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Abstract. In this note we compute the threshold regularity for mero-
morphic continuation of the Pollicott–Ruelle resolvent of an Anosov flow
as an operator on anisotropic Sobolev spaces, in the setting of lifts to
general vector bundles. These thresholds are related to the Sobolev
regularity needed for the decay of correlations.

1. Introduction

Let M be a compact d-dimensional C1 manifold (without boundary) and
X 2 C

1(M ;TM) be a nonvanishing vector field. This field generates a flow

'
t := exp(tX) : M ! M, t 2 R.

A fundamental topic in dynamical systems is the study of the behavior of
correlations

⇢f,g(t) :=

Z

M

(f � '
�t)g, t 2 R

where f is an L
2 function and g is an L

2 density on M . (Here the line
bundle of densities on M is used because the integral of a density over M

is invariantly defined; we do not assume a priori that the flow preserves a
smooth volume form.) In particular, one is interested inmixing (when ⇢f,g(t)
has a limit as t ! 1) and also in the stronger property of exponential mixing
(when the remainder in the mixing property decays exponentially fast as
t ! 1). We note that even when exponential mixing is known, it does not
hold for all f, g 2 L

2, instead one has to restrict to more regular functions.
In this paper we focus on the case when '

t is an Anosov flow, that is
the tangent spaces to M decompose into the flow, stable, and unstable
directions – see §2.1 for a precise definition. There are many examples
of such flows, including geodesic flows on manifolds of negative curvature
(see §2.2). A key tool in studying long time asymptotics of correlations is
the Pollicott–Ruelle resolvent

RX(�)f =

Z 1

0

e
��t(f � '

�t) dt, Re� > 0, f 2 C
1(M)
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2 S. DYATLOV

with the integral converging in the space of continuous functions C
0(M).

The integral
R
M
(RX(�)f)g is the Fourier–Laplace transform of the correla-

tion ⇢f,g(t) at �.
Since X is a smooth vector field, di↵erentiation along it defines a first

order di↵erential operator which we also denote by X. This operator acts
in particular on the space of smooth functions C1(M) and on the space of
distributions D

0(M). Now, RX(�) is an inverse of X + � in the following
sense:
(1.1)
RX(�)(X + �)f = (X + �)RX(�)f = f for all f 2 C

1(M), Re� > 0.

A fundamental property of RX(�) is that it continues meromorphically to
the entire complex plane:

Theorem 1.1. Assume that X is an Anosov flow. Then RX(�) admits a
meromorphic extension

RX(�) : C1(M) ! D
0(M), � 2 C.

The poles of the extended family RX(�), called the Pollicott–Ruelle reso-
nances of 't, are the complex characteristic frequencies governing the decay
of correlations. They also appear as singularities (zeroes and/or poles) of
dynamical zeta functions.

A typical proof of Theorem 1.1 is to use (1.1) and construct the mero-
morphic continuation of RX(�) as the inverse of X + � acting between two
Banach spaces of distributions D ! H which are carefully designed so that
X + � : D ! H is a Fredholm operator. This gives the continuation to
a half-plane Re� > �c where the value of the constant c depends on the
choice of the spaces, and it is possible to choose D,H to make c arbitrarily
large.

The present paper establishes a version of Theorem 1.1 in the more gen-
eral setting of a smooth vector bundle E over M and an arbitrary lift
X : C1(M ; E) ! C

1(M ; E) of X – see §2.3.1 for details and §2.3.2 for
examples. It is already known that such an extension holds, however in
this paper we compute the needed regularity for the spaces on which Fred-
holm property holds. This can be used in particular to better understand
the regularity assumptions for exponential decay of correlations as well as
regularity of resonant states.

We use an anisotropic Sobolev space H
m(M ; E) associated to a weight

function m 2 C
1(T ⇤

M \0;R) which is homogeneous of degree 0. This func-
tion needs to satisfy natural dynamical assumptions (see §4.1), in particular
to it correspond two numbers

mu  0  ms

such thatHms(M ; E) ⇢ H
m(M ; E) ⇢ H

mu(M ; E). See Adam–Baladi [AB18,
§3.3] for the threshold regularity computation for the case of trivial one-
dimensional bundles, giving (1.2) in that case (see also Guillarmou–Poyferré–
Bonthonneau [GdP21, Appendix A]), Wang [Wan20] for radial estimates
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giving regularity in the more general Besov spaces in the scalar case, and
Bonthonneau–Lefeuvre [BL21] for a related result giving the regularity thresh-
old in the case of general bundles for Hölder–Zygmund spaces. For an esti-
mate of the regularity threshold in anisotropic Banach spaces in the related
case of Anosov maps, see [BT08, Theorem 4.1] or [Bal18, Theorem 6.12].

The main result of this paper, Theorem 4.1 in §4.1.1, shows meromorphic
continuation of the Pollicott–Ruelle resolvent RX(�) associated to the lift X
to a half-plane which is explicitly described in terms of mu,ms and the
dynamics of the flow '

t. More precisely, the condition on � is that there
exists " > 0 and a constant C such that for all x 2 M and t � 0

(1.2)
| det d't(x)|

1
2 · kT t

X(x)k ·
��d't(x)|Es

���mu
 Ce

(Re��")t
,

| det d't(x)|
1
2 · kT t

X(x)k ·
��d't(x)�1

|Eu

��ms
 Ce

(Re��")t
.

