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Abstract

It has long been thought that high-dimensional data encountered in many practical ma-
chine learning tasks have low-dimensional structure, i.e., the manifold hypothesis holds. A
natural question, thus, is to estimate the intrinsic dimension of a given population distri-
bution from a finite sample. We introduce a new estimator of the intrinsic dimension and
provide finite sample, non-asymptotic guarantees. We then apply our techniques to get
new sample complexity bounds for Generative Adversarial Networks (GANs) depending
only on the intrinsic dimension of the data.

Keywords: Manifold Hypothesis, Dimension Estimation, Manifold Learning, Intrinsic
Dimension, Hölder GANs

1. Introduction

Recently, practical applications of machine learning involve a very large number of features,
often many more than there are samples on which to train a model. Despite this imbalance,
many modern machine learning models work astonishingly well. One of the more compelling
explanations for this behavior is the manifold hypothesis, which posits that, though the data
appear to the practitioner in a high-dimensional, ambient space, RD, they really lie on (or
close to) a low dimensional space M of “dimension” d � D, where we define dimension
formally below. A good example to keep in mind is that of image data: each of thousands of
pixels corresponds to three dimensions, but we expect that real images have some inherent
structure that limits the true number of degrees of freedom in a realistic picture. This
phenomenon has been thoroughly explored over the years, beginning with the linear case
and moving into the more general, nonlinear regime, with such works as Niyogi et al.
(2008, 2011); Belkin and Niyogi (2001); Bickel et al. (2007); Levina and Bickel (2004);
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Kpotufe (2011); Kpotufe and Dasgupta (2012); Kpotufe and Garg (2013); Weed et al.
(2019); Tenenbaum et al. (2000); Bernstein et al. (2000); Kim et al. (2019); Farahmand et al.
(2007), among many, many others. Some authors have focused on finding representations
for these lower dimensional sets (Niyogi et al., 2008; Belkin and Niyogi, 2001; Tenenbaum
et al., 2000; Roweis and Saul, 2000; Donoho and Grimes, 2003), while other works have
focused on leveraging the low dimensionality into statistically efficient estimators (Bickel
et al., 2007; Kpotufe, 2011; Nakada and Imaizumi, 2020; Kpotufe and Dasgupta, 2012;
Kpotufe and Garg, 2013; Ashlagi et al., 2021).

In this work, our primary focus is on estimating the intrinsic dimension. To see why
this is an important question, note that the local estimators of Bickel et al. (2007); Kpotufe
(2011); Kpotufe and Garg (2013) and the neural network architecture of Nakada and
Imaizumi (2020) all depend in some way on the intrinsic dimension. As noted in Lev-
ina and Bickel (2004), while a practitioner may simply apply cross-validation to select the
optimal hyperparameters, this can be very costly unless the hyperparameters have a re-
stricted range; thus, an estimate of intrinsic dimension is critical in actually applying the
above works. In addition, for manifold learning, where the goal is to construct a repre-
sentation of the data manifold in a lower dimensional space, the intrinsic dimension is a
key parameter in many of the most popular methods (Tenenbaum et al., 2000; Belkin and
Niyogi, 2001; Donoho and Grimes, 2003; Roweis and Saul, 2000).

We propose a new estimator, based on distances between probability distributions, as
well as provide rigorous, finite sample guarantees for the quality of the novel procedure.
Recall that if µ, ν are two measures on a metric space (M,dM ), then the Wasserstein-p
distance between µ and ν is

WM
p (µ, ν)p = inf

(X,Y )∼Γ(µ,ν)
E [dM (X,Y )p] (1)

where Γ(µ, ν) is the set of all couplings of the two measures. If M ⊂ R
D, then there are two

natural metrics to put on M : one is simply the restriction of the Euclidean metric to M
while the other is the geodesic metric in M , i.e., the minimal length of a curve in M that
joins the points under consideration. In the sequel, if the metric is simply the Euclidean
metric, we leave the Wasserstein distance unadorned to distinguish it from the intrinsic
metric. For a thorough treatment of such distances, see Villani (2008). We recall that the
Hölder integral probability metric (Hölder IPM) is given by

dβ,B(µ, ν) = sup
f∈Cβ

B(Ω)

Eµ[f(X)]− Eν [f(Y )]

where Cβ
B(Ω) is the Hölder ball defined in the sequel. When p = β = 1, the classical result

of Kantorovich-Rubinstein says that the Wasserstein and Hölder distances agree. It has
been known at least since Dudley (1969) that if a space M has dimension d, P is a measure
with support M , and Pn is the empirical measure of n independent samples drawn from
P, then WM

1 (Pn,P) � n− 1

d . More recently, Weed et al. (2019) has determined sharp rates
for the convergence of this quantity for higher order Wasserstein distances in terms of the
intrinsic dimension of the distribution. Below, we find sharp rates for the convergence of
the empirical measure to the population measure with respect to the Hölder IPM: if β < d

2 ,

then dβ(Pn,P) � n−β
d and if β > d

2 then dβ(Pn,P) � n− 1

2 . These sharp rates are intuitive in

2



Intrinsic Dimension Estimation Using Wasserstein Distance

that convergence to the population measure should only depend on the intrinsic complexity
(i.e. dimension) without reference to the possibly much larger ambient dimension.

The above convergence results are nice theoretical insights, but they have practical
value, too. The results of Dudley (1969); Weed et al. (2019), as well as our results on
the rate of convergence of the Hölder IPM, present a natural way to estimate the intrin-
sic dimension: take two independent samples, Pn, Pαn from P and consider the ratio of
WM

p (Pn,P)/W
M
p (Pαn,P) or dβ(Pn,P)/dβ(Pαn,P); as n → ∞, the first ratio should be

about αd, while the second should be about α
β
d , and so d can be computed by taking the

logarithm with respect to α. The first problem with this idea is that we do not know P; to
address this, we instead compute the ratios using two independent samples. A more serious
issue regards how large n must be in order for the asymptotic regime to apply. As we shall
see below, the answer depends on the geometry of the supporting manifold.

We define two estimators: one using the Euclidean distance and the other using the
intrinsic distance:

dn =
logα

logW1(Pn, P ′
n)− logW1(Pαn, P ′

αn)
, d̃n =

logα

logWG
1 (Pn, P ′

n)− logWG
1 (Pαn, P ′

αn)
, (2)

where the primes indicate independent samples of the same size and G is a graph-based
metric that approximates the intrinsic metric. Before we go into the details, we give an
informal statement of our main theorem, which provides finite sample, non-asymptotic
guarantees on the quality of the estimator:1

Theorem 1 (Informal version of Theorem 22) Let P be a measure on R
D supported

on a compact manifold of dimension d. Let τ be the reach of M , an intrinsic geometric
quantity defined below. For any γ > 0, suppose we have N independent samples from P

satisfying

N = Ω

(
τ−d ∨

(
volM

ωd

) d+2

2γ

∨
(
log

1

ρ

)3
)

where ωd is the volume of a d-dimensional Euclidean unit ball. Then with probability at
least 1− 6ρ, the estimated dimension d̃n satisfies

d

1 + 4γ
≤ d̃n ≤ (1 + 4γ)d.

The same conclusion holds for dn.

Although the guarantees for dn and d̃n are similar, empirically d̃n is better, as explained
below. The ambient dimension D never enters the statistical complexity given above. While
the exponential dependence on the intrinsic dimension d is unfortunate, it is likely necessary
as described below.

While the reach, τ , determines the sample complexity of our dimension estimator, con-
sideration of the injectivity radius, ι, is relevant for practical application. Both geometric
quantities are defined formally in the following section, but, to understand the intuition, note
that, as discussed above, there are two natural metrics we could be placing on M = suppP,

1. Explicit constants are given in the formal statement of Theorem 22
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the Euclidean metric and the geodesic distance. The reach is, intuitively, the size of the
largest ball with respect to the ambient metric such that we can treat points in M as if they
were simply in Euclidean space; the injectivity radius is similar, except it treats neighbor-
hoods with respect to the intrinsic metric. Considering that manifold distances are always
at least as large as Euclidean distances, it is unsurprising that τ . ι. Getting back to
dimension estimation, specializing to the case of β = p = 1, and recalling (2), there are now
two choices for our dimension estimator: we could use Wasserstein distance with respect
to the Euclidean metric or Wasserstein distance with respect to the intrinsic metric (which
we will denote by WM

1 ). We will see that if ι ≈ τ , then the two estimators induced by
each of these distances behave similarly, but when ι � τ , the latter is better. While we
wish to use WM

1 (Pn, P
′
n) to estimate the dimension, we do not know the intrinsic metric.

As such, we use the kNN graph to approximate this intrinsic metric and introduce the
measure WG

1 (Pn, P
′
n). As we shall see below, if we had oracle access to geodesic distance

dM , then the WM
1 -based estimator d̃n would only require � ι−d samples. However, our

kNN estimator of dM , unfortunately, still requires the τ−d samples. Nevertheless, there is
a practical advantage of d̃n in that the metric estimator can leverage all N = 2(1 + α)n
available samples, so that d̃n works if N & τ−d and only n & ι−d, whereas for dn we require
n & τ−d itself.

A natural question: is this more complicated approach necessary? i.e., is ι � τ on real
datasets? We believe that the answer is yes. To see this, consider the case of images of
the digit 7 (for example) from MNIST (LeCun and Cortes, 2010). As a demonstration,
we sample images from MNIST in datasets of size ranging in powers of 2 from 32 to 2048,
calculate the Wasserstein distance between these two samples, and plot the resulting trend.
In the right plot, we pool all of the data to estimate the manifold distances, and then
use these estimated distances to compute the Wasserstein distance between the empirical
distributions. In order to better compare these two approaches, we also plot the residuals
to the linear fit that we expect in the asymptotic regime. Looking at Figure 1, it is clear
that we are not yet in the asymptotic regime if we simply use Euclidean distances; on the
other hand, the trend using the manifold distances is much more clearly linear, suggesting
that the slope of the best linear fit is meaningful. Thus we see that in order to get a
meaningful dimension estimate from practical data sets, we cannot simply use W1 but must
also estimate the geometry of the underlying distribution; this suggests that ι � τ on
this data manifold. More generally, we note that the injectivity radius, ι, is intrinsic to
the geometry of the manifold and thus unaffected by the embedding; in contradistinction,
the reach, τ , is extrinsic and thus can be made smaller by changing the embedding. In
particular, when the obstruction to the reach being large is a “bottleneck” in the sense that
the manifold is embedded in such a way as to place distant neighborhoods of the manifold
close together in Euclidean distance (see Figure 2 for an example), we may expect τ � ι.
Intuitively, this matches the notion that the geometry of the data would be simple if we were
to have access to the “correct” coordinate system and that the difficulty in understanding
the geometry comes from its embedding in the ambient space.
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Figure 1: Two log-log plots of comparing howW1(Pn, P
′
n) decays to howWM

1 (Pn, P
′
n) decays

as n gets larger, as well as the residuals from a linear fit. The data are images of the digit
7 from MNIST with Wasserstein distances computed with the Sinkhorn algorithm (Cuturi,
2013). The manifold distances are approximated by a k-NN graph, as described in Section
3.

