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Abstract

Statistical divergences (SDs), which quantify the dissimilarity between probability distri-
butions, are a basic constituent of statistical inference and machine learning. A modern
method for estimating those divergences relies on parametrizing an empirical variational
form by a neural network (NN) and optimizing over parameter space. Such neural es-
timators are abundantly used in practice, but corresponding performance guarantees are
partial and call for further exploration. We establish non-asymptotic absolute error bounds
for a neural estimator realized by a shallow NN, focusing on four popular f-divergences—
Kullback-Leibler, chi-squared, squared Hellinger, and total variation. Our analysis relies on
non-asymptotic function approximation theorems and tools from empirical process theory
to bound the two sources of error involved: function approximation and empirical estima-
tion. The bounds characterize the effective error in terms of NN size and the number of
samples, and reveal scaling rates that ensure consistency. For compactly supported distri-
butions, we further show that neural estimators of the first three divergences above with
appropriate NN growth-rate are minimax rate-optimal, achieving the parametric conver-
gence rate.

Keywords: Approximation theory, minimax estimation, empirical process theory, f-
divergence, neural estimation, neural network, statistical divergence, variational form.

1. Introduction

Statistical divergences (SDs) measure the discrepancy between probability distributions. A
variety of inference tasks, from generative modeling (Kingma and Welling, 2014; Nowozin
et al., 2016; Arjovsky et al., 2017; Tolstikhin et al., 2018; Goldfeld et al., 2020a; Nietert
et al., 2021) to homogeneity/goodness-of-fit /independence testing (Kac et al., 1955; Zhang
et al., 2018b; Hallin et al., 2021) can be posed as measuring or optimizing a SD between
the data distribution and the model. Popular SDs include f-divergences (Ali and Silvey,
1966; Csiszar, 1967), integral probability metrics (IPMs) (Zolotarev, 1983; Miiller, 1997),
and Wasserstein distances (Villani, 2008; Santambrogio, 2015). A common formulation that
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captures many of these is!

Dh7.7:(M7 V) = sup Eﬂ[f] - EV[hO f]? (11)
feF

where F is a function class of ‘discriminators’ and h is sometimes called a ‘measurement
function’ (cf., e.g., Arora et al., 2017). This variational form is at the core of various
learning algorithms implemented based on SDs (Nowozin et al., 2016; Arjovsky et al., 2017),
and has been recently leveraged for estimating SDs from samples—a technique termed
neural estimation. While neural estimators (NEs) are popular in practice due to their
computational scalability, a theoretic account of corresponding performance guarantees is
missing. To address the deficit, this work provides a through study of consistency and
non-asymptotic absolute error bounds for NEs realized by shallow neural networks (NNs).

1.1 Neural Estimation of Statistical Divergences

Typical applications to machine learning, e.g., generative adversarial networks (GANs)
(Goodfellow et al., 2014; Arjovsky et al., 2017) or anomaly detection (Péczos et al., 2011;
Zenati et al., 2018; Schlegl et al., 2019), favor estimators whose computation scales well with
number of samples and is compatible with backpropagation and minibatch-based optimiza-
tion. Neural estimation is a modern technique that adheres to these requirements (Arora
et al., 2017; Zhang et al., 2018a; Belghazi et al., 2018; Mroueh et al., 2021). Neural estima-
tors (NEs) parameterize the discriminator class F in (1.1) by a NN, approximate expecta-
tions by sample means, and then optimize the resulting empirical objective over parameter
space. Denoting the samples from p and v by X" := (X1,...,X,) and Y := (Y1,...,Y,),
respectively, the said NE is

D1 g (X", Y™) i= sup + 3 [g(X:) — hog(¥7)]. (1.2)

where G is the class of functions realized by a NN.

The performance of a NE is dictated by the quality of the NN approximation to
the original function class F from (1.1), and the sample size needed to accurately es-
timate the parametrized form Dj g(i,v). The former is measured by the approzima-
tion error, ‘th(u, v) — Dpg(p,v)|, whereas the latter by the empirical estimation error,

|Dh7g(X”,Y") — Dng(p, 1/)| While approximation needs G to be rich and expressive, ef-
ficient estimation relies on controlling its complexity. Past works on NEs provide only a
partial account of estimation performance. Belghazi et al. (2018) proved consistency of
mutual information neural estimation, which boils down to estimating KL divergence, but
do not quantify approximation errors. Non-asymptotic sample complexity bounds for the
parameterized form, i.e., when F in (1.1) is the NN class G to begin with, were derived in
(Arora et al., 2017; Zhang et al., 2018a). These objects are known as NN distances and, by
definition, overlook the approximation error. Also related is (Nguyen et al., 2010), where
KL divergence estimation rates are provided under the assumption that the approximating
class is large enough to contain an optimizer of (1.1). This assumption is often violated in

1. Specifically, (1.1) accounts for f-divergences, IPMs and the 1-Wasserstein distance.
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practice, e.g., when using a NN class as done herein, or a reproducing kernel Hilbert space,
as considered in (Nguyen et al., 2010).

Quantification of the approximation error, alongside the empirical estimation error, is
pivotal for a complete account of neural estimation performance. This work thus studies
non-asymptotic effective (approximation plus empirical estimation) error bounds for NEs
realized by a k-neuron shallow NN and n samples from each distribution. Results are
specialized to four popular f-divergences: Kullback-Leibler (KL), chi-squared (x?), squared
Hellinger (H?) distance, and total variation (TV) distance.

1.2 Contributions

This work extends our earlier conference paper (Sreekumar et al., 2021), where the first
non-asymptotic effective error bounds for NEs of f-divergences was derived. Consistency
results for appropriate scaling rates of the NN and the sample sizes were also provided.
However, the analysis therein resulted in sub-optimal error rates, only considered compactly
supported distributions, and was not applicable for TV distance estimation. These aspects
are key for a complete account of the neural estimation performance, and serve to motivate
the present work, which closes all the aforementioned gaps.

We first consider compactly supported distributions and show that the effective error of
a NE based on k neurons and n samples for the KL divergence, y? divergence, or the H?
distance scales as

0 (k‘1/2 n n_1/2> : (1.3)

Our bound is sharp in the sense that by scaling k proportional to n, NEs achieve minimax
optimality, converging at the parametric n~1/2 rate. The results assume a spectral norm
bound on the optimal potential (i.e., maximizer of (1.1)) of the SD, which, in particular, is
satisfied when the distributions have sufficiently smooth densities . Notably, this condition
suffices to avoid the so-called curse of dimensionality (CoD) and attain parametric rates
that do not degrade exponentially with dimension.?

The derivation of (1.3) relies on two key technical results that separately account for the
approximation and estimation errors. The first is a sup-norm O(kil/ 2) universal approxi-
mation bound for shallow NNs (Klusowski and Barron, 2018), and the second is a O(n~1/2)
bound on the empirical estimation error of the parametrized form. Derivation of the latter
result leverages tools from empirical process theory and bounds the entropy integral (Van
Der Vaart and Wellner, 1996) associated with the NN class. To that end, we bound the
covering number of the NN class by noting that it can be represented as (a subset of) the
symmetric convex hull (Van Der Vaart and Wellner, 1996)) of a composition of a monotone
function with a VC subgraph class.

Equipped with these results, we treat neural estimation of the KL and 2 divergences,
and the H2 and TV distances. We establish consistency and obtain (1.3) as a finite-sample
absolute-error bound by combining the approximation and empirical estimation bounds and
identifying the appropriate scaling of the NN width k£ and parameter norms with the sample
size n for each f-divergence. Our analysis results in the parametric absolute-error conver-
gence rate for the NEs of KL divergence, x? divergence, and H? distance. We also show

2. A similar behavior was observed in (Kandasamy et al., 2015) for classic f-divergence estimators between
densities with high (Ho6lder) smoothness.
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an Q(n~/2) lower bound on the minimax absolute error risk for KL divergence estimation
problem by reducing it to differential entropy estimation and using the lower bound from
Goldfeld et al. (2020b) for the latter problem. This establishes minimax optimality of KL
divergence NE, with similar claims holding for NEs of x? divergence and H? distance. Our
method also accounts for the mutual information neural estimator (MINE) (Belghazi et al.,
2018), and provides the first non-asymptotic effective error bound and minimax optimality
claim for it. Different from these, the TV distance NE requires a modified approach because
the spectral norm of the optimal potential is infinite. To circumvent the issue, we apply
Gaussian smoothing to this potential, and control the approximation error as the smoothing
parameters shrinks with the NN size k. This results in an approximation-estimation error
bound that depends on dimension, i.e., the CoD applies in this case.

We then extend our results to distributions with unbounded support. To that end, we
exploit the fact that our approximation error bound depends on the support of the target
function only via its spectral norm. Thus, bounds on the effective error in the unbounded
case are obtained by quantifying the spectral norm of the optimal potential inside a ball and
growing its radius appropriately with k. The resulting bound depends on the scaling of the
radius and the tail decay of the underlying distributions (as quantified by the Orlicz norm
of the densities). The results are specialized to the aforementioned divergences, focusing on
Gaussian and sub-Gaussian distributions. We note that our analysis applies to distributions
whose densities need not be bounded away from zero (see also, Berrett et al., 2019; Berrett
and Samworth, 2019)—an assumption that is often imposed for f-divergence estimation.

1.3 Related Work

Many non-parametric estimators of SDs are available in the literature (Wang et al., 2005;
Perez-Cruz, 2008; Sriperumbudur et al., 2012; Krishnamurthy et al., 2014; Singh and Péczos,
2014a,b; Kandasamy et al., 2015; Singh and Pd6czos, 2016; Noshad et al., 2017; Moon et al.,
2018; Wisler et al., 2018; Berrett et al., 2019; Berrett and Samworth, 2019; Liang, 2019;
Han et al., 2020). These estimators typically rely on classic methods (or their variants) such
as plug-in, kernel density estimation (KDE) or k-nearest neighbors (kNN) techniques, and
are known to achieve optimal estimation error rates for specific SDs, subject to smoothness
and/or regularity conditions on the densities (see Remark 21). However, kernel-based meth-
ods usually require at least one of the following to achieve optimal rates: (i) boundary bias
correction mechanism such as the usage of a mirror image kernel which assumes knowledge
of the boundaries of the support of the distributions (cf., e.g., Singh and Pdczos, 2014a,b);
(ii) assumptions ensuring smooth behaviour of densities at the boundaries (cf., e.g., Moon
et al., 2018; Han et al., 2020). As will be evident later, smoothness assumptions imposed
by the aforementioned spectral norm condition are sufficient for (1.3) to hold for the NE.
Thus, knowledge of the support of distributions or boundary bias correction is not needed.

Focussing on NEs, the tradeoffs between approximation and estimation errors was pre-
viously studied for non-parametric regression using NNs (cf., e.g., Barron, 1994; Bach,
2017; Suzuki, 2019). The goal there is to fit the best NN proxy to an (unknown) target
function based on data generated from it by minimizing a prescribed loss function. As-
suming that the target function satisfies certain smoothness or spectral norm constraints,
the approximation-estimation tradeoff in such problems has been analyzed for different loss
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functions. In particular, Barron (1994) derived upper bounds on the minimax mean squared
error rate for shallow NN models under a spectral norm condition on the Fourier transform
of the target function. Density estimation under general loss functions was considered in
(Yang and Barron, 1999), where minimax rate bounds in terms of covering/packing entropy
were established. In (Suzuki, 2019), the minimax rate for non-parametric regression using
deep NNs (DNNs) when the target function is Besov was determined. More recently, (Uppal
et al., 2019) established the minimax rate for density estimation under a so-called Besov
IPM loss.

1.4 Organization

The paper is organized as follows. Section 2 provides background and preliminary defini-
tions. Technical results characterizing the approximation error and empirical estimation
error are stated in Section 3. In Section 4, we apply these results to obtain upper bounds
on the neural estimation error of the aforementioned f-divergences. Corresponding error
bounds for distributions with unbounded support are the topic of Section 5. Section 6
provides concluding remarks and discusses future research directions. Proofs are deferred
to appendices.

2. Background and Definitions
2.1 Notation

Let |-|| denote the Euclidean norm on R? and z -y designate the inner product. The £™ ball
of radius r > 0 in R? centered at 0 is B1'(r); in particular, the Euclidean ball is designated
as By(r). We use R := RU {—00, 00} for the extended reals. For 1 < r < oo, the L" space
over X C R? with respect to (w.r.t.) the measure u is denoted by L"(X,p), with || - ||,
representing the norm. When g is the Lebesgue measure A, we use the shorthand L"(X)
with norm || - ||, x, or even L" and || - |, when X is clear from the context. For r = oo,
we use || - [0, and || - [|oo & for the essential supremum norm and the standard sup-norm,
respectively. Slightly abusing notation, for X C R%, we set || X := sup,cy [|7]|.-

The probability space on which all random variables are defined is denoted by (€2, .4, P)
(assumed to be sufficiently rich), with E designating the corresponding expectation. The
class of Borel probability measures on X C R? is denoted by P(X). To stress that the
expectation of f is taken w.r.t. p € P(X), we write E,[f] := [ fdu. For u,v € P(X)
with p < v, i.e., u is absolutely continuous w.r.t. v, we use 42 for the Radon-Nikodym

dv
derivative of u w.r.t. v. For n € N, u®" denotes the n-fold product measure of .
We assume that all functions are Borel measurable. For a multi-index oo = (o, -+ , ) €
Z%o’ the partial derivative operator of order |all; := Z?Zl a; is designated by D% :=
91 0%

9otz " 9vag, For an open set U C R4 and an integer m > 0, the class of functions such
that all partial derivatives of order m exist and are continuous on U are denoted by C™(U).
In particular, C(d) := C°(U) and C®(U) denotes the class of continuous functions and
infinitely differentiable functions. For b > 0 and an integer m > 0, C"(U) := {f € C™(U) :
maXa; (o, <m 1D flloo g < b} denotes the subclass of C™(U) with partial derivatives of order
up to m uniformly bounded by b. The restriction of f : R? — R to a subset X C R? is
denoted by f|x. The Fourier transform of f € L'(X) is denoted by F[f]. For a function
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class F and a function g, go F :={go f: f € F} and |go F|:={|go f|: f € F}, where o
denotes function composition (domains assumed to be compatible for composition).

We denote universal constants by ¢ (or ¢1, c2, etc.) while constants that depend on
a parameter x are denoted by c,. The values of ¢ and c, may change between different
instances even within the same line of an equation. We use the shorthand a <, b for
a < ¢zb for some ¢; > 0 (a < b means a < cb for a universal constant ¢ > 0); similarly,
a =, b stands for a = cyb. We also employ standard asymptotic notations such as O, Q, O,
etc., where the tilde designates hidden logarithmic factors. For a,b € R, a Vb := max{a, b}
and a A b := min{a, b}. We proceed with preliminary definitions and technical background.

2.2 Statistical Divergences

Let X C R%. A common variational formulation of a SD between u,v € P(X) is

Di (s v) = sup B, [f] — By [ o f], (2.1)
feF

where h : R — R, and F is a class of measurable functions f : R — R for which the last
expectation is finite. This formulation captures f-divergences, IPMs (for h(z) = z), as well
as the 1-Wasserstein distance (which is an IPM w.r.t. the 1-Lipschitz function class). We
next specialize the above variational form to the f-divergences for which we derive neural
estimation error bounds.

KL divergence: The KL divergence between u, v € P(X) is

E logd—“, n <L,
Dk (ullv) 22{ “{ d”}

0, otherwise.
A variational form for Dk (u||v) is obtained via Legendre-Fenchel duality, yielding:

Dt (ill) = sup_ Eu[f] — B, [ef — 1], (2.2)
[:X—=R

where the supremum is over all measurable functions such that the last expectation in (2.2)
is finite. This fits the framework of (2.1) with h(z) = hk (z) := e® — 1. When p < v, the
supremum in (2.2) is achieved by fk :=log .

x? divergence: The y? divergence between u,v € P(X) is

du 2
E((E-1) ] w<w

oo, otherwise.

X (ullv) ==
It admits the dual form:
X (ullv) = sup EL[f]—E, [f+ f2/4], (2.3)
f:X—=R

where the supremum is over all measurable functions such that the last expectation in (2.3)
is finite. This dual form corresponds to (2.1) with h(z) = hy2(z) := & + 2?/4 and the

supremum is achieved by f,2 1= 2 (g—‘; — ), whenever p < v.

6
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Squared Hellinger distance: Let n € P(&X') be a probability measure that dominates both
w,v € P(X), ie., p,v<<n (eg.,n=(u+r)/2), and denote the corresponding densities by
p= ﬁ and g = 3—7’;. The squared Hellinger distance between p, v is?

H2 (1, v) =By [ (VB — va)°] - (2.4)

When p < v, the above expression can be written as

du ?
H?(u,v) = E, (\/d:_ 1) ,

with the corresponding dual form

H*(nv) = sup  Eu[f] - E, [f] , (2.5)
FASR, 1-f
flz)<1VzeXx

where the supremum is over all functions such that the expectations are finite. This form
corresponds to (2.1) with h(x) = hy2(z) := z/(1 — x), and the supremum in (2.5) is
—-1/2
achieved by fi2 :=1 — <%> . Also note that vH? defines a metric on P(X’) and that
0 < H2(u,v) <2, for any u,v € P(X).
Total variation distance: The TV distance between p, v € P(X) is

Orv(p,v) = sup 2 |u(C) = v(C)] (2.6)

where the supremum is over all Borel subsets of X. The corresponding variational form is

S v) = sup E,lf] - B[/, (2.7)
[:X—=R,
71l o<1

which pertains to (2.1) with A(z) = hty(x) := z. Denoting the densities of p and v w.r.t.
a common dominating measure n € P(X) by p and ¢, respectively, the supremum in (2.7)
is achieved by fry := l¢x — Ly\c+, where

C:={z € X :p(x)>qx)}. (2.8)

Furthermore, 1y is a metric on P(X) with 0 < d1v(p,v) < 2.

2.3 Stochastic Processes

Our analysis of the estimation error needs the following definitions.

Definition 1 (Sub-Gaussian process) A real-valued stochastic process (Xg)oco on a
metric space (©,d) is sub-Gaussian if it is centered, i.e., E[Xg] = 0 for all § € ©, and

]E[et(Xg—XG-)] < e%th(9,§)27 v 079~ €O, t>0.

3. The standard definition of the squared Hellinger distance has an extra factor of 0.5. We use the current
definition as it simplifies the statements of some results and proofs, while clearly having no effect on the
qualitative conclusions. The same applies for the TV distance given in (2.6).
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Definition 2 (Separable process) A stochastic process (Xg)oco on a metric space (0,d)
is said to be separable if there exists a null set N and a countable subset ©yg C O, such that
for every w ¢ N and 0 € ©, there is a sequence (0m)men in Oo with d(6,,,0) — 0 and
X@m (w) — X@(w).

Definition 3 (Covering and packing numbers) Let (©,d) be a metric space.

(i) A set ® C © is an e-covering of (©,d) if for every 0 € O, there exists § € © such that
d(0,0) < €; the e-covering number is N (e, 0, d) mf{]@’\ ©' is an e-covering of ©}.

(i) A set ©' C © is an e-packing of (©,d) if d(0,0) > € for every 0,0 € © such that
0 # 0; the e-packing number is T(e,0,d) := sup{|0’| : ©" is an e-packing of O}.
2.4 Function Classes

Our approximation result requires the target function on X to have an extension to R¢,
whose spectral norm (as introduced in (Barron, 1993) and (Klusowski and Barron, 2018))
is finite. The class of functions with such bounded spectral norm is defined next.

Definition 4 (Approximation class) Let m € N. Consider a function f:R% — R that
has a Fourier representation f(x foo we B(dw), where i = /—1 is the imaginary unit
and F(dw) is a complex Borel measure over R? wzth magnitude |F| (dw) that satisfies

S(f) == /R Wl 1P| (dw) < 0. (2.9)
Forc¢>0,m=1,2, and X C R?, define

Bemx(RY) i= {f 1 R 5 R [ X] S() VIF OV [VFO)lly Lpmezy <
and for f: X — R, set

&(f,m,X) :=inf {c 3 fe BQm’X(Rd), f= f|X}

We refer to BC’LX(Rd), Beox (Rd), cg(f, &) =c(f,1,X) and cxg(f, X) = c*(f,2,X) as
the Barron class, Klusowski-Barron class, Barron coefficient, and Klusowski-Barron coeffi-
cient, respectively.

For TV distance neural estimation, analysis of the NN approximation error for step functions
is required. Such functions naturally belong to the Lipschitz function class defined below.

Definition 5 (Lipschitz class) Forr € (0,00], m € N, and f € L"(R?), the m'™ modulus
of smoothness of f is

Emo(frt) = sup  |JAFS], ga, (2.10)

uERY,[|u|<t

where AT f(x) = Z;nzo(—l)m_jf(:c + ju). For X CR% and 0 < s < 1, the Lipschitz class
with smoothness parameter s is

Lips,r,b(X) = {f € LT(Rd) : Hf”Lip(s,r) < b, supp (f) - X}7

where || fllipes,ry 2= Il +supso t ™€ (f, ) is the Lipschitz seminorm.
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Note that norm in (2.10) is taken over R? (despite the assumption that f nullifies outside
of X). For d = 1, the class of functions of bounded variation over X C R is contained in

UperLipy 1 4(X).

The Vapnik-Chervonenkis (VC) type class of functions will play a prominent role in our
empirical estimation error analysis.

Definition 6 (VC-type class) Let F be a class of Borel measurable functions with do-
main X and a finite measurable envelope F, i.e., supser|f(z)| < F(z) < oo, Vo € X.
Then, F is a VC-type class with envelope F if there exists finite constants lyc(F) = lyc(F, F)
and uyc(F) = uye(F, F) such that

sup N (e AT HQW) < (e(Fe )™ vo<e<t. (2.11)
YEP(X)

Finally, we introduce the function class of shallow NNs.

