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Abstract—Directed information (DI) is a fundamental measure
for the study and analysis of sequential stochastic models. In
particular, when optimized over the input distribution, it charac-
terizes the capacity of general communication channels. However,
existing optimization methods for discrete input alphabets assume
full knowledge of the channel model, and are therefore not
applicable when only samples are available. We derive a new
method that overcomes this limitation and enables optimizing DI
over unknown channels. To that end, we formulate the problem
as a Markov decision process and leverage reinforcement learning
techniques to optimize a deep generative model of the channel
input probability mass function (PMF). Combining our optimizer
with the DI neural estimator, we obtain an end-to-end estimation-
optimization scheme which is applied for estimating the capacity
of various discrete channels with memory. We provide empirical
results that demonstrate the utility of the proposed framework
and further show how to use the optimized PMF generator to
obtain theoretical bounds on the feedback capacity for unifilar
finite state channels.

I. INTRODUCTION

Originally proposed for the study of channels with feedback,
directed information (DI) quantifies statistical and temporal
dependencies between stochastic processes [1]. It has seen a
variety of applications in communications [2], [3], portfolio
theory [4], computational biology [5], neuroscience [6] and
machine learning [7], [8]. Oftentimes, one wishes to optimize
the DI with respect to (w.r.t.) the distribution of some of the
involved stochastic processes, e.g., channel capacity is given
by the maximized DI over input distributions [9].

There are several existing DI optimization methods. The
authors in [10] and [11] propose a generalization of the
Blahut-Arimoto algorithm [12], [13] for DI. Another approach
formulates the DI optimization as a dynamic program (DP)
[14], which is solved via recursive algorithms. The authors
of [3], [15] applied this method for binary unifilar finite-
state channels (FSCs) with feedback, which are FSCs whose
state evolves as a function of the past input, output, and state
tuple. This method was generalized to large alphabets via
reinforcement learning (RL) [16]. However, when feedback is
not present, or the FSC is not unifilar, the resulting objective
may not be computable [17]. In such cases, the capacity can be
bounded utilizing an auxiliary random process termed Q-graph
[18], [19]. These methods apply to a larger class of channels,
but require an exhaustive search over all possible Q-graphs.
In addition to the mentioned challenges, all methods require
full knowledge of the channel probabilistic model.

In this work we propose a new method for DI optimization
over discrete input alphabets for any stationary and ergodic
channel, treating it as a black box whose outputs can be sam-
pled. To account for the lack of channel knowledge, we employ
the DI neural estimator (DINE) [20]. The DINE is based on
the Donsker-Varadhan representation, where optimal potentials
are parametrized by recurrent neural networks (RNNs), expec-
tations are approximated by samples means, and the resulting
parametric-empirical objective is optimized over the parameter
space. In [20], the DINE was used to compute the capacity
of continuous-input channels by coupling it with an optimizer
over continuous distributions. This approach utilized an aux-
iliary RNN-based generative model for the input, and jointly
optimized it with DINE by propagating gradients through both
models. For memoryless channels, additional joint estimation-
optimization methods were proposed over continuous inputs
spaces [21], [22]. However, when the input space is discrete,
end-to-end differentiability fails to hold. This calls for new
ideas to treat channels with discrete alphabets.

We propose herein a new method for optimizing DINE over
discrete input alphabets. We model the input distribution by
an RNN-based probability mass function (PMF) generator. An
optimization objective for the PMF generator is derived using
reinforcement learning (RL) techniques by formulating the
problem as a Markov decision process (MDP). Applying the
policy gradients theorem [23], along with function approxima-
tion results and Monte-Carlo averaging, we obtain a tractable
optimization objective that is a function of the PMF generator
and the DINE outputs. This yields an optimization-estimation
algorithm for computing the capacity of channels with discrete
inputs, while assuming access only to channel output samples.
We apply the proposed method to several channels with
memory, and show that for all considered channels the method
either achieves the theoretical capacity value or converges
between known upper and lower bounds. We then demonstrate
how the optimized PMF generator structure coincides with
previously known capacity-achieving encoding schemes. We
also employ the generator to estimate a Q-graph [24], which
can be plugged into the algorithm from [18] to obtain tight
bounds on the feedback capacity of unifilar FSCs.