We emphasize that, like many estimators of intrinsic dimension, we do not claim ro-
bustness to off-manifold noise (Levina and Bickel, 2004; Farahmand et al., 2007; Kim et al.,
2019). Indeed, any “fattening” of the manifold will force any consistent estimator of in-
trinsic dimension to asymptotically grow to the full, ambient dimension as the number of
samples grows. Various works have included off-manifold noise in different ways, often with
the assumption that either the noise is known (Koltchinskii, 2000) or the manifold is linear
(Niles-Weed and Rigollet, 2019). Methods that do not make these simplifying assumptions
are often highly sensitive to scaling parameters that are required inputs in such methods as
multi-scale, local SVD (Little et al., 2009). Extensions of our method to such noisy settings
are a promising avenue of future research, particularly in understanding the effect of this
noise on downstream applications as is done for Lipschitz classification in metric spaces
and the resulting dimension-distortion tradeoff found in Gottlieb et al. (2016); in this work,
however, we confine our theoretical study to the noiseless setting. The primary theoretical
advantage of our estimator over that of Levina and Bickel (2004); Farahmand et al. (2007) is
that we do not require the stringent regularity assumptions for our nonasymptotic rates to
hold. We leave it for future empirical works whether this weakening of assumptions allows
for a better practical estimator on real-world data sets.

Our main contributions are as follows:
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• In Section 3, we introduce a new estimator of intrinsic dimension. In Theorem 22 we
prove non-asymptotic bounds on the quality of the introduced estimator. Moreover,
unlike the MLE estimator of Levina and Bickel (2004) with non-asymptotic analy-
sis in Farahmand et al. (2007), minimal regularity of the density of the population
distribution is required for our guarantees and, unlike that suggested in Kim et al.
(2019), our estimator is both computationally efficient and has sample complexity
independent of the ambient dimension.

• In the course of proving Theorem 22, we adapt the techniques of Bernstein et al.
(2000) to provide new, non-asymptotic bounds on the quality of kNN distance as an
estimate of intrinsic distance in Proposition 24, with explicit sample complexity in
terms of the reach of the underlying space. To our knowledge, these are the first such
non-asymptotic bounds.

We further note that the techniques we develop to prove the non-asymptotic bounds on
our dimension estimator also serve to provide new statistical rates in learning Generative
Adversarial Networks (GANs) with a Hölder discriminator class:

• We prove in Theorem 25 that if µ̂ is a Hölder GAN, then the distance between µ̂ and P,
as measured by the Hölder IPM, is governed by rates dependent only on the intrinsic
dimension of the data, independent of the ambient dimension or the dimension of
the feature space. In particular, we prove in great generality that if P has intrinsic
dimension d, then the rate of a Wasserstein GAN is n− 1

d . This improves on the recent
work of Schreuder et al. (2020).

The work is presented in the order of the above listed contributions, preceded by a
brief section on the geometric preliminaries and prerequisite results. We conclude the
introduction by fixing notation and surveying some related work.

Notation: We fix the following notation. We always let P be a probability distribution on
R
D and, whenever defined, we let d = dim suppP. We reserve X1, . . . , Xn for samples taken

from P and we denote by Pn their empirical distribution. We reserve β for the smoothness
of a Hölder class, Ω ⊂ R

D is always a bounded open domain, and ∆ is always the intrinsic
diameter of a closed set. We also reserve M for a compact manifold. In general, we denote
by S the support of a distribution P and we reuse M = suppP if we restrict ourselves to
the case where S = M is a compact manifold, with Riemannian metric induced by the
Euclidean metric. We denote by volM the volume of the manifold with respect to its
inherited metric and we reserve ωd for the volume of the unit ball in R

d. When a compact
manifold manifold M can be assumed from context, we take the uniform measure on M to
be the volume measure of M normalized so that M has unit measure.

1.1 Related Work

Dimension Estimation There is a long history of dimension estimation, beginning with
linear methods such as thresholding principal components (Fukunaga and Olsen, 1971),
regressing k-Nearest-Neighbors (kNN) distances (Pettis et al., 1979), estimating packing
numbers (Kégl, 2002; Grassberger and Procaccia, 2004; Camastra and Vinciarelli, 2002),
an estimator based solely on neighborhood (but not metric) information that was recently

6



Intrinsic Dimension Estimation Using Wasserstein Distance

proven consistent (Kleindessner and Luxburg, 2015), and many others. An exhaustive
recent survey on the history of these techniques can be found in Camastra and Staiano
(2016). Perhaps the most popular choice among current practitioners is the MLE estimator
of Levina and Bickel (2004).

The MLE estimator is constructed as the maximum likelihood of a parameterized Pois-
son process. As worked out in Levina and Bickel (2004), a local estimate of dimension for
k ≥ 2 and x ∈ R

D is given by

m̂k(x) =


 1

k − 1

k∑

j=1

log
Tk(x)

Tj(x)




−1

where Tj(x) is the distance between x and its jth nearest neighbor in the data set. The
final estimate for fixed k is given by averaging m̂k over the data points in order to reduce
variance. While not included in the original paper, a similar motivation for such an esti-
mator could be noting that if X is uniformly distributed on a ball of radius R in R

d, then

E

[
log R

||X||

]
= 1

d
; the local estimator m̂k(x) is the empirical version under the assumption

that the density is smooth enough to be approximately constant on this small ball. The
easy computation is included for the sake of completeness in Appendix E. In Farahmand
et al. (2007), the authors examined a closely related estimator and provided non-asymptotic
guarantees with an exponential dependence on the intrinsic dimension, albeit with stringent
regularity conditions on the density.

In addition to the estimators motivated by the volume growth of local balls discussed
in the previous paragraph, Kim et al. (2019) proposed and analyzed a dimension estimator
based on Travelling Salesman Paths (TSP). One major advantage to the TSP estimator is
the lack of necessary regularity conditions on the density, requiring only an upper bound on
the likelihood of the population density with respect to the volume measure on the manifold.
On the other hand, the upper bound on sample complexity that that paper presents depends
exponentially on the ambient dimension, which is pessimistic when the intrinsic dimension
is substantially smaller. In addition, it is unclear how practical the estimator is due to
the necessity of computing a solution to TSP; even ignoring this issue, Kim et al. (2019)
note that practical tuning of the constants involved in their estimator is difficult and thus
deploying their estimator as is on real-world datasets is unlikely.

Manifold Learning The notion of reach was first introduced in Federer (1959), and
subsequently used in the machine learning and computational geometry communities in
such works as Niyogi et al. (2008, 2011); Aamari et al. (2019); Amenta and Bern (1999);
Fefferman et al. (2016, 2018); Narayanan and Mitter (2010); Efimov et al. (2019); Boissonnat
et al. (2019). Perhaps most relevant to our work, Narayanan and Mitter (2010); Fefferman
et al. (2016) consider the problem of testing membership in a class of manifolds of large
reach and derive tight bounds on the sample complexity of this question. Our work does not
fall into the purview of their conclusions as we assume that the geometry of the underlying
manifold is nice and estimate the intrinsic dimension. In the course of proving bounds on
our dimension estimator, we must estimate the intrinsic metric of the data. We adapt the
proofs of Tenenbaum et al. (2000); Bernstein et al. (2000); Niyogi et al. (2008) and provide
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tight bounds on the quality of a k-Nearest Neighbors (kNN) approximation of the intrinsic
distance.

Statistical Rates of GANs Since the introduction of Generative Adversarial Networks
(GANs) in Goodfellow et al. (2014), there has been a plethora of empirical improvements and
theoretical analyses. Recall that the basic GAN problem selects an estimated distribution µ̂
from a class of distributions Pminimizing some adversarially learned distance between µ̂ and
the empirical distribution Pn. Theoretical analyses aim to control the distance between the
learned distribution µ̂ and the population distribution P from which the data comprising Pn

are sampled. In particular statistical rates for a number of interesting discriminator classes
have been proven including Besov balls (Uppal et al., 2019), balls in an RKHS (Liang, 2018),
and neural network classes (Chen et al., 2020) among others. The latter paper, Chen et al.
(2020) also considers GANs where the discriminative class is a Hölder ball, which includes
the popular Wasserstein GAN framework of Arjovsky et al. (2017). They show that if µ̂ is
the empirical minimizer of the GAN loss and the population distribution P � LebRD then

E [dβ(µ̂,P)] . n
− β

2β+D

up to factors polynomial in log n. Thus, in order to beat the curse of dimensionality, one
requires β = Ω(D); note that the larger β is, the weaker the IPM is as the Hölder ball be-
comes smaller. In order to mitigate this slow rate, Schreuder et al. (2020) assume that both
P and P are distributions arising from Lipschitz pushforwards of the uniform distribution
on a d-dimensional hypercube; in this setting, they are able to remove dependence on D
and show that

E [dβ(µ̂,P)] . Ln−β
d ∨ n− 1

2 .

This last result beats the curse of dimensionality, but pays with restrictive assumptions on
the generative model as well as dependence on the Lipschitz constant of the pushforward
map. More importantly, the result depends exponentially not on the intrinsic dimension of
P but rather on the dimension of the feature space used to represent P. In practice, state-
of-the-art GANs used to produce images often choose d to be on the order of 128, which is
much too large for the Schreuder et al. (2020) result to guarantee good performance.

2. Preliminaries

2.1 Geometry

In this work, we are primarily concerned with the case of compact manifolds isometrically
embedded in some large ambient space, RD. We note that this focus is largely in order to
maintain simplicity of notation and exposition; extensions to more complicated, less regular
sets with intrinsic dimension defined as the Minkowski dimension can easily be attained
with our techniques. The key example to keep in mind is that of image data, where each
pixel corresponds to a dimension in the ambient space, but, in reality, the distribution lives
on a much smaller, embedded subspace. Many of our results can be easily extended to the
non-compact case with additional assumptions on the geometry of the space and tails of
the distribution of interest.

Central to our study is the analysis of how complex the support of a distribution is. We
measure complexity of a metric space by its entropy:
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Definition 2 Let (X, d) be a metric space. The covering number at scale ε > 0, N(X, d, ε),
is the minimal number s such that there exist points x1, . . . , xs such that X is contained
in the union of balls of radius ε centred at the xi. The packing number at scale ε > 0,
D(X, d, ε), is the maximal number s such that there exist points x1, . . . , xs ∈ X such that
d(xi, xj) > ε for all i 6= j. The entropy is defined as logN(X, d, ε).

