a feasible path π that passes through the sequence of cells C . The truth value of the
predicates (P2 )( a,1)  and (P2 ) ( b , ‘ 1 )  follows directly by the starting and ending conditions of a
feasible path. The truth value of the other predicates can be derived in the following way
(which is exactly the same as in [1]).
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Consider a horizontal vertex-edge predicate (P 2 ) ( i , j )  for consecutive pairs of cells C ( i , j �1) ,
C ( i , j )  in the sequence C . The path π is a feasible path that passed through the cell boundary
between these two cells. This implies that the there exists a point on the edge wi wi + 1  which lies
within distance 10Δ  to the vertex vj . This implies that the predicate is true. A  similar
argument can be made for each vertex-edge predicate.

Next, we will discuss the monotonicity predicates. Consider a subsequence of cells of
C  that lies in a fixed column i  and consider the set of predicates P 0  Í P  that consists of
vertical monotonicity predicates (P 3 ) ( i , j , k )  for fixed i. Let pj , pj +1 , . . . , pk be the sequence of
points along W that correspond to the vertical coordinates where the path π passes through
the corresponding cell boundaries corresponding to vertices vj , vj +1 , . . . , vk . The sequence of
points lies on the directed line supporting the edge wi wi + 1  and the points appear in their
order along this line in the sequence due to the monotonicity of π. Since π is a feasible path
it lies in the free-space and therefore we have kpk0 � vk0 k £  10Δ  for every j  £  k0 £  k. This
implies that all predicates in P  are true. We can make a similar argument for the horizontal
monotonicity predicates (P 4 ) ( i , j , k )  for a fixed row j .  This shows that a feasible path π that
passes through the cells of C  implies that the conjunction of induced predicates P  is true.

It remains to show the other direction. Since each cell of the free space is convex, it is
clear that the vertex edge predicates give us the existence of a continuous (not necessarily
monotone) path π that stays inside the free space and connects the edges wa wa+1 and
wbwb+1. To  show that there always exists such a path that is also (x, y)-monotone we again
use the argumentation of [1].

Assume for the sake of contradiction that the conjunction of predicates in P  is true,
but there exists no feasible path through the sequence of cells C  . In this case, it must be
that either a horizontal passage or a vertical passage is not possible. Concretely, in the
first case, there must be two vertices vj  and vk and a directed edge e =  wi wi+1 , such that
there exist no two points p1 and p2 on e, such that p1 appears before p2 on e, and such that
kp1 � vj k £  10Δ  and kp2 � vkk £  10Δ. However, (P3 ) ( i , j , k )  is contained in P  and by Lemma
38 two such points p1 and p2 must exist. We obtain a contradiction. In the second case, the
argument is similar. Therefore, a feasible sequences of cells implies a feasible path, as claimed.

J

Lemma 37 now directly implies the following theorem.

I  Theorem 39. Given the truth values of all predicates P1, . . . , P 4  for two fixed curves
V =  σ + ( i , j )  and W =  κ z (xz , yz + 1 ) ,  one can determine the value of I (z , ( i , j )) .

We use Theorem 39 to determine the following bound on the VC-dimension of (Z ,  R 5 ) .

I  Theorem 40. Let Z  =  {1, . . . , m}. The VC-dimension of (Z,  R 5 )  and its dual set system
are both in O(d2 ‘2 log(d‘)).

The proof of Theorem 40 is analogous to the proof of Theorem 8.3 in [27] and included
here for the sake of completeness. For the proof we use VC-dimension bounds for the following
set systems.

I  Definition 41. For any two points s, t Î Rd  and r  Î R +  define the stadium centered at st
as

Dr (st )  =  {x Î Rd  | $p Î st, kp � xk £  r}

We further define the monotony sets Mr (st) Í X2  as the sets where {w1, w2} Î Mr (st) if
and only if there exist p1, p2 Î ‘  where ‘  is the line supported by st such that
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kw1 � w2k £  r  and kp2 � w2k £  r; and
hp1, t � si £  hp2, t � si (p1 lies in front of p2 on ‘  if ‘  is oriented from s to t).

The resulting set systems are then (Rd , D ) with D  =  {Dr (st) | s, t Î Rd , r Î R + }  and (Xd , M )
with M  =  {Mr (st) | s, t Î Rd , r Î R + } .