II. PROBLEM SETUP AND MDP FORMULATION

We present the DI optimization method in the context of
channel capacity estimation. Channel capacity, both with and
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without feedback, is characterized via DI as [1], [9]

C = lim
n→∞

sup
P

1

n
I(Xn → Y n), (1)

where I(Xn → Y n) :=
∑n

i=1 I(X
i;Yi|Y i−1) is the DI. For

feedforward channels (i.e., without feedback), P is of the
form PXn . When feedback is present, P is taken as a causal
conditioned distribution PXn∥Y n−1 :=

∏n
i=1 PXi|Xi−1Y i−1 .

We assume that the channel model is stationary and unknown,
and |X | = k < ∞. For simplicity of presentation, we focus
on discrete input and output channels and describe them by a
conditional PMF pY n∥Xn . Nevertheless, the proposed method
readily extends to arbitrary channels with discrete inputs.

A. PMF Generator and Optimization Objective

To generate the input PMF and optimize the DI rate w.r.t. it,
we propose a deep generative model that takes an input-output
pair from X ×Y and a simplex vector (that models the current
input PMF), and outputs a new simplex vector (the updated
input PMF). The PMF generator corresponding to a parameter
vector ϕ ∈ Rd is denoted by hϕ : X ×Y ×∆k 7→ ∆k, where
∆k is the k-dimensional probability simplex. The model is
randomly initialized at some pϕ0 , from which we sample Xϕ

0

and pass it through the channel to obtain Y0.1 The tth PMF
is defined iteratively, as

pϕt := hϕ(X
ϕ
t−1, Yt−1, p

ϕ
t−1), t ≥ 1,

where (Xϕ
t , Yt) ∼ pϕt pYt|XtY t−1 . Note that for fixed ϕ,

the input-output history (Xϕ,t−1, Y t−1) determines the value
of pϕt . To emphasize this dependence, with some abuse of
notation, we also write pϕt (·) = pϕt (·|Xϕ,t−1, Y t−1). Our goal
is to optimize hϕ over ϕ to maximize the corresponding DI.
To that end, we seek a tractable expression for the DI rate
gradient∇ϕ

(
limn→∞

1
n I(X

ϕ,n → Y n)
)
. We formulate the DI

rate optimization as an MDP and employ RL techniques to
arrive at an objective whose gradients coincide with the above.

B. MDP Formulation

MDPs model sequential decision problems with recursive
relations between the involved variables [14]. We consider an
infinite-horizon average-reward MDP, i.e., where the objective
is given by

ρ(π) := lim
N→∞

1

N

N∑
t=1

E [r(Ut, Zt)] , (2)

with Zt being the MDP state, Ut the action drawn according
to policy π, and r the reward function. For simplicity, we
exploit the stationarity of the model and apply a reverse time
shift operator on each timestep, such that the most recent step
remains t = 0 throughout.

Mapping the DI rate optimization to an MDP allows uti-
lizing RL methods and arriving at a tractable optimization
objective for hϕ. To do so, view the channel input generator

1We note that Y0 also depends on ϕ through Xϕ
0 , but chose to suppress

this dependence in our notation for simplicity.

TABLE I
DI OPTIMIZATION MDP FORMULATION

MDP DI optimization
State Zt X−1

−t , Y
−1
−t

Action Ut X0

Disturbance Wt Y0

Reward r(U,Z) Eq. (3)

as an agent whose action Xϕ
0 at each step is drawn from

the parametric policy πϕ(Ut, Zt) = pϕt . The state is taken
as the accumulated past channel inputs and outputs, while
the disturbance is the channel output, distributed according to
pY0|Y −1

−t ,X0
−t

. The immediate reward is given by the conditional
expectation

r(U,Z) = E

[
log

pY0|Y −1
−t ,Xϕ,0

−t
(Y0|Y −1

−t , X
ϕ,0
−t )

pY0|Y −1
−t

(Y0|Y −1
−t )

∣∣∣∣∣Xϕ,0
−t , Y

−1
−t

]
.