We recall the classical packing-covering duality, proved, for example, in (van Handel, 2014,
Lemma 5.12):

Lemma 3 For any metric space X and scale ε > 0,

D(X, d, 2ε) ≤ N(X, d, ε) ≤ D(X, d, ε).

The most important geometric quantity that determines the complexity of a problem is the
dimension of the support of the population distribution. There are many, often equivalent
ways to define this quantity in general. One possibility, introduced in Assouad (1983) and
subsequently used in Dasgupta and Freund (2008); Kpotufe and Dasgupta (2012); Kpotufe
and Garg (2013) is that of doubling dimension:

Definition 4 Let S ⊂ R
D be a closed set. For x ∈ S, the doubling dimension at x is the

smallest d such that for all r > 0, the set Br(x) ∩ S can be covered by 2d balls of radius r
2 ,

where Br(x) denotes the Euclidean ball of radius r centred at x. The doubling dimension of
S is the supremum of the doubling dimension at x for all x ∈ S.

This notion of dimension plays well with the entropy, as demonstrated by the following
(Kpotufe and Dasgupta, 2012, Lemma 6):

Lemma 5 ((Kpotufe and Dasgupta, 2012)) Let S have doubling dimension d and di-

ameter ∆. Then N(S, ε) ≤
(
∆
ε

)d
.

We remark that a similar notion of dimension is that of the Minkowski dimension, which is
defined as the asymptotic rate of growth of the entropy as the scale tends to zero. Recently,
Nakada and Imaizumi (2020) examined the effect that an assumption of small Minkowski
dimension has on learning with neural networks; their central statistical result can be re-
covered as an immediate consequence of our complexity bounds below.

In order to develop non-asymptotic bounds, we need some understanding of the geometry
of the support, M . We first recall the definition of the geodesic distance:

Definition 6 Let S ⊂ R
D be closed. A piecewise smooth curve in S, γ, is a continuous

function γ : I → S, where I ⊂ R is an interval, such that there exists a partition I1, · · · , IJ
of I such that γIj is smooth as a function to R

D. The length of γ is induced by the embedding
of S ⊂ R

D. For points p, q ∈ S, the intrinsic (or geodesic) distance is

dS(p, q) = inf {length (γ)|γ(0) = p and γ(1) = q and γ is a piecewise smooth curve in S} .

It is clear from the fact that straight lines are geodesics in R
D that for any points p, q ∈ S,

||p− q|| ≤ dS(p, q). We are concerned with two relevant geometric quantities, one extrinsic
and the other intrinsic.
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Definition 7 Let S ⊂ R
D be a closed set. Let the medial axis Med(S) be defined as

Med(S) =
{
x ∈ R

D| there exist p 6= q ∈ S such that ||p− x|| = ||q − x|| = d(x, S)
}
.

In other words, the medial axis is the set of points in R
D that have at least two projections

to S. Define the reach, τS of S as d(S,Med(S)), the minimal distance between a set and its
medial axis.

If S = M is a compact manifold with the induced Euclidean metric, we define the
injectivity radius ι = ιM as the maximal r such that if p, q ∈ M such that dM (p, q) < r then
there exists a unique length-minimizing geodesic connecting p to q in M .

For more detail on the injectivity radius, see Lee (2018), especially Chapters 6 and 10. The
difference between ιM and τM is in the choice of metric with which we equip M . We could
choose to equip M with the metric induced by the Euclidean distance ||·|| or we could choose
to use the intrinsic metric dM defined above. The reach quantifies the maximal radius of
a ball with respect to the Euclidean distance such that the intersection of this ball with
M behaves roughly like Euclidean space. The injectivity radius, meanwhile, quantifies the
maximal radius of a ball with respect to the intrinsic distance such that this ball looks
like Euclidean space. While neither quantity is necessary for our dimension estimator,
both figure heavily in the analysis. The final relevant geometric quantity is the sectional
curvature. The sectional curvature ofM at a point p ∈ M given two directions tangent toM
at p is given by the Gaussian curvature at p of the image of the exponential map applied to a
small neighborhood of the origin in the plane determined by the two directions. Intuitively,
the sectional curvature measures how tightly wound the manifold is locally around each
point. For an accessible introduction to the geometric notions mentioned here, see (Lee,
2018, Chapter 8).

We now specialize to consider compact, dimension d manifolds M embedded in R
D with

the induced metric. One measure of size of the manifold M is the diameter, ∆, with respect
to the intrinsic distance defined above. Another notion of size is the volume measure, volM .
This measure can be defined intrinsically as integration with respect to the volume form,
where the volume form can be thought of as the analogue of the Lebesgue differential in
standard Euclidean space. In our setting, we could equivalently define the volume as the
d-dimensional Hausdorff measure as in Aamari et al. (2019). Either way, when we refer to
a measure µM that is uniform on the manifold, we consider the normalization such that
µM (M) = 1, i.e., µM (·) = volM (·)/ vol(M).

With the brief digression into volume concluded, we return to the notion of the reach,
which encodes a number of local and global geometric properties. We summarize several of
these in the following proposition:

Proposition 8 Let M ⊂ R
D be a compact manifold isometrically embedded in R

D. Suppose
that τ = τM > 0. The following hold:

(a) (Niyogi et al., 2008, Proposition 6.1)] The norm of the second fundamental form of M
is bounded by 1

τ
at all points p ∈ M .

(b) (Aamari et al., 2019, Proposition A.1 (ii)) The injectivity radius of M is at least πτ .
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Figure 2: Curve in R
2 where τ � ι.

(c) (Boissonnat et al., 2019, Lemma 3) If p, q ∈ M such that ||p− q|| ≤ 2τ then dM (p, q) ≤
2τ arcsin

(
||p−q||
2τ

)
.

A few remarks are in order. First, note that the Hopf-Rinow Theorem (Hopf and Rinow,
1931) guarantees that M is complete, which is fortuitous as completeness is a necessary,
technical requirement for several of our arguments. Second, we note that (c) from Proposi-
tion 8 has a simple geometric interpretation: the upper bound on the right hand side is the
length of the arc of a circle of radius τ containing points p, q; thus, the maximal distortion
of the intrinsic metric with respect to the ambient metric is bounded by the circle of radius
τ .

Point (a) in the above proposition demonstrates that control of the reach leads to control
of local distortion. From the definition, it is obvious that the reach provides an upper
bound for the size of the global notion of a “bottleneck,” i.e., two points p, q ∈ M such that
||p− q|| = 2τ < dM (p, q). Interestingly, these two local and global notions of distortion are
the only ways that the reach of a manifold can be small, as (Aamari et al., 2019, Theorem
3.4) tells us that if the reach of a manifold M is τ , then either there exists a bottleneck
of size 2τ or the norm of the second fundamental form is 1

τ
at some point. Thus, in some

sense, the reach is the “correct” measure of distortion. Note that while (b) above tells us
that ιM & τM , there is no comparable upper bound. To see this, consider Figure 2, which
depicts a one-dimensional manifold embedded in R

2. Note that the bottleneck in the center
ensures that the reach of this manifold is very small; on the other hand, it is easy to see
that the injectivity radius is given by half the length of the entire curve. As the curve can
be extended arbitrarily, the reach can be arbitrarily small relative to the injectivity radius.

We now proceed to bound the covering number of a compact manifold using the dimen-
sion and the injectivity radius. We note that upper bounds on the covering number with
respect to the ambient metric were provided in Niyogi et al. (2008); Narayanan and Mitter
(2010). A similar bound with less explicit constants can be found in (Kim et al., 2019,
Lemma 4).

Proposition 9 Let M ⊂ R
D be an isometrically embedded, compact, d-dimensional sub-

manifold with injectivity radius ι > 0 such that the sectional curvatures are bounded above
by κ1 ≥ 0 and below by κ2 ≤ 0. If ε < π

2
√
k1

∧ ι then

N(M,dM , ε) ≤ volM

ωd

d
(π
2

)d
ε−d.

11
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If ε < 1√−κ2
∧ ι then

volM

ωd

d8−dε−d ≤ D(M,dM , 2ε).

Moreover, for all ε < ι,

volM

ωd

dιd(−κ2)
d
2 e−dι

√−κ2ε−d ≤ D(M,dM , ε).

Thus, if ε < τ , where τ is the reach of M , then

volM

ωd

d8−dε−d ≤ D(M,dM , 2ε) ≤ N(M,dM , ε) ≤ volM

ωd

d
(π
2

)d
ε−d.

The proof of Proposition 9 can be found in Appendix A and relies on the Bishop-Gromov
comparison theorem to leverage the curvature bounds from Proposition 8 into volume esti-
mates for small intrinsic balls, a similar technique as found in Niyogi et al. (2008); Narayanan
and Mitter (2010). The key point to note is that we have both upper and lower bounds for
ε < ι, as opposed to just the upper bound guaranteed by Lemma 5. As a corollary, we are
also able to derive bounds for the covering number with respect to the ambient metric:

Corollary 10 Let M be as in Proposition 9. For ε < τ , we can control the covering
numbers of M with respect to the Euclidean metric as

volM

ωd

d16−dε−d ≤ D(M, ||·|| , 2ε) ≤ N(M, ||·|| , ε) ≤ volM

ωd

(π
2

)d
ε−d.

The proof of Corollary 10 follows from Proposition 9 and the metric comparisons for small
scales in Proposition 8; details can be found in Appendix A.

2.2 Hölder Classes and their Complexity

In this section we make the elementary observation that complex function classes restricted
to simple subsets can be much smaller than the original class. While such intuition has
certainly appeared before, especially in designing esimators that can adapt to local intrinsic
dimension, such as Bickel et al. (2007); Kpotufe and Dasgupta (2012); Kpotufe (2011);
Kpotufe and Garg (2013); Dasgupta and Freund (2008); Steinwart et al. (2009); Nakada
and Imaizumi (2020), we codify this approach below.

To illustrate the above phenomenon at the level of empirical processes, we focus on
Hölder functions in R

D for some large D and let the “simple” subset be a subspace of
dimension d where d � D. We first recall the definition of a Hölder class:

Definition 11 For an open domain Ω ⊂ R
d and a function f : Ω → R, define the β-Hölder

norm as

||f ||Cβ(Ω) = max
0≤|γ|≤|α|

sup
x∈Ω

|Dγf(x)| ∨ sup
x,y∈Ω

∣∣Dbβcf(x)−Dbβcf(y)
∣∣

||x− y||β−bβc .

Define the Hölder ball of radius B, denoted by Cβ
B(Ω), as the set of functions f : Ω → R

such that ||f ||Cβ(Ω) ≤ B. If (M, g) is a Riemannian manifold of class Cbβc+1 (see Lee
(2018)), and f : M → R we define the Hölder norm analogously, replacing |Dγf(x)| with
||∇γf(x)||g, where ∇ is the covariant derivative.