I  Theorem 42 ([27], Corollary 6.4). The VC-dimension of (Rd , D ) and its dual set system
are both in O(d2).

I  Theorem 43 ([27], Corollary 8.4). The VC-dimension of (X2 , M ) and its dual set system
are both in O(d2).

With the help of these bounds we can now prove Theorem 40.
Proof of Theorem 40. Let S  Í {1, . . . , m} be a set of t breakpoints and let ( i , j )  Î {1, . . . , m}2.
For for 1 £  k £  4, let further P k ( (σ + ( i , j ) , κ z (xz , yz + 1 ))  be the set of all possible Predicates
of the form ( P k ) ( , )  or ( P k ) ( , , )  between the curves σ + ( i , j )  and κ z (xz , yz + 1 ).  Due to
Theorem 39, we have that the set {z Î S  | I (z , ( i , j ))  =  1} is uniquely defined by the sets

[  [  
P k (σ + ( i , j ) , κ z (xz , yz + 1 ))

k = 1  z Î S

Theorem 42 implies that the number of all possible sets 
S

z Î S  P1 (σ + ( i , j ) , κ z (xz , yz + 1 ))
and the number of all possible sets z Î S  P2 (σ  ( i , j ) , κ z (xz , yz + 1 ))  are both bounded by
(t ‘)O (d ‘ ) .  Furthermore, the number of all possible sets z Î S  P 3 (σ + ( i , j ) , κ z (xz , yz + 1 ))  and
the number of all possible sets z Î S  P4 (σ + ( i , j ) , κ z (xz , yz + 1 ))  are both bounded by (t ‘)O (d ‘  )

by Theorem 43. The ‘  term arises beause we consider Θ( ‘  )  pairs vj , vt for Predicate P 3
(wi, wt for Predicate P4 ). Hence, we get

2t £  (t ‘ )O ( d 2 ‘ 2 )  =Þ  t =  O(d2 ‘2 log(d‘)).

J

5.4 The result

We apply Theorem 10 on the dual of ({1, . . . , m}, R 5 )  to get the following result for computing a
set cover. We use here that | R 5 |  =  O(m2) and that the resut of Theorem 40 that the VC-
dimension of R 5  is in O(d2 ‘2 log(d‘)).

I  Lemma 44. Let k be the minimum size of a set cover for R 5 .  Let further m =  d Δ e and δ
=  O(d2 ‘2 log(d‘))), there exists an algorithm that computes a set cover for R 5  of size O(kδ
log(δk)) with expected running time in O(k‘2δm2 +  mn) and using space in O(n +  m‘).

This lemma finally implies our main result for the clustering problem in the continuous
case.

I  Theorem 4 (Main Theorem). Let P  : [0, 1] ® Rd  be a polygonal curve of complexity n,
let ‘  Î N and Δ , ε  >  0 be parameters. Assume there exists a set C �  Ì Xd  of size k, such that
ψ (P, C �) £  Δ .  Let m =  d  L  e and δ =  O(d2 ‘2 log(d‘))), there exists an algorithm that
computes a set C  Ì Xd  of size O(kδ log(δk)), such that ψ (P, C ) £  (18 +  )Δ .  The algorithm has
expected running time in e km2 +  mn and uses space in O(n +  m), where we assume
that ‘  and d are constants independent of n.

Proof. The theorem follows immediately by the combination of Lemma 44, Lemma 35 and
Lemma 36.                                                                                                                                                       J
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6 Additional lower bounds for the VC-dimension

In this section we derive bounds on the VC-dimension of the dual set systems in the discrete
and continuous case. Consider the set system R  from Section 1.5. The dual set system of R  is
the set system R �  with ground set Xd  where each set r z  Î R �  is defined by a breakpoint z Î
{1, . . . , m � 1} as follows

r z  =  Q Î X ‘  |  $i £  z <  j  with dF  (Q, P [ti , tj ]) £  Δ

In the continuous case, the dual set system is the set system R �  with ground set Xd  where
each set rt  Î R 0  is defined by a parameter t Î [0, 1] as follows

rt  =  Q Î Xd  |  $t0 £  t <  t00 with dF  (Q, P [t0, t00]) £  Δ

Before deriving bounds on the VC-dimension of R �  and R �  in the general case, we observe
that in the special case where cluster centers are points ‘  =  1, there is a simple upper bound to
the VC-dimension. In this chapter, we use the notation b(p, ρ) =  {q Î Rd  |  kp � qk £  ρ} for
the Euclidean ball of radius ρ ³  0 centered at p Î Rd .