(3)
The formulation is given in Table I. In the following we state
the desired equivalence

Theorem 1 (MDP formulation) The DI rate optimization
problem defines an infinite-horizon average-reward MDP, such
that ρ(πϕ) = limn→∞

1
n I(X

ϕ,n → Y n).

The proof shows that Zt = f(Zt−1, Ut,Wt) for some function
f , and that (Zt−1

−∞, U t−1
−∞,W t−1

−∞) − (Zt, Ut) − Wt forms a
Markov chain. A key virtue of the MDP formulation is that
the optimal policy is guaranteed to be time-invariant [14],
motivating the use of RNNs for its parametric approximation.

III. OPTIMIZER DERIVATION

With the MDP formulation above, we next derive a simpli-
fied expression for ∇ϕρ(πϕ). We begin by applying the policy
gradients theorem [23, Theorem 1]

Theorem 2 (Policy gradients) Let πϕ be a parametric model
with parameters ϕ; let ρ(πϕ) defined as in (2) and dπϕ be the
states’ stationary distribution; define the Q-function

Qπϕ(u, z) :=
∞∑
t=1

E
[
r(Ut, Zt)− ρ(πϕ)

∣∣Z0 = z, U0 = u
]
.

(4)
Then, for any MDP:

∇ϕρ(πϕ) =
∑
z

dπϕ(z)
∑
u

∇ϕπϕ(u, z)Q
πϕ(u, z). (5)

Applying the identity ∂x log f(x) =
∂xf(x)
f(x) to (5) we obtain:

∇ϕρ(πϕ)

=
∑
z

dπϕ(z)
∑
u

πϕ(u, z)∇ϕ log πϕ(u, z)Q
πϕ(u, z)

= E [∇ϕ log πϕ(U,Z)Qπϕ(U,Z)] . (6)
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LSTM
step t

LSTM
step t+ 1

FC
+Softmax

FC
+Softmax

Sϕ
t ...

Sϕ
t+1

(Xϕ
t−1, Yt−1) (Xϕ

t , Yt)

pϕt

...

...
Sϕ
t−1

Fig. 1. The PMF model unrolled for feedback capacity.

To compute Qπϕ exactly, one must be able to calculate (3),
and therefore, know the channel model. We circumvent this
by using the DINE [20]. We now present the DINE and then
demonstrate its utility for the estimation of Qπϕ .

A. Directed Information Neural Estimator

In the proposed formulation the state space is infinite,
and therefore the optimization cannot be solved by simple
tabular RL schemes. To this end, we incorporate function
approximation into (6) using the DINE. Given a sample
Dn = (Xn, Y n) ∼ pXnY n , the DINE objective is given by

Î(Dn, θy, θxy) = D̂Y ∥X(Dn, θxy)− D̂Y (Dn, θy), (7)

where

D̂Y (Dn, θy) :=
1

n

n∑
i=1

gθy
(
Yi|Y i−1

)
− log

(
1

n

n∑
i=1

egθy (Ỹi|Y i−1)

)
,

D̂Y ∥X(Dn, θxy) :=
1

n

n∑
i=1

gθxy

(
Yi|Y i−1, Xi

)
− log

(
1

n

n∑
i=1

egθxy (Ỹi|Y i−1,Xi)

)
,

gθy and gθxy are RNNs2 with parameters θy ∈ Θy ⊂ Rdy and
θxy ∈ Θxy ⊂ Rdxy , and Ỹ ∼ Unif(Y). Here, Θy and Θxy are
compact subsets of the corresponding Euclidean spaces. The
DINE is given by optimization of (7) as

Î(Dn) = sup
θxy∈Θxy

inf
θy∈Θy

Î(Dn, θy, θxy). (8)

As argued in [20, Theorem 2], the DINE results in a consistent
estimator of the DI rate.