12
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It is a classical result of Kolmogorov and Tikhomirov (1993) that, for a bounded, open
domain Ω ⊂ R

D, the entropy of a Hölder ball scales as

logN
(
Cβ
B(Ω), ||·||∞ , ε

)
�
(
B

ε

)D
β

as ε ↓ 0. As a consequence, we arrive at the following result, whose proof can be found in
Appendix A for the sake of completeness.

Proposition 12 Let S ⊂ Ω ⊂ R
d be a path-connected closed set contained in an open

domain Ω. Let F̃ = Cβ
B(Ω) and let F = F̃|S. Then,

D

(
S,
( ε

B

) 1

β

)
≤ logD(F, ||·||∞ , 2ε) ≤ logN(F, ||·||∞ , ε) ≤ 3β2 log

(
2B

ε

)
N

(
S,
( ε

2B

) 1

β

)
.

Note that the content of the above result is really that of Kolmogorov and Tikhomirov
(1993), coupled with the fact that restriction from R

d to M preserves smoothness.
If we apply the easily proven volumetric bounds on covering and packing numbers for

S a Euclidean ball to Proposition 12, we recover the classical result of Kolmogorov and
Tikhomirov (1993). The key insight is that low-dimensional subsets can have covering
numbers much smaller than those of a high-dimensional Euclidean ball: if the “dimension”
of S is d, then we expect the covering number of S to scale like ε−d. Plugging this into
Proposition 12 tells us that the entropy of F, up to a factor logarithmic in 1

ε
, scales like

ε
− d

β � ε
−D

β . An immediate corollary of Lemma 5 and Proposition 12 is:

Corollary 13 Let S ⊂ R
D be a closed set of diameter ∆ and doubling dimension d. Let

S ⊂ Ω open and F be the restriction of Cβ
B(Ω) to S. Then

logN(F, ||·||∞ , ε) ≤ 3β2

(
2B∆β

ε

) d
β

log

(
2B

ε

)
.

Proof Combine the upper bound in Proposition 12 with the bound in Lemma 5.

The conclusion of Corollary 13 is very useful for upper bounds as it tells us that the entropy

for Hölder balls scales at most like ε
− d

β as ε ↓ 0. If we desire comparable lower bounds, we
require some of the geometry discussed above. Combining Proposition 12 and Corollary 10
yields the following bound:

Corollary 14 Let M ⊂ R
D be an isometrically embedded, compact submanifold with reach

τ > 0 and injectivity radius ι. Suppose Ω ⊃ M is an open set and let F′ be the restriction
of Cβ

B(Ω) to M . Then for ε < τ ,

volM

ωd

d16−d

(
2B

ε

) d
β

≤ logD(F′, ||·||∞ , 2ε) ≤ logN(F′, ||·||∞ , ε) ≤ 3β2 log

(
2B

ε

)
volM

ωd

d
(π
2

)d(2B

ε

) d
β

.

If we set F = Cβ
B(M), then we have that for all ε < ι,

volM

ωd

dιd(−κ2)
d
2 e−dι

√−κ2

(
B

ε

)− d
β

≤ logN(F, ||·||∞ , ε) ≤ 3β2 log

(
2B

ε

)
volM

ωd

d
(π
2

)d(B

ε

)− d
β

.

13
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In essence, Corollary 14 tells us that the rate of ε
− d

β for the growth of the entropy of Hölder
balls is sharp for sufficiently small ε. The key difference between the first and second
statements is that the first is with respect to an ambient class of functions while the second
is with respect to an intrinsic class. To better illustrate the difference, consider the case
where β = B = 1, i.e., the class of Lipschitz functions on the manifold. In both cases,
asymptotically, the entropy of Lipschitz functions scales like ε−d; if we restrict to functions
that are Lipschitz with respect to the ambient metric, then the above bound only applies
for ε < τ ; on the other hand, if we consider the larger class of functions that are Lipschitz
with respect to the intrinsic metric, the bound applies for ε < ι. In the case where ι � τ ,
this can be a major improvement.

The observations in this section are undeniably simple; the real interest comes in the
diverse applications of the general principle, some of which we detail below. As a final note,
we remark that our guiding principle of simplifying function classes by restricting them to
simple sets likely holds in far greater analysis than is explored here; in particular, Sobolev
and Besov classes (see, for example, (Giné and Nickl, 2016, §4.3)) likely exhibit similar
behavior.

3. Dimension Estimation

We outlined the intuition behind our dimension estimation in the introduction. In this
section, we formally define the estimator and analyse its theoretical performance. We first
apply standard empirical process theory and our complexity bounds in the previous section
to upper bound the expected Hölder IPM (defined in (1)) between empirical and population
distributions:

Lemma 15 Let S ⊂ R
D be a compact set contained in a ball of radius R. Suppose that

we draw n independent samples from a probability measure P supported on S and denote
by Pn the corresponding empirical distribution. Let P ′

n denote an independent identically
distributed measure as Pn. Then we have

E [dβ,B(Pn,P)] ≤ E
[
dβ,B(Pn, P

′
n)
]
≤ 16B inf

δ>0

(
2δ +

3
√
6√
n
β

√
log

1

δ

∫ 1

δ

√
N(S, ||·|| , ε)dε

)
.

In particular, there exists a universal constant K such that if N(S, ||·|| , ε) ≤ C1ε
−d for some

C, d > 0, then

E [dβ(Pn,P)] ≤ CβB
(
1 +

√
log n1{d=2β}

)(
n−β

d ∨ n− 1

2

)
.

holds with C = KC1.

The proof uses the symmetrization and chaining technique and applies the complexity
bounds of Hölder functions found above; the details can be found in Appendix E.

We now specialize to the case where β = B = 1, due to the computational tractability of
the resulting Wasserstein distance. Applying Kantorovich-Rubenstein duality (Kantorovich
and Rubinshtein, 1958), we see that this special case of Lemma 15 recovers the special
p = 1 case of Weed et al. (2019). From here on, we suppose that d > 2 and our metric on
distributions is d1,1 = W1.

14
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We begin by noting that if we have 2n, independent samples from P, then we can split
them into two data sets of size n, and denote by Pn, P

′
n the empirical distributions thus

generated. We then note that Lemma 15 implies that if suppP ⊂ M and M is of dimension
d, then

E
[
W1(Pn, P

′
n)
]
≤ CM,dn

− 1

d .

If we were to establish a lower bound as well as concentration of W1(Pn, P
′
n) about its mean,

then we could consider the following estimator. Given a data set of size 2(α+ 1)n, we can
break the data into four samples, Pn, P

′
n each of size n and Pαn, P

′
αn of size αn. Then we

would have

dn := − 1

logα

(
W1(Pαn,P ′

αn)
W1(Pn,P ′

n)

) =
logα

logW1(Pn, P ′
n)− logW1(Pαn, P ′

αn)
≈ d.

Which distance on M should be used to compute the Wasserstein distance, the Euclidean
metric ||·|| or the intrinsic metric dM (·, ·)? As can be guessed from Corollary 14, asymp-
totically, both will work, but for finite sample sizes when ι � τ , the latter is much better.
One problem remains, however: because we are not assuming M to be known, we do not
have access to dM and thus we cannot compute the necessary Wasserstein cost. In order to
get around this obstacle, we recall the graph distance induced by a kNN graph:

Definition 16 Let X1, . . . , Xn ∈ R
D be a data set and fix ε > 0. We let G(X, ε) denote the

weighted graph with vertices Xi and edges of weight ||Xi −Xj || between all vertices Xi, Xj

such that ||Xi −Xj || ≤ ε. We denote by dG(X,ε) (or dG if X, ε are clear from context) the

geodesic distance on the graph G(X, ε). We extend this metric to all of RD by letting

dG(p, q) = ||p− πG(p)||+ dG(πG(p), πG(q)) + ||q − πG(q)||

where πG(p) ∈ argminXi
||p−Xi||.

We now have two Wasserstein distances, each induced by a different metric; to mitigate
confusion, we introduce the following notation:

Definition 17 Let X1, . . . , Xn, X
′
1, . . . , X

′
n ∈ R

D, sampled independently from P such that
suppP ⊂ M . Let Pn, P

′
n be the empirical distributions associated to the data X,X ′. Let

W1(Pn, P
′
n) denote the Wasserstein cost with respect to the Euclidean metric and WM

1 (Pn, P
′
n)

denote the Wasserstein cost associated to the manifold metric, as in (1). For a fixed ε > 0,
let WG

1 (Pn, P
′
n) denote the Wasserstein cost associated to the metric dG(suppPn∪suppP ′

n,ε)
.

Let dn, d̂n, and d̃n denote the dimension estimators from (3) induced by each of the above
metrics.

Given sample distributions Pn, P
′
n, we are able to compute W1(Pn, P

′
n) and WG

1 (Pn, P
′
n) for

any fixed ε, but not WM
1 (Pn, P

′
n) because we are assuming that the learner does not have

access to the manifold M . On the other hand, adapting techniques from Weed et al. (2019),
we are able to provide a non-asymptotic lower bound on W1(Pn, P

′
n) and WM

1 (Pn, P
′
n):

Proposition 18 Suppose that P is a measure on R
D such that suppP = M , where M is

a d-dimensional, compact manifold with reach τ > 0 and injectivity radius ι > 0, such that
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the density of P with respect to the uniform measure on M is lower bounded by w > 0.
Suppose that

n >
d volM

4wωd

(τ
8

)−d

.

Then, almost surely,

W1(Pn,P) ≥
1

32

(
d volM

4wωd

) 1

d

n− 1

d .

If we assume only that

n >

(
d(−κ2)

d
2 volM

4wωd

edι
√−κ2

)
ι−d

then, almost surely,

WM
1 (Pn,P) ≥

1

32

(
d volM

4wωd

) 1

d

(−κ2)
1

2 eι
√−κ2n− 1

d .

An easy proof, based on the techniques (Weed et al., 2019, Proposition 6) can be found in
Appendix E. Similarly, we can apply the same proof technique as Lemma 15 to establish
the following upper bound:

Proposition 19 Let M ⊂ R
D be a compact manifold with positive reach τ and dimension

d > 2. Furthermore, suppose that P is a probability measure on R
D with suppP ⊂ M .

Let X1, . . . , Xn, X
′
1, . . . , X

′
n ∼ P be independent with corresponding empirical distributions

Pn, P
′
n. Then if diamM = ∆, we have:

E
[
WM

1 (Pn,P)
]
≤ E

[
WM

1 (Pn, P
′
n)
]
≤ C

(
volM

nωd

) 1

d

√
log

(
nωd∆d

d volM

)
.