I  Lemma 45. For ‘  =  1, the VC-dimension of (Xd , R �)  and (Xd , R �)  are both at most d + 1.

Proof. We prove the bound for (X1 , R �)  here. The proof works verbatim for (X1 , R �) .  The
ground set of the set system is Xd  =  Rd . Now, consider a fixed t Î [0, 1] and radius Δ  >  0.
We claim that

rt  =  b(P (t), Δ).

Indeed, for any 0 £  c £  t £  d £  1, we can write for the set

R[c,d] =  {p Î Rd  |  d(p, P [c, d]) £  Δ}  =      
\  

{p Î Rd  |  kp � P (s)k £  Δ}  Í b(P (t), Δ).
sÎ[c,d]

Thus, by the definition of R �,

rt  =
[

R[c,d] =  b(P (t), Δ).
0 £ c £ t £ d £ 1

The claim now follows since the VC-dimension of Euclidean balls in Rd  is equal to d +  1.     J

6.1 Continuous case

We derive a lower bound on the VC-dimension of the dual set system (Xd , R �)  in the general
case.

I  Theorem 46. For ‘  ³  2 and d ³  2, the VC-dimension of (Xd , R �)  is in Ω(log(n)).

Proof. We show the lower bound for ‘  =  2 and d =  2; this implies the bound for larger values of ‘
and d. Let m Î N. We construct a curve P  with at most O(4m ) vertices such that the set system
(X2 , R �)  defined on P  shatters a set S  Ì X2  of m line segments. For the construction of S  =
{s1, . . . , sm} we choose line segments that are tangent to the parabola f ( x )  =  x 2  

. More
Δ ( i �1 )

specifically, let τ i  be the tangent that passes through (xi , yi )  =  ( 2(m�1) � 4 , 
2 ( m �

Δ       
4 ).

Then s i  is the intersection of τ i  with the rectangle [�2Δ , 2Δ ]  ´  [�Δ , Δ ] .  The construction
is visualized in Figure 7.
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f (x )  =
S j  =  fs1; s3; s4g

s5

s4
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z0 s1
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z

2

1
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Figure 7 Construction for the case ‘  =  2 such that the VC-dimension of (X d ,  R �)  is high.

Consider the power set 2S . We show that for each subset S j  Î 2A  there exists a curve
cj  Î X m + 1  such that for each s i  Î S j  there exists a subcurve ci , j  of cj  with dF  (si , c i , j )  £  Δ
and for each s i  Î S  \ S j  there exists no subcurve ci , j  of cj  with dF  (si , ci , j )  £  Δ .  The curve
P  defining the set system instance will later be defined as a concatenation of these curves
cj . This will allow us to find a point t j  on cj  such that r t j  Ç S  =  S j  for each j ,  which then
implies that S  can be shattered.

The curve cj  can be generated as follows. Let τ0 be the line parallel to τ i  that lies below τ i

and has distance Δ  to τi . For S j  Î 2S  we define with oj
 
the upper contour set of the lines τ0

such that s i  Î S j .  We further define cj  to be the intersection of oj  with [�2Δ , 2Δ ] ´ (�¥, ¥) .
We observe that for s i  Î S  \ S j  the intersection of b((xi , y i ), Δ)  and cj  is empty.
Therefore there exists no subcurve ci , j  of cj  with dF  (si , c i , j )  £  Δ .  For s i  =  pi qi Î S j  let lp i

(resp. lq i  ) be the line perpendicular to s i  that contains pi (resp. qi ). We define ci , j  to be the
subcurve of cj  starting at the intersection of lp i  and cj  and ending at the intersection of
lq i  and cj . To  show that dF  (ci , j , s i )  £  Δ ,  we divide s i  into edges by projecting each
vertex z of ci , j  orthogonal onto si . Since the slope of each edge of cj  is between �1 and 1

and also the slope of s i  is between �1 and 1 , the projected vertices appear in the same
order on s i  as the corresponding vertices appear on cj .