Definition 7 (NN class) Let ¢ : R — R be a (non-linear) measurable activation function.
The class of shallow NNs (i.e., with a single hidden layer) with k neurons and bounds on
its parameters specified by a = (a1, a2, as,a4) € Réo 18

k
= Bi i o+ b))+ -z + by,
Gr(a,¢) ==4g: RIS R : g(x) ; ¢ (w z ) Wo - T 0

- | < 1< < <
max Jwill, V |bi] < a1, lrgdgk\ﬁzl < ag, |bo| < a3, |lwoll, < a4

Let ¢s(z) = (1 + e *)7! and ¢r(2) = 2V 0 denote the logistic sigmoid* and the rec-
tified linear unit (ReLU) activation functions, respectively. Further, for a > 0, define
the shorthands Q,?(a) = Qk(kzl/2 log k,2k™1a, a, 0, gzﬁs), g,?(a) = gk(l,ka_la,a, a, ¢R), and
Gr(9) :== Gy (a*,gb) with a* = (1,1,1,0). Throughout, we will assume ¢ € {¢s, Pr}.

2.5 Minimax Estimation Risk

To investigate the decision-theoretic fundamental limit of estimating a SD Dj, 7 as defined
in (2.1), we now define the minimax risk. Let P% C P(X) x P(X) be a class of pairs of
distributions between which Dj, 7 is finite and fix (u,v) € P2. Let X" := (X1,...,Xy)
and Y" := (Y1,...,Y,) be n independently and identically distributed (i.i.d.) samples
from p and v, respectively.® An estimator of Dy, 7 based on these samples is denoted by
Dh, #(X™ Y™). The minimax absolute-error risk is

i, PY) = inf  sup E HDh,}'(NaV) — Dy r (X", Y™
Dn,7 (p,v)€PL

] . (2.12)

4. The results that follow with ¢s as activation straightforwardly applies to any continuous monotone
bounded activation, e.g., any sigmoidal activation with ¢(z) — 1 as z — oo and ¢(z) — 0 as z — —o0.

5. For simplicity, we restrict attention to the case where an equal number of samples is available from both
p and v, but our analysis readily extends to the mismatched scenario with the corresponding bounds
obtained by replacing n~'/? by (m™* + n71)1/2, where m denotes the number of samples from u (say).
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We explore the performance of the NE

n

R 1
Dh,g ) (X" Y"):= sup — 9(X;) —hog(Yi)|, (213)
H(@ed) 9€Gk (ag,0) T ; [ }

under the above framework. By appropriately scaling the NN size k (and parameter norm)
with the sample size n, we show 1thaut NEs of KL and x? divergences as well as H? distance
converges at the parametric n~2 rate uniformly over certain classes of distribution pairs
satisfying regularity conditions. We further show (see, e.g., Corollary 18) that the minimax
risk is at least Q(n~1/2) over this class, thus establishing the minimax optimality of NEs.

3. Preliminary Technical Results

We next present two technical results that account for the NN approximation error and
the empirical estimation error of the parametrized SD. These results are later leveraged
to derive effective error bounds for neural estimation of KL and x? divergences, squared
Hellinger distance and TV distance.

3.1 Sup-norm Function Approximation

We start with a bound on the approximation error of a target function f with a compact
domain X for which ¢*(f,m, X)) < oo, m = 1,2. A reminiscent result for the case m = 1 was
given in (Barron, 1992), albeit without explicitly quantifying the dependence on dimension
or addressing how the NN parameters scale with k. The bounds for m = 2 are taken from
(Klusowski and Barron, 2018).

Theorem 8 (Approximation error bound) Let X' be compact. Given f: X — R with
g (fs X) < a, there exists g € GR(a) such that

If = glloo S ad?k™2. (3.1)
Similarly, given f: X — R such that cg(f, X) < a, there exists g € gg(a) satisfying (3.1).

The above theorem states that a k-neuron shallow NN can approximate a function f on X
within an O(k~'/2) gap in the sup-norm, provided f is the restriction of some f from the
Barron class or Klusowski-Barron class. The bound in (3.1) follows from (Klusowski and
Barron, 2018, Theorem 2), up to rescaling the domain therein. The proof of the second
claim pertaining to approximation by NN class g,f(a) is provided in Appendix A.1.1, and is
based on ideas from (Barron, 1992, 1993; Yukich et al., 1995). The error bounds stated in
Theorem 8 are representative of the approximation capabilities of shallow NNs with ReLU
(unbounded) and sigmoid (bounded) activations, respectively. Note that GR(a) has bounded
parameters independent of k, albeit with an extra affine term (see Definition 7) compared
to functions in G (a). On the other hand, achieving O(k~'/2) approximation error using the
latter class requires the bounds on the hidden layer weights and biases to scale as kt/2 log k.

Remark 9 (Related approximation results) Several related approzimation bounds to
Theorem 8 are available in the literature, which can also be leveraged to analyze the approx-
imation error of NEs. In particular, Yukich et al. (1995, Theorem 2.2) provides sup-norm
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error bounds for approrimating a target function and its derivatives by a sigmoidal NN with
unbounded input weights and biases. A further improvement over (Barron, 1992, Theorem
2) by a k=24 factor is reported in (Makovoz, 1998) for NNs with step activation func-
tions, under a different reqularity condition on the Fourier transform of target function.
A sup-norm approximation result for squared ReLU activation is given in (Klusowski and
Barron, 2018, Theorem 3) for functions f with bounded S3(f) (see (2.9)). Also related are
NN approximation bounds derived in (Domingo-Enrich and Mroueh, 2021) for a function
with bounded R,U-norm, where the latter is based on R-norm introduced in (Ongie et al.,
2020).

The next proposition shows that a sufficiently smooth function over a compact domain
can be approximated to within O(k~'/2) error by a shallow NN.

Proposition 10 (Approximation of smooth functions) Let X C R? be ‘compact and
[ X — R. Suppose that there exists an open set U D X, b > 0, and f € CF(U),
sk = |d/2| + 3, such that f = f|X Then, there exists g € g,S (Eb,d,nxu), where €, 4 x| S
given in (A.15), such that ||f — glleo < Cb,d,||XHd1/2k5_1/2- The same holds with skg and GR
replaced with sg := |d/2| + 2 and G, respectively.

The proof of Proposition 10 (see Appendix A.1.2) shows that any sufficiently smooth
function on X can be extended to a function in the Barron or the Klusowksi-Barron class
with domain RY. This is done by nullifying the partial derivatives of order skg (or sg)
outside X and multiplying by a smooth bump function that equals 1 on X and smoothly
decays outside. Note that for an integer s > 0 and a real number 5 > s, C;(U) contains the
Hoélder class with smoothness § and radius b.

3.2 Estimation of Parameterized Divergences

For p,v € P(X), consider the SD Dp, r(u,v) defined in (2.1). Let X™ and Y™ be n ii.d.
samples from p and v, respectively. Consider a NE for Dj,_r(u, v) realized by a shallow NN,
ie., Dh,gk(ak,¢) (X™Y™) (see (2.13)). Our next result provides a tail inequality for the error
in estimating the parametrized divergence thgz(qﬁ)(,u, v) by Dfugig((b) (X™ Y™), which will be
used to prove consistency of the NE. To state it, given a class of functions F with domain
X, define C(F, X) := infocy ser f(x) and C(F,X) = sup,cr ser f(2).

Theorem 11 (Empirical estimation error tail bound) Let u,v € P(X) and consider
the NN class G;(¢) given in Definition 7. Assume X and ¢ are such that C(|Gi(¢)], X) <
o0, h is differentiable in [Q(Qz(qﬁ), X), C’(g}:(gb), X)] with derivative b/, Dh,g;(@ (1, v) < o0,
and

C (|00 Gi (o)

Then there exists a constant ¢ > 0 such that for any 6 > 0, we have

,X) < o0. (3.2)

R 1 _ ns?
e P(’Dh,g;w)(X”,Y")—Dh,g,:w)(ﬂ, V)’ = +Ek,h,¢7?€”7>§ce Venox . (3.3)
w,VEP(X):
Dh7g;(¢)(u,1/)<oo

with upper bounds for Vi p 4 x and Eyp, ¢ x available in (A.20) and (A.21), respectively.

11
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The proof of Theorem 11 (see Appendix A.1.3) relies on upper bounding the estimation
error by a separable sub-Gaussian process and invoking the chaining tail inequality (see
Theorem 56 in Appendix A.1.3).

The next theorem provides an upper bound on the expected empirical estimation error.
It will be used to obtain effective error bounds for the NE in the forthcoming sections.

Theorem 12 (Empirical estimation error bound) Leta > 0 and Gy, € {GR(a),G3(a)}.
Suppose h is differentiable in [C(Gk, X),C(Gk, X)] with derivative b', C (|’ o Gy|,X) V
C(lh o Gil, X) VCO(IGk|, X) Sanxy 1 for all k € N. Then, for all k,n €N,

N 3 _1
sup B [[Dng, (X", Y") = Digy(i1,0)| ]| Sha iy dint. (3.4)
p,VEP(X)

Theorem 12 follows from a more general result that we establish in Appendix A.1.4 (namely,
Theorem 58), where Gy, as above is replaced by an arbitrary VC-type class satisfying certain
technical conditions. The proof of the latter relies on standard maximal inequalities from
empirical process theory. To prove (3.4), we also require a bound on the entropy integral of
the NN class. This is obtained by noting that G is a subset of the symmetric convex hull
of the composition of a monotone function with a VC subgraph class, and upper bounding
the covering numbers of such convex hulls.

Remark 13 (NN distances) The SD Dy, g, (a,¢) (11, V) is the so-called NN distance, studied
in (Arora et al., 2017; Zhang et al., 2018a) in the context of GANs. Theorem 11 and 12
can thus be understood, respectively, as a tail bound and as an error bound for NN distance
estimation from data, and implies that the estimation error rate is parametric in n.

For G, € {GR(a),GZ(a)}, we have C (|Gx|) < 3a(||X|| + 1), C (|hoGk|) < sup{|h(z)|,z €
[=3a(||X]] +1),3a(||X]| + 1)]} < co and Dyg, < oo for all k and h € {hkr, hy2}. Similarly,
C (|W' o Gg|) is finite and bounded by a quantity independent of k for these h (see (B.3)
and (B.5)). Hence, hg| and h, satisfies the assumptions in Theorem 12, and consequently,
(3.4) applies for KL and x? divergences. These bounds also hold for H? and TV distances
for appropriate NN classes (see Theorems 27 and 32 below). In the next section, we use the
above results to analyze the effective error for neural estimation of SDs.

4. Neural Estimation of f-Divergences

We now turn to analyze neural estimation performance of several important f-divergences,
encompassing KL, x2, H?, and TV. Throughout this section, we assume for simplicity
that & = [0, 1]¢, but the results and proof techniques readily extend to arbitrary compact
domains. Further, we present results for ReLU NNs, although all statements also hold
for sigmoid nets with a slightly modified spectral norm condition defining the class of
distributions. We comment about this once in Remark 15 below, but omit further mention
to avoid repetition.

4.1 KL Divergence

Let Iﬁgk(awp)(X”,Y”) = Dthgk(ak’qb)(X”,Y”) be a NE of Dk (u]|v), where a; € Réo for
all £ € N. To state performance guarantees for this NE, some definitions are needed. Let

12
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PZ (X) be the set of all pairs (u,v) € P(X) x P(X) such that u < v and Dk (u||v) < oo,
and for any M > 0 define

PrL(M, X) = {(1,v) € Pio(X) : ckg(fiw, X) V Die (ullv) < M} (4.1)

For appropriately chosen M, b > 0, PZ, (M, X) contains (u, v) € Pg, (X) for which Dy (u||v)
< M and fxL = logg—’; e C¥®(U) for some U D X. To see this, note that a smoothness
order of skg for fkL ensures that cig(fkL, X) < Gpq, HXII (see Proposition 10). Hence, for
any (u,v) € P (X) and M > Coa, x| v DL (pllv), (p,v) € PZ (M, X). In particular,
P%L(M , X), for sufficiently large M, contains Gaussian densities, truncated and normalized
to be supported on X.

Since the class PZ (M, X) becomes larger as M increases, it is to be expected that a
larger NN class would be required for accurate neural estimation of KL divergence between
distributions in this class. This means that the range of the NN parameters has to be selected
depending on M. However, often it is hard to ascertain such an M for the distributions of
interest. To account for this, we do not assume that M is known in advance. Instead, we
take a NN class 9,5 (my) for some non-decreasing positive sequence (myg)ren with my — oo,
for obtaining neural estimation error bounds.

The following theorem establishes the consistency of KL divergence NE and uniformly
bounds the effective error in terms of the NN and sample sizes.

Theorem 14 (KL divergence neural estimation) The following hold:

(i) Let (u,v) € P (X) be such that fxL € C(X). Then, for any 0 < p < 1, (kp)nen with
kn — 00, ky < 2(1—p)logn and G, = Gr (9),

Dg, (X™, Y™) — DkL (u]|v), P— a.s. (4.2)

(ii) For any M >0, my, = loglogk V 1, G, = GR(my,),

sp B [|Dg, (X", ¥") ~ Dw (ullv)|| Swr dbk™ + 3 (log k)n3 (43)
(pv)EPE (M, X)

The proof of Theorem 14 is presented in Appendix A.2.1. The consistency result in Part (7)
relies on Gi(¢) being a universal approximator for the class of continuous functions on
compact sets as k — oo and Theorem 11. For Part (ii), we derive (4.3) by utilizing Theorems
8 and 12 to bound the sum of the approximation and estimation errors. From Theorem 8,
the former is O(k~1/2) if ¢fg (frL, &) < M and k is such that M < loglogkV1. On the other
hand, for k violating this condition, the effective error is bounded by Dy (p||v) < M. The
growing NN parameters contribute an extra polylog(k) factor to the empirical estimation
error bound.

Remark 15 (Effective error bound for sigmoid NN class) It can be seen from the
proof of (4.3) that the same bound applies to sigmoid NN class G (my) when PE (M, X)
is replaced by PKLB (M, X) == {(n,v) € PE(X): g (fur, X) V Do (pllv) < M}. Similar
remarks apply for all the eﬁectzve error bounds henceforth, which we omit to avoid repetition.
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Remark 16 (Effective error bound based on M) If M in the definition of the class
PZ (M, X) is known when picking the NN parameters (i.e., they can depend on M), then
with my, = M and Gy = GR(M), we have (see (A.44) and the last statement in the proof of
Theorem 14 in Appendiz A.2.1)

3
2

[

sup IEHng(X",Y”)—DKL (ﬂ||u)H <u A3k 4 dinc3, (4.4)

(/L,ZI)G,P'%L(M,X)
which removes the polylog factor in the empirical estimation bound (2nd term in (4.3)).

Remark 17 (L? neural estimation of a function) In (Barron, 1994), a reminiscent
approximation-estimation error analysis for learning a NN approximation of a bounded
range function is presented. This differs from our setup since SDs are given as a supremum
over a function class, as opposed to a single function. As such, our results require stronger
sup-norm approzimation results, as opposed to the L? bound used in (Barron, 1994).

The error bounds in (4.4) and (4.3) imply that the KL divergence NE achieves the para-
metric and near parametric error rates, respectively.

Corollary 18 (Minimax optimality) The KL divergence NE Dg, (X™,Y™) is minimaz
rate-optimal over Pg (M,X) and P%L,B(Ma X) with G, = GR(M) and G, = G>(M), re-
spectively, achieving the O(n_l/Q) minimax risk. If M is unknown, then this NE with M
replaced by m, = loglogn V 1, is near minimaz optimal achieving O(n_1/2) minimax risk.

The corollary is proven in Appendix A.2.2, where the upper bound follows directly from
Theorem 16, Remark 15 and (4.4) by setting k& = n. For the lower bound, we present a
reduction of the KL divergence estimation problem to differential entropy estimation, and
invoke the Q(n~'/2) lower bound from Goldfeld et al. (2020b) for the latter problem.

Theorem 14 and Corollary 18 impose conditions on fk to bound the effective neural
estimation error (namely, assuming that ckg(fki,X) < M, for some M). A primitive
sufficient condition in terms of the densities p and ¢ of u and v, respectively, w.r.t. an
arbitrary common dominating measure 7 is given next.

Proposition 19 (Sufficient condition for Theorem 14) Forb > 0 and skg = |d/2] +
3, consider the class P%L(b, X) of pairs of distributions given by

- 3 p,q € G (U) for some open set U D X
Pri(b, X) :={ (1, v) € PR(X) : b o :
s.t. logp =plx, logq=qlx

Then, (4.3) and (4.4) hold with M = 2¢, 4 x| \V 2b, where ¢, q x| s given in (A.15),% and
ﬁ%L(b, X) in place of P (M, X).

Remark 20 (Feasible distributions) 75%,_(-,/1’) contains distributions (u,v) € PE (X)
whose densities (p,q) are bounded (from above and below) on X with a smooth extension
on an open set covering X. In particular, this includes uniform distributions, truncated
Gaussians, truncated Cauchy distributions, etc.

6. Although X is taken to be [0, 1]d, we will retain the dependence of X in the error bounds, which will be
used later for extending the results to the unbounded support case.
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Remark 21 (Relation to other works) Corollary 18 and Proposition 19 together imply
that the KL divergence NE achieves the parametric minimax error rate over the class of
densities with at least skg = |d/2] 4+ 3 derivatives (or sg = |d/2] 42 derivatives in the case
of sigmoid activation). To compare with existing results, it is known that variants of classic
kernel-based estimators (Kandasamy et al., 2015; Singh and Pdczos, 2014a; Moon et al.,
2018; Berrett et al., 2019) achieve the optimal minimaz risk of O(n~'/?) when the densities
are Hélder smooth with at least d/2 or d derivatives. We also note that the parametric rate
achieved by NE is an improvement over the n~Y* rate shown in Sreekumar et al. (2021).
Furthermore, we observe that (4.3), (4.4) and minimax rate optimality holds for the class of
distributions obtained by replacing cig(fr, X) < M in (4.1) with | X[| || fllg 24 V [ fr (0)] V
IV (0)]l; < M, where R,U-norm is defined in (Domingo-Enrich and Mroueh, 2021,
Equation 6). This follows by using (Domingo-Enrich and Mroueh, 2021, Theorem 2) in
place of Theorem 8 to analyze the approximation error. Similar conclusions hold for NEs
of other SDs considered below.

4.1.1 NEURAL ESTIMATION VIA DONSKER-VARADHAN FORMULA

Another well known variational representation for KL divergence is the Donsker-Varadhan
(DV) formula:

Diw (V) = sup E,[f] — log E, [ef],
fer

where the supremum is over all measurable f such that the last expectation is finite.
Parametrizing F by a NN and replacing expectation with sample means leads to the DV-NE
for KL, given by

n n
Dov (X", V") = sup 3 g(X;) — log = 3 e,
9€9 i (o
In (Belghazi et al., 2018), the authors studied the special case of DV-NE pertaining
to estimation of mutual information, termed MINE. They established consistency along
with sample complexity bounds (without accounting for the approximation error). In Ap-
pendix C, we show that consistency of the DV-NE holds under similar conditions as in
Theorem 14 (see (C.1)). We also prove that the effective error bound given in (4.3) applies
to DV-NE, albeit with different constants (see (C.2)). In particular, the latter establishes
the minimax optimality of DV-NE with the scaling k¥ = n. Instantiating these results for
= Pap and v = P4 ® Pp (i.e., a joint probability law versus the product of its marginals),
translates these performance guarantees to MINE, now accounting for finite-size NNs, the
associated approximation error, and minimax convergence rates.

4.2 x? Divergence

Let )Zék(ak@)(X”,Y”) = thz7gk(ak7¢)(X",Y") denote the NE of x? (y||v). Set 73>2<2(2’C') as
the collection of all (u,v) € P(X) x P(X) such that u < v and x? (uv) < oo, and let

Pig(M,X) = {(u,l/) € 733(2(?() : CRB(fXLX) VE % (uljv) < M}

The next theorem establishes consistency of the NE and bounds its effective absolute-error.
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Theorem 22 (x? divergence neural estimation) The following hold:

(i) Let (pn,v) € P;z(X) be such that f,2 € C(X). Then, for any 0 < p < 1, (kn)nen with
ky, — oo, k, =0 (n(l_p)/5) and Gn, = G, (¢), we have

XG, (X" Y") —— X (ulv), P-as. (4.5)

(ii) For any M >0, my = logk, and Gy = GR(my,), we have

1 3
sup B (|82, (X" Y") = X (ullv)|] Sar dk2 +d2(logk)*n”E. (4.6)
(u,y)ePiQ (M,x)

The proof strategy for Theorem 22 is similar to that of Theorem 14, with appropriate adap-
tations to account for the difference between f,2 and fik. (see Appendix A.2.4). Comparing
(4.5)-(4.6) to (4.2)-(4.3), we see that consistency for y? divergence estimation holds under
milder conditions and that the effective error bound is better in terms of dependence on k
than for KL divergence.

Remark 23 (Effective error based on M) If the NN parameters can depend on M,
then setting my, = M in (4.6) yields

sup E[|R2, (X", Y") = X (ullv)|] Sm k™2 +dinTE, (4.7)
(,u,l/)GPiQ(M,X)

Choosing k = n in (4.7) (resp. (4.6)), we have that the x?> NE achieves the parametric
(resp. near parametric) error rate over the class 773(2 (M, X). The proof is similar to that of
Corollary 18, and is omitted for brevity. Let 73)2(27B(M, X) = {(u, v) € 73)32 (X):cg (fxz, X)\/
X2 (ullv) < M}

Corollary 24 (Minimax optimality) The x> NE )A(én (X™ Y™) is minimaz rate-optimal
over 73>2<2 (M, X) and P§27B(M, X) with G, = GR(M) and G, :NQS(M), respectively, achiev-
ing the O(n=/2) risk. This NE achieves the near parametric O(n_1/2) manimax risk when
M s replaced by logn, which is applicable to the scenario of unknown M.

Given next is the counterpart of Proposition 19 for x? divergence (proven in Appendix A.2.5),
which provides primitive conditions in terms of densities under which the effective error
bounds in Theorem 22 and Corollary 24 hold.

Proposition 25 (Sufficient condition for Theorem 22) Forb > 0 and skg = |d/2] +
3, let

~ 3 p,q e CRU) for some open setU D X
PL(b,X) = { () e PL(X): ( )_{ ome op .
st.p=>plx, ¢ =dlx

Then, (4.6) and (4.7) hold with M = (kgd®? | X| v 1)(2 + 2k te | () v (07 + 1),
where kg and ¢, q x| are given in (A.3) and (A.15), respectively, and ﬁig(b, X) in place of

2
PXQ (M7 X)?
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Remark 26 (Feasible distributions) The class ﬁ;(-, X) contains (u,v) € P§2 (X), whose
densities p, q, are bounded (upper bounded for p and bounded away from zero for q) on X
with an extension that is sufficiently smooth on an open set covering X. This includes the
distributions mentioned in Remark 20.