B. Q-Function Estimation via DINE

Fix the PMF generator parameters ϕ ∈ Φ ⊂ Rd for a
compact parameter space Φ, and consider a dataset Dϕ

n =
(Xϕ,n, Y n) ∼

∏n
t=1 p

ϕ
t pYt|Y t−1Xt drawn from this input PMF

and the channel. We use the DINE based on Dϕ
n to approxi-

mate Qπϕ . Assuming (gθy , gθxy ) are sufficiently close to the
supremum-achieving RNNs of (7), we take r̂θ := gθxy − gθy
as a proxy of r, where θ = (θy, θxy). To obtain a computable
optimization objective we replace the expectation (6) with

2See [25] for the definition of the RNN class.

PMF generator
ϕ Sampler Channel

pYt|Xt−1Y t−1

DINE
θy, θxyLoss

pϕt Xϕ
t Yt

∇ϕĴθ(B
ϕ
m, ϕ)

∆

∆

∇θy,θxŷ I(B
ϕ
m, θy, θxy)

Fig. 2. The complete estimation-optimization model. Dashed arrows represent
gradient propagation and filled blocks represent computational models.

a sample mean and take a finite time-horizon T in (4).
Accordingly, for fixed θ, we define

Ĵθ(D
ϕ
n, ϕ) :=

1

n− T

n−T∑
t=1

log pϕt (X
ϕ
t )Q̂θ,t(θ,D

ϕ
n), (9)

where the approximated Q-function is given by

Q̂θ,t(θ,D
ϕ
n) :=

t+T−1∑
i=t

r̂θ(Y
i, Xϕ,i)− Î(Dϕ

n, θy, θxy). (10)

When feedforward capacity is considered, the MDP formula-
tion remains unchanged, but we restrict the optimization over
policies which are not a function of past channel outputs.

IV. IMPLEMENTATION AND COMPLETE SYSTEM

Recall that channel input PMF pϕt is obtained as the output
of the parametric model hϕ, i.e., pϕt = hϕ(X

ϕ
t−1, Yt−1, p

ϕ
t−1).

We implement hϕ using a long short-term memory (LSTM)
network. The LSTM can be stacked with additional fully-
connected (FC) layers to increase its expressiveness. The
output layer is an |X |-dimensional softmax layer, denoted by
σsm, which generates outputs that reside in ∆k. Therefore, the
model output (namely, the PMF pϕt ) evolution is described as

Sϕ
t = Gϕ

1 (X
ϕ
t−1, Yt−1, S

ϕ
t−1) , pϕt = σsm

(
Gϕ

2 (S
ϕ
t )
)
, (11)

where Gϕ
1 is the LSTM map, Sϕ

t is its output, Gϕ
2 denotes the

FC layers and hϕ comprises (Gϕ
1 , G

ϕ
2 ). In our experiments,

we use an LSTM layer with 50 neurons and 2 FC layers with
100 and 50 neurons each. For feedforward capacity estimation,
Yt−1 is omitted from (11). We illustrate the implementation
of hϕ in Fig. 1.

The joint estimation-optimization procedure follows an
alternating optimization scheme between Î(Dϕ

n, θy, θxy) and
Ĵθ(D

ϕ
n, ϕ). At each iteration, we select a single model for

parameters update, while fixing the parameters of the other.
We create a batch Bϕ

m = (Xϕ,m, Y m) and a corresponding
sequence of PMF generator outputs pϕ,m. We pass Bϕ

m through
the DINE model to obtain the corresponding RNN outputs. We
then calculate the loss function of the model to be updated and
optimize the parameters using stochastic gradient-ascent. The
complete system is illustrated in Fig. 2. After a convergence
criterion is met or a fixed number of iterations are performed,
we evaluate (7) on a long sequence to obtain a numerical
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Algorithm 1 Discrete alphabet DI optimization and estimation
input: Discrete channel, feedback indicator
output: Î(Dϕ

n, hϕ), optimized hϕ.
Initialize gθy , gθxy

, hϕ with parameters θy , θxy and ϕ.
if feedback indicator then

Add feedback link to hϕ

repeat
Compute (Bϕ

m, pϕ,m)
if training DINE then

Compute D̂Y (B
ϕ
m, θy), D̂Y ∥X(Bϕ

m, θxy)
Update DINE parameters:
θy ← θy +∇θyD̂Y (B

ϕ
m, θy)

θxy ← θxy +∇θxyD̂Y ∥X(Bϕ
m, θxy)

else (Train PMF generator)
Compute Ĵθ(B

ϕ
m, ϕ)

Update PMF generator parameters:
ϕ← ϕ+∇ϕĴθ(B

ϕ
m, ϕ)

until convergence
Monte Carlo evaluation of Î(Dϕ

n)
return Î(Dϕ

n) and hϕ

estimate of the channel capacity. The procedure is summarized
in Algorithm 1 and its implementation is available on GitHub.