So to conclude that dF  (ci , j , s i )  £  Δ ,  it remains to show that each vertex z of ci , j  has
distance at most Δ  to its projection z0 on si . This is enough because the Fréchet distance of
two edges is attained at the distances of the start points or the end points of the edges.
So let z be a vertex of ci, j . By construction, ci , j  is part of the upper contour set oj . We
observe that the rectangle [�2Δ , 2Δ ]  ´  [�Δ , Δ ]  that contains all line segments S  lies in the
connected component of R2  \ oj  that does not contain τ0. Therefore the ray starting at z0

and containing z0z hits z before or at the same time as it hits τ0. So we have

d(z0, z) £  d(z0, τ 0) =  Δ

Note that the intersection 
T

i : s i Î S j  
c i , j  always contains the intersection of cj  with the vertical
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axis through (0, 0). This is the case because the x-coordinate of the start point of each curve ci , j

is smaller than 0 and the x-coordinate of the end point of each curve ci , j  is greater than 0.
Let

P  =  
M

c j .
j = 1

Since each curve cj  has at most m + 1 vertices, we get that P  has at most n =  m2m =  O(4m )
vertices and thus m is in Ω(log4(n)).

So, it remains to show that the set S  is shattered by (X2 , R 0 )  defined on P . Indeed, for any
S j  Î 2S , let t j  Î [0, 1] be the parameter such that P [tj ] is the intersection of cj  with the vertical
axis through (0, 0). We claim

r t j  Ç S  =  S j .

Since P [tj ] Î 
T

i : s  ÎS  ci , j , we get by the analysis above that S j  Í r t j  Ç S .
On the other hand, for each s i  Î S \Sj there exists no subcurve ci , j  of cj  with dF  (si , c i , j ) £

Δ .  Note that the start points and end points of cj  are by construction more than Δ  away
from any point on si . Therefore dF  (si , Q) £  Δ  for each subcurve Q of P  that contains either the
start point or the end point of cj . So in total we get that s i  Î r t j  Ç S . J

6.2 Discrete case

Now we consider the set system ( X ‘  , R �)  that is dual to the set system R ,  which was
introduced in Section 1.5 to discretize our clustering problem through the addition of
breakpoints.

We show that the VC-dimension of (Xd , R �)  is in Θ(log m) in the worst case for any
reasonable values of d and ‘.  Interestingly, our bounds on the VC-dimension are independent of
d and n. In fact, quite surprisingly, they also hold if P  is non-polygonal. The upper bound that
the VC-dimension of R �  is at most log(m) follows directly from the upper bound on the size
of the set system. It remains to show the lower bound.

I  Theorem 47. For d ³  2 and ‘  ³  1 the VC-dimension of ( X ‘  , R �)  is in Ω(log m) in the
worst case.

Proof. We show the lower bound for ‘  =  1 and d =  2; this implies the bound for larger
values of ‘  and d. To  show the lower bound, we need to construct a set A  Í R2  with |A |  =  t for t
Î Ω(log m), and a P  with breakpoints t1, . . . , tm, such that A  is shattered by R �  as defined
by P .

We use the lower bound construction of [27] for the VC-dimension of the set system of
metric balls under the Fréchet distance centered at curves of complexity t on the ground set
R2 . According to this result, we can find a set A  of t points in R2 , such that for every subset A0

Í A  we can find a curve P A 0  Î Xd , such that

A0 =  A  Ç {x Î R2 |dF  (x, PA 0  ) £  Δ} (3)

We will now construct P  as the concatenation of these curves with breakpoints at the start
and endpoints of these curves, where to concatenate them we linearly interpolate between
the endpoints of consecutive curves.
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5 z +  1

4 z

3
S0
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r z  \  S  =  S 0
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Figure 8 Schematic drawing of P  : [0, 1] ® R  in the construction for the lower bound to the VC-
dimension. Parameters of the construction are Δ  =  1  , ‘  =  2 and t =  3. The shattered set of line
segments in R  is S  =  {1, 5 2, 5, 3, 5} with |S |  =  t. The subset encoder segments are shown vertically
upwards, the connector segments are shown diagonally downwards. The horizontal axis shows the
parametrization of the curve. The figure also shows the subset S 0 =  {1, 5 2, 5} and indicates the
breakpoint at index z, such that r z  Ç S  =  S0.