Here Eu, Es are the unstable/stable spaces of the flow and T t

X(x) : E(x) !
E('t(x)) is the parallel transport associated to the lift X. See §3.3 and the
statement of Theorem 4.1 for details and §3.3.1 for examples.

The use of anisotropic Hölder and Sobolev spaces to prove Theorem 1.1
and an analogous statement in the related setting of Anosov maps has a
long tradition, see in particular the works of Blank–Keller–Liverani [BKL02],
Liverani [Liv04, Liv05], Gouezel–Liverani [GL06], Baladi–Tsujii [BT07], and
Butterley–Liverani [BL07]. We use the microlocal approach originating in
the papers of Faure–Roy–Sjöstrand [FRS08] and Faure–Sjöstrand [FS11].
See the review of Zworski [Zwo17, §4] for a comprehensive introduction to
this microlocal approach. Our proof is similar in structure to the one in the
paper of Dyatlov–Zworski [DZ16] on dynamical zeta functions. (See also
the work of Dyatlov–Guillarmou [DG16, DG18] for the more general setting
of basic sets of Axiom A flows.) The main di↵erence between the present
paper and [DZ16] is the precise analysis of what regularity is needed for
radial estimates – see §§3.2.3, 3.3, and 4.2.3.

We also address a minor mistake present in [DZ16, DG16]: when the
vector bundle E is not trivial, it is not possible to extend pseudodi↵erential
operators on C

1(M) canonically to operators on C
1(M ; E). Thus all the

pseudodi↵erential cuto↵s A,B,B1, . . . used in the propagation estimates
in [DZ16, DG16] should be taken to be principally scalar operators rather
than operators on C

1(M).
For applications of anisotropic spaces to exponential mixing for contact

flows, see the works of Liverani [Liv04], Tsujii [Tsu12], and Nonnenmacher–
Zworski [NZ15]. We note that the latter paper [NZ15] uses the microlocal
approach and thus could be potentially combined with the present result
to yield exponential mixing for more general bundles, however in the case
when X

⇤
6= �X more adjustments would be needed to the argument there.
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2. Anosov flows

2.1. Definition. As in the introduction, we assume that X is a nonva-
nishing vector field on a compact manifold M and '

t = exp(tX) is the
corresponding flow.

Definition 2.1. We say that 't is an Anosov flow if there exists a splitting
of tangent spaces into the flow/unstable/stable spaces

(2.1) TxM = E0(x)� Eu(x)� Es(x), x 2 M

such that:

• E0(x) = RX(x);
• Eu(x), Es(x) depend continuously on x and are invariant under the
flow:

d'
t(x)Eu(x) = Eu('

t(x)), d'
t(x)Es(x) = Es('

t(x));

• we have the exponential contraction property under the di↵erential
of the flow,

(2.2) |d'
t(x)v|  Ce

�✓|t|
|v| if

(
v 2 Eu(x), t  0 or

v 2 Es(x), t � 0.

Here C, ✓ > 0 are some constants and we fix an arbitrary Riemannian
metric on M ; C depends on the choice of the metric but ✓ does not.

Remark 2.2. The dependence of Eu(x), Es(x) on the base point x is Hölder
continuous but typically not C1, see for example [HK90].

In this paper we always assume that 't is an Anosov flow. It is sometimes
useful to make additional assumptions, given by

Definition 2.3. Let X be a nonvanishing vector field on a manifold M . We
say that the flow '

t = exp(tX) is:

• a volume preserving flow, if there exists a C
1 density µ on M which

is invariant under pullback by 't;
• a contact flow, if d = dimM is odd and there exists a 1-form ↵ 2

C
1(M ;T ⇤

M) such that ↵ ^ (d↵)
d�1
2 is nonvanishing, ◆X↵ = 1, and

◆Xd↵ = 0.

Remark 2.4. For contact flows, the form ↵ is called a contact form and X

is called the Reeb vector field associated to ↵. The manifold M is oriented

by requiring that d vol↵ := ↵ ^ (d↵)
d�1
2 be positive. Moreover, d vol↵ is

invariant under the flow '
t, so contact flows are always volume preserving.

2.2. Examples. We now give a few standard examples of Anosov flows.
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2.2.1. Geodesic flows. Assume that (⌃, g) is a compact Riemannian mani-
fold. We let M be the sphere bundle of ⌃:

M = S⌃ := {(y, w) 2 T⌃ : |w|g = 1}.

The geodesic flow '
t is the flow on M defined as follows: if (y, w) 2 S⌃ and

� : R ! ⌃ is the geodesic such that �(0) = y, �̇(0) = w, then '
t(y, w) =

(�(t), �̇(t)). The flow '
t is a contact flow, where the contact 1-form ↵ on

S⌃ is defined as follows:

↵(y,w)(⇠) = hd⇡(y,w)⇠, wig

where ⇡ : S⌃! ⌃ is the projection map – see for example [Pat99, §1.3.3].

Proposition 2.5. If (⌃, g) has everywhere negative sectional curvature,
then the geodesic flow '

t on M = S⌃ is Anosov.