4.3 Squared Hellinger Distance

Let IZ% XM Y™ = If)h 9) (X™ Y™), where for t > 0, Qm(a, ¢) is the NN class

k,t(ak»¢)( n2 Ok ¢ (2,
Gt (a,9) = {g: R! 5 Rig(@) = (1= 1) A§(a), § € Gu(a,0) }

Set P2, (X) as the collection of all (1, v) € P(X) x P(X) such that 4 < v, and

d
Pla(M, X) := {(,u,u)EPHz(X):CRB(ng,X)\/H(;:H §M}. (4.8)
00,1
Also, let ta(@ = Qk,t(l, 1,1,0, <Z>), and for a > 0, define
élzt(a) = Gr1 (1,26 a, a, a, PR). (4.9)

The next theorem establishes consistency of the NE and bounds its effective absolute-error.
Theorem 27 (Squared Hellinger distance neural estimation) The following hold:

(i) If (1, v) € PRa(X) is such that fy2 € C(X) and there exists M > 0 such that [dp/dv| o,
< M, then, for any 0 < p < 1, (kp)nen with k, — o0, k, = O (n(l_p)/?’) and G, =

meM_l/Q (¢), we have

HE, (X" Y") —— H(u,v), P—as. (4.10)

n—oo
(ii) For any M >0, my, = logk, t;, = (logk)™!, and Gy = gf’tk(mk), we have

sup  E HHgk (X", Y™ — H2(u, V)H <y dik~2logk + d3(logk)®n~3.  (4.11)
(nv)EP2, (M,X)

The proof of Theorem 27 is presented in Appendix A.2.6. To prove consistency and establish
effective error bounds for H?> NE, we use a truncated NN class QNk,t (a, ¢) that saturates the
NN output to 1 — ¢ for some ¢ > 0. This is done since hy2(x) has a singularity at x = 1 and
the NN outputs must be truncated below 1 so as to satisfy (3.2) for bounding the empirical
estimation error. To get the effective error bounds under this constraint, we take ¢ = ¢ for
some non-increasing positive sequence t; — 0. The bound in (4.11) uses t; = (log k)~ .

Remark 28 (Effective error based on M) If M is known when selecting the NN pa-

rameters, then for G, = GR M), we have (see (A.58))

k,M_l/Q(
sup E Hliiék(X",Y") — H2(,u,y)H SM dzk™2 +d2n"z.
(#71/)673:2(]\4»)()
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Addressing minimax optimality, we set & = n in the above equation (resp.(4.11)) to
attain the parametric (resp. near parametric) rate for the H* NE over the class P2, (M, X).
Let g}it(a) = QN;C,t (k1/2 log k, 2k a, a, 0, qbs), and Pag g(M, X) denote the class of distribu-
tion pairs with cxg(fyz2, X') in (4.8) replaced with cg(isz, X).

Corollary 29 (Minimax optimality) The H? NE Flén (X™, Y™) is minimax rate-optimal
over the class P2, (M, X) and Pl?'Q,B(M, X) with G, = QNEM,I/Z(M) and G, = QNTSLM,W (M),
respectively, achieving O(nfl/ 2) minimaz risk. Further, relevant to the case when M 1is

unknown, the same NE achieves O(nfl/Q) risk, when M 1is replaced with logn and M—1/2

with (logn)~1.

Below, we provide a sufficient condition in terms of densities under which the effective error
bounds in Theorem 27 as well as Corollary 29 applies, similar in spirit to Proposition 19
(see Appendix A.2.7 for the proof).

Proposition 30 (Sufficient condition for Theorem 27) Forb > 0 and skg = |d/2] +
3, consider the class Pag (b, X) of pairs of distributions given by

3 p,G e C®(U) for some open set U DO X }

522(1)7 X) = (,ua l/) S PzQ(X) ) : 5 q
H H st p % =plx, ¢ = qlx, and Hqu”Hw <0

Then, (4.11) and Remark 28 hold with M = (lidd% X)) v 1)(1+ 2SKBE§dHX”) Vb2, where

Chd, x| and kq are given in (A.15) and (A.3), respectively, and PaQ(b, X) in place of
Pla(M, X).

Remark 31 (Feasible distributions) 733'2(-, X) includes (u,v) € Pz(X), whose densi-

ties p,q, are bounded (from above and away from zero) on X with an extension that is

sufficiently smooth on an open set covering X. This contains the distributions mentioned

in Remark 20.

4.4 Total Variation Distance

Consider the NN class obtained by truncating the functions in Gi(a, ¢) to [—1,1], i.e.,

Gr(a,¢) = {9: 9(=) = L{j3()|<139(%) + Liga)>1} — L{g(e)<—1) for some g € Gi(a, @)} .

(4.12)

Also, let 5g*k(a7¢)(X”,Y”) = Dth’gk(a7¢)(X”,Y"), and set ,C’;E(a) = g_k(1,2k*1a,a, a, gbR),

and Q}:(@ = Gk(l, 1,1,0, ¢). Denote the densities of p and v w.r.t. A by p and ¢, respec-
tively, and for M > 0 define

P2, (M, X) = {(M, v) € P(X) x P(X) : pyv < A, [IpV alloox < M} . (4.13)

The following theorem bounds the effective error for TV distance neural estimation.

Theorem 32 (TV distance neural estimation) The following hold:
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(i) For any p,v € P(X), 0 < p < 1, (kn)nen with k, — oo, k, = O(n(lfp)/Q) and
Gn = g_;;n(qﬁ), we have

g, (X", Y") —— drv(p,v), P—as. (4.14)
n—oo

(i) For any 0 < s <1, M >0, ¢ g x| = Oam,x| (K(d+2/2(+d42)) a5 defined in (A.75)
and Gy, = GR (Ch,a,s,0,) %)) we have

~ s d+2
sup E H(Sgk (X" Y™ = drv(p, IJ)H Sans k2T 4 f26+ED) n-z. (4.15)
(M,V)EP%—V(M,X):
frvelLipg 1 p (X)

The proof of Theorem 32 is provided in Appendix A.2.8. A key technical challenge arises
from the fact that frv = lex — Ly\¢- (see (2.8)) contains step discontinuities in its domain,
and hence, it does not belong to the Klusowski-Barron class. Consequently, Theorem 8
is not directly applicable for bounding the approximation error as was done for the SDs
considered until now. To overcome this issue, we apply a Gaussian smoothing kernel to
frv so that the smoothed version belongs to the Klusowski-Barron class. The width of the
kernel is then adjusted as a function of k such that L' norm of the difference between frv
and its smoothed version decreases as k increases. The need for the smoothing operation
results in a slower approximation and empirical estimation error rate that depends on d.

Remark 33 (Curse of dimensionality) Setting k = n in (4.15), we achieve the effective
error rate O(n_5/2(5+d+2)). Note that this rate suffers from CoD, different from NEs of
other SDs considered above where the parametric rate is achieved.

In practice, the condition frv € Lip,; 5/(X) required for (4.15) may be hard to verify. A
simple sufficient condition in terms of the densities of 1 and v is given below. To state it,
we need the following definition.

Definition 34 (Critical zero) Given f: X — R, a point xg € X is called a critical zero
of fif f(zo) = 0 and every neighbourhood Uy, of xo contains an x € Uy, N X such that
f(x) # 0. In particular, if f(xg) =0 and f is differentiable at xog with derivative f'(xg) > 0,
then xq is a critical zero. Let Z(f) denote the set of critical zeros of f.

Based on the above, for N € N and b > 0, define
Ton(X):={f: X > R:|z—2[| >bV a2 €Z(f)|Z(f) <N}, (4.16)

as the class of functions on X’ with at most NV critical zeros at pairwise (Euclidean) distance
of at least b from each other. We are now ready to state the sufficient condition for TV
distance estimation; see Appendix A.2.9 for proof.

Proposition 35 (Sufficient condition for Theorem 32) For N € N and b > 0, con-
sider the class

75-%—\,(17,]\7,.2\,’) = {(,u,l/) e P, (b,X): 3 f € Toyn(X) st p—q:f}.

Then, for any 0 < s < 1, (4.15) holds with M = MNX) + (2b=°X\(X) V 2N7¥2p?=T'(d/2 +
1)) and supremum over (u,v) € ﬁ%v(b, N, X) in place of that over (u,v) € P, (M, X),
where \(X) is the Lebesgue measure of X and I is the gamma function.
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Remark 36 (Feasible distributions) The set ﬁ%v(-, -, X) includes generalized Gaussian
distributions, Gaussian mixtures, exponential families, Cauchy distributions, etc., truncated
and normalized to be supported on X. It also includes distributions whose densities are
analytic functions, e.g., non-negative polynomials on X. These inclusions are easy to verify
since p—q has finitely many separated critical zeros for such distributions (cf., e.g., (Smale,
1986; Kalantari, 2004) for the case of analytic functions).

5. Neural Estimation for Distributions with Unbounded Support

Thus far, we considered compactly supported p and v. In this section, we consider neural
estimation of KL, x2, H? and TV with u,v € P(Rd). Throughout, unless stated otherwise,
we will assume that p,v < A with p,q denoting the respective Lebesgue densities. For
each SD, we first prove consistency of the NE under certain regularity conditions on the
densities. Then, we present effective error bounds under an Orlicz norm constraint on the
densities, which are subsequently specialized to multivariate Gaussian distributions. We
next introduce the required definitions below.

Definition 37 (Orlicz space) An increasing convez function v : [0,00) — [0,00) with
¥(0) = 0 and lim,_,o0 ¥(x) = 00 is called an Orlicz function. For a given ¢ and M > 0,
the bounded Orlicz space” is

Ly(M) = {f RIS R |If], < M},

where || f||,, == inf {¢>0: [pat (2] /c) f(x)dz < 1}.

Examples of Orlicz functions include t,(z) = 2" and ¢.(z) = € — 1, z € R, for r > 1; in
particular, v, with r = 2 correspond to the sub-Gaussian class defined next.

Definition 38 (Sub-Gaussian distribution) A distribution p € P(R?) is o2-sub-Gaussian
for o >0 if X ~ u satisfies

20,12
o |u]l

E [e“'(X_]E[XD} <e 2z, YueR%

For M >0, let SG(M) be the set of all 0%-sub-Gaussian distributions with o>V ||E[X]|| < M.

With some abuse of notation, we henceforth use boldface letters to denote infinite se-
quences, e.g., v = (vg)ken; this will simplify some of the subsequent notation. In par-
ticular, we use r = (rg)ren for an increasing positive divergent sequence (i.e., 1y — 00)
with 7, > 1, and m = (mg)gen for a non-decreasing positive sequence with my > 1.
Let Gi(a,¢,r) = {91,y = 9 € Gi(a,9)}, ,C’;E(a,r) = {glp,r) : 9 € GR(a)}, and
G;(¢, r)i= {gIle(r) ig € g;(qb)} denote the NN classes Gi(a, ¢), g,'j(a), and G} (¢), respec-
tively, after nullifying the functions outside of By(r).

7. It is possible to generalize the results in this section to p,v < 7, where v is an arbitrary positive
o-finite Borel measure. Accordingly, the Orlicz norm in Definition 37 is replaced with Hf”«m =

inf {c € [0,00] : [ou ¥ ([l@]l /c) f(z)dy(z) < 1}. We adopt the current definition for simplicity.
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5.1 KL Divergence

For M >0, ¢/ € N, r and m as above, consider the following class of distributions:

_ v KA, pyq € Ly(M), | fecll,, <M,
PiLy (M, 6r,m) = { (u,v) € PR (RY) . n _
ke (frLlBy(rg) Ba(ri)) <mp, k€N

In words, the class above contains pairs of distributions whose (i) densities have a 1-Orlicz
norm bounded by M, (ii) fx. has L*(;2) norm at most M, and (iii) the restriction of fx to
By(r) has a Klusowski-Barron coefficient that is at most my.

The following is the counterpart of Theorem 14 for distributions supported on R%; the
proof is provided in Appendix A.3.1.

Theorem 39 (KL divergence neural estimation) For any 0 < p < 1, the following
hold:

(i) Let (u,v) € PE (RY) be such that fur € C(R?) and HfKLHl,u < oo. Then, for ky,rn,n

satisfying kn — 00, T — 00, kit “rpefnn ) = 0 (n0=P)/2) and G, = G}, (6,7w),

Dg, (X", Y™) —— D (ullv), P-as

(i) Let £ >1, M >0, £* = £/({ — 1), and m be such that 1 < my < k(=P)/2 " Then, for
Gr = GR (my, i), we have

s B [[Dg, (X", Y") — D (ullv)|
(u,u)E'P&LYw(M,é,r,m)

—1
Sd,M,p,w,f mkk:_% + mkrke‘gm’“(”H) n_% + (w(TkM_l))ZT. (5.1)

The proof of the consistency claim in Part (i) follows similar to (4.2) by using the universal
approximation property of Q;n(¢, rn) on Euclidean balls, controlling the residual approx-
imation error via integrability assumption on fk_, and using Theorem 11 to bound the
empirical estimation error. The proof of (5.1) is based on the following observations. First,
we note that if ckg (fKL‘Bd(rk)v By(ry)) can be bounded for every k, then Theorem 8 implies
that the NN class Q,?(mk,rk) with my,rp — oo at an appropriate rate can approximate
fkL to within an error of < d*?myk=1/2 inside the Euclidean ball By(r). An upper bound
on ckg (fKL‘Bd(Tk)a Bd(rk)) is guaranteed, for instance, by Proposition 10 when fk| is suffi-
ciently smooth on Bg(ry). Moreover, since every Borel probability measure on R is tight,
M(Bg(rk)) \% V(Bfl(rk)) — 0 for every ry — 0o. The proof then follows by an analysis of the
approximation error outside By(ry) under the Orlicz norm constraint on the densities of
and v, along with an account of the empirical estimation error. The Orlicz norm constraint
controls the rate of tail decay of the densities.

Remark 40 (Feasible distributions) Based on Proposition 10, (5.1) holds for distribu-
tions (p,v) € P,%L (Rd), W, v < X, such that their densities are sufficiently smooth and
bounded (from above and away from zero) on Euclidean balls By(r) for any r > 0, and
||fKL”£,M 18 finite for some £ > 1. This includes multivariate Gaussians, Gaussian miztures,
Cauchy distributions, etc., to name a few.
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As an instance of an explicit effective error bound, we now specialize Theorem 39 to the
important case of Gaussian distributions. Define the class

) Iyl [[mg|| < M }
)

PR(M) = {(N(m ,5p), N(mg, %)) : _ _
e 1 Zplops 1125 llops [[Zqllops 155 M lop < M

of pairs of non-singular multivariate Gaussian distributions with appropriate bounded op-
erator norm (denoted by || - ||op). The following corollary quantifies the effective error for
pairs of Gaussian distributions. However, as the proof (see Appendix A.3.2) requires a
tedious evaluation of a bound on the Klusowski-Barron coefficient, we restrict attention
to isotropic Gaussians, i.e., whose covariance matrix is ¥ = ¢2I;, for some ¢ > 0. The
(sub)class of isotropic Gaussian measures is denoted by PZ(M). Nevertheless, we stress
that the argument can be generalized to account for the entire PZ(M) class above.

Corollary 41 (Gaussian effective error) For any 1 < M < oo, there exists cqp > 0
such that for my, =g pr (log k)0'5(d+3), T = IV M+7y, 7 <qm V1ogk and G, = Qf (mg, re),

).

Remark 42 (Gaussian error rate) Optimizing over k in the above equation yields an
effective error rate of p—(logn) @ logn for some cqr > —1. Despite the dependence of this
rate on d, in Appendix D.1 we show that for certain classes of sub-Gaussian distributions,
a NE effective error rate of n=/3 can be achieved independent of dimension. This is to
stress that the NE can produce dimension-free convergence rates even when supports are
unbounded.

D=

> noyn < 4 (-3 CdM(Ing)%z -
sup  E||Dg (X", Y"™)=Dkv (ul|v)|| Sa,nr (loghk) 2 (k72 + k% n
(1) EPR(M)

5.2 x? Divergence

We next consider y? divergence. Consider the following class of distributions:
— /J'al/<<)\7 p,QEL (M)7 f2 SMa
’P§2’¢(M’€7r7m) = {(M?V) epiz(Rd) : X P H X Hf,/l« .

ks (fx2lBy(ry) Ba(re)) <mp, keN

The following theorem states consistency of the x> NE and bounds the effective error.

Theorem 43 (x? neural estimation) The following hold:

(i) Let (u,v) € 733(2 (Rd) satisfy fi2 € C(Rd) and HfXQHLu \Y HhXQ o fxng,u < oo. Then,
for k, — oo, T, — 00, n satisfying kiﬂr% =0 (n(lfp)/2) for some 0 < p < 1 and
Gn = G;, (¢,7n), we have

R, (XY™ ——= P (ulv), P as.

(ii) For any M >0, >1,0*=¢/({ —1) and G, = Q,? (mg, 1), we have

[ I

sup E [

L. e (XY™ =X (ul|0)]] Sarwe midk~7 + d2mirin”
wv)eP2, (M,l,r,m
X<

1
s

+ (TZJ(TkM_l))
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The proof of Theorem 43 is similar to that of Theorem 39 and is given in Appendix A.3.3.

Remark 44 (Feasible distributions) Theorem 43 (ii) holds for any distributions (u,v) €
773(2 (]Rd), W, v <K X, such that their densities are sufficiently smooth and bounded (from above

for p and away from zero for q) on FEuclidean balls, and fozng is finite for some £ > 1.
This encompasses the distributions mentioned in Remark 40 f07’7 certain parameter ranges.

The corollary below (see Appendix A.3.4 for proof) provides effective error bounds for the
following class of Gaussian distributions:

_ 1/M < o) < 20, < M,

P2y (M) =< (N(my, 021y, N(mg, 0214)) : ,
) {( (mp: 7p1), N (ma, 01a) 202 — 02 > 1/M, ||my||V [|mg|| < M

where the constraint o2 < 207 is required for x* (1||v) to be finite.

Corollary 45 (Gaussian effective error) For 1 < M < oo, we have with my =<qum
f2MP/AMPH) (1og o) 0-5(sketd+1) oy — 1 M 4 7y, 7, =pr Iogk and Gy = GR (my, r4) that

sp E[[R3, (X" Y") = (ullv)]] San (0g k) (k™2 + freaa ).
(nv)€P2, (M)

Remark 46 (Gaussian error rate) The optimum in the right hand side (RHS) of the
equation above over (k,n) is attained at k = p(HAM?)/(H8M®) 4 results in an effective
error rate of n~Y/@FHI6M®) (160 p)2ske+d+1)  Note that this rate degrades with increasing
d or M. Newvertheless, in Proposition 70 in Appendiz D.2, we show that a dimension-free
improvement of n~/2 (up to logarithmic factors) can be achieved for a certain class of
sub-Gaussian distributions with unbounded support.

5.3 Squared Hellinger Distance

Next, we consider the squared Hellinger distance. For M, r,m as above, let

pv < N\, p,q € Ly(M),

75,327¢(M, r,m):={ (u,v) € PP (Rd) : dp

kB (fHQ‘Bd(rk)a Bd(?“k)) \% H <mg, VkeN

v OO,Bd(T’k)

Also, consider the following NN class obtained from Q,?t() (see (4.9)) by nullifying the
functions outside of By(r):

G (a,1) = {915, : 9 € GRi(0)}. (5.2)

The next theorem provides conditions under which consistency holds for H? neural estima-
tion and bounds the effective error; see Appendix A.3.5 for the proof.

Theorem 47 (Squared Hellinger distance neural estimation) Let m satisfy my =
o(k'/*). The following hold:
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(i) For (u,v) € 753,2 » (M,r,m), and k, r, m, n such that k, — oo, 1, — 00, My, — 00,

k}/Zm%nrkn =0 (n(l_p)/g) for some 0 < p <1 and G, = Qf m,l/Q(mkn,rkn), we have
ns e,

HE (X" Y"™) —— HY(u,v), P—as.

n—o0

(i) For any M >0 and G, = g']f 12 (mp, 1), we obtain
m

L

sup E HI:Iék(X”,Y") - H2(M,IJ)H
(1)eP2, | (M,r.m)

NI

S m%d%k_% + d%mirkn_% + <¢(rkM_1)>

The proof of Theorem 47 follows along similar lines to Theorem 39. Notice that the NN
class g,ﬁt is used to overcome the issue of singularity of fi2 as in Theorem 27.

Remark 48 (Feasible distributions) Theorem 47 applies for any distributions (u,v) €
PﬁQ (Rd), w, v K A, such that their densities p,q are sufficiently smooth and bounded (from
above and below) on Euclidean balls. To list a few, this includes multivariate Gaussians,
mixture Gaussians, Cauchy distributions, etc.

The next corollary provides effective error bounds for the class of isotropic Gaussian distri-
butions with bounded parameters, 77,% (M), considered in Section 5.1; see Appendix A.3.6
for the proof.

Corollary 49 (Gaussian effective error) For 1 < M < oo, rp, = 1V M + (M +

8M2)1/2(log k)12, my, = K2M/(48M) (105 k)OSEataD)  and G = GR (),
M,

S H%k(Xn’Yn) - H2(M7V)H Sar (log k)42~ 2 (1 + k%*%) .
(u,v)EPE(M)

Remark 50 (Gaussian error rate) Setting k = n in the equation above yields an effec-
tive error rate of n~ Y/ CGH16M) (log n)ske+d+2  While this rate deteriorates with M and d, in
Proposition 72 in Appendiz D.3, we show that a rate of n~1/2 (up to logarithmic factors)
is possible independent of dimension for a certain class of sub-Gaussian distributions with
unbounded support.

5.4 TV Distance

Finally, we consider neural estimation of TV distance for distributions with unbounded
support. For M > 0,5 > 0,b > 0, N € N, sequences r and m as above, let

_ v < A pyq € Ly(M),
,P%V,z/)(Ma‘%r?m) = {(M7 V) S 73—?—\/(M,Rd) : v )

75'%'V(bv M? N) = {(ﬂ? 1/) € P%V(M7Rd) U,V E Sg(M)v 3 f S %,N(Rd) st.p—q= f} 3
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where P2,,(M,R%) and Ty y (Rd) are defined in (4.13) and (4.16), respectively. Also, define
the NN classes GR(a,r) :== {91p,0) - g € GR(a)}, and G} (¢, r) == {91B,0) : 9 € Gi ()},
where Gy, is given in (4.12).