The full proof is in Appendix E and applies symmetrization and chaining, with an upper
bound of Corollary 14. We note, as before, that a similar asymptotic rate is obtained by
Weed et al. (2019) in a slightly different setting.

We noted in the introduction that we required two facts to make our intuition regarding
the dimension estimators precise. We have just shown that the first holds; we turn now to
the second: concentration. To make this rigorous, we need one last technical concept: the
T2-inequality.

Definition 20 Let µ be a measure on a metric space (M,d). We say that µ satisfies a
T2-inequality with constant c2 if for all measures ν � µ, we have

W2(µ, ν) ≤
√
2c2D(ν||µ)

where D(ν||µ) = Eµ

[
log dν

dµ

]
is the KL-divergence.

The reason that the T2 inequality is useful for us is that Bobkov and Götze (1999) tell
us that such an inequality implies, and is, by Gozlan et al. (2009), equivalent to Lipschitz
concentration. We note further that W1(Pn, P

′
n) is a Lipschitz function of the dataset
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and thus concentrates about its mean. The constant in the T2 inequality depends on the
measure µ and upper bounds for specific classes of measures are both well-known and remain
an active area of research; for a more complete survey, see Bakry et al. (2014). We have
the following bound:

Proposition 21 Let P be a probability measure on R
D that has density with respect to the

(normalized) volume measure of M , lower bounded by w and upper bounded by W , where
M is a d-dimensional manifold with reach τ > 0 and diamM = ∆. Then we have:

c2 ≤
2τ2

d− 1

W

w
exp

(
d log 3 +

3d2∆2

τ2

)
. (3)

In order to bound the T2 constant in our case, we rely on the landmark result of Otto and
Villani (2000) that relates c2 to another functional inequality, the log-Sobolev inequality
(Bakry et al., 2014, Chapter 5). There are many ways to control the log-Sobolev constant
in various situations, many of which are covered in Bakry et al. (2014). We use results
from Wang (1997a), which incorporate the intrinsic geometry of the distribution, as our
bound. A detailed proof can be found in Appendix B. We note that many other estimates
with under slightly different conditions exits, such as that in Wang (1997b), which requires
second-order control of the density of the population distribution with respect to the volume
measure and the bound in Block et al. (2020), which provides control using a measure of
nonconvexity. With added assumptions, we can gain much sharper control over c2; for
example, if we assume a positive lower bound on the curvature of the support, we can
apply the well-known Bakry-Émery result (Bakry and Émery, 1985) and get dimension-free
bounds. As another example, if we may assume stronger contol on the curvature of M
beyond that guaranteed by the reach, we can remove the exponential dependence on the
reach entirely. For the sake of simplicity and because we already admit an exponential
dependence on the intrinsic dimension, we present only the more general bound here. We
now provide a non-asymptotic bound on the quality of the estimator d̃n.

Theorem 22 Let P be a probability measure on R
D and suppose that P has a density with

respect to the (normalized) volume measure of M lower bounded by w, where M is a d-
dimensional manifold with reach τ > 0 and injectivity radius ι > 0 such that d ≥ 3 and
diamM = ∆. Furthermore, suppose that P satisfies a T2 inequality with constant c2. Let
γ > 0 and suppose α, n satisfy

n ≥ max

[
d volM

4wωd

(
8

ι

)d

,

(
8c2
∆2

log
1

ρ

) 2d
d−5

]

α ≥ max

[
log

2

2γ

(
nωd∆

d

d volM

)
, (48w)

1

γ , 3
d
γ

]

αn ≥ d volM

2wωd

(
16π

τ

)d

log

(
d volM

ρωd

(
16π

τ

)d
)
.

Suppose we have 2(α+ 1)n samples drawn independently from P. Then, with probability at
least 1− 6ρ, we have

d

1 + 3γ
≤ d̃n ≤ (1 + 3γ)d.
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If ι is replaced by τ above, we get the same bound with the vanilla estimator dn replacing
d̃n.

We note that we have not made every effort to minimize the constants in the statement
above, with our emphasis being the dependence of these sample complexity bounds on the
relevant geometric quantities. As an immediate consequence of Theorem 22, due to the fact
that d is discrete, we can control the probability of error with sufficiently many samples.
We may also apply Proposition 21 to replace c2 with our upper bound in terms of the reach.

Corollary 23 Suppose we are in the situation of Theorem 22 and that P has density upper
bounded by W with respect to the normalized uniform measure on M . Suppose further that
α, n satisfy

n ≥ max

[
d volM

4wωd

(
8

ι

)d

,

(
8

2τ2

∆2(d− 1)

W

w
exp

(
d log 3 +

3d2∆2

τ2

)
log

1

ρ

) 2d
d−5

]

α ≥ max

[
log2d

2

(
nωd∆

d

d volM

)
, (48w)3d, 33d

2

]

αn ≥ d volM

2wωd

(
16π

τ

)d

log

(
d volM

ρωd

(
16π

τ

)d
)
.

Then if we round d̃n to the nearest integer, and denote the resulting estimator by d′n, we
have with probability at least 1− 6ρ, d′n = d. Again, replacing ι by τ in the previous display
yields the same result with d̂n replaced by the vanilla estimator dn.

Proof Note that because d ∈ N, if
∣∣∣d̃n − d

∣∣∣ ≤ 1
2 , then rounding d̂n to the nearest integer

exactly recovers d. Setting γ < 1
4d , and plugging into the result of Theorem 22, along with

an application of Proposition 21 to bound c2, concludes the proof.

While the appearance of ι in Theorem 22 and Corollary 23 may seem minor, it is critical
for any practical estimator. While αn = Ω

(
τ−d

)
, we may take n as small as Ω

(
ι−d
)
. Thus,

using d̃n instead of the naive estimator dn allows us to leverage the entire data set in
estimating the intrinsic distances, even on the small sub-samples. From the proof, it is
clear that we want α to be as large as possible; thus if we have a total of N samples, we
wish to make n as small as possible. If ι � τ then we can make n much smaller (scaling
like ι−d) than if we were to simply use the Euclidean distance. As a result, on any data set
where ι � τ , the sample complexity of d̃n can be much smaller than that of dn.

There are two parts to the proof of Theorem 22: first, we need to establish that our
metric dG approximates dM with high probability and thus d̃n ≈ d̂n; second, we need to
show that d̂n is, indeed, a good estimate of d. The second part follows from Propositions 19
and 18, and concentration; a detailed proof can be found in Appendix C. For the first part
of the proof, in order to show that d̂n ≈ d̃n, we demonstrate that dM ≈ dG in the following
result:
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Proposition 24 Let P be a probability measure on R
D and suppose that suppP = M , a

geodesically convex, compact manifold of dimension d and reach τ > 0. Suppose that we
sample X1, . . . , Xn ∼ P independently. Let λ ≤ 1

2 and G = G(X, τλ). If for some ρ < 1,

n ≥ wB

(
τλ2

8

)−1

log
N
(
M,dM , τλ

2

8

)

ρ

where for any δ > 0
wB(δ) = inf

p∈M
P(BM

δ (p))

with BM
δ (p) the metric ball around p of radius δ. Then, with probability at least 1− ρ, for

all x, y ∈ M ,
(1− λ) dM (x, y) ≤ dG(x, y) ≤ (1 + λ)dM (x, y).

The proof of Proposition 24 follows the general outline of Bernstein et al. (2000), but is
modified in two key ways: first, we control relevant geometric quantities by τ instead of by
the quantities in Bernstein et al. (2000); second, we provide a quantitative, nonasymptotic
bound on the number of samples needed to get a good approximation with high probability.
The details are deferred to Appendix D.

This result may be of interest in its own right as it provides a non-asymptotic version
of the results from Tenenbaum et al. (2000); Bernstein et al. (2000). In particular, if we
suppose that P has a density with respect to the uniform measure on M and this density
is bounded below by a constant w > 0, then Proposition 24 combined with Proposition 9
tells us that if we have

n &
volM

w

(
τλ2
)−d

log

(
volM

ρτλ2

)

samples, then we can recover the intrinsic distance of M with distortion λ. We further
note that the dependence on τ, λ, d is quite reasonable in Proposition 24. The argument
requires the construction of a τλ2-net on M and it is not difficult to see that one needs a
covering at scale proportional to τλ in order to recover the intrinsic metric from discrete
data points. For example, consider Figure 2; were a curve to be added to connect the
points at the bottleneck, this would drastically decrease the intrinsic distance between the
bottleneck points. In order to determine that the intrinsic distance between these points
(without the connector) is actually quite large using the graph metric estimator, we need to
set ε < τ , in which case these points are certainly only connected if there exists a point of
distance less than τ to the bottleneck point, which can only occur with high probability if
n = Ω

(
τ−1

)
. We can extend this example to arbitrary dimension d by taking the product

of the curve with rSd−1 for r = Θ(τ); in this case, a similar argument holds and we now
need Ω

(
τ−d

)
points in order to guarantee with high probability that there exists a point of

distance at most τ to one of the bottleneck points. In this way, we see that the τ−d scaling
is unavoidable in general. Note that the other estimators of intrinsic dimension mentioned
in the introduction, in particular the MLE estimator of Levina and Bickel (2004), implicitly
require the accuracy of the kNN distance for their estimation to hold; thus these estimators
also suffer from the τ−d sample complexity. Finally, we remark that Kim et al. (2019)
presents a minimax lower bound for a related hypothesis testing problem and shows that
minimax risk is bounded below by a local analogue of the reach raised to a power that
depends linearly on the intrinsic dimension.
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4. Application of Techniques to GANs

In this section, we note that our techniques are not confined to the realm of dimension
estimation and, in fact, readily apply to other problems. As an example, consider the unsu-
pervised learning problem of generative modeling, where we suppose that there are samples
X1, . . . , Xn ∼ P independent and we wish to produce a sample X̂ ∼ P̂ such that P̂ and P are
close. Statistically, this problem can be expressed by fixing a class of distributions P and
using the data to choose µ̂ ∈ P such that µ̂ is in some sense close to P. For computational
reasons, one wishes P to contain distributions from which it is computationally efficient
to sample; in practice, P is usually the class of pushforwards of a multi-variate Gaussian
distribution by some deep neural network class G. While our statistical results include this
setting, they are not restricted and apply for general classes of distributions P.

In order to make the problem more precise, we require some notion of distance between
distributions. We use the notion of the Integral Probability Metric (Müller, 1997; Sripe-

rumbudur et al., 2012) associated to a Hölder ball Cβ
B(Ω), as defined above. We suppose

that suppP ⊂ Ω and we abbreviate the corresponding IPM distance by dβ,B. Given the
empirical distribution Pn, the GAN that we study can be expressed as

µ̂ ∈ argmin
µ∈P

dβ,B(µ, Pn) = argmin
µ∈P

sup
f∈Cβ

B(Ω)

Eµ[f ]− Pnf.