In order to show correctness of the resulting construction we observe that the definition
of the Fréchet distance can be simplified if one of the curves is a point. Let x  Î R2  and let
P 0 =  P [ti , tj ], then

dF  (x, P 0 ) =  max
]
(x, P 0(t)) (4)

This implies that for the case ‘  =  1 our set system R �  actually has a simpler structure. In
particular, any r  Î R �  defined by an index z Î Z  can be rewritten as follows

r z =      x  Î Rd  |  $i £  z £  j  with dF  (x, P [ti , tj ]) £  Δ (5)

= x  Î Rd  |  dF  (x, P [ti , tj ]) £  Δ (6)
i £ z < j

= x  Î Rd  |  dF  (x, P [tz , tz +1 ]) £  Δ (7)

Thus, with our choice of P  and breakpoints t1 <   <  tm , we have that for any A0 Í A
there exists an index z with 1 £  z <  m, such that A0 =  A  Ç r z  holds as required by (3).
Finally, the number of breakpoints we used is m =  2 t + 1  (two breakpoints for each subset of
A).  Therefore, we have t ³  log(m) � 1. J

I  Theorem 48. For d ³  1 and ‘  ³  2 the VC-dimension of R �  is in Ω(log m) in the worst
case.

Proof. We construct a curve P  with breakpoints as follows. Let t Î N be a parameter of
the construction. Let Δ  =  1 . The curve P  is constructed from a series of 2t line segments
starting at 0 and ending at t +  2 with certain breakpoints along these line segments to be
specified later. We call these segments subset encoder segment. These line segments are
connected by 2t � 1 line segments starting at t +  2 and ending at 0. Those line segments will
not contain any breakpoints and we call them connector segments. Let A  =  {1, . . . , t} for
each subset A0 Í A  we create one subset encoder segment with breakpoints at the values of
A0, in addition we put two breakpoints at the values t + 1 and at t + 2. The curve P  is defined
by concatenating all 2t subset encoder segments with the connector segments in between.
Figure 8 shows an example of this construction for t =  3. Now, consider the following set of



1 , . . . ,m q ÎC £ t £ t i

Ö
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line segments in R.  S  =  {s1s2 |  s1 Î A, s2 =  t +  2}. We claim that S  is shattered by R �

defined on P  and Δ .  Therefore, the VC-dimension is t. The number of breakpoints m we
used is upper-bounded by (t +  2)2t and therefore t ³  Ω(log m). J

7 NP-hardness

We note that the problem described in Section 1.4 for ‘  =  1 is a specific instance of a k-center
problem which is NP-complete. However, we require that the input set is a connected
polygonal curve. It is tempting to believe that this restriction could make the problem easier.
We show in this section that the problem is still NP-hard.

Our reduction is from Planar-Monotone-3SAT,  with m S A T  clauses and n S A T  variables.
We show how to construct an instance B  of a decision version of our problem given an
instance A  of Planar-Monotone-3SAT,  which is NP-hard [24]. We can assume that A  is
given by a plane rectilinear bipartite graph between variables and clauses where variables are
embedded on the x-axis, edges do not cross the x-axis, clauses are adjacent to two or three
variables, and are partitioned between positive and negative whether they are embedded
in the upper or lower half-plane respectively [25]. Al l  three literals in positive clauses are
positive. All three literals in negative clauses are negative. The problem asks whether there
exist an assignment from the variables to {true , false} such that every positive (negative)
clause is adjacent to at least one true ( fa l se )  variable.

Problem definition. We define the decision version of our problem as follows. The instance
is defined by a polygonal curve P  with breakpoints 0 =  t1 <  t2 <   <  tm  =  1, Δ  Î R  and k
Î N. The problem asks whether there exist a set C  of k points, such that φ(P, C )  £  Δ .
Note that this is equivalent to requiring

iÎ{ 
max

�1} 
min

t i  
max

+ 1  
kP (t) � qk £  Δ

A  solution C  is said to be in canonical form if every point in C  coincides with a breakpoint,
i.e., one of the points P (t i ) for i  Î {1, . . . , m}.