The next theorem is the analogue of Theorem 39 for TV distance neural estimation. Its
proof is presented in Appendix A.3.7.

Theorem 51 (TV distance neural estimation) The following hold:

(i) For p,v € P(Rd), any 0 < p < 1, and k,r,n such that k, — oo, 1, — 00, knr}L/Q =
O(n*=)/2) and G, = _C;Zn(¢,rn), we have

g, (X", Y") —— drv(p,v), P—as.
n—oo

(ii) For any M > 0 and 0 < s < 1, G = _’kR(Ek,d,s,m,rark% where Crdsmyr 5 given in
(A.98), we obtain

_sup E Hggk(X”,Y") — drv(p, IJ)H
(n)€P2, , (M,s,r,m)

1 d+2
s(d+1); — 3\ s+d+2 _1 1\ s¥d+2 _ -1
Sd,M,s,p <mz+2'rk( )k 2) +n 2 (kaerle) + ¢((TkM 1)) .

The following corollary (see Appendix A.3.8 for proof) provides effective error bounds
for sub-Gaussian distributions such that p — ¢ has finite number of critical zeros pairwise
separated by Euclidean distance bounded away from zero.

Corollary 52 (Sub-Gaussian effective error) For any0<s<1,b>0, M >0, N €
N, rp =MV 1+4y/dM]logk, my = casp N, (see (A.101)) and G, = gkR (€k7d737m,r,rk), we

have

sup E H5gk(X",Y”) — orv(p, V)H
(1,v)€PE, (b,M,N)

(s+d)(d+2) —s d+2 d+2 1
Sd,s,b,N (log k) 2(s+d+2) f2(s+d+2) 4 (log k) 2 k2(+d+2) "2,

Remark 53 (Sub-Gaussian error rate) Setting k = n in the bound above, the effective
error rate is n~%/2(5+d+2) (Jog n)(d+2)/2,

Remark 54 (Feasible distributions) 75%\/(-, -,) includes generalized Gaussian distribu-
tions, mixture Gaussians, and in general, distributions pairs with smooth bounded densities
having finite number of modes and sub-Gaussian tails.

6. Concluding Remarks

This paper studied neural estimation of SDs, aiming to characterize the performance of NEs
via an approximation-estimation error analysis. We showed that NEs of f-divergences, such
as the KL and x? divergences, squared Hellinger distance, and TV distance are consistent,
provided the appropriate scaling of the NN size k& with the sample size n. We further
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derived non-asymptotic absolute-error upper bounds that quantify the dependence on k and
n. In the compactly supported case, the derived bounds enabled to establish the minimax
optimality of NEs for KL divergence, x? divergence, and H? distance. The key results
leading to these bounds are Theorems 8 and 12, which, respectively, bound the sup-norm
approximation error by NNs and the empirical estimation error of the parametrized SD. Our
theory covers distributions whose densities belong to an appropriate Orlicz class (e.g., sub-
Gaussian distributions), but faster (optimal) parametric rates are attained when supports
are compact.

Going forward, we aim to extend our results to additional SDs such as Wasserstein dis-
tances and ITPMs. While our analysis strategy extends to these examples, new approxima-
tion bounds for the appropriate function classes (e.g., 1-Lipschitz) are needed. Generalizing
our results to NEs based on deep nets is another natural direction. Recent results on the
approximation capabilities of DNNs (e.g., Yarotsky, 2017) appears useful for this purpose.
While our analysis does not account for the optimization error, this is another important
component of the overall error and we plan to examine it in the future. Through the results
herein and the said future directions, we hope to couple neural estimators with the theory
to guarantee their performance and/or elucidate their limitations.
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Appendix A. Proofs

This section contains proofs of the results presented in Section 3-5, each given in a differ-
ent subsection. For fluidity, derivations of lemmas used in those proofs are relegated to
Appendix B.

We first state an auxiliary result which will be useful in several proofs that follow. For
b > 0 and an integer s > 0, define the function classes:

NFOIVIVEO)ly <b,[|Df|l <00, ¥ [lé@]1 < 8}

LXB(RY):=S fe L (RY) N L2 (RY)
+ (%) { BONL ) Dagi, < 6. ol € {2.5)

(A1)

RO <D, < 00, il < } (A4.2)

£8,(RY) .= { f e LY(RY) N L?(RY) :
o) { () =9 D% flly < b,V [lally € {1, s}

The next lemma states that functions in £X5(R?) (resp. £Z,(R?)) with sufficient smooth-
ness order s belong to the Klusowski-Barron (resp. Barron) class. Its proof is given in
Appendix B.1 and borrows arguments from (Barron, 1993).
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Lemma 55 (Smoothness and Klusowksi-Barron class) Recall skg = [0.5d] + 3 and
sg:=|0.5d] +2. If f € C?KB&b(Rd), then we have Sy(f) < bd®/?ky, while if f € CSB,b(Rd),
then S1(f) < bd"/?kq , where

kg = (d+ d°®) / (1 + HL«JHQ(SB_I))_1 dw < oo. (A.3)
Ra

Consequently, for X C R%, L b (Rd) C Beox (Rd) and Lggp (Rd) C Beix (Rd) with
c=0bVbd* kg || X| and c = bV bd" kg || X||, respectively.

A.1 Proofs for Section 3
A.1.1 PROOF OF THEOREM &

For a = (a1, az, as,as), we denote the set of feasible parameters of Gi(a, ¢) by Ox(a), i.e.,

w; €RY, by, B € R, max Jwilly V [bi] < a1,
A
O(a) == ({5i7wijbi}§:1,wo,bo) -

| < < <
1r£12agxk|ﬁl‘ < ag, ‘b0| = as, ||w0||1 > a4

(A4)
Also, throughout this section, we write gg(x) to denote g(x) = Zle Bi¢ (w; - = + b;) + wo -
T+ by with 6 = ({ﬁi, Wy, bi}i?:l, wo, bo), whenever the underlying # is to be emphasized.

We prove the second claim in Theorem 8. The proof relies on arguments from (Barron,
1992) and (Barron, 1993), along with the uniform central limit theorem (CLT) for uniformly
bounded VC-type classes. Fix an arbitrary (small) § > 0, and let f : R* — R be such that
f = fla and || X]| S1(f) V £(0) < a+ 5. Such an f exists since cg(f, X) < a. Then, since X
is compact, it follows from the proof of (Barron, 1993, Theorem 2) that

folw) = F(a) — (0) = / o(zr, w)y(dw),

weRI\{0}
where
L(f x
o(x,w) = Supi‘iw)'ﬂ(cos(w -2+ ((w)) — cos(¢(w))),
Y(dw) := SUprex [0 - 2| ‘F‘(dw)’

L(f,X)

with L(f, X) i= [aSupyey |w - 2| |F‘(dw) Here }ﬁ"(dw) and ((w) are the magnitude and
phase of the complex Borel measure in the Fourier representation of f , respectively. Note
that ~ defined above is a probability measure on R

Let © := (:)(k:,L(f, X)) = @1(k1/2 log k,2L(f, X),0,0) (see (A.4)). Then, it further
follows from the proofs of (Barron, 1993, Lemma 2-Lemma 4,Theorem 3) that there exists
a probability measure y;, € Py, := 73((:)) (see Barron, 1993, Eqns. (28)-(32)) such that

N

fo— /9 %) vk(dé)H SL(f,X)k 2, (A.5)

00, X
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where gz(z) = Bos (QIJ cx+ i)) for = (B,w,b,0,0) and ¢s is the logistic sigmoid. The
previous step needs further elaboration. The claims in (Barron, 1993, Lemma 2- Lemma 4,
Theorem 3) are stated for L? norm, but it is not hard to see from the proof therein that
the same also holds for sup-norm, apart from the following subtlety. In the proof of Lemma
3, it is shown that o(z,w), w € R? lies in the convex closure of a certain class of step
functions, whose discontinuity points are adjusted to coincide with the continuity points of
the underlying measure 7. While this can be shown to account for universal approximation
under the essential supremum w.r.t. n, to obtain a sup-norm bound one additional step is
needed. Specifically, by using modified step functions whose value at 0 is 0.5 (instead of
1), using their linear combinations for approximation of the target function in Lemma 3,
and subsequently replacing each such step function by sigmoids with coinciding values at
zero, it can be seen that o(x,w) lies in the point-wise closure of convex hull of the desired
sigmoid function class.

Next, for each fixed z, let v, : © — R be given by v,(0) := Bos (171 cx+ Z)) for 6 =
(B, w, l~), 0,0), and consider the function class Fpp = {vm, T € Rd}. Note that every v, € Fi
is a composition of an affine function in (w0, b) with the bounded monotonic function Bes(-).
Hence, (Van Der Vaart and Wellner, 1996, Lemma 2.6.15, Lemma 2.6.18) yields that Fe is
a VC type class with index at most d + 3 for each k € N. Hence, it follows from (Van Der
Vaart and Wellner, 1996, Theorem 2.6.7) that for every 0 < e <1,

sup N (2L(F,2), P [l ) < sup N (2eL(F. ). P | -2 ) S(d + B)(16e) 4020+,
vEP: Y€Poo

Moreover, by (Van Der Vaart and Wellner, 1996, Theorem 2.8.3), F}, is a uniform Donsker
class (in particular, y;-Donsker) for all probability measures v € Pi. Consequently, the
uniform CLT (Dudley, 1999) applied to a VC-type class uniformly bounded by 2L( f.x )
yields that there exists k parameter vectors, 0; := (Bz, W;, BZ’, 0,0) € (:), 1 <4 <k, such that
(see also Yukich et al., 1995, Theorem 2.1)

N|=

k
[ oty m@d) - 30,0 SaLFan .
0c6 P so R

The RHS above is independent of ~y; and depends on f and X only through L( f.x )
From (A.5)-(A.6) and triangle inequality, we obtain

o1k
Jo— %Zggi
i=1

Setting 0 = ({(Bl/k, W;, i)i)}le, 0, f(O)) and go(x) = k! Zle Bigﬁs(ﬂ)i cx+ 13,) + f(O) and
noting that L(f, X) <X S1(f) by Cauchy-Schwartz, we have

(A.6)

N

SdrL(f,X)k2.
00,X

|7 = ]|, S 21X S1(Dk2 < di(at-o)k3.

Next, note that [|f = gol| . v = [If = 9oll,x and go € G (X[ S1(F) v F(0)) € GF (a +9).
Since § > 0 is arbitrary and ¢g is continuous, we obtain that there exists gg € g,-j (a) with

1f = golloox < adZ k2. (A7)
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A.1.2 PrROOF OF PROPOSITION 10

To prove the first claim, consider f € C;¥®(U) such that f = f |x. By Theorem 8, it suffices
to show that there exists an extension feq of f from U to R? such that XN S2(fext) V
|[fet(0)| V [V fext (0)[|; < Cpqx)- Let aj; denote a multi-index of order j. Consider an
extension of D%k f from U to R?, which is zero outside . Fixing D%*ke f on R? induces
an extension of all lower order derivatives Di f, 0 < j < skg to R? which can be defined
recursively as D1 D¥ske—i f(x) = D" ske—i f(x), x € RY, for all Q15 Agyg—j and 1 <
J < SKB-

Let U := {2/ € R?: 3z € X, ||z’ — z|| < 1} and first assume the strict inclusion ¢« C U’
In that case, the mean value theorem yields that for any z, 2’ € U’ and 1 < j < skg, we have

|t fa!)

< ‘DQWKB*JJE(JJ)’ ++vd max

Teu’, a1

D=+ (@) [|o —

, (AS8)

where we also used the fact that ||z — 2/||; < V/d |z — 2/||. Further, note that || D%s fHOO »
< b (D=8 f equals zero outside i), and since f € C;¥®(U), we have || D%eke— f(x)Hoo -z
Then, for any 2’ € U’, taking x € & with ||z —2'|| < 1 (such an x exists by definition of
U') in (A.8) yields |D*e=" f(2')| < b+ by/d. Having this, we recursively apply (A.8) to
obtain for 1 < j < skg that

SKB

im1 i 1—d> SKB

J
|Dks=i fl| o <HYdT +bdE <b— e+ bd 2 = b, (A.9)
=1

<b

If U’ C U, then HDO‘\SKB*J'JZHOOM, < b by definition since f € C;*®(U). Hence, (A.9) holds in
both cases as b > b.

The desired final extension is fex := f - fo, where f is the smooth cut-off function
fe(x) := Ty % \II%(Z‘) = / le/(y)\I/%(m —y)dy, z € RY, (A.10)
R4

with X' == {#/ e R?: Jz € X, ||2/ —2|| <05} and ¥(z) ox exp < - m)l{llm\\dlﬂ
as the canonical mollifier normalized to have unit mass. Since ¥ € C*® (Rd), we have
fe € C°(RY). Also, observe that fc(z) =1 for 2 € X, fc(z) = 0 for 2 € R\ U’ and
fe(x) € (0,1) for z € U\ X. Hence, fex(z) = f(z) for & € X, fexe(z) = 0 for z € R\ U/’
and |fext(z)] < |f(:1:)‘ for x € U'\ X, thus satisfying fext|x = f\X = f as required. Moreover,
for all 0 < j < skg, we have D foi(z) = 0, for ¢ U’, and

HDa\jfextwa < 27b max D fel o < 2%Bh  max | D | b, (A.11)

N allall; <j a:lall; <skg 00, B4(0.5)

where the first inequality follows using product rule for differentiation and (A.9), while the
second is due to (A.10).
Consequently, for 0 < j < skg and ¢ = 1,2, we have

d

IIDa'jfextHZﬁ=/L{,(Daffext)i(x)dxg6i A(Ba(rad(¥) +1)) = b’ il

d
m(rad(é\,’) + 1) ,

(A.12)
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where A denotes the Lebesgue measure, rad(X) = 0.5sup,, /¢y ||z — 2'[|, and I" denotes the
gamma function. Defining b’ := bdr¥/2T'(d/2 + 1)~ (rad(X) + l)d and noting that b’ > b,
we have from (A.11)-(A.12) that fex € ZSKB,b’ (R?), where

; 0)] <, ||D* <V forl< <
ﬁsKB,b,(Rd):z{feﬁ(Rd)mL?(Rd).'f< | < V1Dl < ¥ for _||a||1_sKB}.

IV FO)l, <V [[DYF]| <oo for [léll, < sks
(A.13)
Since Ly (RY) € LXB |, (RY) (see (A.1)), Lemma 55 yields Sy (fext) < £qd®/?b' and
fot € Bay 4y 2.2 (RY) N Lo (R) € Bay 4y 2.0 (RY) N LES 1y (RY), (A.14)

where

_ 3
Co,||x| = (Kad? | X] V1)

o B d(x) +1)%2%kepd L a5 D
X 5"‘ (rad(X) +1) -5 T max || Hoo,Bd(o.5)’

1—Vd lall; <sks

=/

(A.15)

-1
and k2 == (d + d*®) [pa (1 + ||w|]2(5571)) dw. It then follows from Theorem 8 that there

exists g € g,'j (Eb’d’”;(”) such that || f — gHOO’X < 5b,d,||XHd1/2k7_l/2- This proves the first claim
of the proposition. Repeating the same arguments starting with f e C.2(U), the second

claim follows again from Theorem 8, thus completing the proof.
A.1.3 PROOF OF THEOREM 11

We require the following theorem which gives a tail probability bound for the deviation of
supremum of a sub-Gaussian process from its associated entropy integral.

Theorem 56 (Van Handel, 2016, Theorem 5.29) Let (Xp)gco be a separable sub-Gaussian
process on the metric space (©,d). Then, there exists ¢ > 0 such that for any 6y € © and
6 >0, we have

52

P (sup Xo — Xg, > c/ V1og N(¢,0,d)de + 5) < ce cdom(©d)7
0

0cO

where diam(©,d) := sup d(6,0).
0,00

We will also use the following lemma which bounds the covering number of Gi(ay, ¢) w.r.t.
to metric induced by |||, -

Lemma 57 Let ¢ be a continuous monotone activation whose Lipschitz constant is bounded
by L, and Uy x(¢) := qS(a(HXH + 1)) \% gb( —a(]|X] + 1)) Then

N (&,Gr(@r, ), 1 ll.r ) <(1+ 10kag U, e (9)e )" (14 10agy, [ X]| ¢ 1) (1 + 10az 5e 1)
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x (14 10Lkay gagy | X e )P (1 + 10Lkay pag . | X| 1) .

In particular, for ¢ € {¢r, ps}, we have

N(€,GR(@), Ilooxe ) < (1+20a(||X ] + 1)e ) DR (A.16)
1 (d+2)k—+1

N(€.G8(0), [l ) < (14 200(| ]| + 1)k% (log b + 1)) , (A.17)

N(e,GE0), Mlloor) < (14 10K(| X + 1)) 2L, (A.18)

The proof of Lemma 57 (see Appendix B.2) is based on the fact that the covering number
of BJ'(r) w.r.t. || - ||m norm, m > 1, satisfies

N (e, B (), 1, ) < (2re™ +1)". (A.19)

Continuing with the proof of Theorem 11, we will show that the claim holds with

Vinox S C(1GH(0)], X)* (C (|W 0 Gi(e)], X) +1), (A.20)

Bngx S kVA(X]+ 1 (C(|1 0 Gi@)], X) +1)1/C(IGi(8)], X), (A.21)

where we recall that C (|F|, X) := sup,ex ser |f(2)]. In the following, we will suppress the
dependence of ¢, h, and X for simplicity (unless explicitly needed), e.g., Gr(ay) instead of
gk (ak7 ¢) .

Fix p,v € P(X) such that Dy, g, (a,) (1, ) < 00. We have

f)h,gk(ak)(l“",yn) — Dh.gy(ap) (1, )

= sup 1299(%)—7112}1099(%)—( sup E,u[gﬁ]_]El/[hOQO]>

90€Gk(ar) ' 5 i—1 90€Gk(ar)

< sup de (z;) — — Zhoye (yi) —Eulgo] + Eu[hogo]. (A.22)

90€Gk(ar) T 54

Consider the stochastic process (Zg,)g,e0,(ay) defined by

_%Z%( ffzhoge E, [g6] + Eu[h o gg]. (A.23)
i=1

To apply Theorem 56, we now show that (Z,) 96€Gx(ay) 18 @ separable sub-Gaussian process
on (gk(ak),dkvakm), where dj a, , Will be defined below. Note that E[Z,] = 0 for all
g0 € Gr(ag), and

n

1
|Zgo = Zg5| < ~[90(X:) — 95(X) — Ep[g0 — g5
=1

‘hogg Y;) —hogs(Y;) —E, [hogg—hogl. (A.24)
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By an application of the mean value theorem, we have for all gy, g; € Gr(az),
|hogo(x) —hogs(@)| < C(|hoGr(ar)]) |go(z) — g5(7)| - (A.25)

Hence, we have that almost surely

" Jan(X0) — 95(X0) — Eplow — g5 + 1o go(¥) — o g5(¥s) ~ Eu[ho gy — ho ]
g%[ X))+ [Eulgo — 951 + 1 o go(¥2) — b0 g5(¥)| + [By [0 g0 — o g5 ]
<20 (C (}hogk ar)|) +1) ll9 = 9gl .- (A.-26)

1 —
Let di a; n (gg,ge) Ry a, 1196 — 9glloo,xm™ 2, where Ry 5, := 2 ( (|h o Gi(ak)|) + 1). Then,
it follows from (A.24) and (A.26) via Hoeffdmg s lemma that

R B

Thus, (Zg,) gy, (ay) 1S @ separable sub-Gaussian process on the metric space (gk (ag), dk,a, ,n) ,
where the separability follows from (A.26) by the denseness of the countable subset of G (a)
obtained by quantizing each of the finite number of bounded NN parameters to rational
numbers (recall that a finite union of countable sets is countable and the activation ¢ is
assumed continuous).

Specializing to the NN class G/ (¢) := Gi(a*,¢), we next bound its covering number
w.r.t. diapn, where a* = (1,1,1,0). We have
1
N(ﬁag];kydk,a*,n) = N(E Q};,Rk a*n_EH : Hoo X)
= N (/(Rian ™), G5, |- lloo,)

< (14 10k(| X + 1) Ry gon =21 HH2FH

9

where the last inequality uses (A.18). Also, we have that N(e, Gy dk,a*,n) =1 for € >
diam (G, di ar ) = maxg, g cgr di.a= (90, g5)- Then,

/ \/log N(e, gy, dk7a*,n)de
0

diam (G} dy.ax n
:/ (60 >\/logN(e,g}:,dk,a*7n)de
0

diam Qk,dk a*,n

<W/ \/log(1+10k:(HXH+1)Rk7a*n’%e—1)de
< VA X+ 1) Ryary/C(1GE )02,

where the last step uses log(1+z) < z, x > —1, and diam(g;;, dk,a*,n) < 2Rk7a*é(\g,‘;\)n—1/2.
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It follows from Theorem 56 with Zy = 0 and the definitions of Vi and Ej (see (A.20)
and (A.21)) that there exists a constant ¢ > 0 such that

2

_1 _cdiam(g*éd )2 _n?

P sup Zy, >cExn~ 246 | <ce kRatn) —ce Vi, V§>0.
geegz

Noting that this also holds with —Z,, in place of Z,,, the union bound gives

0

_ns?
P | sup |Z,,| > §+cEm™2 | <2ce V.
99€G},

From (A.22)-(A.23) and the above equation, we obtain that for 6 > 0

ns?

25+6Ekn_%> SIP’( sup |Zg,| > 0 —|—cEkn_§> <2ce k.

P(‘ Dn.gs (1, v) —Dpg: (X™,Y™)
90€G},

Taking supremum over p1,v € P(X) such that Dy g+ (p1, ) < oo yields (3.3).

By following similar steps with (A.16) and (A.17) in place of (A.18), we have for Gy €
{g,'j(a),g,f(a)} that

P (‘Dh,gk (4, ) = Dp g, (X", Y™)

> 6+ cBrapan ) < 2ce ™ eany (A1)

where Vi o nx S C(IGR(a)], X)2(C_'(‘h/ °gp(a)

1 X)) +1)% and By opx S VdkTogka(|| X +
D(C(|W o Gg(a)

,X) +1). To establish (A.27), we use

/6 \/log (1+ Ae 1) 56\/log ((A+46)/6), (A.28)
0

for A> e and 0 < § < 1, which can be shown via integration by parts.