In this section, we generalize the results of Schreuder et al. (2020). In particular, we
derive new estimation rates for a GAN using a Hölder ball as a discriminating class, assuming
that the population distribution P is low-dimensional; like Schreuder et al. (2020), we
consider the noised and potentially contaminated setting. We have

Theorem 25 Suppose that P is a probability measure on R
D supported on a compact set

S and suppose we have n independent Xi ∼ P with empirical distribution Pn. Let ηi be

independent, centred random variables on R
D such that E

[
||ηi||2

]
≤ σ2. Suppose we observe

X̃i such that for at least (1−ε)n of the X̃i, we have X̃i = Xi+ηi; let the empirical distribution
of the X̃i be P̃n. Let P be a known set of distributions and define

µ̂ ∈ argmin
µ∈P

dβ,B(µ, P̃n).

Then if there is some C1, d such that N(S, ||·|| , δ) ≤ C1ε
−d, we have

E [dβ,B(µ̂,P)] ≤ inf
µ∈P

dβ,B(µ,P) +B(σ + 2ε) + CβB
√
log n

(
n−β

d ∨ n− 1

2

)

where C is a constant depending linearly on C1.

We note that the log n factor can be easily removed for all cases β 6= d
2 by paying slightly

in order to increase the constants; for the sake of simplicity, we do not bother with this
argument here. The proof of Theorem 25 is similar in spirit to that of Schreuder et al.
(2020), which in turn follows Liang (2018), with details in Appendix E. The key step is in
applying the bounds in Lemma 15 to the arguments of Liang (2018).

We compare our result to the corresponding theorem (Schreuder et al., 2020, Theorem
2). In that work, the authors considered a setting where there is a known intrinsic dimension
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d and the population distribution P = g#U
(
[0, 1]d

)
, the push-forward by an L-Lipschitz

function g of the uniform distribution on a d-dimensional hypercube; in addition, they take
P to be the set of push-forwards of U

(
[0, 1]d

)
by functions in some class F, all of whose

elements are L-Lipschitz. Their result, (Schreuder et al., 2020, Theorem 2), gives an upper
bound of

E [dβ,1(µ̂,P)] ≤ inf
µ∈P

dβ,1(µ,P) + L(σ + 2ε) + cL
√
d
(
n−β

d ∨ n− 1

2

)
. (4)

Note that our result is an improvement in two key respects. First, we do not treat the
intrinsic dimension d as known, nor do we force the dimension of the feature space to be
the same as the intrinsic dimension. Many of the state-of-the-art GAN architectures on
datasets such as ImageNet use a feature space of dimension 128 or 256 (Wu et al., 2019);

the best rate that the work of Schreuder et al. (2020) can give, then would be n− 1

128 . In our
setting, even if the feature space is complex, if the true distribution lies on a much lower
dimensional subspace, then it is the true, intrinsic dimension, that determines the rate of
estimation. Secondly, note that the upper bound in (4) depends on the Lipschitz constant
L; as the function classes used to determine the push-forwards are essentially all deep neural
networks in practice, and the Lipschitz constants of such functions are exponential in depth,
this can be a very pessimistic upper bound; our result, however, does not depend on this
Lipschitz constant, but rather on properties intrinsic to the probability distribution P. This
dependence is particularly notable in the noisy regime, where σ, ε do not vanish; the large
multiplicative factor of L in this case would then make the bound useless.

We conclude this section by considering the case most often used in practice: the Wasser-
stein GAN.

Corollary 26 Suppose we are in the setting of Theorem 25 and S is contained in a ball of
radius R for R ≥ 1

2 . Then,

E [W1(µ̂,P)] ≤ inf
µ∈P

W1(µ,P) + σ + 2Rε+ CR
√
log nn− 1

d .

The proof of the corollary is almost immediate from Theorem 25. With additional assump-
tions on the tails of the ηi, we can turn our expectation into a high probability statement.
In the special case with neither noise nor contamination, i.e. σ = ε = 0, we get that the
Wasserstein GAN converges in Wasserstein distance at a rate of n− 1

d , which we believe
explains in large part the recent empirical success in modern Wasserstein-GANs.
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Appendix A. Proofs from Section 2

Proof [Proof of Proposition 12] We apply the method from the classic paper (Kolmogorov
and Tikhomirov, 1993), following notation introduced there as applicable. For the sake of
simplicity, we assume that β is an integer; the generalization to β 6∈ N is analogous to that
in Kolmogorov and Tikhomirov (1993). Let ∆β = ε

2B and let x1, . . . , xs be a ∆-connected
∆ net on S. For 0 ≤ k ≤ β and 1 ≤ i ≤ s, define

γk(f) =

⌊∣∣∣∣Dkf(xi)
∣∣∣∣

εk

⌋
εk =

ε

∆k

where ||·|| is the norm on tensors induced by the ambient (Euclidean) metric and Dk is
the kth application of the covariant derivative. Let γ(f) =

(
γki (f)

)
i,k

be the matrix of all

γki (f) and let Uγ be the set of all f such that γ(f) = γ. Then the argument in the proof of
(Kolmogorov and Tikhomirov, 1993, Theorem XIV) applies mutatis mutandis and we note
that Uγ are 2ε neighborhoods in the Hölder norm. Thus it suffices to bound the number of
possible γ. As in Kolmogorov and Tikhomirov (1993), we note that the number of possible
values for γk1 is at most 2B

εk
. Given the row

(
γki
)
0≤k≤β

, there are at most (4e+2)β+1 values
for the next row. Thus the total number of possible γ is bounded by

(
(4e+ 2)β+1

)s β∏

k=1

2B

εk
= (4e+ 2)(β+1)s

β∏

k=1

2B

ε

( ε

2B

) k
β
= (4e+ 2)(β+1)s

(
2B

ε

)β
2

.

By definition of the covering number and the fact that S is path-connected, we may take

s = N(S,∆) = N

(
S,
( ε

2B

) 1

β

)
.

Taking logarithms and noting that log(4e+2) ≤ 3 concludes the proof of the upper bound.
The middle inequality is Theorem 3. For the lower bound, we again follow Kolmogorov

and Tikhomirov (1993). Define

ϕ(x) =

{
a
∏D

i=1

(
1− x2i

)β
2 ||x||∞ ≤ 1

0 otherwise

with a a constant to be set. Choose a 2∆-separated set x1, . . . , xss with ∆ =
(

ε
2B

) 1

β and
consider the set of functions

gσ =

s∑

i=1

σi∆
βϕ

(
x− xi

∆

)

where σi ∈ {±1} and σ varies over all possible sets of signs. The results of Kolmogorov and
Tikhomirov (1993) guarantee that the gσ form a 2ε-separated set in F if a is chosen such
that gσ ∈ F and there are 2s such combinations. By definition of packing numbers, we may
choose

s = D

(
F,
( ε

B

) 1

β

)
.
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This concludes the proof of the lower bound.

Proof [Proof of Proposition 9] We note first that the second statement follows from the
first by applying (b) and (c) to Proposition 8 to control the curvature and injectivity radius
in terms of the reach. Furthermore, the middle inequality in the last statement follows from
Theorem 3. Thus we prove the first two statements.

A volume argument yields the following control:

N
(
M, ||·||g , r

)
≤ volM

infp∈M volB ε
2
(p)

where B ε
2
(p) is the ball around p of radius ε

2 with respect to the metric g. Thus it suffices
to lower bound the volume of such a ball. Because ε < ι, we may apply the Bishop-Gromov
comparison theorem (Gray, 2004, Theorem 3.17) to get that

volBε(p) ≥
2π

d
2

Γ
(
d
2

)
∫ ε

0

(
sin
(
t
√
κ1
)

√
κ1

)d−1

dt = ωd

∫ ε

0

(
κ
− 1

2

1 sin (t
√
κ1)

)d−1

dt

where κ1 is an upper bound on the sectional curvature. We note that for t ≤ π
2
√
κ1
, we have

sin
(
t
√
κ1
)
≥ 2

π
t
√
κ1 and thus

volBε(p) ≥ ωd

∫ ε

0

(
2

π
t

)d−1

dt =
ωd

d

(
2

π

)d−1

εd.

The upper bound follows from control on the sectional curvature by τ , appearing in (Aamari
et al., 2019, Proposition A.1), which, in turn, is an easy consequence of applying the Gauss
formula to (a) of Proposition 8.

We lower bound the packing number through an analogous argument as the upper bound
for the covering number, this time with an upper bound on the volume of a ball of radius ε,
again from (Gray, 2004, Theorem 3.17), but this time using a lower bound on the sectional
curvature. In particular, we have for ε < ι,

volBε(p) ≤ ωd

∫ ε

0

(
sin
(
t
√
κ2
)

√
κ2

)d−1

dt = ωd

∫ ε

0

(
sinh (t

√−κ2)√−κ2

)d−1

dt

where κ2 is a lower bound on the sectional curvature. Note that for t ≤ 1√−κ2
, we have

sinh (t
√−κ2)√−κ2

≤ cosh(2)t ≤ 4t.

Thus,

volBε(p) ≤ ωd

∫ ε

0
(4t)d−1dt =

ωd

d
4dεd.

The volume argument tells us that

N
(
M, ||·||g , r

)
≥ volM

supp∈M volBr(p)
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and the result follows.
If we wish to extend the range of ε, we pay with a constant exponential exponential in

d, reflecting the growth in volume of balls in negatively curved spaces. In particular, we
can apply the same argument and note that as sinh(x)

x
is increasing, we have

sinh (t
√−κ2)√−κ2

≤ sinh(ι
√−κ2)

ι
√−κ2

t ≤ eι
√−κ2

ι
√−κ2

t

for all t < ι. Thus for all ε < ι. We have:

N(M, ||·||g , ε) ≥
volM

ωd

dιd(−κ2)
d
2 e−dι

√−κ2ε−d

as desired.

Proof [Proof of Theorem 10] Let BR
D

ε (p) be the set of points in R
D with Euclidean distance

to p less than ε and let BM
ε (p) be the set of points in M with intrinsic (geodesic) distance

to p less than ε. Then, if ε ≤ 2τ , combining the fact that straight lines are geodesics in R
D

and (d) from Proposition 8 gives

BM
ε (p) ⊂ BR

D

ε (p) ∩M ⊂ BM
2τ arcsin( ε

2τ )
(p)

In particular, this implies

N
(
M,dM , 2τ arcsin

( ε

2τ

))
≤ N(M, ||·|| , ε) ≤ N(M,dM , ε)

D
(
M,dM , 2τ arcsin

( ε

2τ

))
≤ D(M, ||·|| , ε) ≤ D(M,dM , ε)

whenever ε ≤ 2τ . Thus, applying Proposition 9, we have

N(M, ||·|| , ε) ≤ N(M,dM , ε) ≤ volM

ωd

d
(π
2

)d
ε−d

and similarly,

D(M, ||·|| , 2ε) ≥ D
(
M,dM , 2τ arcsin

( ε
τ

))
≥ volM

ωd

d16−dε−d

using the fact that arcsin(x) ≤ 2x for x ≥ 0. The result follows.