For the proof, see for example [Kli95, Theorem 3.9.1].

2.2.2. Suspensions of Anosov maps. An Anosov map is a discrete time ana-
log of an Anosov flow:

Definition 2.6. Let fM be a compact manifold and T : fM ! fM be a
di↵eomorphism. We say that T is an Anosov map if the tangent spaces
to fM admit a decomposition Tx

fM = Eu(x) � Es(x) which is invariant
under T , depends continuously on x, and satisfies the following exponential
contraction property for some constants C, ✓ > 0 and a Riemannian metric
on fM :

|dT
k(x)v|  Ce

�✓|k|
|v| if

(
v 2 Eu(x), k  0 or

v 2 Es(x), k � 0.

Basic examples of Anosov maps are the toric automorphisms

T : Td
! Td

, T (x) = Ax mod Zd

where Td = Rd
/Zd is the d-dimensional torus and the matrix A 2 GL(d,Z),

| detA| = 1, has no eigenvalues on the unit circle.
To make an Anosov map into an Anosov flow, we use suspensions. Let

T : fM ! fM be an Anosov map and ⌧ : fM ! (0,1) be a smooth function,
called the roof function of the suspension. Let M be the manifold obtained
by taking the cylinder {(x, s) | x 2 fM, 0  s  ⌧(x)} and gluing its two
ends by identifying (x, ⌧(x)) with (T (x), 0). Alternatively, we may define

M as the quotient of fM ⇥ R by the action of Z generated by the map
(x, s + ⌧(x)) 7! (T (x), s). Now, the vector field X := @s is well-defined
on M and generates an Anosov flow called the suspension of T with roof
function ⌧ . Here the Anosov property is easy to check when ⌧ is constant
and the general case is obtained by a time change, which does not change
the Anosov property – see for example [KH95, Proposition 17.4.5].
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2.3. Operators and resolvents. Let 't = exp(tX) be an Anosov flow on
a manifold M . The vector field X defines a first order di↵erential operator
X : C1(M) ! C

1(M). For t 2 R, define the operator

e
�tX : C1(M) ! C

1(M), e
�tX

f := f � '
�t
.

The notation e
�tX is justified as follows: for each f 2 C

1(M) we have

(2.3) @t(e
�tX

f) = �e
�tX

Xf = �Xe
�tX

f.

Now, for a complex number � such that Re� > 0 we define the Pollicott–
Ruelle resolvent

(2.4) RX(�)f :=

Z 1

0

e
��t

e
�tX

f dt.

Here the integral converges exponentially fast in the sup-norm when f is
continuous.

We have the identity (1.1). Indeed, take f 2 C
1(M) and assume that

Re� > 0. Then

RX(�)(X + �)f = (X + �)RX(�)f = �

Z 1

0

@t(e
��t

e
�tX

f) dt = f

where in the second equality we consider X +� as a di↵erential operator on
distributions.

2.3.1. More general operators. We now extend the definition of Pollicott–
Ruelle resolvent to more general operators. Let E be a (finite dimensional
complex) C

1 vector bundle over M . Denote by C
1(M ; E) the space of

smooth sections of E .

Definition 2.7. An operator X : C1(M ; E) ! C
1(M ; E) is called a lift of

the vector field X to E if
(2.5)

X(fu) = (Xf)u+ f(Xu) for all f 2 C
1(M ;C), u 2 C

1(M ; E).

If we fix a local frame e1, . . . , en 2 C
1(U ; E) on E , where U ⇢ M is an

open set, then lifts of X have the form

(2.6) X

nX

j=1

fj(x)ej(x) =
nX

j=1

✓
Xfj(x) +

nX

k=1

Ajk(x)fk(x)

◆
ej(x), x 2 U

for all f1, . . . , fn 2 C
1(M ;C) where (Ajk(x)) is an n ⇥ n complex matrix

with entries which are smooth functions on U .
We next define parallel transport on E . Let x0 2 M and define the curve

x(t) := '
t(x0). Assume that v(t) 2 E(x(t)), t 2 R, is a smooth section of the

pullback of E to the curve x(t). We define the derivative DXv(t) 2 E(x(t))
by requiring that

DX(u(x(t))) = Xu(x(t)) for all u 2 C
1(M ; E).
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In a local frame we can write

(2.7) DX

nX

j=1

fj(t)ej(x(t)) =
nX

j=1

✓
ḟj(t) +

nX

k=1

Ajk(x(t))fk(t)

◆
ej(x(t)).

We say that v(t) is parallel if DXv(t) = 0 for all t. Using the coordinate
expression (2.7) and the existence/uniqueness theorem for linear systems of
ODEs, we see that for each v0 2 E(x(0)) there exists a unique parallel field
v(t) such that v(0) = v0. We then define the parallel transport operator

(2.8) T t

X(x) : E(x) ! E('t(x)), t 2 R
such that for any parallel field v(t) we have T t

X(x(0))v(0) = v(t).
We now define the family of operators

e
�tX : C1(M ; E) ! C

1(M ; E), t 2 R
so that the evolution equation (2.3) holds with X replaced by X. In terms
of parallel transport it can be described as follows: for each u 2 C

1(M ; E)
and x 2 M we have

(2.9) e
�tX

u(x) = T t

X('�t(x))u('�t(x)).