A.1.4 PROOF OF THEOREM 12

We establish a more general upper bound with G replaced by an arbitrary VC-type class
Fi. satisfying certain assumptions. This result is also applicable to deep NNs with finite
width in each layer, continuous activation and bounded parameters, and hence, may be of
independent interest.

Theorem 58 (Estimation error bound) Let p,v € P(X) and X" ~ p®" and Y" ~
v®". Suppose h: R — R and (Fi)ken (with domain X ) satisfy the following conditions for
each k € N:

(i) h is differentiable at every point in [C(Fy, X),C (Fi, X)]| with derivative h';
(i1) C (1l o Fyl , &)V C (1 Fil, X) < 00;

(iii) Fy is a VC-type class with constants lyc(Fy) > e and uyc(Fi) > 1 satisfying (2.11) w.r.t.
a constant envelope My, (note that this implies C(|Fg|, X') < My);
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(iv) Fy, is point-wise measurable, i.e., there exists a countable subclass F;, C Fy, of measurable
functions such that for any f € Fy, there is a sequence of functions {f;}jen C Fy, for
which im0 fj(z) = f(z), Vo € X.

Then, for every k,n € N, we have

sup Hthk (X™,Y™) — D7, (1, )H
n,vEP(X
D, fk(uvl’)<00

S Mi(C (|0 o Fil

é/ \/ sup log N (Mye, Fi, || - |l2,4)de (A.29)
YEP(X)

1

< (uve(Fi) log lue(Fi)) 2 2 M, (C(|W o F|,X) +1)n"z. (A.30)

N

The proof of this theorem is based on standard maximal inequalities from empirical process
theory, and is presented in Appendix A.1.5 below.

To prove (3.4), we first verify that the relevant assumptions given in Theorem 58 hold
with Fi = GR(a) and a constant envelope M = 3a(||X||+1). The proof for G (a) is similar,
and hence omitted. Conditions (i) and (i7) are satisfied by the hypotheses in the theorem.
Condition (4i7) holds as

s;FX)N(Mke, GR(a), |- ll2) < N(Mye, GR(@), | -laon ) < (14 7 1) EF2RHEHL (4 31)
~E

for any 0 < € < 1, where the last inequality follows from (A.16). To verify condition (iv),
note that g € Q’,?(a) is measurable since it is a finite linear combination of compositions
of an affine function with a continuous activation. Moreover, point-wise measurability of
Q,? (a) follows by the continuity of activation and the fact that each of the finite number of
parameters of g,ff (a) can be approximated arbitrary well by rational numbers.

Next, we evaluate the entropy integral term in (A.29) by bounding N (Mye, GR(a), || -
||2,7). For this purpose, let g,i(a) = Gr(1,2k71a,0,0, ¢R). For any 96,95 € g,?(a), where
99 = E?ZlﬁmﬁR(wi'$+bz')+’w0'i€+b0 and g; = Zf:16~i¢R (1171"564-51') + 4l -  + by, we
have

k

O (Wi T+ bi) =Y Bidr(y - + by)

+ Jlwo — 1@ol|{ | X ]| + |bo — bo-
2,y

96 — 955, <

Hence,

N(e.GF (@), ]l - Il2) < N(e/3.G{(a), -
< N(¢/3.6{(a),

where (A.32) uses (A.19).
Consider g = Z,’f:l Bipr (w; -+ b;) € QZ,(a). Let F = 2a¢r o F, where F = {f : X —

R:f=w-az+bweRbeR,|w|, Vb <1}. By considering the d coordinate projections
filx) = x4, 1 <i<d, and fg11(z) = 1 spanning the finite dimensional vector space F, we

|24) N (e/3, Ba(a), | X[ I],)N (¢/3, Bi(a),| - )
l2) (1 + 6a(| X[ + 1)e )", (A.32)
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have from (Van Der Vaart and Wellner, 1996, Lemma 2.6.15) that F is a VC subgraph class
of index atmost d + 3. This uses the fact that if F is a VC subgraph class of index v and ¢
is monotone, then ¢ o F is a VC subgraph class of index at most v, which follows from the
proof of (Van Der Vaart and Wellner, 1996, Lemma 2.6.18 (viii)). Then, (Van Der Vaart and
Wellner, 1996, Theorem 2.6.7) yields N (2a(||X|| +1)e, F', || - [l2,1) < (d+3)(16e)d+3e—2<d+2>,
where ]-"’ := FU—F. Further, by a careful inspection of the proof of (Giné and Nickl, 2015,
Theorem 3.6.17), we obtain that log N (2a([|X|| + 1)e,&0(F"), || - [l2,7) S de2(@H+2)/(d+3),
where ¢o(F’) denotes the sequential closure of the convex hull of F’ given by co(F’) :=
F Nfi e FLYE M =1,0>0,V1<i<k, keN}. Since G} (a) C c(F'), we
have log N (2a([|X|| + 1)e, g};(a), | ll2,y) S de2(@+2)/(@+3) Hence,

/ \/ sup log N Mke gk( a),| - Hgﬁ)de
.

eP(X)

1
/ \/ sup logN Mke/S gk( a), !-||277)de+\/d+1/ \/log (1+2e1)de
e
<f/ (0.5¢)~(@+2)/ d+3>de+f/ \/log (1+2¢71)d
2

a3, (A.33)

where (a) uses (A.32) and /z +y < \/x + /y for z,y > 0; and the second integral in the
penultimate step can be evaluated by applying log(1 + ) < z for x > 0. This completes
the proof of (3.4) via (A.29).

A.1.5 PROOF OF THEOREM 58

To simplify notation, we will denote C (|Fx|,X) by C (|Fx|). Fix u,v € P(X) such that
Dn. 7, (1, v) < 0o. Note that

Dy, 7, (X", Y™) = Dy 7, (11, )<7SUP IZ ulf] = ho f(Yi) +Ey[ho f]).

fe]:k

Let p, and v, denote the empirical measures n =" >, dx, and n-1 >, dy;, where d,
denotes the Dirac measure centered at x € X'. Then, we have

E [ |Bnz, (X", Y") = Doz, (1,)]|

+n 2 E|supn 2 —E,[ho f])
J€Fk

=1
N n"3E {/ \/logN(e,]:k, |- N2, ) de +/ \/logN(e, hoFi |l HQ’Vn)de]
0
;/ \/ sup. 1ogzv € Fis || - ll2.)de
S

n% / Wup log N (&, Fi, C (| o Fi|) || - |2, ) de
YEP(X)

—
S
N

IN
S
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L [2Mi
= o 2/ sup log N (€, Fi, || - ||2,7)de
0

YEP(X)
L [2MC(|W oFk|) ~ )
ot | sup log N (¢(C (117 0 Fil) )™, i |- [ ) e
YEP(X)
SMk< (‘h/OFk —|—1 é/ sup log N (Mye, Fg, || - ||27’Y) (A.34)
YEP(X)

(d)
< My (uye(Fr)) ( (‘h’o}"k‘)—i—l n 2/ \/log 1+lvc(.7:k) )d

(e) 1
5 Mkz(uvc(}—k) IOg lvc(]:k)) ( (lh/ o ]:kD + 1) T2, (A.35)

where

(a) follows via an application of (Van Der Vaart and Wellner, 1996, Corollary 2.2.8) since
for ﬁxed (X nY"™) = (2", y"), Hoeffding’s inequality implies that n"2 Yoy oif(z;) and
n2 Yoy ho f(yi)o; are sub-Gaussian w.r.t. pseudo-metrics || - [|2,4, and [ - [|2,4,, re-
spectlvely,

(b) is due to

N(e,ho}"k, || - Hgﬁ) < N(e,]:k,é'(‘h’ ofk‘) || - Hgﬁ)
= N(e(C(|W 0 Fil )7 Bl

2): (A.36)
which in turn follows from (A.25), and taking supremum w.r.t. to v € P(X);

(c) follows since N (e,fk,é(|h’ Ofk|) || - ||27) =1fore>2 kC’_(|h' o Fkl), (e,fk, |- 1l2y) =
1 for € > 2M;,, and N(e,fk, (|0 o Fl) || - H27) = N( (C (W o Fil])) " te, Fi, || - HQ,A,)
(note that both sides equal 1 when C (|h/ o Fy|) = 0).

(d) is because Fj is assumed to be a VC-type class with constants lyc(F) > e and uye(F)
corresponding to envelope My;

(e) is since fO(S 0og(A/e)de < 04/log(A/§) for A > e and 0 < § < 1, which in turn follows

via integration by parts.

Taking supremum on both sides of (A.35) over p,v such that Dy 7, (1,v) < oo proves
(A.30).

A.2 Proofs for Section 4

A.2.1 PRrROOF OF THEOREM 14

Let Dg, (ay,)(1: V) = Dy Gy(ar.0) (11, V) be the parametrized (by the NN class G (ag, ¢))
KL divergence. We will use the following lemma which proves consistency of parametrized
KL divergence estimator.
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Lemma 59 (Parametrized KL divergence estimation) Let (u,v) € PE (X). Then,
for any 0 < p <1, and n,ky,, such that k?/Q(HXH + 1)k UI¥I+1) = O (n(l_p)/Q),

Dg; (¢)(X", Y") —— Dg; (g (1, v), P~ as. (A.37)

n—oo
Lemma 59 is proven using Theorem 11; see Appendix B.3 for details.

We proceed with the proof of (4.2). Since X is compact and fx € C(X), it follows
from (Stinchcombe and White, 1990, Theorem 2.1 and 2.8) that for any € > 0, there is a
ko(e) € N, such that for any k > ko(€), there exists a gy, € G} (¢) with

[fke = 9o lloo v S € (A.38)
This implies
kh_{l(}o Dg; (¢) (1, v) = Dkr (pllv) - (A.39)
To see this, note that
Dg:(¢) (k. v) < Die (ullv), ¥V k€N, (A.40)

by (2.2) since g € G;(¢) is continuous and bounded ([|g[|, x < k([[X][+1)+1 <2k +1 for
X = [0,1]%). Moreover, the left-hand side (LHS) of (A.40) is monotonically increasing in k,
and being bounded, it has a limit point. Thus, to establish (A.39), it suffices to show that
this limit point is Dk (u]|v).

Assume to the contrary that limgcc Dgr(g) (1, ) < DL (pflv). Note that Gi(¢) is a
compact set and hence the supremum in the variational form of the LHS of (A.40) is a
maximum. Then, defining D(g) := 1+ E,[g] — E,[e9], it follows that there exists 6 > 0 and
95, € Argmax,, cg«(4) D(gp) such that for all k,

Dk (p|lv) — D (g(;k) > 0. (A.41)

However, we have for all k& > kq(e) that

Dk (uflv) — D(gék) < Dir (ullv) — D(gg,)
<E.[[fkL — g0, 1] + Eu HefKL _ 9%

]

d
<E, [|fxe — g0,/ + o M 1 et

<et+e—1,

oo,V

where the final inequality follows from (A.38) and E, [du/dr] < 1. Then, taking e sufficiently
small contradicts (A.41), thus proving (A.39). From this and (A.37) with £ = k,, — oo,
(4.2) follows since k3/2eFUIXI+D) < k2H0) for X = [0,1]¢, any § > 0, and k sufficiently large.

Next, we prove (4.3). Fix (u,v) € P (M, X), and with some abuse of notation, let m =
(my)ken be a non-decreasing positive divergent sequence, and note that since cig (fkL, ') <
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M, we have from (3.1) that for k such that mj > M, there exists gy, € Q’,?(mk) and ¢ >0
satisfying

| fr — geka,X < cdi Mk 3. (A.42)

Also, since gg, € GR(my) is bounded, we have that Dy (u||v) > Dg,?(mk)(:“v’/)' Then, the
following hold for k such that my > M and c2dM? < k/2:

Dt (2l1%) = Dggmy) (1 ¥)| = Dt (1) = gy (1)
< Eu[|f —g0.[] + |

< dz Mk,

1 — e90, e

E, |:efKL:|

00,V

where the last bound follows from (A.42), E, [e/«t] = E, [dp/dv] = 1, and since

o0 <cd%Mk:*%)j

0o,V = :E:

oo .
H1 _ etn—fa s 3 (cd%Mk_%)j < dE Mk, (A.43)
j=1 ) j=1

Next, note that Dgs(mk)(,u,, v)>0asg=0¢ g,?(mk). This implies that for k with my < M
or c2dM? > k/2, we have ’DKL (pul|v) — Dg,'j(mk)(“’ 1/)} < Dy (p||lv) < M. Consequently

DKL (1l10) = gy ()| Smaas dh75, ¥ k€ N,

On the other hand, since C' (|GR(my)|, X) < 3myi(||X| + 1) and C (|hkL 0 GR(my)|, X) <
ek (IX141) it follows from the above, (A.29) and (A.33) that
B [[ B (X", Y™) = Dic (1)

< D) (1 ¥) = i (1l19)] + E || D) (1) = D (X Y™

St d2k72 + d2my (| X)) + 1)e3meIXIHD =g (A.44)

Since ||X|| = 1, choosing my = loglogk V 1 in (A.44) yields
A 1.1 3 _1
B [|Bgp ) (X", Y™) = D ()| | Sar d2hF + a2 log k)7 n%.

Noting that the above bound holds independent of (u,v) € Pg (M, X), the proof is com-
pleted by taking supremum w.r.t. such p,v. Note that setting my = M in (A.44) and
taking supremum w.r.t. such p, v yields (4.4) from Remark 16.

A.2.2 PROOF OF COROLLARY 18

To show that the minimax risk is Q(n~/2), it suffices to consider d = 1. Recall that the
minimax risk for differential entropy estimation over the class of one-dimensional Gaussian
distributions with unknown variance in a non-empty interval is Q(n_l/ 2) (cf., e.g., Appendix
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A, Goldfeld et al., 2020b). Take X = [a, b], for some a,b € R with b > a, and let Pac(X) be
the class of (Lebesgue absolutely continuous) distributions on X. The differential entropy
of 1 € Pac(X) is defined as h(p) := —E, [log (du/d)], and can be equivalently written as
h(u) = log(b — a) — DL (MHU[M]), where wu, ) is the uniform distribution on &. Hence,
the minimax rate of KL divergence estimation for distributions in the class {(x, ujqp)) : p €
Pac(X)} for any Pac(X) C Pac(X) is the same as that of differential entropy estimation
for distributions in Pac(X).

Let Prg(X) C PAC(X ) be a class of truncated Gaussians supported on X with zero
mean and variance in an non-empty interval. Note that the minimax rate for differential
entropy estimation over Prg(X) equals to that over untrucated Gaussian distribution with
zero mean and the same variance constraints. This is since both differential entropies are
elementary functions of the variance parameter, when the mean (equals zero) and a,b are
given. By Proposition 19 (see Remark 20), P2, (M, X) contains pairs of truncated Gaussians
(with variance and means within an interval that depends on M) and uniform distributions,
which implies that the associated KL divergence minimax estimation risk is Q(n~/2). The
corollary then follows by noting that the NE achieves O(n_l/ 2) error rate by setting k =n
in (4.4).

A.2.3 PROOF OF PROPOSITION 19
The proof of Proposition 10 (see (A.14)) shows that there exists extensions pext,Gext €

Bébyd’uxug,x (Rd) NLKB (Rd) of p, q, respectively, where ¢ 4 x| = (/@dd?’/2 | X v 1)V, with

skB,b’

V' as defined in (A.15). Set f& := Pext — Gext, and note that since Pext, Gext € LKE (]Rd),

skB,b’
their Fourier transforms exist and the corresponding Fourier inversion formulas hold (see

proof of Lemma 55). Also, we have

Sy (fEE) 11X < Sz (Bext) X1 + S2 (Gext) | X[ < 263 4,2y

where the first inequality uses the definition in (2.9) and linearity of the Fourier transform,
while the second is because pPext, Gext € Bg, , L] 2 (]Rd). Moreover, note that

D (pllv) = Ep [fu] = Ey [logp — log ¢] < 2b,

where the final inequality is due to logp = p|x and logq = ¢, for p, ¢ € C;¥®(U). Lastly,
since fkL = fﬁf’x, it follows that (u,v) € PZ (M,X) with M = 2Ch,q,)x) V 20, and the
proposition then follows from Theorem 14.

A.2.4 PROOF OF THEOREM 22

Let Xék(akxb) (n,v) = th%gk(ak@) (1, v). We will use the lemma below which proves consis-

tency of parametrized x? divergence estimator (see Appendix B.4 for proof).

Lemma 60 (Parametrized y? divergence estimation) Let (u,v) € 73932(/1’ ). Then,
for any 0 < p < 1, and n,k,, such that k}r)/Q(HXH +1)2=0 (n(lfp)/Q), we have

n—oo
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Proceeding with the proof of Theorem 22, (4.5) follows from (A.45) using arguments
similar to those used to establish (4.2) and steps leading to (A.49) below; details are omitted.

To prove (4.6), fix (u,v) € PEQ(M, X), and let m = (my)ren be a non-decreasing
positive divergent sequence. Since ckg ( fy2r X ) < M, we have from (3.1) that for k such
that my, > M, there exists gy, € g,?(mk) with

£ = g0l v S Md2k™ 3. (A.46)

00,X "~

Also, x2 (pllv) > Xé,’j(mk)(u’ v) because g € GR(my,) is bounded. Then, we have

I (1) = X (i ()| = X (al1) = Xy (1)
< x? (ulv) — By [g0,] — B g0, +0.2503,
By [fie = 90.] + By || £z = g0, ] +0.25[ % - g3, || (A47)
< Md2k™2 +E, [0.25|f,2 — go, || F2 + 90, ]
S M3k + B, [0.25]f0 — go, [*+0.5| fyz — 9o, | | 2| |
S Md2k™2 + M2dk™ + 0.5 fy2 — go, || B [IFyel] (A48
< M(M + 1)dk ™2,

where the final inequality is due to (A.46) and since E, foz H <E, [2(dp/dv) + 2] < 4.
Since g =0 € QE(mk), for k such that my < M, we have

I (I0) = X (0152 | = 5 (l19) = Xy (1) < X () < M.

Hence,
_1
X2 1Y) = X (V)| Smr A%, VE €N, (A.49)

Since C (}g,ff(mk) ,

|

X) < 3my([|X]| + 1) and C([h 5 o GF(my)],

) < L5my(||X) +1) 41,

iy (XY™ =32 ()|
< [\ ey (12 = X (l19)]| + E [y (0 ) = Ry (XY™
Satm A2 + d2ml (| X + 1) 2, (A.50)

where the last inequality uses (A.29), (A.33) and (A.49). Setting my = logk in (A.50) and
taking supremum w.r.t. (pu,v) € P§2 (M, X) yields (4.6).

A.2.5 PROOF OF PROPOSITION 25

It follows from (A.14) that there exists extensions Pext, fext € Bz, 4 x).2,% (RHN ESKBvb/ (R?)
of p,q € CZKB(U), respectively, where ZSKB:b, (Rd) is defined in (A.13) and Cod,| x| =
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(kgd®? || X vV 1)V, with ¥ from (A.15). Let f& = 2(Pextex — 1) and recall that ay;
denotes a multi-index of order j. We have from the product rule of derivatives that for any
J € Z>o,

;!
DU =2 N DOt e DOz ey — D2,
oy Hap,=ay O M

where a! := H;'i:1 a;!. Also, note from (A.11) and (A.12) that for 0 < j < SkB, Dext; Gext
satisfies .
HDa‘jﬁexthRd \ HDaqueXtHoo,Rd <b< b/’

1D Bext | o V | D™ e[| o < V'
Combining these observations, we have for 0 < j < skg that
AWl ey s poys s
Z mD 91 Pert D172 Gext
oy, apy=ay; LR

<24 2012 (A.52)

s

<2+2
2,R4

2,R4

Similarly, we have HDalﬂ'f;étHl < oo for 0 < 5 < skg. Hence, f;ét € ESKB,2+25KB+1I)/2 (Rd).
From Lemma 55, it follows that S (f;"ét) < (2 + 258 H1p2) 4 d3/2. Since fre = f;’ét}x, this
implies that cig (fy2, X) < (2+ 25kBHp2) (qd®/2 | X V 1). Also,

W (ullv) =By [(pg™ = 1)°] < B, [P +1] <824 1.

The claim then follows from Theorem 22 by noting that % < &2 | | and (n,v) € 73)%2 (M, X)

with M = (2 4 25ke*1e? \\X||)(”dd3/2 X V1)V (B +1).

A.2.6 PROOF OF THEOREM 27

Let Hék,t(ak:¢)(u7 v) = Dth,Qk,t(ak@)(“’ v). We need the following lemma (see Appendix

B.5 for proof) which shows that parametrized H? distance estimation is consistent.
Lemma 61 (Parametrized H? distance estimation) Let (u,v) € P3:(X). Then, for
any 0 < p <1, t, — 0, and n, ky, such that k‘i/Q(HXH +1)t,2 = 0 (n(1=P)/2),

12 n yn 2 o

ngnytn(¢)(X Y™ — ngn,tn(@(u’ v), P—a.s. (A.53)

Continuing with the proof of Theorem 27, we first prove (4.10). Fix (u,v) € P (X).

Recall that fiz = 1 — (d,u/du)fl/z. Since |[dp/dv|,,, < M by assumption, we have
(1= fu2)llo, = M~1/2. Tt follows from (Stinchcombe and White, 1990, Theorem 2.1
and 2.8) and the definition of g’;t(@ that for any € > 0, there exists ko(e) € N and
99, € QNZ a—1/2(¢) such that for all k& > ko(e),

1fnz = 90l oy < € (A.54)
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Then, noting that H?(u,v) > Hé*

k,M—1/2

(¢)(u, v), we have

H2 (1, v) — H o) = HA ) = HE,

k,M—1/2

< B[l = g0 + B[ free (0 = fi2) ™" = g0 (1= 90,) "]

< Eu[\fm - gek”JrEu[ (fre = 90,) (1 = fue) 7 (1~ 99’6)_1H
et (A.55)

2
GZ,M*1/2 (¢)(:u7 V)

where the final inequality uses (A.54), Hl — szHom7 A Hl — gngoon > M~Y/2. Since € > 0
is arbitrary, this implies (similarly to (A.39) in Theorem 14) that

lim H = H*(p, ).
m HG. ) =H )

k—o0 kM~
Then, (4.10) follows from (A.53) and (A.55).