Appendix B. Proof of Proposition 21

As stated in the body, we bound the T2 constant c2 by the log-Sobolev constant of the same
measure. We thus first define a log-Sobolev inequality:

Definition 27 Let µ be a measure on M . We say that µ satisfies a log-Sobolev inequality
with constant cLS if for all real valued, differentiable functions with mean 0 f : M → R, we
have: ∫

M

f2 log(f2)dµ ≤ cLS

∫

M

||∇f ||2 dµ
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where ∇ is the Levi-Civita connection and ||·|| is the norm with respect to the Riemannian
metric.

While in the main body we cited Otto and Villani (2000) for the Otto-Villani theorem, we
actually need a slight strengthening of this result. For technical reasons, Otto and Villani
(2000) required the density of µ to have two derivatives; more recent works have eliminated
that assumption. We have:

Theorem 28 (Theorem 5.2 from Gigli and Ledoux (2013)) Suppose that µ satisfies
the log-Sobolev inequality with constant cLS. Then µ satisfies the T2 inequality with constant
c2 ≤ 2cLS.

We now recall the key estimate from Wang (1997a) that controls the log-Sobolev constant
for the uniform measure on a compact manifold M2:

Theorem 29 (Theorem 3.3 from Wang (1997a)) Let M be a compact, d-dimensional
manifold with diameter ∆. Suppose that RicM � −K for some K ∈ R. Let µ be the uniform
measure on M (i.e., the volume measure normalized so that µ(M) = 1). Then µ satisfies a
log-Sobolev inequality with

cLS ≤
(
d+ 2

d

)d e2K(d+1)∆2 − 1

K
e1+d∆2K+ .

We are now ready to complete the proof.
Proof [Proof of Proposition 21] By the Holly-Stroock perturbation theorem (Holley and
Stroock, 1986), we know that if µ is the uniform measure on M normalized such that
µ(M) = 1, and µ satisfies a log-Sobolev inequality with constant c′LS then P satisfies a log-
Sobolev constant with cLS ≤ W

w
c′LS . By (a) from Proposition 8, we have that the sectional

curvatures of M are all bounded below by − 2
τ2

and thus RicM � −(d − 1) 2
τ2

(for the
relationship between the Ricci tensor and the sectional curvatures, see Lee (2018)). Noting
that d+2

d
≤ 3 and plugging into the results of Theorem 29, we get that

c′LS ≤ 2τ2

d− 1
exp

(
d log 3 +

3∆2d2

τ2

)
.

Combining this with the Holly-Stroock result and Theorem 28 concludes the proof.

Appendix C. Proof of Theorem 22

We first prove the following lemma on the concentration of W1(Pn, P
′
n).

Lemma 30 Suppose that P is a probability measure on (T, d) and that it satisfies a T2(c2)-
inequality. Let X1, . . . , Xn, X

′
1, . . . , X

′
n denote independent samples with corresponding em-

pirical distributions Pn, P
′
n. Then the following inequalities hold:

P
(∣∣W1(Pn, P

′
n)− E

[
W1(Pn, P

′
n)
]∣∣ ≥ t

)
≤ 2e

−nt2

8c2

P
(∣∣W1(Pn, P

′
n)− E

[
W1(Pn, P

′
n)
]∣∣ ≤ t

)
≤ 2e

−nt2

8c2 .

2. We remark that some works, including Wang (1997a), define the log-Sobolev constant to be the inverse
of our cLS . We translate their theorem into our terms by taking the reciprocol.
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Proof We note that by Gozlan et al. (2009), in particular the form of the main theorem
stated in (van Handel, 2014, Theorem 4.31), it suffices to show that, as a function of the
data, W1(Pn, P

′
n) is 2√

n
-Lipschitz. Note that by symmetry, it suffices to show a one-sided

inequality. By the triangle inequality,

W1(Pn, P
′
n) ≤ W1(Pn, µ) +W1(P

′
n, µ)

for any measure µ and thus it suffices to show that W1(Pn, µ) is 1√
n
-Lipschitz in the Xi.

By (van Handel, 2014, Lemma 4.34), there exists a bijection between the set of couplings
between Pn and µ and the set of ordered n-tuples of measures µ1, . . . , µn such that µ =
1
n

∑
i µi. Thus we see that if X, X̃ are two data sets, then

W1(Pn, µ)−W1(P̃n, µ) ≤ sup
1

n

∑n
i=1 µi=µ

[
1

n

n∑

i=1

∫ (
d(Xi, y)− d(X̃i, y)

)
dµi(y)

]

≤ sup
1

n

∑n
i=1 µi=µ

[
1

n

n∑

i=1

∫
d(Xi, X̃i)dµi(y)

]

=
1

n

∑
d(Xi, X̃i)

≤ 1

n

√√√√n
n∑

i=1

d(Xi, X̃i)2 ≤
1√
n
d⊗n(X, X̃).

The identical argument applies to WM
1 .

We are now ready to show that d̂n is a good estimator of d.

Proposition 31 Suppose we are in the situation of Theorem 22 and we have

n ≥ max

(
d volM

4wωd

( ι
8

)−d

,

(
8c2
∆2

log
1

ρ

) d
2d−5

)

α ≥ max

(
log

d
2γ

(
nωd∆

d

d volM

)
, (Cw)

1

γ

)

Then with probability at least 1− 4ρ, we have

d

1 + 3γ
≤ d̂n ≤ (1 + 3γ)d.

Proof By Proposition 19 and Lemma 30, we have that with probability at least 1− e
−nt2

8c2 ,
we have

WM
1 (Pn, P

′
n) ≤ C

(
volM

nωd

) 1

d

√
log

(
nωd

d volM

)
+ t.
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By Proposition 18 and Lemma 30 and the left hand side of Proposition 19, we have that

with probability at least 1− e
−αnt2

8c2 ,

WM
1 (Pαn, P

′
αn) ≥

1

32

(
d volM

4wωd

) 1

d

(αn)−
1

d − t

all under the assumption that

n >
d volM

4wωd

( ι
8

)−d

.

Setting t = ∆(αn)−
5

4d , we see that, as α > 1, with probability at least 1 − 2e
−nt2

8c2 , we
simultaneously have

WM
1 (Pn, P

′
n) ≤ C

(
volM

nωd

) 1

d

√
log

(
nωd∆d

d volM

)

WM
1 (Pαn, P

′
αn) ≥

1

64

(
d volM

4wωd

) 1

d

(αn)−
1

d .

Thus, in particular,

WM
1 (Pn, P

′
n)

WM
1 (Pαn, P ′

αn)
≤

C
(
volM
nωd

) 1

d
√

log
(

nωd

d volM

)

1
64

(
d volM
4wωd

) 1

d
(αn)−

1

d

≤ Cw
1

dα
1

d

√
log

(
nωd∆d

d volM

)

Thus we see that

d̂n =
logα

log W1(Pn,P ′

n)
W1(Pαn,P ′

αn)

≥ logα

1
d
logα++1

d
logw + 1

2 log log
(

nωd∆d

d volM

)

=
d

1 +
log(Cw)+ d

2
log log

(

nωd∆
d

d volM

)

logα

Now, if

n ≥ max

(
d volM

4wωd

(τ
8

)−d

,

(
8c22
∆2

log
1

ρ

) d
2d−5

)

α ≥ max

(
log

d
2γ

(
nωd∆

d

d volM

)
, (Cw)

1

γ

)

Then with probability at least 1− 2ρ,

d̂n ≥ d

1 + 2γ
.
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An identical proof holds for the other side of the bound and thus the result holds.

We are now ready to prove the main theorem using Proposition 31 and Proposition 24.

Proof [Proof of Theorem 22] Note first that

w

(
ιλ2

8

)
≥ wωd

d

(π
2

)−d
(
ιλ2

8

)d

(5)

N

(
M,dM ,

ιλ2

8

)
≤ volM

ωd

d
(π
2

)d( ιλ2

8

)−d

(6)

by Proposition 9. Setting λ = 1
2 , we note that by Proposition 24, if the total number of

samples

2(α+ 1)n ≥
(
wωd

d

(π
2

)−d
(
ιλ2

8

)d
)−1

log

(
volM

ρωd

d
( τ

16π

)−d
)

then with probability at least 1− ρ, we have

1

2
dM (p, q) ≤ dG(p, q) ≤

3

2
dM (p, q)

for all p, q ∈ M . Thus by the proof of Proposition 31 above,

WM
1 (Pn, P

′
n)

WM
1 (Pαn, P ′

αn)
≤ 1 + λ

1− λ
Cw

1

dα
1

d

√
log

(
nωd∆d

d volM

)
.

Thus as long as α ≥
(
1+λ
1−λ

) d
γ
= 3

d
γ , then we have with probability at least 1− 3ρ,

d̃n ≥ d

1 + 3γ
.

A similar computation holds for the other bound.

To prove the result for dn, note that if we replace the ιs by τ in (5) and (6), then the
result still holds by the second part of Proposition 9. Then the identical arguments apply,
mutatis mutandis, after skipping the step of approximating dM by dG.

Appendix D. Metric Estimation Proofs

In order to state our result, we need to consider the minimal amount of probability mass
that P puts on any intrinsic ball of a certain radius in M . To formalize this notion, we
define, for δ > 0,

wB(δ) = inf
p∈M

P
(
BM

δ (p)
)
.

We need a few lemmata:
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Lemma 32 Fix ε > 0 and a set of xi ∈ M and form G(x, ε). If the set of xi form a δ-net
for M such that δ ≤ ε

4 , then for all x, y ∈ M ,

dG(x, y) ≤
(
1 +

4δ

ε

)
dM (x, y).

Proof This is a combination of (Bernstein et al., 2000, Proposition 1) and (Bernstein et al.,
2000, Theorem 2).

Lemma 33 Let 0 < λ < 1 and let x, y ∈ M such that ||x− y|| ≤ 2τλ(1− λ). Then

(1− λ)dM (x, y) ≤ ||x− y|| ≤ dM (x, y).

Proof Note that 2τλ(1 − λ) ≤ τ
2 so we are in the situation of Proposition 8 (e). Let

` = dM (x, y). Rearranging the bound in Proposition 8 (e) yields

`

(
1− `

2τ

)
≤ ||x− y|| ≤ `.

Thus it suffices to show that
`

2τ
≤ λ.