We now want to define the Pollicott–Ruelle resolvent of X similarly to (2.4).
For that fix an inner product on the fibers of E and take constants CX, C1

such that

kT t

X(x)kE(x)!E('t(x))  C1e
CXt for all t � 0, x 2 M.

Note that the constant C1 depends on the choice of the inner product but
CX does not. Now we define

(2.10) RX(�)u :=

Z 1

0

e
��t

e
�tX

u dt for Re� > CX, u 2 C
1(M ; E).

The integral converges in the space of continuous functions C
0(M ; E). We

have the identities similar to (1.1):
(2.11)
RX(�)(X+�)u = (X+�)RX(�)u = u for all u 2 C

1(M ; E), Re� > CX.

2.3.2. Examples. We now give several natural examples of lifts X. First of
all, if E = M ⇥ C is the trivial line bundle over M , then lifts of X have the
form

X = X + V for some potential V 2 C
1(M ;C).

The operator e�tX is given by

e
�tX

u(x) = exp

✓
�

Z
t

0

V ('�s(x)) ds

◆
u('�t(x)).

The next example is given by the bundles of di↵erential forms

⌦k := ^
k
T
⇤
M

and X := LX is the Lie derivative. In this case the operator e
�tX is the

pullback of di↵erential forms by '�t.
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One can also consider the smaller bundle of perpendicular forms

⌦k

0 := {u 2 ⌦k
| ◆Xu = 0}

with the same operator X = LX , which is important for the analysis of the
Ruelle zeta function (see for example [DZ16]).

We can consider a more general setting by taking a complex vector bundle
V over M equipped with a flat connection r, considering the bundle E :=
⌦k

⌦ V , and putting

X := LX,r = d
r
◆X + ◆Xd

r

where d
r : C1(⌦k

⌦ V) ! C
1(⌦k+1

⌦ V) is the twisted exterior derivative
associated to r. The resulting Pollicott–Ruelle resonances have important
applications to Fried’s conjecture relating dynamical zeta functions and tor-
sion – see for example Dang–Guillarmou–Rivière–Shen [DGRS20, §3.3].

A special case of the flat connection example above is when E is the
orientation bundle of the bundle Es. This bundle can be used to generalize
known results on meromorphic continuation of dynamical zeta functions to
the case of nonorientable Es – see Borns-Weil–Shen [BWS20].

3. Microlocal framework and the lifted flow

In this and the next section we assume that 't = e
tX is an Anosov flow on

a compact manifold M , E is a vector bundle over M , and X : C1(M ; E) !
C

1(M ; E) is a lift of X in the sense of Definition 2.7. (In particular, this
includes the special scalar case when E = M ⇥ C and X = X.)

We henceforth fix a density ⇢0 on M and an Hermitian inner product
h•, •iE on the fibers of E , which together fix the inner product on the space
L
2(M ; E).
We use the semiclassically rescaled version of X,

P := �ihX.

Here h 2 (0, 1] is a small number called the semiclassical parameter. In
the present paper the semiclassical rescaling is a technical tool useful in the
proof of the meromorphic continuation of the Pollicott–Ruelle resolvent, and
h will be ultimately fixed small enough (so that the O(h1) remainders in
semiclassical estimates can be removed and Lemma 4.3 holds). In applica-
tions to spectral gaps (such as the work of Nonnenmacher–Zworski [NZ15])
one has h ⇡ |Re�|�1 and studies the limit h ! 0.

3.1. Semiclassical analysis. We discuss the behavior of P from the point
of view of microlocal analysis, more precisely its semiclassical version. We
refer the reader to the book of Zworski [Zwo12] for an introduction to semi-
classical analysis and to the book of Dyatlov–Zworski [DZ19, Appendix E]
(which builds on [Zwo12]) for some of the more advanced tools used here.

Form 2 R, denote by S
m

h
(T ⇤

M) the class of h-dependent Kohn–Nirenberg
symbols of order m on the cotangent bundle T ⇤

M , consisting of h-dependent
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functions a(x, ⇠;h) 2 C
1(T ⇤

M) satisfying the derivative bounds for all mul-
tiindices ↵,�

|@
↵

x @
�

⇠
a(x, ⇠;h)|  C↵�h⇠i

m�|�| for all (x, ⇠) 2 T
⇤
M, 0 < h  1.

Here h⇠i :=
p
1 + |⇠|2. This is the class used in [Zwo12, §14.2.2]. The

estimates from the book [DZ19], on which this paper relies, use instead the
smaller class of polyhomogeneous symbols with expansions in powers of ⇠
and h, see [DZ19, Definition E.3]. We will apply these estimates to the
conjugated operator eP (see §4.1.2) which is not polyhomogeneous and we
explain below why the results of [DZ19] still hold.

Denote by  m

h
(M) the class of semiclassical pseudodi↵erential operators

with symbols in S
m

h
(T ⇤

M). These are h-dependent families of operators
on C

1(M) and on the space of distributions D
0(M). We refer to [Zwo12,

§14.2.2] and [DZ19, §E.1.7] for details. We use the semiclassical principal
symbol isomorphism

(3.1) �h :
 m

h
(M)

h m�1

h
(M)

!
S
m

h
(T ⇤

M)

hS
m�1

h
(T ⇤M)

.