Next, we prove (4.11). Fix (u,v) € P2, (M,X). By some abuse of notation, let
m = (my)reny and t = (x)reny denote a non-decreasing positive divergent sequence and
a non-increasing sequence tending to zero, respectively. Since |[dp/dv||,,, < M, we have

11— fuelloory = M~Y/2. Using t; — 0, it then follows from (3.1) that for k such that
t < M~Y/2 and my > M, there exists 9o, € Q,';tk (my) with
1 1
1fh2 = 90, llogy S Md2E™2. (A.56)

Then, following the arguments leading to the penultimate step in (A.55), we have
2 _ H2
H (:ua V) Hg}’itk(mk)(u7 V)‘
-1 -1
< By [|fue = g0, |] + v [| (e = 90.) (1= i) (1= 90,) "]

-1 —1
< v = 90l + o2 = 90 B [ (1= i) ™ (1= 90) "]

Sud2(L4+1)k,

where the final inequality is due to (A.56), 1 — gg, (¥) > t for any = € R, and

(1= fu) '] =B [\/37] </E, [S‘Ij ~1.

Moreover, since g =0 € Q,fftk (my), for k such that my < M or t; > M~1/2 we obtain

]E,,[

2 a2 _ M2 _n2 < H2 <
H* (1, v) Hgg’tk(mk)(uw‘ H ) = Hgg | (g (1) < HA(v) <2,

where the last inequality follows from

2
du du
2 =E, ||/ — <E, |- +1| <2
H*(u,v) = E ( W 1> <E [dy—l—]_
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Thus, for all k£, we have
‘H%uﬂd-—HéR (uﬂo‘ﬁwuntd%C1+t;Hk‘%. (A.57)
Kyt (my) .

Noting that C’(‘Q,’;tk (mg)], X) < 3mi(|X]+1) and C(|hye ogstk(mk)‘, X) < ti.2, it follows
from (A.29), (A.33) and (A.57) that

12 n yny _ 42
B {[F, gy X1 = WG|
2 2 "2 n n 2
< [P 0) = Mg g 00| +E “Hés,tk<mk>(X Y - HéE,tkmk)(“’”)”
Satm d2(1+ k2 +d2 (| X + mgty >n" 2. (A.58)

Noting that the above bound holds for any (u,v) € Pz(M, X), and setting my, = logk,
tr, = (logk)~1, we obtain (4.11).

A.2.7 PROOF OF PROPOSITION 30

As in the proof of Proposition 25, (A.14) yields that there exists extensions pPext, Gext €
ext __

Béb,d,uxu’&/\’ (Rd) ﬁﬁsKB’b/ (Rd) of p, g, respectively. Let f$5' = 1 — Pext - Gext- Then, following
steps leading to (A.52), we obtain for 0 < j < skg that

<14 292,
2

;! - -
<1+ Z b g ‘Daljlpext D52 et

o ags,!
ajj, Fay,=ay; 1 2

1% A3l

Similarly, HDO‘U fﬁg‘tHl < oo for 0 < j < skp. Hence, fi35* € ‘ESKB,I—l-QSKBb’Z (Rd), which yields
via Lemma 55 that Sy (fi$%) < (1+ 25kBY2) kqd®/2. Since fuy2 = fﬁ§t|x, this implies that
Ck (fuz, &) < (142%002) (5gd%/? | X[ V1). Moreover, we have ||dp/dv]|,, = [lpg"]|,, <
b?. Hence, (u,v) € Ph(M,X) with M = (kad®/2 | X|| v 1)(1 + QSKBéidHX”) v b% since
b2 < Eg PR The claim then follows from Theorem 27.

A.2.8 PROOF OF THEOREM 32

Let 6g, (a,¢)(H: V) = Dpry Gy (ap) (#:v). The proof of Theorem 32 is based on the follow-
ing lemma which establishes consistency of the parametrized TV distance estimator (see
Appendix B.6 for proof).

Lemma 62 (Parametrized TV distance estimation) Let u,v € P(X). Then, for any
0<p<1,andn,ky, such that k,(||X| +1)"/2 =0 (n(pp)/z)’

n—oo
Equipped with Lemma 62, we first prove (4.14). Since fry is not continuous, the

universal approximation property of NNs used in the consistency proofs until now cannot
be used directly in this case. However, we will show that there exists a continuous function
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approximating fty to any desired accuracy, which can in turn be approximated by QZ(@
arbitrary well.

Fix p,v € P(X). Let p and g denote the densities of y and v w.r.t. n = 0.5(u+v) €
P(X), and let C* be the set defined in (2.8). Note that |[pV ql|,,, < 2. Also, observe that
C* and X'\ C* are Borel sets, since p(z) and ¢(z) are Borel measurable by definition, and
hence so is p(z) — ¢(x). Since n € P(X) is a regular probability measure, for any ¢ > 0,
there exists compact sets C, C, open sets U,U such that C CC* CU,C C X\ C* CU and

nUNC)VU\C)VUNCT) VU N (X\C)) < 0.25,

along with continuous (Urysohn) functions (e« : R — [0, 1], Cx\cx : R? — [0, 1] such that

1, ze€l(,
e (@) = {o, z € RI\U,

1, zeC,
C”‘\C*(gc)_{o, z e R\ U

Hence,

Eu([les — Cer ] VEL [[Tex — G| S Ep[(pV @) [Ler — Ce+[] €025 |p Vgl 6 (A6L)
JVE, [|[Taver = Crver|] SEp [0V a) |Taves — Caner|]
<0.25[p Vs, € (A.62)

Ey [|Taver — Caner

Let ¢(x) = e+ () —Ca\c+ (#). Note that ¢(z) € [-1,1], ((z) = 1 for z € C\U and ((z) = —1
for € C\ U. Since ((-) is a continuous function, it follows from (Stinchcombe and White,
1990, Theorem 2.1 and 2.8) that for any € > 0 and k > ko(e), there exists a § € G{(¢) such
that [|¢ — gll,, » < € Since [|([l,, < 1, it then follows from the definition of Gr () that

there exists g* € G;(¢) such that
1€ = 9"l < & (A.63)
Let o1v(g) := E,[g] — E, [g]. Then, we have for k > ko(e) that

{5TV(M7 V) — 5g’;;(¢)(% V) ‘

= Orv(p, v) = OG- ()1, V)

< rv(p,v) — drv(g")

<Eu[lfrv =gl + B[l frv — 97l

<Eu[lfrv —C+1C=g" I +Eu[[frv = ¢l + ¢ — g7]]

<Eu[lles — G- + By [|Tes — Coxl] + Ep [|Tanes — G
+E. ¢ =g ] + Eu [|¢ = g7]

<e(llpVdlla, +2) < 4e (A.64)

]

| +E, Hﬂ){\c* — Cx\c*
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where (A.64) follows from (A.61), (A.62), (A.63) and [pV ¢y, < 2. Since € > 0 is
arbitrary, we have from (A.64) that

lim 5g (@)1, v) = o1v(p,v).

k—00

Taking ky,, n satisfying k, = O (n(lfp)/Q), (4.14) follows from the above equation and (A.59).

Next, we prove (4.15). Fix (p,v) € P3,(M,X) such that frv € Lip,; 5(X). Since
frv does not belong to the Klusowski-Barron class, we consider approximation of an inter-

mediate function f%)/, which is a smoothed version of fry and belongs to this class. The
smoothing parameter ¢ is then decreased as a function of k£ at an appropriate rate such

that the L' error between f-ﬁ-t\)/ and fry vanishes as k — oo. For this purpose, consider
a non-negative smoothing kernel ® € L! (]Rd), ® > 0, such that [p, P(x)dz = 1. Let
®y(x) :=t~4®(t~ ), t > 0, and

£ () = frv « @y (o / Frv(e — 5)®:(y)dy,

denote the smoothing of fry using ®;.
Recalling that o1v(f) := E,[f] — E, [f], we have

|07V, ) = 0g, (a1 V) | = OTv(k, ) = 0g, (a,0)(1 V)
= orv(n,v) = v (£0) + 51y (AY) = 8g,almo ), (A.65)

The first term in (A.65) can be written as follows:

otvip, v) — 5TV( %)/) =E, [fTV - %)/} - E, [fTv - f%)/} - (A.66)

Denoting by p, ¢, the respective densities of u,v w.r.t. Lebesgue measure, we have

o= =[] Frofe) -t /. fw<y><1>(<a:—y>t1)dy] ple)da
= [ |- [ e - wiean] pejaa
= [ | L rvie)e - frvia - el d] pejas
< [ 1o = rvte - )l pteie | @

= [ it s )= vl pte + ] @

<ol [, [ 1o ) = frvte] d] @y

[ e Grvet ul) 2

2 w2 /R £ Jull* ®(u)du, (A.67)
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where (a) and (b) are due to (u,v) € P, (M, X) and frv € Lip,; 5 (X), respectively. Since
(A.67) also holds for v in place of y, we have from (A.66) that

‘5TV(M, V) — b1y (f%),)‘ < 202 /Rd £ [|ul|® @ (u)du. (A.68)

Next, note that

(a) (b) (c)
[0, = [, [ v = nolavae < 1l o, < i < o

where

(a) follows from Minkowski’s integral inequality;
(b) is due to [pa [P (y)|dy = 1;

(c) is since frv € LY(X).

Hence, the Fourier transform of f-E-t\)/ exists, and is given by

§ [ AV = Slrvisied. (A.69)

Choose ® to be standard Gaussian kernel, i.e., ® = &V := (277)_d/26_0'5””””2. Then, we
have

(a) () (¢ 1,.2),,112
[5 [#Q]]], < 1ol [ el < 0 [ j5lale)ido < 2 [ e P < o,
1 Rd Rd R4
where

(a) follows from (A.69) and ||F [frv] ||, < Ifrvlly

(b) is via the formula F[® (t7!) | (w) = tF[®] (tw), and || frv|; < M by the definition of
Lipschitz seminorm,;

(c) is since F[®V](w) = e~ 3lwl’,

Hence, the Fourier representation in Definition 4 holds via the Fourier inversion formula for
(t) . Then, we can bound the spectral norm as

t t
Q)= [ el 579 s
Rd
< ”fTVHl/Rd ol [§[@e](w)] de
< Md/ [l e 21wl g,
R4
Evaluating the integral above by converting to hyperspherical coordinates, we obtain

1208 (79) < 1l M |l 310 o = cqnpe (A70)
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where

(2m)% || X M3, a=1,
C = .
P 2% ) M RIT(d + 2/ TS [ sind ™ (o) d =2

Moreover, ||frv|s, <1 and [pq|®¢(y)|dy = 1 implies

] < [ peld < [ el -1 (A7)

Since ’ \)/ }\/ HVfg\)/(O)H <1V (2dm~ )21 (0.5(d + 1))t~ and (A.70) holds, there exists
g6, eg A ( dM,||XH,t) such that for all 0 <t <1,

< Cans g d?h (A.72)

() _
HfTV 9ox 00, X

where ¢q a7 ) x||,t := Canr)x|e V1V (2d7r_d)1/2F(0.5(d+ 1))75_1. The existence of gg, follows
by truncating g € G} (éd,M,HXH,t) satisfying (3.1) to [—1, 1], and noting that truncation only

decreases the approximation error as H f-g-t\)/Hoo < 1. Hence, we have

orv (fg\)/> = 0GR g na ey ) V) < o1V <f1(-t\)/) — o1v(90,)
<u, [ o] 45,

S a1 47k 3 (A.74)

f'g't\)/ — 3o,

} (A.73)

Next, observe that (A.68) with ® = & yields
‘(5TV(,U7 V) — o1V (f%)‘ < cqm,st’,
where cg 7.5 := 2M?(2m) =42 Jga llull® e=05llul” dy. From this, (A.65) and (A.74), we obtain
OTV(H: V) = 0GR (2, oy ey, ) (1o V)‘ = OTV(1,7) = 0GR e pg ey )1 V) Sdaas B4 (1] (@23,
Setting t = t7 = k—1/2(s+d+2) anq
Crd,s M| = Canrx)er = Oanr ([|X]] (/2 st dF2)) (A.75)
yields

Saars (X + DE26H2) 0 (A76)

drv(p,v) — 5g‘,’§ (Ek,d,s,M,nXH)(M’ V|2

Finally, we bound the expected empirical estimation error. Note that C (‘g}f(a) , ) <1

and C(|hfy © GR(a)|, X) = 1. Then, we have

E Hégf (Ek,d,s,M,nxu) (X7, Y7) - 5gk (Ck dys,M, qu)('u’ V)
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INE

1 SR/~
n 2/ \/ sup logN L GR (G x))s || - [12,) de
Ye

A
INS

_1 ~
8 YT o O P2
v

eP(X)
|2,'y> de

073 (d+ 1) 5/ \/10g 146G, 4,01, x) (1 X ]| 4 1))de

A
INe

1
n 2/ \/ SUP logN 6/3 gk(ckdsMHXH) | -
ve

—
S
=

13 1
n 2d2(ck’dlelXH(HXH+1))d+3+n 2d2(ckdsM||X||(”XH+1))2

_1 .3
n=2d2 (G a2y (IX] +1) + 1), (A.77)

AN QN

where (a) follows from (A.29); (b) is since the pointwise difference between functions in
GR(a) (with range [—1,1]) is less than the difference between the corresponding untruncated
functions in GR(a); (c) is due to (A.32); and (d) is via steps leading to (A.33). Then, (A.76)
and (A.77) implies that

E [‘695(5k,d,s,M,\|X\\)(Xn’ Y7) = orvip, V)H
St (| + 1k—=/206F042) =3 D/204a42) ()2 £ 1) (AT8)

Recalling that X = [0,1]¢ and taking supremum over (u,v) € P3,(M, X) such that fry €
Lips 1.0/ (X), we obtain (4.15).

A.2.9 PROOF OF PROPOSITION 35

Since p — q € Tyn(X) and frv = Ly,_g>0y — L{p—g<0}, the definition of & 1(frv,t) yields

2NA(Bqg(t)), t<b
2|l frvlly otherwise.

§11(frv,t) < {
Hence, for any 0 < s <1, it holds that
”fTVHLip(s,l) = || frvily +Stulo)t78§171(fTvat)
>
= |l frvlly + sup t°&a(frv,t) Vsupt§ia(frv, )
0<t<b t>b
= [Ifrvlly + sup t7°2NA(Bq4(t)) vV supt=°2 || frv|,
0<t<b t>b
= A(X) + 2N72b%5 (D(0.5d + 1)) "1 v 265\ (X), (A.79)
where A denotes the Lebesgue measure and I' is the gamma function. Hence, frv €

Lips 1 a7 (X) with M = X(X) 4+ 2N (T'(0.5d + 1))’1w%bd*8 V 2b*A(X) and any 0 < s < 1,
thus proving the claim via Theorem 32.
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A.3 Proofs for Section 5
A.3.1 ProoF oF THEOREM 39

To prove part (i), fix some 0 < € < 1. Let BS(r) = R?\ By(r), and r(¢) be sufficiently
large such that E,, [ | fkL| ]lBg(r(e))] VE,|[|dp/dv — 1]]133(,,(6))] < e. Since fxL € C(R?), from
(Stinchcombe and White, 1990, Theorem 2.1 and 2.8), there is a ko(¢,7(¢)) € N, such that
for any k > ko(e,r(€)), there exists a gg, € GJ(¢,7(€)) with

||fKL - gekHOO,Bd(r(e)) <e (A.80)

Then, we have

‘DKL (1) = D (e (1 V)‘
<E, [ fxL — 90,]] + E» [\efKL _ o9, ‘]
=E, [|fke — 90, 1y((0p)] +En [|fKL - 9o, ﬂBg(r(e))} +E, [‘efm _ o9 HB;(T(E))}

+E, [|eft - e |10 |

d
< ||(fr — gGk)]le(r(e))Hoo”u +E, [\fKL\ ]lBg(r(e))} +E, Hdz -1 13;(7(5))}
+E, ([ [Lp,00)] | (1= e~ 1p,0) | (A8
Se (A.82)

where the final inequality is due to (A.80), the choice of r(¢), and E, HefKL‘ 1g,0e)) < 1.
On the other hand, for any 0 < p < 1, and n, ky, r,, such that kf{/z(rn + 1)ek"(T"+1) =
(@) (n(lfp)/Q), Lemma 59 yields

A~

DQA; (X", Y") —— DQAZn(W’n)(M’ v), P-—as.

n (¢1rn) n—0o0

This along with (A.82) completes the proof of Part (7).

To prove part (ii), we first state a general error bound for KL neural estimation based on
the tail behaviour of random variables fx (X) and hgp o fk  (Y) := efkt(Y) —1 outside By(r)
for X ~ p and Y ~ v. For an increasing positive divergent sequence r = (rg)gen, 7t > 1,
(ry — 00), a positive non-decreasing sequence m = (my)ken, Mg > 1, and a non-increasing
non-negative sequence v = (vy)ken with vy — 0, set

PE (M,r,m,v)
By [ | fkL] lBg(rk):| VE, [lhKL o fwd| IlB;(rk):| < g,

=< (p,v) € PﬁL(Rd) : X
Dke (ullv) < M, cig (feLlBy(ry)> Ba(re)) < mp, k€N

Then, we have the following lemma.
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Lemma 63 (KL divergence neural estimation) Suppose there exists M >0, 0 < p <
1, and r,m,v as above satisfying 1 < my, < kO=P/2 such that (u,v) € P (M,r,m,v).
Then, for G, = Q,ff(mk,rk), we have

3me(re+1) o —3 )

sup E Hlf)gk(X”, Y™) — DkL (,u||y)H Sd,M,p mkk_% + v + mygrie n

(e
P&L(Mm,m,v)

The proof of the above lemma is based on an application of Theorem 8 to bound the
NN approximation error on balls By(ry), leveraging tail integrability assumptions in the
definition of 75,20_ to bound the approximation error outside By(ry), and using Theorem 12
to control the empirical estimation error. Its proof is given in Appendix B.7.

Continuing with the proof of the Theorem, we will show that (u,v) € 75%_71/) (M, 2, r,m)
implies (u,v) € 75,2<L(M,r,m,v) for some v that will be specified below. Then, Part (i7)
will follow from Lemma 63.

Note that || fucll,, < M, where £ > 1 (or equivalently £ > 2 since ¢ € N), implies

D (ullv) = By [fur] < \/Ey [f3] < M. (A.83)
Also,

(a) El
E, [lfitl g < il (0 (X1 > ) )

®) -1 -1 >
< Mu(w(I1X] M7Y) > (e ™))

< (m, e (X)) (e

1

< m(w(rrr )

(A.84)

du
W ! 1B;<rk)]

dp

(Bi(re)) +v(Bi(re)) (A.85)

1
< (B [w(Ix) M)] + By [w (1Y) M) ) (v (M)
2

Ey, ||hkeL o fL ﬂB;(rk,)}

I
=
<

where
(a) follows by Holder’s inequality;
(b) is since [|fkL|l,, < M and ¢ is increasing;

(c) and (e) are due to Markov’s inequality;

50



NEURAL ESTIMATION OF STATISTICAL DIVERGENCES

(d) and (f) are since p,q € Ly (M) implies that E, [v (| X||M 1) VE, [¢ (Y| M~ 1)] < 1.

It follows that (u,v) € 75,2(|_(M, r,m,v) with vy <pry0 (w(rkal))fl/Z* since r;, > 1. Note
that vy — 0 as rp — oo. This completes the proof of Part (ii) via Lemma 63.
A.3.2 PROOF OF COROLLARY 41

Fix (p,v) = (N(mp,0714),N(mg,021)) € PR(M) and r = (rp)ren = (1V M +7%)
where 7, > 0, k € N, will be specified below. Note that

keN?

2 2
[z —mg|”  [lz—my|
202 202 ’

fkL(z) = dlog <0q> +
Op

4 lImp — my|”

DkL (u|lv) = dlog —0.5d+0.5d— ” 5
Op 20 q

q

Also, fki is infinitely differentiable on R?, and it can be seen by computing derivatives that
for any multi-index a of dimension d and arbitrary order |j«|; € N,

”DafKLHoo,Bd(rk) < b}Z,d,M = Cd,M (1 + fl%) )

for some constant ¢4y (polynomial in M). Hence, fii|p,(r,) € CSKB , which implies via
M

Proposition 10 that
cip (FkLlBy(ry)s Ba(re)) < migt = canr (1 + Td+3) :

By a straightforward calculation by using 1/M < op,,04 < M, ||m,|| V [[my]] < M, it
follows from Gaussian integral formulas that there exists some ¢4 s such that

[ fkllg, VPN, V llglly, < canr

where 15(2) = ¢ — 1. Hence, 75,%( ) C 75}2“_#) (canr,2,r,mKL), and we have from Part
(ii) of Theorem 39 with my = m Land G, = gk (mk ,T ) that
72
k
1

Hng X% ¥") = Dy (ullv H Satp Mk™ I 4 e M et RT3

Then, setting ry = rk =1V M + 7, with 7, = (clog k:/3cd7M)1/(d+4) yields for G, =
gk (mk ,rk ) that

2
1

Hng (X™,Y™) = Dkw (ullv )H Sdm ek logk + e ~(elogh/eanr) Ty ck®logk n™2.
Solving for the value of ¢ such that the first two terms in the RHS of the equation above

are equal (up to logarithmic factors) yields ¢ = ¢4, 27 @D/2(1og k)(@42)/2 - Substituting ¢
and taking supremum over (p,v) € P3(M), we obtain the claim in the Corollary.
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A.3.3 PrROOF OF THEOREM 43

Let r(e) be sufficiently large such that EM[\fleﬂBé(r(e))] \Y ]E,,Uhxz o fxﬂﬂB;‘(r(e))] < e
Similar to (A.80), there exists gg, € QZ((JS,T(G)) satisfying HfX2
k > ko(e,r(€)). Then, we have

_QGkHOO,Bd(r(E)) < e for
I llv) =X, (g (15
<E, fo2 - 99kH +E, Hhx2 o fyz = hye OgekH
=By [|f2 = 90.| Lpatr(en] +Bo [[hyz © fxo = bz © g6, | 1, 0r(e))]
+Eu [|fy2 = 90, Lasiren| +Bv [Ihyz © frz = hye © g0 | agircey |

< [[(fx2 = 99k)13d(7’(6))Hoo,u +E, [ hyz 0 fy2 = Tyz © go,

ﬂBd<r(e>)}
- [‘fx2‘ 133(’“(6))} +E, UhXQ © fyal ]133(7‘(5)):| (A.86)

(@)

S €+ Ey [|hyz o frz = hya 0 go | L)

®)

< e+E, (£ = 90 1a,)] +Eo[0:25 e = 90| Lo

+0.5E, [ | f2 = 90.] | Fre] Ile(e))}

N

e+ || (£2 = 90.) LBatr(en | oo, Bv [ F2 ]

S

67
where (a) follows by definition of r(€) and gp, above; (b) is via steps leading to (A.48); (c) is
due to definition of r(¢), gg, and E, [ |f,2|] < 4. From this and Lemma 60, Part (i) follows.