Outl ine of proof. We first show how to build an instance B  of our problem from A .  We
then show that any positive solution C  (a satisfying assignment) of B  can be converted in a
positive solution C 0 in canonical form. We also show that C 0 exists if and only if A  has a
positive solution, which will conclude our proof. An example of the reduction is shown in
Figure 11. The reduction uses paths formed by unit segments called wires. Figure 9 (a) shows
circles whose centers represent points in a locally optimal solution. Any optimal solution
would choose either the red or the blue circles’ centers. A  variable is represented by a cycle as
shown in Figure 9 (c) formed by 2 vertical paths and 2 “zig-zag” paths connecting their
endpoints. The length of such paths depend on the number of times the variable appears in
clauses. Clauses are represented by a segment whose endpoint is called a clause vertex shown in
Figure 9 (b) as a star. It is next to three wires connected to variable gadgets. Informally, such
segment can be covered by a disk centered at a breakpoint contained in one of the wires if the
wire carries a true signal.

Construction.  We modify the embedding in A  as follows. Refer to Figure 11. Replace
each variable with a cycle in the hexagonal grid separated by a separator gadget shown in
Figure 10 (a). Each cycle contains two vertical edges of length 5 that are all vertically
aligned and 4 3r apart where r  is the maximum number of incidences of the variable in
either positive or negative clauses. In order to close each cycle, connect the upper (resp.,
lower) endpoints of the vertical edges with a “zig-zag” formed by 2r edges of length 4 and
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(a)
(b)

(c)

Figure 9 (a) Wire. (b) Clause vertex is shown as a star. (c) Cycle representing a variable with
r  =  2.

slopes 1/
Ö

3 and �1/
Ö

3 (resp., �1/
Ö

3 and 1/
Ö

3). We call every even vertex in this upper
(resp., lower) “zig-zag” path a positive (resp., negative) literal vertex. For each clause,
the embedding of A  allows us to choose two or three literal vertices so that each clause can be
connected to literal vertices of their incident variables in a planar way. For each clause we define
three clause vertices as follows. We define positive clauses while negative clauses are defined
analogously by reflections. Let p1, p2, and p3 (if it exists) be the three literal vertices, ordered from
left to right, to be connected by the clause, and let t be the smallest distance between them. The
middle clause vertex c2 is above p2 by t/ 3 + 1. Let the left clause vertex c1 (resp., right clause
vertex c3) be c2 +  (� 3/2, �1/2) (resp., c2 +  ( 3/2, �1/2)). Connect p2 to c2 with a vertical edge,
and p1 to c1 with a convex with 3 bends as in Figure 11 so that the length of the vertical edge is 3.
Finally, subdivide each edge into edges of length 1 and at each bend add 6 unit edges as shown in
the turn gadget in Figure 10 (c). We obtain an embedding of a graph G  containing only unit
edges. We partition the edges of G  into two subsets E 1  and E 2  as follows. The set E 1  contains
edges in separator gadgets, the 6 added edges in each turn gadget and the edge adjacent to c2 for
each clause. The set E 2  is the set
of remaining edges. Define P  as the path obtained by an Euler tour defined by a DFS  of G.  Set
Δ  =  1 and place a breakpoint on each vertex of P . Finally, set k =  | E 2 |  +  3(nS A T  � 1). This
finalizes the construction.

I  Theorem 49. Let P  : [0, 1] ® R2  be a polygonal curve of complexity n with breakpoints
0 £  t1, . . . , tm £  1. It is NP-complete to decide whether there exist a set C  of points in R2

such that φ(P, C ) £  Δ  and |C |  £  k for given Δ  Î R  and k Î N.

Proof. (Þ) We assume that A  admits a positive solution, and constructs a positive solution C
for B  as follows. For each variable xi ,  add all the odd (even) points in the spine of the
corresponding variable gadget to C  if x i  is set to true ( fa l se )  in A’s solution. Do the same for
all wire gadgets and the portion of the clause gadgets corresponding to xi .  For each
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c'

d d'

(a) (b)

a
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b     c'
c

(c) (d)

Figure 10 (a) and (b) show the separator gadget in black, and some edges of the adjacent variable
gadgets in gray. (c) and (d) show the turn gadget. Disks indicate potential optimal solutions.

separator gadget, add the three green points shown in Figure 10 to C .  This finalizes the
construction of C .  By construction, |C |  =  k, the variable, wire and separator gadgets are
covered by disks centered at C .  Because every positive (negative) clause in A  is adjacent to a
variable assigned true ( fa lse) ,  the clause segment is covered by a disk centered at the
spine of a incident wire. Then, C  is a positive solution for B .