The space T
⇤
M is not compact because ⇠ is allowed to go to infinity. We

will use the fiber-radial compactification T ⇤M obtained by adding to T
⇤
M

a sphere at infinity. See for example [DZ19, §E.1.3] for details.

3.1.1. Operators on sections of vector bundles. We now discuss the class
of semiclassical pseudodi↵erential operators  m

h
(M ; End(E)) acting on the

space of sections C
1(M ; E) of the vector bundle E . If E is trivial and

n = dim E , then operators on C
1(M ; E) are identified with n⇥ n matrices

of operators on C
1(M). We say such a matrix is in  m

h
(M ; End(E)) if all

of its entries are in  m

h
(M). This class does not depend on the choice of a

(smooth) trivialization of E since composition with multiplication operators
maps  m

h
(M) into itself. Since pseudodi↵erential operators are smoothing

and rapidly decaying in h away from the diagonal, one can use the above
definition locally to make sense of  m

h
(M ; End(E)) for a general bundle E .

See [Hör07, Definition 18.1.32] for more details (in the related nonsemiclas-
sical setting). Any element of  m

h
(M ; End(E)) is bounded uniformly in h

in operator norm H
s

h
(M ; E) ! H

s�m

h
(M ; E) where H

s

h
(M ; E) denotes the

semiclassical Sobolev space defined similarly to [DZ19, Definition E.20].
For A 2  m

h
(M ; End(E)), we use the above procedure and the map (3.1)

to define the semiclassical principal symbol

�h(A) 2
S
m

h
(T ⇤

M ; End(⇡⇤E))

hS
m�1

h
(T ⇤M ; End(⇡⇤E))

.

Here ⇡ : T ⇤
M ! M is the projection map, ⇡⇤E is the pullback of E to a

vector bundle over T
⇤
M , and End(⇡⇤E) is the bundle of homomorphisms

from ⇡
⇤
E to itself. Note that �h is surjective and �h(A) = 0 if and only if

A 2 h m�1

h
(M ; End(E)).
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We say A is principally scalar if �h(A) is scalar, that is there exists
a 2 S

m

h
(T ⇤

M) such that �h(A) = aI⇡⇤E modulo hS
m�1

h
(T ⇤

M ; End(⇡⇤E)).
In this case we treat �h(A) as a scalar function on T

⇤
M by identifying it

with (the equivalence class of) a.
Using the standard algebraic properties of the scalar calculus  m

h
(M) (see

for instance [Zwo12, Theorem 14.1] and [DZ19, Proposition E.17]) we obtain
the following properties of the calculus  m

h
(M ; End(E)):

• Product Rule: if A 2  m

h
(M ; End(E)) and B 2  `

h
(M ; End(E)),

then

(3.2) AB 2  m+`

h
(M ; End(E)), �h(AB) = �h(A)�h(B)

where the right-hand side is understood as composition of sections
of End(⇡⇤E).

• Commutator Rule: if A 2  m

h
(M ; End(E)), B 2  `

h
(M ; End(E))

are both principally scalar, then, with {•, •} denoting the Poisson
bracket on T

⇤
M ,

(3.3)
[A,B] 2 h m+`�1

h
(M ; End(E)), �h(h

�1[A,B]) = �i{�h(A),�h(B)}.

• Adjoint Rule: if A 2  m

h
(M ; End(E)), then its formal adjoint A

⇤

satisfies

A
⇤
2  m

h
(M ; End(E)), �h(A

⇤) = �h(A)⇤

where the right-hand side is defined using the adjoint operation on
End(⇡⇤E) induced by the inner product h•, •iE .

We next discuss the wavefront set and the elliptic set of an operator A 2

 m

h
(M ; E). The wavefront set WFh(A) is a compact subset of T ⇤M giving

the essential support of the full symbol of A. In terms of the wavefront set of
scalar pseudodi↵erential operators (see for example [DZ19, Definition E.27]),
we define WFh(A) as the union of the wavefront sets of the entries of A as
an n⇥ n matrix of operators, with respect to any trivialization of E .

The elliptic set ellh(A) is the open subset of T ⇤M on which the principal
symbol �h(A) is essentially invertible (as an endomorphism of ⇡⇤E). More
precisely, a point (x0, ⇠0) 2 T ⇤M lies in ellh(A) if there exists a constant C

such that we have
����h(A)(x, ⇠)

��1
��  Ch⇠i

�m for all su�ciently small h
and all (x, ⇠) in some neighborhood of (x0, ⇠0) in T ⇤M .

Finally, we give the following version of sharp G̊arding inequality for pseu-
dodi↵erential operators on vector bundles. It is an analog of [DZ19, Propo-
sition E.34] but we restrict a simpler case, putting B := 0 and considering
a special subclass of nonnegative symbols in C

1(T ⇤
M ; End(⇡⇤E)).