Next, we prove Part (ii). For sequences m, r and v as in Appendix A.3.1, let

v

P(r,m,v) =< (u,v) € 73)2(2 (Rd) :

EuﬂfﬁuBf{(m)} VEV[‘hXQ © sz‘]lBé(Tk)} S Uk
X

ke (fr2|Byr), Ba(re)) <mg, keN

We will use the following lemma which bounds the y? neural estimation error for distribu-
tions satisfying general tail integrability conditions (see Appendix B.8 for proof).

Lemma 64 (x? neural estimation error) For G = Q,?(mk,rk), we have

N

sup E H)QE;}JX”, Y™ — 2 (MHV)H < mkd%k_% +midk™ 4 v + d%mirzn_ .
(,u,V)GPi2 (r,m,v)

(A.87)

Armed with Lemma 64, we next show that (u,v) € ﬁiQ ” (M, ¢, r,m) implies that (u,v) €

7%2 (r,m, v) for some v that will be identified below. We have

—

2 M(w(rkM_l)) = (A.88)

=

1
=

(a)
Eu [fel 1500 < el (e (X0 > 7))
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dp
E, |:‘hX2 o fxz‘ ]lBg(rk)} =E, |:2 ‘dy — 1‘ lBg(rk)] +E,

dp\? c

d
= 2u(Bg(ry)) + 3v(Bi(ry)) +Ey |:d/:]]-B§(rk):|

dp
<2E, |:<dV + 1> ]132(%)] +E,

= 2u(B5(rx)) + 3v(B5(rs)) + E, [(0.5fxg + 1)133(%)}

2 3u(Bg(ri)) + 3v(Bi(re)) + 05| |, (u(B3ri)) ™ (A.89)

1
T

-1

<6(w(mM))  +05M(v(nMY)) T,
where

(a) and (c) is by Holder’s inequality;

(b) and (d) follows via Markov’s inequality since E,, [ (| X||M 1]V E, [v([|Y]|M~1)] <

1, and foz H&u < M by assumption.

9

Hence, (u,v) € P}é(r,m,v) with

1 _ L
E3 *

o= 6((mdr ™))+ 2 (M) T Zage (w(mde ™))

This implies Part (i7) via Lemma 64 (since myk"2 + mik~1 < Qmikf% due to my > 1).

A.3.4 PrROOF OF COROLLARY 45

We will require the following lemma which bounds the tail probability of an isotropic Gaus-
sian distribution outside a Euclidean ball By(r) of radius r. This is a straighforward con-
sequence of Gaussian concentration (Ledoux and Talagrand, 1991, Eqn. 1.4) and the fact
that ||-|| is 1-Lipschitz function on the metric space (R?, ||-||).

Lemma 65 (Gaussian tail integral bound) For any m, € R? such that ||m,| < M,
o2>0andr>M,

_d [lz—mp||? (r—0n)?2
(2%02) g/ e 2t dr < 2 = (A.90)
Bg(r)

~ Proceeding with the proof of the corollary, fix (u,v) = (N(mp,0°14), N (mg,0%14)) €
773(2 (M), and r = (rk)keN = (1 \/M—i—fk) where 7, > 0, k € N, will be specified below.
Note that since

o2 <§Eg ) 1) ., <<2)d612:§||2_nz2:§n2 - 1) |
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it is infinitely differentiable on R?. A straightforward computation shows that for any
multi-index a € Z‘éo of order |laf|; < skg,

1% fe|

Hence, f\2|p a(ri) € CER , which implies via Proposition 10 that
k

~ - 22
corBalry) = Ok = canr (147®) 275,
* B < X 1 4 poxetd+1l) 2M%7 A9l
CKB (fX2|Bd(7'k)7 d(rk)) <mp =cqm (1+7, e ) (A.91)

Furthermore, letting 6*2_ = (J;Q — 0.50;2) A 0.50;2 A 0.50;2 and noting that 572 >
0.5M 3 by definition of P, \ (M) and M > 1, we have

5 NG .l = ezl
20 20 20
Eu || fe| Lgirn) S(QWIQJ)M/BC(W) <Up) e Pol)e P da
d

92 o\ @ \|95—'"2q||2 _ ||96—";p|\2 _ ||95—"‘Zg)||2
= 2)d/2 / <q> e %7 » de4+e P dx
(27T0p) BS(ri) \%p

(a) 72 72

Sd,M e 32 < €_2M37

v “hXQ ° frel ﬂB;(T’k)]

d |ls=mg|® [lz—mp|? [|o—mq][*
1 o - ==
- 7(] 202 202 _ 202
 (2mo2)d/2 /c 2 (0’ e ! L)e Pode
q B§(rk) P
2
o\ ¢ ||96*"12q||2_Hﬂf*méoH2 _H%*qull2
+/ ( q> e 20'q 20'p _1 e 2o'q d.’]j
BS(ry) Op

2 2
[z=mq || _ [lz=mp]|

(b) _Jlz=mp|?

2 2 2 7||z7m2q||2
Sdm e % dm—l—/ e 27 7 dx+/ e %1 dzx
B§(rk) B§(r1) BS(rk)
(c) 72 72
Sd M (& 52 < (& 2M3
where

(a) and (c) follows by an application of Lemma 65 via completion of squares since 012) < 202
by assumption;

(b) uses (ae® —1)2 < a%e?® + 1 for x € R? and a > 0.
Hence, (u,v) € 75§2 (r, mXQ,VX2) with mX” as defined in (A.91) and Uif = cd,Me_fk/QMB"

and the error bound in (A.87) applies. Setting r; = r,’f =1VM+7,=1VM+

27950 ~1/clogk for some constant ¢ in (A.87), optimizing the resulting bound w.r.t. ¢
2
(achieved at ¢ = 2M°/(4M® + 1) < 0.5), we obtain for Gy = GR (my,rk ) that

E[|x

aMm® 1
3, (X" Y™) = X2 (ullv)]] Sar (logh)eretdD (k +kz1+4M~‘n2>.

Taking supremum over (u,v) € 75;27,\'(]\/[ ) completes the proof.
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A.3.5 PROOF OF THEOREM 47

For sequences m, r and v as in Appendix A.3.1, let

E, [\fHﬂ ]lBg(rk)} VE, [\hm o fuz| ﬂB;(rk)} < vy,

di
dv

Ple(r,m,v) = {(u,v) € Pia(RY) :

kg (fuzlBy(ry)s Balr)) v <my, k€N

OO,Bd(’l"k)

The following lemma proves consistency of the NE for H? estimation and bounds its effective
error for distributions satisfying general tail integrability conditions; see Appendix B.9 for
proof.

Lemma 66 (H? neural estimation) Let (u,v) € 7532 (r,m, V), where m satisfies my =
o(k'/*). Then, the following hold:

(i) For ky,myg ,rk, ,n satisfying k, — oo, 1y, — 00, k}/Qm%nrkn =0 (n(lff’)ﬂ), and

On = GR _1/2(mkn,?”kn), we have
kn,mkn

HZ (X" V™) —— HY(u,v), P—as. (A.92)

n—o0

(ii) For Gy = G;

)

~1/2 (mk; rk), we have
my,

sup E Hlilék (X", V™) — H%(p, U)H < mzd%k_% + v + d%m%rkn_%. (A.93)
(u,u)e'ﬁaQ(r,m,v)

To prove the theorem, we will show that (u,v) € 75512 " (M,r,m) implies that (u,v) €

75,32 (r,m,v) for some v stated below. Then, Part (i) and (i) will follow from the corre-
sponding Parts in the above lemma. We have

By [|fH2| ]lBé(Tk)} =B [ 1= W’ ﬂBg(r’“)]
< u(ij(?“k)) +E, [\/qu]lBﬁ(Tk)}

< u(Bi(r)) + /v (Bi(r)) (A.94)

< v(Bi(re)) + /1(B5(rr)) (A.95)

where
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(a) and (c) follows from Cauchy-Schwarz inequality and E,, [gp~'] = E, [pg~!] = 1;

(b) and (d) follows from Markov’s inequality as E,, [¢ (| X|| M) VE, [¢ (Y| M~1)] < 1.
Hence, (u,v) € ﬁaz(r,m,v) with v, = (w(rkal))fl + (w(rkal))fl/Z S M

(w (rkM_l))_l/2 — 0. This completes the proof via Lemma 66.

A.3.6 PROOF OF COROLLARY 49

Fix (p,v) = (N(mp,0%14),N(mg,0%13)) € PR(M), and r = (rp)gen = (1V M + 7%)
where 7, > 0, k € N, will be specified below. Observe that

1 /2 Jle=mp|® _ [z=mq]l>

p(z)\ 2 Ip Z a0t

fra(z) =1 - ( > - () ©T T
q(x) 9q

is infinitely differentiable on R?. Then, for any multi-index a € Z%o of order ||af|; < ska,
it is easy to see by computing partial derivatives that

keN?

A 5 252
”Dasz”oode(Tk) < b,? = Cd,M(l + TZKB) M7k

Hence, fuz2|B,(r,) € CZQB, which yields via Proposition 10 that
k

~ 252
kg (frzlByry)s Ba(re)) < cam (1 + rZKB+d+1) M7

Also, we have
du
dv

Furthermore, defining 2 := 40%03 (Ug + Ug) \Y 205 \Y, 202 = 2012, Y 203 > 2M ™!, we obtain

1 op /4 ||ﬂv—m2p||2,Hﬂﬂ—quII2 ,Ilz—m2p||2
B [|fH2| ]lBg(rk)} = (2770121)(1/2/]96(7"1«) 1+ <0q> ¢ o ‘ de
d

1 _Hx—m;HQ op d/4 _Hﬂc—"‘QfJHQ_||~'C—’“§||2
- 20 _ P 4o 4o
< 2r02) 2 [ e P+ (a ) e a P dz
P Bi(r) q

(@ 7 w2
San e 5 < e OSME

o\ ¢ III*quHQ,Ilﬂffménll2 g2
= sup <q> e 29 b <eqm (1 +e ”k) )
00,Bq(ry)  ®€Ba(ry) \Op

dp
dv 1 ]lel(Tk)]

1 o4 d/4 Hz*m2q||27 ||9”*m2p||2 _ HI*"‘QQH2
< _4 e 4oq 40'p 1 e QUq dx
= (2mo2)d/? /Bdc(rk) <Up> "

1 o\ V4 _III—quIIQ_Hﬂﬂ—méall2 _III—mZgII2
S s an d/2/ (p> e ‘a Y dz+e 77 dax
(27T0q) BS(ry) Oq
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® -2
<dM 6_5'72 < 6*0.5M7'k

~a, —

where (a) and (b) above follows from Lemma 65. Hence, Pa(M) C 755'2 (r, mHQ,VHQ)
with m,';'Q =da.M (1 + fZKBJ“dH) 2M*TE and vk =dM e~ 05M7 and (A.93) applies. Setting

=1V M + 7, with 7, = /2cM~1logk, ¢ > 0, and optimizing the resulting bound
n (A.93) w.r.t. ¢ (optimum achieved at ¢ = 0.5/(1 + 8M)) yields with my = m,';'Q and
Gr = gR _1/2(mkvrk) that

HH (X", Y™) = H?(u, V)H Sa (log ke a2~ zwow (14 kin~4).

Taking supremum over (p, ) € P4(M) completes the proof.

A.3.7 PROOF OF THEOREM 51

Fix € > 0 and let 7(e) denote r such that p(B§(r))
k

(B5(r)) < e. Then, following steps
leading to (A.64), there exists g* € gk(gb, r(e)) for )

\%
> ko(€) such that the following holds:
|57V ) = Ogi g,y (1) |

Eu [[frv = "1 1B,(ep)] + B [IF1v = "1 1Byir(ep)] +Eullfrv — 0" 1B (o))

E,[[frv = 9" 1s(r(ey]

Se+Eu[|frvl Lseeey] +Ev[1frvl Le(r(e))]
< e+ u(By(r)) +v(Bi(r) Se
This combined with (A.59) proves Part (7).

Next, we prove Part (7). Fix (u,v) € 75%V7¢(M,s,r, m). For ¢ > 0, let frv,, =
frvlp,q,) and f?\)/,rk = frvr, * @V, where @V (z) := t~2®N (t71z) and PV = (27r)_d/26_0'5”””2.
Then, similar to (A.70), we have

So (£ o= i [ 1l [3 [0, ] )] aw
<7y ||fTv,rk|rl d / Il [3(@)(w)] dw

_ 4l 2 —5t%llwl® g
Ty el

= Cd,ry t
where
o [VEmre) =l
e {zﬂ”w()ﬁdﬂdr,‘j“t—(d”’ [15=3 Jo sin™ I (p))de;, d>2.

Then, noting that | £9(0)| V ||V A% (0)]] < 1V (2dx=9)/2D(0.5(d + 1))t~ it follows from
(3.1) that there exists gg, € Q_’E(édmk,t,rk) such that
éd,rk,td%k_%, xr € Bd(Tk),

) (A.96)
1, otherwise,

o)) 5 {
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where g, ¢ 1= Gt V1V (2dr~ Y20 (0.5(d + 1))t
On the other hand, we have similar to steps leading to (A.67) that

B [irvn =80 | = [ 1) = Fre o = )l lo)ae] e
= /Rd |:/I:Rd | frv.r, (4 tu) — frv., (z)|ple + tu)dx] O (u)du
<ol [ [ 1rveet s ) = v, (0] ] @)
<1 [ @l ful)o(wde
R4
< Mmk/ ¥ |ul|® @(u)du = c§ gMmyt®,
R4
where ¢ ; = [pa [[ul|” ®(u)du. Then, defining vy, = w(BS(re)) V v(B5(rk)), we have

‘Eu [fTV fTv rJ

< ’E,u [fTV - fTV,Tk] ‘ + ‘E,u |:fTV,7"k fTV Tk:|
< 2u(B(ry)) + & gMmyt®
< 20k + g gMmyt®.

Noting that the above holds with v in place of u, we obtain
‘(sTv(/L, V) — STV <f-$—t\)/,rk) ‘ S 4’Uk + QCz,dekts. (A.97)
Recalling that d1y(g) := E,lg] — E, [g], we have

Orv(t, V) — 0 -4

k (Cd,rk,thk

(a)
= Ol Y) = Ogr(s,

= drv(p,v) — STV <f-§—t\)/77,k> + 5TV (f%),m) - 6§kR(5d,rk,t)(M7 v)

(b)
< dvg + 2¢; gMmyt® + E,, HfTV re 90k

(o)
Sars v+ mpt® it (4+2) )= + u(B(ry)) + v(By(re))

S vg + mpt® 4 @y

)|
)(Ma v)

e

|

- g@k

where (a) follows since HgHOO <1 for g € QkR (Carpt> i) and (2.7); (b) uses (A.73) and
(A.97); and (c) is due to (A.96). Setting t =t} = (rg+1k_1/2m,:1)1/(s+d+2) yields

d+2  s(d+1)
)(u, V) | Saars my et kT AT A gy,

5.
ov(p, v) GF (G0 e
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Then, defining
- g d+1 s
Ch,d,s,m,r ‘= Cdvrkvt;;’s = Od((?"z( + )k0'5(d+2)mg+2) 5+d+2)’ (A98)

we have from the above equation and (A.77) that
?

This completes the proof of Part (ii) by taking supremum w.r.t. (u,v) € 75%V7w(M, s,r,m)
and noting that vy < (1/1 (rkM_l))_l by Markov’s inequality.

d<52 s(dd+l)
(Xn, Yn) — 5-|-V(,u, V) ’ SdMs,p mkf +2 leJr 2T 2(5+d+2> + vk

~

-

k (Ck: d,s,m l‘ark)

1 1 _d+2
+n"2 <mkr,§+1/€5> e (A.99)

A.3.8 PROOF OF COROLLARY 52
We will use the following relation between sub-Gaussian and norm sub-Gaussian distribu-
tions. u € P(Rd) is o2-norm sub-Gaussian for o > 0 if X ~ p satisfies

2

p(|X —E[X]|| >t) <252, VteR

Lemma 67 (Jin et al., 2019, Lemma 1) If p € P(Rd) is o?-sub-Gaussian, then it is 8do?-
norm sub-Gaussian.

Continuing with the proof of the Corollary, fix (u,v) € P2, (b, M, N). From the above
lemma, we have for u € SG(M) and ¢ > M that

—(t=|[Eu1X]]D? —(t—a)2

n(B5(1) < p(IX ~Eu[X)] + |ELX]| > t) <2 107 <2e foar . (A.100)

Similar bound holds with v in place of u. Next, since (u,v) € P2, (b, M, N), following the
steps leading to (A.79) yields

—S

7T —s
||fTV,rk”|_ip(s,1) A Bg(rg)) + 2N —— ( > V207 AN(Bg(rk))
7r

d —s 4 d
71'27’ _ m2r
=k _ v 2b~S k

— " = Cd,s,b,N,rp-
d d d
(i) (5 )t
Then, it follows from (A.99) with r, = M V 1 + 4y/dMlogk, v = 2e~(rk=M)?/16dM 54
Mg = Cd,s,p,N,r;, that
) (Xnv Yn) - 5TV(M7 V) :|
(s+d)(d+2)

Sason (loghk) Toris2) | T7amD 4 k=1 (log k) 5 k7ot dra =3

(s+d)(d+2)
Sds bN (log k) 2(s+d+2) Lk~ 2(5+d+2) + (log k) 2 k2(5+d+2)n

(A.101)

0~

gk (Ck d,s,m,r "'k

1
2,
This completes the proof by taking supremum w.r.t. (u,v) € 75%\,(6, M,N).
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Appendix B. Proofs of Lemmas in Appendix A

B.1 Proof of Lemma 55

Suppose f € EsKKi b(Rd). Since f € L! (Rd), its Fourier transform §[f] : RY — R is well-
defined. Also,

[ sl s ([ lﬂt“’HQ></R (1 ) IS[f](w)Idef

1
(®) do 3 . . ©
(] we ) (B4 max 07f1)" <o,
Rd 1+ ||LUH a:llall, =sks

=

where
(a) follows from Cauchy-Schwarz inequality;

(b) is by Plancherel’s theorem since F[D®f](w) = §[f](w) H;l 1w, V¥ Jlafl; < sks,

where i denotes the imaginary unit /=1, and f € £KB (Rd). The above identity

SKB b
holds because || D f||; < oo for all ||a]|; < sk by assumption.

(c) follows since the first integral is finite and f € ,CSKB »(RY).

Hence, §[f] € L' (R?) and the Fourier inversion formula holds (at every z € RY since f €
Ls,5.6(R?) is necessarily continuous) with F(dw) = F[f](w)dw, i.e., f(z) = [5° e“*F[f](w)dw
Then, it follows from |lw||, < V/d ||w| that

=/ !l [BL/](w)|de Sd/ ol [BL/] ()| de. (B.1)
R4 R4

If || D*f|ly, < b for all a with |||, € {1, skg}, then we have

[ I BlAwldw < ( L, 1+derbru> (L Qe ) i)

b dw 1
< W) (@2 4 ae) 2, B.2
</Rd1+\w||2<ssl>> ( ) (B.2)

N

—
=

where
(a) follows from Cauchy-Schwarz inequality;

(b) is due to Plancherel’s theorem and f € £KB , (RY).

SKkB,b

Combining (B. 1) and (B.2) yields Sy(f) < bd®/?k4. Following similar steps, it can be shown
that if f € ESB »(R?), then Si(f) < bd'/?k4. The final claims follows from these and

definition of the classes ESB&b(Rd) ESKB b(Rd), Be1x (Rd) and B.o x (Rd).
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B.2 Proof of Lemma 57

Assume that ¢ is monotone increasing. Let ¢g,g € Gi(ag, ) be arbitrary, where g(x) =
Zle Bi¢d (w; - x 4+ b;) +wp -  + by and g(x) = Zle Bid (u?i T+ @) + Wo - & + by. Define
B = (B, Bk), B = (B, B), w = (w1,...,wg), W= (W1,...,0), b= (b,...,b)
and b = (by,...,b;). Note that 3, B,b,b € R* and w, w € R*. For any = € X, we have

l9( )—s?( )|

’LUZ :E+b) qu( {L‘—Fih) +’(w0—w0)$‘+’b0—l~70‘

IA

¢ (wi - +bi) — 5¢( ~a 4 by) |+ [lwo — ol X + [bo — bl

||M» i M»

¢ (w; -+ b;) i ( x—l—b)

a) ~ ~
< ‘6—BHI¢< sup \wi-x—i—bi])—|—Hw0—1I)0H1HXH—|—‘bO—bO‘

reX | 1<i<k

—|—LZ\BZH — ;) - + by — byl

< 8B, 6lars (100 + 1)) + o — ol 11 +[po o
+ Lay b — B,
where
(a) is since ¢ is monotone increasing function with Lipschitz constant bounded by L;
(b) is because maxi<i<y |wil|l; V |bi| < a1 and maxj<;<p |Bz| < agy.
Defining u; = ¢(a1,([|X]| + 1)), it follows by application of (A.19) that
N (&, Gr(ar, 8). [ lloo,x ) < N(e/5, [az, azpl®, ur |1y )N (e/5, Bilasp), X111 )
N(e/5,[~az, azil;| - |) N (e/5, Brg(kair),
N (e/5, By (ka1), Lazy |11y

< (14 10kag guge )" (1 + 10y, X € ) (1 + 10az 4¢)
(1+ 10Lkay gag [|X]| €)™ (1 + 10Lkay gag pe )"

1)

If ¢ is monotone decreasing, the above holds with uy = ¢( — a1 (|| X|| + 1)). This proves
the first bound in Lemma 57. Specializing to NN classes GR(a), G3(a), G (#Rr), and G} (¢s)
by noting that the Lipschitz constant L < 1 for ¢r and ¢s, |¢r(z)| < x, and |¢ps(x)| < 1,
yields (A.16)-(A.18).
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B.3 Proof of Lemma 59

We will use Theorem 11 for the proof. Fix any (u,v) € P2 (X). Note that for hg(z) =
& — 1, we have C(IG1 (@), &) < k(| + 1) + 1.