(Ü) We assume that B  admits a positive solution C ,  and constructs a positive solution for
A.  We first show we can construct a canonical solution C 0 from C  with |C 0 | £  |C | .

Consider the separator gadget in Figure 10 (b). The positions of the centers of unit disks
that cover segment aa0 form a lune defined by the intersection of the unit disks centered at
a and a0. The analogous is true for segments cd and c0d0. Such lunes are disjoint, hence C
has 3 distinct points, c1, c2 and c3, to cover such segments. Note that they cannot cover
segments outside of the separator gadget. We can move them to a, d and d0 so that the set of
segments that they cover is either the same or a superset of the previously covered segments.
The following assumes that (i) every separator gadget is covered by three points in C  as
in Figure 10 (a).

Consider the turn gadget in Figure 10 (d). Assume that ab and a0b are respectively
covered by different points c1 and c2 in C .  Then, we can move c1 and c2 to c and c0 while
covering the same segments and possibly more. Now, assume that ab and a0b are covered by c1

Î C .  Then, c1 is in the intersection of the two lunes shown in Figure 10 (d). The only
segments it can cover are ab, a0b, cb and c0b. Then we can move it to b without decreasing its
coverage. Assuming that turn gadgets are in canonical form, we can apply the moving
argument at each remaining segment of P  in order to obtain a canonical solution C0, moving
each point c Î C  to a breakpoint.

By (i), C 0 has | E 2 |  points to cover segments with endpoints at literal vertices. Note that
each point can cover at most 2 edges in E2 .  Then each point must cover exactly 2 edges in E2 .
It follows that, for each variable in A ,  C 0 contains points at either all positive literal vertices
and none at negative vertices, or all negative literal vertices and none at positive
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Figure 11 Example of reduction from (x 1  Ú x 2  Ú x 4 )  Ù (x 1  Ú x 2  Ú x 3 )  Ù (x 1  Ú x4 ). The centers of
the disks are an optimal solution to the instance.
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vertices. Because the clause segments are covered, the clauses of A  are satisfied, and we can
obtain a solution for A .  That concludes the proof of NP-hardness. The problem is in NP
since verifying whether a given set C  is a solution for our problem can be done by computing the
Δ-free space diagrams for each curve in C  and P , and greedily partitioning P , verifying
whether it is covered. J

8 Future directions

We think that the definition of subtrajectory clustering that we studied in this paper (see
Section 1.4) captures a fundamental problem that arises in many applications. However, one
may argue that there are many other variants of subtrajectory clustering that arise from
application-specific considerations, see also the discussion of related work in Section 1.1. We
expect that our general approach and our problem definition can be applied to many of these
variants. For example, all of our algorithms can be easily extended to the setting of multiple
input curves. We mention some other variants that we find interesting.

(1) Outputting a graph: The output of our algorithm is a set of center curves. In some
applications, such as map construction, we may prefer the output to be a geometric
graph. This can be easily obtained by connecting the center curves to form a geometric
graph using additional edges where the input trajectory moves from one cluster to the
next. How to do this optimally would a subject for future research.

(2) Covering with gaps: One might be interested in a problem variant where not the entire
curve needs to be covered, but only a certain fraction of the curve. It would be interesting to
analyze our techniques in this setting.

(3) Input curves: In this paper, we assume that our input curves are given in the form of
polygonal curves. However, it is conceivable that our general approach to the discrete
problem still works if the input is given in the form of piecewise polynomial curves with
breakpoints; again, we leave this to future work.

(4) Other distance measures: Similarly, we think that the general approach to the discrete
problem, where breakpoints are given with the input, is still applicable, if the Fréchet
distance is replaced by some other distance measure that satisfies the triangle inequality.

As mentioned earlier, it may be tempting to allow for center curves of arbitrary complexity.
However, this would lead to the trivial solution of the curve P  being an optimal center curve.
In any case, we think that some form of controlled regularization is necessary in the problem
definition.
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