V. PERFORMANCE ANALYSIS

We analyze the performance of the capacity estimator from
Algorithm 1 by comparing estimates with known theoretical
solutions and/or bounds. We also investigate the structure of
the optimized PMF generator and show how to use it for
calculating upper and lower bounds on the feedback capacity.
We stress that all reference methods presented in this section
assume full knowledge of the channel’s probabilistic structure.

A. Channel Capacity Estimation

We examine both feedforward and feedback scenarios. For
the feedforward capacity we first consider the Gilert-Eliott
(GE) channel [26]–a time-varying BSC whose channel param-
eter is determined by a latent state that evolves according to
a stationary Markov chain. The chain transits between states
’Good’ and ’Bad’, with transition probabilities b and g from
’Good’ to ’Bad’ and vice versa. While it is straightforward
to show that the optimal input is an i.i.d. Ber(0.5) process,
the GE capacity is determined by a limit expression [27]. We
apply the proposed scheme to estimate the capacity of the GE
channel and compare our results with a consistent estimation
method that relies on prior knowledge of the optimal input
distribution [28]. As seen in Fig. 3, our method achieves the
capacity for a variety of (b, g) values.

Second, we consider the Trapdoor channel, which is a unifi-
lar FSC, whose state evolves according to St = St−1⊕Yt⊕Xt,
where ⊕ is the XOR operation and its output is equal to St−1

or Xt with equal probability. The feedforward capacity of the
Trapdoor channel is an open problem. We apply the proposed
algorithm for the feedforward Trapdoor channel and compare

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

Fig. 3. Estimated capacity of the GE channel versus b (with g = 3b),
compared to estimates obtained via the method from [28].

with currently known bounds. The results are shown in Fig.
4, where the upper bound in obtained by minimizing the dual
capacity upper bound from [19], while the lower bound is
obtained numerically from a Blahut-Arimoto-type algorithm
[29]. Evidently, our method quickly converges between those
bounds, providing a new estimate for the capacity of the
Trapdoor channel. By averaging over several simulations, we
arrive at an estimate of ĈTrapdoor ≈ 0.57246.

0 2000 4000 6000 8000 10000 12000 14000 16000
0

0.1

0.2

0.3

0.4

0.5

0.6

1.3 1.5
104

Fig. 4. DINE loss convergence on the feedforward Trapdoor channel,
compared with upper and lower bounds from [19] and [29], respectively.

For feedback capacity we consider the Noisy Output is the
STate (NOST) channel [30]. The NOST channel is a binary
FSC whose state is a stochastic function of the previous
channel output. We consider the special case from [30], in
which St is given as the output of a Z-channel with parameter
η and the channel model is then determined from the value of
St. We estimate the NOST channel capacity for several values
of η and compare with the convex optimization approach
presented in [30]. As seen in Fig. 5, our method achieves
the channel capacity for various values of η.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.28

0.285

0.29

0.295

0.3

0.305

0.31

Fig. 5. Estimated capacity for the NOST channel versus flip probability η,
compared with the optimization method in [30].
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B. Optimized PMF Generator Structure

Consider the binary Ising channel [31], an FSC whose state
evolves according to St+1 = Xt and whose outputs are given
by either a symmetric Z- or S-channel, depending on St. The
feedback capacity of this channel was calculated in [15] via
dynamic programming techniques. We estimate the feedback
capacity using our method and evaluate it in several ways.

1) Capacity Estimate: Fig. 6 shows that our method con-
verges to the ground truth capacity after a relatively small
number of iterations.

0 200 400 600 800 1000 1200 1400 1600
0

0.1

0.2

0.3

0.4

0.5

0.6

Fig. 6. DINE loss convergence on the Ising channel with feedback.