Lemma 3.1. Assume that A 2  2m

h
(M ; End(E)) and B1 2  0

h
(M ; End(E))

satisfy WFh(A) ⇢ ellh(B1). Assume moreover that the principal symbol
�h(A) has the form

(3.4) �h(A) = �a, � 2 C
1(T ⇤M), � � 0, a 2 S

2m(T ⇤
M ; End(⇡⇤E))
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where �,a are h-independent and Rea is uniformly positive definite on some
neighborhood V ⇢ T ⇤M of supp�, that is there exists a constant c > 0 such
that

Reha(x, ⇠)v,viE(x) � ch⇠i
2m

kvk
2

E(x) for all (x, ⇠) 2 V, v 2 E(x).

Then there exists a constant C such that for each N , all small h, and all
u 2 H

m(M ; E)

(3.5) RehAu,uiL2(M ;E) � �ChkB1uk
2

H
m� 1

2
h

�O(h1)kuk2
H

�N
h

.

Remark 3.2. In fact (3.4) can be replaced by the weaker and more natural
assumption that Re�h(A) is nonnegative everywhere, see [Hör07, Remark 2
on p.79] for the nonsemiclassical case. Instead of establishing a semiclassical
version of this result here, we choose to make the stronger assumption (3.4)
which allows us to use the scalar sharp G̊arding inequality as a black box.

Proof. If �h(A) = 0, then A 2 h 2m�1

h
(M ; End(E)) so (3.5) holds by the

elliptic estimate (see §4.2.1 below) since WFh(A) ⇢ ellh(B1). Therefore, we
may replace A with any other operator with the same principal symbol and
wavefront set contained in ellh(B1). Moreover, from the Adjoint Rule above
we see that one may replace a by Rea := 1

2
(a + a

⇤). We thus henceforth
assume that a is self-adjoint. Since WFh(A) ⇢ ellh(B1), we may also assume
that supp� ⇢ ellh(B1).

Since a is positive definite on V c supp�, we may write

a = f
⇤
f near supp� for some f 2 S

m(T ⇤
M ; End(⇡⇤E)), supp f ⇢ ellh(B1).

For example, we may take �0
2 C

1(T ⇤M) such that �0 = 1 near supp� and
supp�0

⇢ V \ ellh(B1), and put f := �
0p

a.
Using a partition of unity on �, we reduce to a case when � is supported

in some open set over which E is trivialized by some orthonormal frame.
Using that frame, we may consider the pseudodi↵erential operator Oph(�) 2
 0

h
(M) as an operator on sections of E . Take F 2  m

h
(T ⇤

M ; End(E)) with
principal symbol f and WFh(F) ⇢ ellh(B1), then �h(A) = �h(F⇤Oph(�)F),
so we may assume that A = F

⇤Oph(�)F. Now

hAu,uiL2(M ;E) = hOph(�)Fu,FuiL2(M ;E) � �ChkFuk
2

H
� 1

2
h

� �ChkB1uk
2

H
m� 1

2
h

�O(h1)kuk
H

�N
h

Here in the first inequality we use that � � 0 and apply the scalar sharp
G̊arding inequality [DZ19, Proposition E.23] for the operator Oph(�). In
the last inequality we use the elliptic estimate. ⇤
3.2. Semiclassical properties of P. The operator P = �ihX is a semi-
classical di↵erential operator in the class 1

h
(M ; End(E)), as follows from (2.6).

It is principally scalar with the principal symbol given by

p(x, ⇠) := h⇠, X(x)i, x 2 M, ⇠ 2 T
⇤
xM.
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Note that p is real valued and homogeneous of degree 1 in ⇠.

3.2.1. The lifted flow. For semiclassical estimates, it is important to under-
stand the characteristic surface {p = 0} ⇢ T ⇤M and the Hamiltonian flow
e
tHp on this surface. For that we introduce the dual flow/unstable/stable
decomposition of the fibers of the cotangent bundle T

⇤
M :

(3.6) T
⇤
xM = E

⇤
0(x)� E

⇤
u(x)� E

⇤
s (x), x 2 M

which is defined in terms of the original flow/unstable/stable decomposi-
tion (2.1) as follows:

E
⇤
0 := (Eu � Es)

?
, E

⇤
u := (E0 � Eu)

?
, E

⇤
s := (E0 � Es)

?
.

Any continuous subbundle of T ⇤
M can be considered as a closed subset of

T ⇤M , and the characteristic surface of p is

{p = 0} = {(x, ⇠) 2 T ⇤M | h⇠, X(x)i = 0} = E
⇤
u � E

⇤
s .

Next, the Hamiltonian flow of p has the form

e
tHp(x, ⇠) = ('t(x), d't(x)�T

⇠)

and extends to a smooth flow on T ⇤M . Here d'
t(x)�T : T ⇤

xM ! T
⇤
't(x)

M

is the inverse of the transpose of d't(x) : TxM ! T't(x)M .
Following [DZ19, (E.1.11)], denote by

 : T ⇤
M \ 0 ! @T ⇤M

the canonical projection to fiber infinity @T ⇤M . Then (E⇤
u),(E

⇤
s ) are

compact subsets of @T ⇤M invariant under the flow e
tHp .

The Anosov property (2.2) carries over to the decomposition (3.6) as
follows: if | • | denotes some smooth norm on the fibers of T ⇤

M , then

|e
tHp(x, ⇠)|  Ce

�✓|t|
|⇠| if

(
⇠ 2 E

⇤
u(x), t  0 or

⇠ 2 E
⇤
s (x), t � 0.