C (|hie 0 Gi(9)], X) < kIXIDFL, )
Vinox S (R(1X) +1) + 1)2(ek(\\Xll+1)+1 n 1)2’

where h/KL denotes the derivative of hx, and Vi 5 ¢ x is given in (A.20). Also, observe that
since g € GJ(¢) is continuous and bounded, Dg: (4) (1, ) < Dki (ul|v) < co. Then, since

Eingan™® S n /a2 + D VR(IRT+ D + 1 (HI¥0+ 4 1) s,

n—o0

for k such that %2(|| X[ + 1)ebII¥1+D) = O (n(1=r)/2) for 0 < p < 1, it follows from (3.3)
that for any £ € N, § > 0, and n sufficiently large,

2
n (5= By g, 1/2)

P (‘Dg;w) (1:) = gz () (X",Y”)‘ > 6) <ce  Thhox

Hence, for k, such that kz/Q(HXH + 1)eknlIXI+) = O (n(1=r)/2),

1/2 2
‘”(5—Ekn,h,¢,xn )

o0
> (5) < cZe Vien b, % < oo, (BA4)
n=1

2P <‘DG;;(¢) (11,7) = Dy (g (X", Y™)
n=1

where the final inequality in (B.4) can be established via integral test for sum of series.
This implies (A.37) via the first Borel-Cantelli lemma by taking supremum w.r.t. (u,v) €

PiL(X).
B.4 Proof of Lemma 60

Fix (u,v) € P>2<2 (X). Recalling the quantities defined in Theorem 11, we have for h,2(x) =
x + 0.2522 that

C (W2 0 Gi(d)], X) < 05k(|X| + 1) + 1.5, (B.5)
Vihot S (R(1X [+ 1) + 1)*(0.5k(| X[ + 1) + 1.5)%,
Bipgx S kVA(X] + 1D (0.5k(X] + 1) + 1.5)VE(IX] + 1) + 1,

where h;Q denotes the derivative of h,2. Also, note that Xé;@b) (1, v) < X2 (pllv) < oo.

Then, since
0< Epppan~? Ski(|X] +1)2n77 —— 0,
n—oo

for k5/2(||X|| + 1)2 = O (n1=7/2), 0 < p < 1, it follows from (3.3) that for any k € N,
0 > 0, and n sufficiently large,
2
n(é—Ek’h’(ﬁﬁxnil/z)

F ( XGe () (X" Y™) = XG0 (1 V)‘ > 5) <ce Vi, X

Then, (A.45) follows using similar steps used to prove (A.37) (see (B.4)). This completes
the proof.
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B.5 Proof of Lemma 61
Fix (u,v) € PE2(X). Note that hye2(x) = 2/(1 — z) and

C(‘h/m °© QNZ,t(ﬁb)\) = sup (1—gg(z)) 2 <t72
90€G; (¢),2EX

where hi,, denotes derivative of hy2. By examining the proof, it can be seen that Theorem
11 continues to hold with G} (¢) in (3.2) and (3.3) replaced with Q;t(d)) We have Vi pox S

k(X[ +1) + 1) (2 +1)%, and

0< Brpoan 2 S n 2ky/d([XT+1) (6% + )VE(XT+1) +1—=0,

for k,t), such that k%2(||X| + 1)t;> = O (n(lfp)/z). Further, Hé* (¢)(,u, v) < H2(u,v) < 2.
k,t
It then follows from (3.3) that for any k € N, § > 0, and n sufficiently large,

2
"(5*Ek,h,¢,xn_l/2)

2 n oyny _ 42 > < ce Vi b6,
P(‘ng,tkw)(X Y™ ngﬁtk(@(ﬂ,y)‘ _5) < ce ~

Then, (A.53) follows via similar steps used to prove (A.37) (see (B.4)).

B.6 Proof of Lemma 62
Fix p,v € P(X). We have 5@2((]5)(;1, v) < brvlp,v) <2, C(|Gr(¢)]) <1, and
C (|hrv 0 Gi(e)]) =1,

where h%,, denotes the derivative of hty. Also, it can be seen from the proof of Theorem
11 that it holds with G (¢) in (3.2) and (3.3) replaced by G;(¢). Further, Vi s < 1, and

0< Eppopan 2 Sn 2ky/d([X] + 1) —— 0,
n—oo

for k,n such that k(|| X|| + 1)¥/2 = O (n(1=P)/2). It follows from (3.3) that for any k € N,
d > 0, and n sufficiently large,

2
”(“Ek,w,?«"*m)

P (‘ngé(@ (X" Y") — 5@,’;(@(% V)’ > 5) <ce Vi,h,, X

Then, (A.59) follows using similar steps used to prove (A.37). This completes the proof.

B.7 Proof of Lemma 63

Fix (u,v) € P (M,r,m,v). Recall that GR(a,r) = {91p,) : 9 € GR(a)}. Since
CkB (fKL]Bd(rk),Bd(rk)) < my, it follows from (3.1) that there exists gy, € Qf(mk,rk) and
¢ > 0 such that

< edzmyk 2. (B.6)

00,Bq(r1)

HfKL — 90,
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Then, following steps leading to (A.81), we have for k with c*dm? < 0.5k that
Dk (1) = D (1)
< || (fur — gek)le(rk)H +E, [lfKL\ 1pe(ry) } +E, H - 1‘ Lpe(r )}

+E, UefK ‘ﬂBd(Tk)} H (1 - eggkifKL> ﬂBd(?“k) o

S mkd%k_% + Vg,

i _
where the final inequality is due to (B.6), ecd?m* e 1 < ed2myk~Y/2 which follows
similar to (A.43) (since c2dm? < 0.5k), E [|fK|_\Ich(Tk)] E, [|(dp/dv) — 11 Be(ry) ] < v,

and E, UefKLUle(rk)] <1.
On the other hand, for k such that ¢>dmi > 0.5k, g =0 € ,C’;E(mk, 7)) implies that

1Dkt (1l17) = Dy (11| = Dict (1l1¥) = Dy (1) < Dic (1) < M.

Since mi < k'=?, k such that c2dmz > 0.5k necessarily satisfies k” < d. Thus, for all kK € N,

D (1201v) = DR iy ) (15 V) | St p k™ 7ty (B.7)

Note that the RHS above tends to zero as k — oo since v, — 0 and mj < k'~7.
Next, it follows from (A.29), (A.33), and (B.7) that for k,my, satisfying m} < k'=°,

E |5y ) (X" 1) = D )|

< [Pa ’”W(“ )= O ()| + B [Py (15:) = Dy (X 1")
Bmk("'k-i-l)n—%.

)

gd,M,p mrk~ 3 + v + mgrie
Taking supremum w.r.t. (u,v) € ﬁﬁL(M, r,m,v) completes the proof.

B.8 Proof of Lemma 64

Fix (p,v) € 753(2(1', m, v). Since cxg (fxz\Bd(rk), By(ry)) < my, there exists g, € QE(mk,rk)
such that

fo2 — 96y, Hoo,Bd(rk) N d% kk_%~ (B.8)
Then, following steps leading to (A.86), we have for all k£ € N that
-]
< (e = 900) Lsatrn oo + B [ [ Fie | L] + Bo [l © iz = g2 0 g 1)

v UhXQ © fxz‘ 132(%)}

2 2
X (i) = g,
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(@ 4 !
S d2mpk™2 + v + By Hhx2 °fyz =Ny Ogek‘ﬂBd(Tk)]

(b)
< d%mkk’% +u+E, fo2 _ gek’]le(m)] +E, [O.25\fxz - gek|213d(rk)]

+0.5E, [!fxz — 90| | fr2| HBM)}

d%mkkié + v + dm%kil + H(fx2 - gek)ﬂ'Bd(rk)HooJ/ E, HfXZH

174N

NS

d%mkk_% =+ dmzk_l + vg,
where
(a) follows from (B.8) and since (u,v) € 75)32(1" m,v);
(b) is via steps leading to (A.48);
(c) is due to (B.8) and E, [ |f2|] < 4.

Then, it follows from the above equation, (A.29) and (A.33) that

|

gy XY™ =X (0l

<

}

(1, v) = X (uHV)( +E Hxés

1 1 3 1
<dempk™2 +dmikT! Fop +d2mirinT 2.

2 A
XgAg(mk,rk) (mk,T‘k)(M’ V) - XgAE(mk,’l‘k)<Xn7Y’n)

%

Taking supremum w.r.t. (u,v) € 733(2 (r,m, v) completes the proof.

B.9 Proof of Lemma 66

Fix (u,v) € 75£|2(r, m, v). Since ) ‘j—’; Batro) < my, we have
0, B4 \T'k
d _% 1
1— fhe (:c) = <dfj(:c)) > mlzi’ S Bd(Tk). (Bg)

Hence, cxg (sz\Bd(rk),Bd(rk)) < my, implies via (3.1) and (5.2) that there exists gy, €
GR

_12(my, 7) such that
k,m,

1.1
1z = 900l 00y S k2. (B.10)

Following the derivation leading to the penultimate step in (A.55), we have

2 2
) =gy s 427
Sz — 9o
<E, HfHQ - gak‘]le(Tk)] +E, [ (1— fu2)(1 _k 90, ﬂBd(Tk) +E, [|fH2‘ 133(%)}
k
Jh2
E, || |1,
o2 [ e
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() 11 9 1. _1

S mkd2k 2 —i—mkd?k 2 + vk
() 9,1, 1

S mid2kT2 + vy, (B.11)

where (a) follows from (B.9), (B.10), (u,v) € 7532 (r,m,v), and 1 — gp, (z) > m;1/2 by the
definition of QkR 12 (Mg, ry), while (b) is due to my, > 1.
m
Next, using (A.27) and following steps similar to proof of Lemma 59, we obtain that for

k,my, i, n such that kl/zmzrk =0 (n(l—P)/Q),

n n 2
k —1/2(mk?rk)(X Y ) n—00 Hg
7mk

R _I/Q(mk’m)(,u,y), P—a.s.
Ic,mlc

Then, (A.92) follows from this and (B.11) since my, = o(k'/*) and v — 0 by assumption.

Also,

<

A2
GR ,1/2(”7%77‘1@
kz,mk

(XY H ()

|:|2

GR _1/2(mkvrk)
k,mk

H2(M> V) - Hé'R

k172

(X™,Y"™)—HZ

+E 0 patmer U ¥) u

(mkﬂ'k)(#7 V)

S mEd2kTE + v+ dimirgn 2,
where the final inequality uses (A.29), (A.33) and (B.11) to bound the last term. Taking
supremum over (u,v) € Pgs(r,m,v) yields (A.93).

Appendix C. Consistency and effective error bounds for DV-NE
Defining Dpv,g(1t, v) := sup,cg (Ey[g] — log E,[e9]) and

_ 1< 1< ,
Zy= ) 9(Xi) —log (n 2 eg(m> —By[g] +1ogE, [7],
=1 i=1

we have similar to (A.22) that

Dpv,g(X™,Y™) — Dpv,g(p,v) < sulg) Z,.
ge

Moreover, since the Lipschitz constant of logarithm is bounded by eCUG1.X) i [6—0(|g|,2( ),
eC(|g|’X)], we have almost surely that

9

Zg — Z5l <07t > |o(Xi) — §(Xi) — Ep[g — g]| + €79 ‘e"(Yi) e
=1

where each term inside the summation is bounded by 2(620(@') + 1) H gg — géHOO ¢ Similar
to (A.26). Then, following the steps in the proof of Theorem 11, we have

_ ns?

sup IP)( ’DDV,QZ(Qﬁ) (Xn, Yn) — DDV,QZ((b) (,U,, I/)‘ Z 5 + Ek,h,d)’xni%) S ce Vi, h,¢,X ,
uVvEP(X):
Dov, g7 (¢) (1) <00
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where Vi pox < (R(|X] + 1) + 1)2e* X+ and Ekh¢,X S K32V () x| + 1)e2RUIXI+D)

Then similar to Lemma 59, we obtain that for any 0 < p < 1, and n, k;, such that kg/z(HXH—i—
D)2+ — 0 (n1-0)/2),

Dov.g;(¢)(X"™,Y") —— Doy gie) (1), P —as.

Moreover, limy, o0 Dpy g (¢) (1; V) = Dkw (1|v) follows identical to (A.39) provided fuL €

C(X). Hence, for X = [0,1]%, we obtain that for any 0 < p < 1, (kpn)nen With k, — oo and
kn < (1 — p)logn, we have

Dov,gs () (X", Y™) —— D (pfv), P-as.

(C.1)
Next, we bound the expected error of the DV-NE estimator. Note that
I:V)Dv,gfj( )(Xnayn) — Dpv gr(a) (1, V)
_
sup Zg log ( Zeg(y”> — sup (Ep[g] —logE,[e?))
9€GR(a) " i=1 9€GR(a)
1 « 1
< sup =) g(X;)—log (Zeg(m> — (Eu[g] — log B, [e%])
g€ (@) " iy i
Thus,
E HDDV,QE(a) (Xn7Yn) - DDV,QE(a) (M? V)H
n 1 n
<E| sup Zg(Xi) —Eulg]|| +E| sup [log <Zeg( )> logE, [e7] ]
9€GR(a) | i 9€GR(a) i
(a) n n
<E| sup 1 Zg(Xz) —Eulg]|| + SallX I+ g [ sup 1 Zeg(yi) —E,[¢9]
9€GR(a) | ™ 9€GR(@) | i
(] 4+ 1) (50T . 1) / . 2, 108 a1+ e, ). -2 e
Ve
(c
al]| ] + 1) (UMD 4 1)dzn 2, (C2)
where

(a) is since C(|Gp (a)|, X) < 3a(]|X| + 1) and the Lipschitz constant of log x is bounded by
e3a(lXI+1) ip [675(\95(61)\,9\?)’ eé(lgﬁ(a)lk\f)};

(b) follows using steps akin to (A.34) and (Van Der Vaart and Wellner, 1996, Corollary
2.2.8);

(c) is due to (A.33).
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Appendix D. CoD-Free Error Rate in the Unbounded Support Case

D.1 KL Divergence

Consider the NN class Q,f(a, ) ={9lp,m : g € Gz (a)} (see Definition 7) and the following
class of sub-Gaussian distributions:

PRL(M,0) = { (nv) € PEL(RY) : v € SGM), ficw € Z(M), || ficllp,u < M,
Z(M) = {f = SuF) VIF(0)] < M} (D-1)

Proposition 68 (KL CoD-free error bound) Let M > 0, { > 1 and ¢* = /(¢ —1).
Then, for z, = 12V/0*dM3/?(log k)~/2 and r, = M V 1 + 4/dM*Togk,

(u,u):;sl}gli(Mé) HDgs Mrpy (X Y™) = D (ullv )H Samye (logk)? (k:‘% e n_%)

Setting k = n in the above bound gives an effective error bound O(n*1/3).

Proof Fix (u,v) € PZ (M, £). From (A.100), we have for p,v € SG(M) and r > M that

(r— M)2

w(Bg(r)) Vv (Bi(r)) < Qe 16N (D.2)
Then, it follows from (A.84) and (A.85) that for r, > M,

—(rp—M)>

E, [\fKL| ]IB;(rk)] VE, [|hKL o fiLl 135(%)} <y e Tednr

Moreover, fkL € f(M) implies cg (fKL|Bd(rk By(r )) < Mry, for r, > 1.
Next, note that C(|Qk(mk,rk)\ By(rg)) < 3Mry, and C’(’h’KL o Qg(mk,rkH,Bd(rk))
< e3M7k . Also, similar to (A.33), we have

/ \/ sup logN SMrke GS(Mry,7y), H-||2ﬁ)de§d%, (D.3)
o

Then, (A.29) implies

A~

n n 3 r. —1
E HDgAz(MTk,Tk)(/"L7 V) - DG}%(MTkvrk)(X Y ) i| <M d2rke3M k:n 2.

Thus, we have similar to Lemma 63 (by using Theorem 8 for the sigmoid NN class) for
1 < Mry, < kU=P)/2 for some p > 0 that

n < n SMr —(rp—M)?
HDQS Mrk,rk)(X Y ) DL (,u|| )H d,M,p rk” 2 + rie kn™ 2 + e 16dMeF
Taking rj, = M V 1 4 4y/dM¢* log k and noting that 1 < Mry, < k'/* (say), we obtain
SIS
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1

Sd. M k2(loghk)2 + k' + (log k)2 !2M**VEdlogk ,—3
1 1 12V7Fam3/2 3 L
Saare k2 (logk)z + k= Vieek  (logk)2 n™2.

Taking supremum w.r.t. (u,v) € P2 (M, £) yields the claim. [ ]

Remark 69 (CoD-free rate) P2 (M,(), for ezample, includes M-sub-Gaussian distri-
butions (u,v) such that ||fKL||[H < M and fx_ € ESB »(R?) (for appropriate value of b),

where sg = [d/2| + 2 and ESB (RY) is given in (A.2). It also contains certain M-sub-

Gaussian distributions (p,v) such that fx. = ¢+ f for some c € R and f € S(Rd), where

S(Rd) = {f e C*® (Rd) : SUP,cpd ‘:L‘O‘D“f(x)‘ < 0, Ya,a& € Z%o} 1s the Schwartz space of

rapidly decreasing functions and a, & are multi-indices of dimension d. An example would
_a2 , .

be some M-sub-Gaussian distributions (u,v) with pg~! = ce® "~ , where ¢ is normaliza-

2
tion constant (e.g., take q to be multivariate Gaussian, p(x) = ce® = q(x) and ¢ such that
Jgaa(z)dz =1 ). We note that f € S(Rd) implies existence of Fourier transforms and
Fourier inversion formula such that Si(f) < 0.

D.2 y? Divergence
With Z(M) as defined in (D.1), let

PL(M, €)= {(n,v) € PL(RY) : pyv € SGM), fy2 € ZOD), e, < M}

Proposition 70 (x? CoD-free error bound) Let M > 0, £ > 1 and ¢* = (/({ — 1).
Then, for r, = MV 1+ 4/ dM/*logk,

sup E [ X
(U’?ll)e/ﬁiQ (M,E)

-

1 1 _1
2 trery XY™ = ()| Sanee k3 Qogk)E +logk n 2.

Setting k = n yields an effective error bound O(n_l/z).

Proof Fix (u,v) € 753(2 (M, ?). From (D.2), (A.88) and (A.89), we have

—(r—M)?

E, UfXQ‘ 135(%)} VE, [‘h 20 fy2 ‘ lpe Tk)} <m e ToaNT .

Note that cg (fxz\Bd(rk),Bd(rk)) < Mry, for rp, > 1, C(]Qg(mk,rk)\,Bd(rk)) < 3Mry,, and
C_’(‘h;Qogg(mk,rk) ,Ba(rk)) < 1.5Mr+1. Then we obtain similar to (A.87) using Theorem
8 and (D.3) that

M 1

(r
ng (M) X"Ym —X2 (,u,||y)H <um rkdzk 3 +rkdk +e IGIZZAN* +d2rk -3,
k ’

Setting rp = M V 1+ 4y/dM{* log k, and taking supremum w.r.t. (u,v) € ﬁig(M, ) proves
the claim. |
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Remark 71 (CoD-free rate) 753(2(M ,0) contains certain M -sub-Gaussian distributions
(1, v) such that HfXQHey < M, and f,» € S(Rd) uLB (Rd) for appropriate value of b.

sB,b
In particular, this includes certain Gaussian distributions pairs (N (mp, ngd), N (mg, U?Id))
with 0 < 0p < 04 < M and ||my| V ||mg|l < M. To see this, recall f,» = 2(pg~' — 1),
and note o4 > o, ensures that HfXQHOOW < oo tmplying that HszHE,u < o0o. Also, since
pq~! is again (upto constants) a Gaussian density, F[pq~'] exist which is again a Gaussian
density (upto constants). Hence, F[pq—?] is integrable and this implies the Fourier inversion
formula holds. Moreover, it is easy to verify that Si (pq_l) < 00. Hence, such Gaussian

pairs satisfies the conditions defining ﬁig (M, £) for large enough M, and the claim follows.

D.3 Squared Hellinger Distance
Let Q,it(a, r) = {g]le(r) 1 g € Gy (k1/2 log k,2k™1a, a, 0, cbs)}, and

dp

dv

Pa (M) = {(u,v) € P2 (RY) : v € SG(M), fre € Z(M),

<wm}.
oo,Rd
where Z(m) is given in (D.1).

Proposition 72 (H? CoD-free error bound) For M >0, my, = Mry, and r, = MV 1+
Vv32dM log k,

sup E|[H (X", Y"™) — H(u,v)

(1) €P2, (M)

% ] San k™7 logh + 07 logk.
k,m;l/z ’
Setting k = n yields an effective error bound O(n=/?).
Proof Fix (u,v) € 75312 (M). From (D.2), (A.94) and (A.95), we obtain
—(ry—M)?
E, [\fHﬂ ]lel(rk)} VE, [|hH2 o fre ﬂB;(rk)} < e 32aM
We have cf (fuzlB,(ry)> Ba(re)) < Mry for vy > 1, C(IGR  (mg, 71)], Ba(ri)) < 3Mry, and

C’(‘h’HQ og',ft(mk, rk)’, Bd(rk)) < t2. Then, for k, r satisfying r, = o(k/*), we have similar
to (A.93) using Theorem 8 and (D.3) that

d

Setting 1, = MV 1+ +/32dM log k and taking supremum w.r.t. (u,v) € 7332 (M), we obtain
the claim in the Proposition. |

- 11 (=M 3.5 1
HZ ]SM T,%ko 2 4 e 32dM +d2r,%n 2,

gS —1/2 (mkvrk)
k:,mk

(X™Y™) = H? (1, v)

Remark 73 (CoD-free rate) 75&'2(M) includes certain M -sub-Gaussian pairs (ju,v) such
that Hpq_lHooRd < M and gp~' = (e +¢)? for some f € S(Rd), where ¢ is the normaliza-

tion constant to ensure that p and q are probability densities. To see this, note that \/qp—!
and \/pq=1 are both bounded on R%. Moreover, fyz =1 — +/qp=t = —c+ 1 —ef. Noting
that 1 — el € S(Rd) if f € S(Rd), it follows as discussed in Remark 69 that S1(fl2) < oo,
thus implying the claim.
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