2) Learned PMF: When the joint training process is
finished we construct a long trajectory {pϕt , xt, st, yt}ni=1,
perform k-means clustering, and analyse the evolution of
clustered pϕt according to past (xt−1, yt−1, st−1). In this case,
pϕt ∈ [0, 1] and is treated as the parameter of a Bernoulli
distribution. The transition of pϕt is presented in Fig. 7. In [15],
a feedback capacity-achieving encoding scheme is proposed
for the Ising channel. The scheme transmits a binary sequence
with a bit flip probability of α = 0.4503, with repeated
transmissions depending on the feedback value. The learned
scheme has the same transition structure as that from [15], but
with a slightly different flip probability of 0.456.

3) Feedback Capacity Bounds: We employ the optimized
PMF generator to calculate bounds on the feedback capacity of
the Ising channel. Due to space limitations, we only outline the
method, with the full details reserved to an extended version of
this work. We leverage the optimization procedure proposed in
[18], which is based on Q-graphs. Q-graphs, denoted Qg , are
a function of the channel outputs and are described by a graph
with some |Qg| <∞ number of nodes and |Y| outgoing edges
from each node. Each Q-graph gives rise to upper and lower
bounds on the feedback capacity of unifilar FSCs by solving a
corresponding minimization or maximization problem over a
certain class of input distributions (cf. [18]). As hϕ induces a
distribution on the channel outputs, we can use it to estimate
Q-graphs and explore corresponding capacity bounds.

We focus on estimating Qg = pSt|Y t , as its structure
is known for the optimal input distribution of the Ising
channel [15]. The estimation is performed via a supervised
regression over a one-hot representation of the channel states
with the cross entropy loss function. We perform k-means
and present the resulting Q-graph in Fig. 8. The estimated
structure of pSt|Y t coincides with the one obtained from the

pϕt = 0 pϕt = α1

pϕt = α2 pϕt = 1

yt = st−1, xt = 0

yt = st−1, xt = 1

yt ̸= st−1
yt = st−1

xt = 0
yt = st−1

xt = 1

Fig. 7. The learned PMF model, (α1, α2) = (0.456, 0.570). A blue arrow
denotes a transition that occurs for any value of (xt, yt, st).

analytical solution in [15, Theorem 2], although the values
of the nodes of our Q-graph slightly differ from those in
[15]. Nevertheless, these values do not affect the bound
computation [18], and using Equations (13) and (16) from [18]
we obtain the following capacity upper and lower bounds:

ĈLower = 0.5755213, ĈUpper = 0.5755215.

Q̂g,0 = 0.0012

Q̂g,1 = 0.3732

Q̂g,2 = 0.6041

Q̂g,3 = 0.9986

1 1 0 0
0

1

0

1

Fig. 8. Learned Q-graph for the Ising channel. Labels denote the value of Y

VI. CONCLUDING REMARKS AND FUTURE WORK

This work proposed a joint estimation-optimization algo-
rithm of DI over discrete input alphabets, leveraging RL tech-
niques and the DINE [20]. The algorithm entails an alternating
optimization between the DINE and a deep generative model
for the channel input PMF. We employed the algorithm to
estimate the feedforward and feedback capacities of a vari-
ety of channels with memory and analyzed its performance.
Our results demonstrated the high accuracy of the proposed
approach in estimating the capacity and recovering the corre-
sponding optimal input distribution. Lastly, the learned input
PMF, along with the Q-graph-based optimization procedure of
[18], were leveraged to calculate upper and lower bounds on
the feedback capacity of unifilar FSCs.

The developed algorithm is distinctive in two key ways:
(i) it treats the channel as a black box, relying only on the
ability to sample its output, thus, expanding the collection of
channels whose capacity can be numerically computed; (ii)
it is scalable in memory and dimension. Going forward, we
plan to develop theoretical guarantees for the accuracy of the
proposed scheme. We also plan to generalize the proposed
method to multi-user channels with memory by exploiting
multi-agent RL techniques. Our end goal is to create a general
framework for capacity estimation that is scalable, efficiently
computable, and applicable to a broad scope of channels.
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