Moreover, if ⇠ 2 E
⇤
0
(x), then |e

tHp(x, ⇠)|  C|⇠| for all t. This implies the
following global dynamical properties of the flow e

tHp on T ⇤M :

• if (x, ⇠) 2 T ⇤M \ (E⇤
0
� E

⇤
s ), then as t ! 1, etHp(x, ⇠) converges to

(E⇤
u) (in the topology of T ⇤M) and |e

tHp(x, ⇠)| ! 1 exponentially
fast;

• if (x, ⇠) 2 T ⇤M \ (E⇤
0
� E

⇤
u), then as t ! �1, etHp(x, ⇠) converges

to (E⇤
s ) and |e

tHp(x, ⇠)| ! 1 exponentially fast.

Indeed, to show for example the first statement we may write ⇠ = ⇠0+⇠u+⇠s
where ⇠0 2 E

⇤
0
(x), ⇠u 2 E

⇤
u(x), ⇠s 2 E

⇤
s (x) and ⇠u 6= 0. Then as t ! 1,

e
tHp(x, ⇠0+⇠s) stays bounded while etHp(x, ⇠u) grows exponentially and thus
is the dominant component of etHp(x, ⇠).

The above statements are locally uniform in (x, ⇠). They imply in par-
ticular that (E⇤

u) is a radial sink and (E⇤
s ) is a radial source for the flow
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e
tHp in the sense of [DZ19, Definition E.50]. They also give the following
statement about the flow on the characteristic set:

Lemma 3.3. Fix arbitrary neighborhoods Vu, Vs, V0 of (E⇤
u), (E

⇤
s ), and

the zero section in T ⇤M . Let (x, ⇠) 2 {p = 0} ⇢ T ⇤M . Then:

• if (x, ⇠) 62 (E⇤
s ), then there exists t � 0 such that e

tHp(x, ⇠) 2

Vu [ V0;
• if (x, ⇠) 62 (E⇤

u), then there exists t  0 such that e
tHp(x, ⇠) 2

Vs [ V0.

Proof. We only show the first statement. If (x, ⇠) 62 E
⇤
s then, since (x, ⇠) 2

{p = 0}, we have (x, ⇠) 62 E
⇤
0
� E

⇤
s , so e

tHp(x, ⇠) converges to (E⇤
u) as

t ! 1. Thus e
tHp(x, ⇠) 2 Vu for t � 0 large enough. Now, if (x, ⇠) 2 E

⇤
s

and ⇠ is finite, then e
tHp(x, ⇠) converges to the zero section as t ! 1. Thus

e
tHp(x, ⇠) 2 V0 for t � 0 large enough. ⇤
3.2.2. Weight functions. The dynamical properties of the flow e

tHp discussed
in §3.2.1 make it possible to construct weight functions decaying along this
flow, which are used later to define the anisotropic Sobolev spaces:

Lemma 3.4. Fix some real numbers mu  m0  ms and conic neigh-
borhoods Vu, Vs ⇢ T

⇤
M \ 0 of E

⇤
u, E

⇤
s . Then there exists a function m 2

C
1(T ⇤

M \ 0;R) such that:

• m(x, ⇠) is positively homogeneous of degree 0 in ⇠;
• mu  m  ms everywhere;
• m = mu in some conic neighborhood of E⇤

u;
• m = ms in some conic neighborhood of E⇤

s ;
• m = m0 outside of Vu [ Vs;
• Hpm  0 everywhere.

Remark 3.5. A more refined version of Lemma 3.4 can be found in [FS11,
Lemma 1.2]. In the present paper we do not use that m = m0 outside of
Vu [ Vs, but it is a convenient property to have for wavefront set analysis,
see [FS11, Theorem 1.7].

Proof. A positively homogeneous function of degree 0 on T
⇤
M \0 is the pull-

back by  of a function on the fiber infinity @T ⇤M , and Vu, Vs are preimages
by  of some neighborhoods of (E⇤

u),(E
⇤
s ). Moreover, the flow e

tHp com-
mutes with . Thus we will construct m as a function on @T ⇤M , consider
Vu, Vs as open subsets of @T ⇤M , and work with the flow e

tHp restricted to
@T ⇤M .

We now construct dynamically adapted cuto↵s on Vu, Vs following a stan-
dard argument presented for example in [DZ19, Lemma E.53]. We shrink Vu

if necessary so that it does not intersect (E⇤
0
�E

⇤
s ). Take  u 2 C

1
c (Vu; [0, 1])

such that  u = 1 near (E⇤
u). Since (E

⇤
u) is a radial sink for the flow e

tHp ,
there exists T > 0 such that

(3.7) e
tHp(supp u) ⇢ { u = 1} for all t � T.
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Put

�u :=
1

T

Z
2T

T

 u � e
�tHp dt 2 C

1(@T ⇤M ; [0, 1]).

Then supp�u ⇢ Vu (as follows from (3.7)) and �u = 1 near (E⇤
u). Moreover

Hp�u = �
1

T

Z
2T

T

@t( u � e
�tHp) dt =

 u � e
�THp �  u � e

�2THp

T
� 0

where we again use (3.7): for each (x, ⇠) 2 @T ⇤M we have  u(e�2THp(x, ⇠)) =
0 or  u(e�THp(x, ⇠)) = 1.