Again applying Proposition 8, we see that

` ≤ τ

(
1−

√
1− 2 ||x− y||

τ

)
.

Rearranging and plugging in ||x− y|| ≤ 2τλ(1− λ) concludes the proof.

The next lemma is a variant of (Niyogi et al., 2008, Lemma 5.1).

Lemma 34 Let wB(δ) be as in Proposition 24 and let N(M, δ) be the covering number of

M at scale δ. If we sample n ≥ w
(
δ
2

)−1
log

N(M, δ
2)

ρ
points independently from P, then with

probability at least 1− ρ, the points form a δ-net of M .

Proof Let y1, . . . , yN be a minimal δ
2 -net of M . For each yi the probability that xi is not

in B δ
2

(yi) is bounded by 1− wB

(
δ
2

)
by definition. By independence, we have

P

(
∀i xj 6∈ B δ

2

(yi)
)
≤
(
1−)Bw

(
δ

2

))n

≤ e−nwB( δ
2).

By a union bound, we have

P

(
∃i such that ∀j xj 6∈ B δ

2

(yi)
)
≤ N

(
M,

δ

2

)
e−nwB( δ

2). (7)

If n satisfies the bound in the statement then the right hand side (7) is controlled by ρ.

Note that for any measure P, a simple union bound tells us that wB(δ) ≤ N (M, δ)−1 and
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that equality, up to a constant, is achieved for the uniform measure. This is within a log
factor of the obvious lower bound given by the covering number on the number of points
required to have a δ-net on M .

With these lemmata, we are ready to conclude the proof:
Proof [Proof of Proposition 24] Let ε = τλ ≤ 2τλ(1− λ) by λ ≤ 1

2 . Let δ = λε
4 = τλ2

4 . By
Lemma 34, with high probability, the xi form a δ-net on M ; thus for the rest of the proof,
we fix a set of xi such that this condition holds. Now we may apply Lemma 32 to yield the
upper bound dG(x, y) ≤ (1 + λ)dM (x, y).

For the lower bound, for any points p, q ∈ M there are points xj0 , xjm such that
dM (p, xj0) ≤ δ and dM (q, xjm) ≤ δ by the fact that the xi form a δ-net. Let xj1 , . . . , xjm−1

be a geodesic in G between xj0 and xjm . By Lemma 33 and the fact that edges only exist
for small weights, we have

dM (p, q) ≤ dM (p, xj0) + dM (xjm , q) +

m∑

i=1

dM
(
xji−1

, xji
)

≤ (1− λ)−1

(
||p− xj0 ||+ ||xjm − q||+

m∑

i=1

∣∣∣∣xji−1
− xji

∣∣∣∣
)

= (1− λ)−1dG(p, q).

Rearranging concludes the proof.

Appendix E. Miscellany

Proof [Proof of Lemma 15] By symmetrization and chaining, we have

E

[
sup
f∈F

1

n

n∑

i=1

f(Xi)− f(X ′
i)

]
≤ 2E

[
sup
f∈F

1

n

n∑

i=1

εif(Xi)

]
≤ 2 inf

δ>0

[
8δ +

8
√
2√
n

∫ B

δ

√
logN(F, ||·||∞ , ε)dε

]

≤ 2B inf
δ>0

[
8δ +

8
√
2√
n

∫ 1

δ

√
logN

(
F, ||·||∞ ,

ε

2B

)
dε

]

≤ 2B inf
δ>0

[
8δ +

8
√
2√
n

∫ 1

δ

√
3β2 log

(
B

ε

)
N(S, ||·|| , ε)dε

]

where the last step follows from Proposition 12. The first statement follows from noting

that
√
log 1

ε
is decreasing in ε, and thus allowing it to be pulled from the integral. If β > d

2 ,

the second statement follows from plugging in δ = 0 and recovering a rate of n− 1

2 . If β < d
2 ,

then the second statement follows from plugging in δ = n−β
d .

Proof [Proof of Proposition 18] We follow the proof of (Weed et al., 2019, Proposition 6)
and use their notation. In particular, let

Nε

(
P,

1

2

)
= inf

{
N(S, dM , ε)|S ⊂ M and P(S) ≥ 1

2

}
.
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Applying a volume argument in the identical fashion to Proposition 9, but lower bounding
the probability of a ball of radius ε by w multiplied by the volume of said small ball, we
get that

Nε

(
P,

1

2

)
≥ volM

2wωd

d8−dε−d

if ε ≤ τ . Let

ε =

(
volM

4wωd

d8−d

) 1

d

n− 1

d

and assume that

n >
volM

4wωd

d8−d (τ)−d

Let
S =

⋃

1≤i≤n

BM
ε
2
(Xi).

Then because

Nε

(
P,

1

2

)
> n

by our choice of ε, we have that P(S) < 1
2 . Thus if X ∼ P then we have with probability

at least 1
2 , dM (X, {X1, . . . , Xn}) ≥ ε

2 . Thus the Wasserstein distance between P and Pn is
at least ε

4 . The first result follows. We may apply the identical argument, instead using in-
trinsic covering numbers and the bound in Proposition 9 to recover the second statement.

Proof [Proof of Proposition 19] By Kantorovich-Rubenstein duality and Jensen’s inequality,
we have

E
[
WM

1 (Pn,P)
]
≤ E

[
sup
f∈F

1

n

n∑

i=1

f(Xi)− E [f(Xi)]

]
≤ E

[
sup
f∈F

1

n

n∑

i=1

f(Xi)− f(X ′
i)

]
= E

[
WM

1 (Pn, P
′
n)
]

where F is the class of functions on M that are 1-Lipschitz with respect to dM . Note
that, by translation invariance, we may take the radius of the Hölder ball F to be ∆. By
symmetrization and chaining,

E

[
sup
f∈F

1

n

n∑

i=1

f(Xi)− f(X ′
i)

]
≤ 2E

[
sup
f∈F

1

n

n∑

i=1

εif(Xi)

]
≤ 2 inf

δ>0

[
8δ +

8
√
2√
n

∫ ∆

δ

√
logN(F, ||·||∞ , ε)dε

]

≤ inf
δ>0

[
8δ +

8
√
2√
n

∫ ∆

δ

√
3 log

(
2∆

ε

)
d volM

ωd

(π
2

)d(2

ε

) d
2

dε

]

≤ 2∆ inf
δ>0

[
8δ +

8
√
6√
n

√
d volM

ωd

(π
2

) d
2

√
log

1

δ

∫ 1

δ

(
∆

ε

)− d
2

dε

]

where the last step comes from Corollary 14 and noting that after recentering, F contains
functions f such that ||f ||L∞(M) ≤ ∆ and ||∇f ||L∞(M) ≤ 1. Setting

δ =
π

2

(
d volM

nωd∆d

) 1

d
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gives

E
[
WM

1 (Pn, P
′
n)
]
≤ C

(
volM

nωd

) 1

d

√
log

(
nωd∆d

d volM

)

for some C ≤ 48, which concludes the proof.

Proof [Proof of Theorem 25] By bounding the supremum of sums by the sum of suprema
and the construction of µ̂,

dβ,B(µ̂,P) ≤ dβ,B(µ̂, P̃n) + dβ,B(P̃n,P) ≤ inf
µ∈P

dβ,B(µ, P̃n) + dβ,B(P̃n,P)

≤ inf
µ∈P

dβ,B(µ,P) + 2dβ,B(P̃n,P)

≤ inf
µ∈P

dβ,B(µ,P) + 2dβ,B(P̃n, Pn) + 2dβ,B(Pn,P).

Taking expectations and applying Lemma 15 bounds the last term. The middle term can
be bounded as follows:

dβ,B(P̃n, Pn) = sup
f∈Cβ

B(Ω)

1

n

n∑

i=1

f(Xi)− f(X̃i) ≤ sup
f∈Cβ

B(Ω)

1

n

n∑

i=1

f(Xi)− f(Xi + ηi) + 2Bε

≤ sup
f∈Cβ

B(Ω)

1

n

n∑

i=1

B ||ηi||+ 2Bε

where the first inequality follows from the fact that if f ∈ Cβ
B(Ω) then ||f ||∞ ≤ B and

the contamination is at most ε. The second inequality follows from the fact that f is B-
Lipschitz. Taking expectations and applying Jensen’s inequality concludes the proof.

Proof [Proof of Corollary 26] Applying Kantorovich-Rubenstein duality, the proof follows
immediately from that of Theorem 25 by setting β = 1, with the caveat that we need to
bound B and the Lipschitz constant separately. The Lipschitz constant is bounded by 1 by
Kantorovich duality. The class is translation invariant, and so |||f ||∞ − E[f ]| ≤ 2R by the
fact that the Euclidean diameter of S is bounded by 2R. The result follows.

Lemma 35 Let X be distributed uniformly on a centred (`2) ball in R
d of radius R. Then,

E

[
log

R

||X||

]
=

1

d
.

Proof Note that by scaling it suffices to prove the case R = 1. By changing to polar
coordinates,

E

[
log

1

||X||

]
=

∫
S1

∫ 1
0

(
log 1

r

)
rd−1drdθ

∫
S1

∫ 1
0 rd−1drdθ

= −d

∫ 1

0
(log r) rd−1dr.
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Substituting u = log r and applying integration by parts then gives

−d

∫ 1

0
(log r) rd−1dr =

[
rd

d
− rd log r

] ∣∣∣∣
r=1

r=0

=
1

d

as desired.
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& convergence rates for gans under besov ipm losses. arXiv preprint arXiv:1902.03511,
2019.

Ramon van Handel. Probability in high dimension. Technical report, PRINCETON UNIV
NJ, 2014.

Cédric Villani. Optimal transport: old and new, volume 338. Springer Science & Business
Media, 2008.

Feng-Yu Wang. On estimation of the logarithmic sobolev constant and gradient estimates
of heat semigroups. Probability theory and related fields, 108(1):87–101, 1997a.

Feng-Yu Wang. Logarithmic sobolev inequalities on noncompact riemannian manifolds.
Probability theory and related fields, 109(3):417–424, 1997b.

Jonathan Weed, Francis Bach, et al. Sharp asymptotic and finite-sample rates of conver-
gence of empirical measures in wasserstein distance. Bernoulli, 25(4A):2620–2648, 2019.

Yan Wu, Jeff Donahue, David Balduzzi, Karen Simonyan, and Timothy Lillicrap. Logan:
Latent optimisation for generative adversarial networks. arXiv preprint arXiv:1912.00953,
2019.

37


	Introduction
	Related Work

	Preliminaries
	Geometry
	Hölder Classes and their Complexity

	Dimension Estimation
	Application of Techniques to GANs
	Proofs from Section 2
	Proof of Proposition 21
	Proof of Theorem 22
	Metric Estimation Proofs
	Miscellany