A similar argument gives a function �s 2 C
1
c (Vs; [0, 1]) such that �s = 1

near (E⇤
s ) and Hp�s  0 everywhere. It remains to put

m := (mu �m0)�u + (ms �m0)�s +m0. ⇤

3.2.3. Computing the adjoint-commutator. We now give the following lemma
which computes the expression in the positive commutator argument for the
radial estimates in §4.2.3 below:

Lemma 3.6. Assume that W 2  2m

h
(M ; End(E)) and W

⇤ = W. Then
there exists Z 2  2m

h
(M ; End(E)) such that Z⇤ = Z, WFh(Z) ⇢ WFh(W),

and for each � 2 C and u 2 C
1(M ; End(E))

(3.8) Imh(P� ih�)u,WuiL2(M ;E) = h
⌦
(Z� (Re�)W)u,u

↵
L2(M ;E).

Moreover, the semiclassical principal symbol of Z is given by

(3.9) �h(Z) =
1

2
HX�h(W)

where HX : C1(T ⇤
M ; End(⇡⇤E)) ! C

1(T ⇤
M ; End(⇡⇤E)) is a lift of the

vector field Hp (see Definition 2.7 which can be applied to any vector field).
Finally, the evolution group e

tHX is described in terms of the parallel
transport from (2.8):

(3.10) e
tHXw(x, ⇠) = | det d't(x)|(T t

X(x))⇤w(etHp(x, ⇠))T t

X(x)

for all w 2 C
1(T ⇤

M ; End(⇡⇤E)). Here the adjoint is taken with respect to
the inner product h•, •iE on E and the determinant is taken with respect to
the density ⇢0 fixed in the beginning of §3.

Proof. 1. A direct computation shows that (3.8) holds with

Z :=
i

2h
(P⇤

W �WP).

Since P 2  1

h
(M ; End(E)) is principally scalar with real-valued principal

symbol, the principal symbol of P
⇤
W � WP is equal to 0. Thus Z 2

 2m

h
(M ; End(E)). From the definition of Z we see also that Z

⇤ = Z and
WFh(Z) ⇢ WFh(W).
2. Fix a frame e1, . . . , en on E over some open set U ⇢ M which is or-
thonormal with respect to the inner product h•, •iE . The operator X is
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given by (2.6) for some matrix A(x) = (Ajk(x))nj,k=1
depending on x 2 U ,

so the operator P is given by

P

nX

j=1

fjej = �ih

nX

j=1

✓
Xfj +

nX

k=1

Ajkfk

◆
ej .

Denoting by div⇢0 X := ⇢
�1

0
LX⇢0 the divergence of the vector field X with

respect to the density ⇢0, we compute the adjoint operator:

P
⇤

nX

j=1

fjej = �ih

nX

j=1

✓
(X + div⇢0 X)fj �

nX

k=1

Akjfk

◆
ej .

Using this we see that (3.9) holds with
(3.11)
HXw(x, ⇠) = Hpw(x, ⇠) + div⇢0 X(x)w(x, ⇠)�A(x)⇤w(x, ⇠)�w(x, ⇠)A(x)

where we identify sections of End(⇡⇤E) with n⇥n matrices using the frame
e1, . . . , en and Hp on the right-hand side acts on each matrix entry sepa-
rately.
3. The operator defined by (3.10) forms a group in t, so it su�ces to check
that for each w 2 C

1(T ⇤
M ; End(⇡⇤E)) we have

(3.12) @t|t=0

�
| det d't(x)|(T t

X(x))⇤w(etHp(x, ⇠))T t

X(x)
�
= HXw(x, ⇠).

We argue in a local frame as in Step 2 above. Using this frame we view T t

X(x)
as an n⇥n matrix. Using the definition of parallel transport (see (2.8)) and
the formula (2.7) we see that

@t|t=0T
t

X(x) = �A(x).

We also have @t|t=0 det d't(x) = div⇢0 X(x). Using these two identities
and (3.11), we verify that (3.12) holds. ⇤

3.3. The threshold conditions and existence of multipliers. We now
introduce the threshold regularity conditions needed for the proof of the
Fredholm property of P� ih�; more specifically, they are used in the proofs
of the radial estimates in §4.2.3 below. We start with the following

Definition 3.7. Assume that mu  0  ms are given constants. Define the
growth factors ru(mu), rs(ms) 2 R as the smallest numbers such that for
each " > 0 there exists a constant C" > 0 such that for all x 2 M and t � 0

(3.13)
| det d't(x)|

1
2 · kT t

X(x)k ·
��d't(x)T |E⇤

u

���mu
 C"e

(ru(mu)+")t
,

| det d't(x)|
1
2 · kT t

X(x)k ·
��d't(x)�T

|E⇤
s

��ms
 C"e

(rs(ms)+")t
.

Remark 3.8. The constants ru(mu), rs(ms) do not depend on the choice of
the inner product on E , the metric on M , and the density ⇢0 used to define
the norms in (3.13).
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Remark 3.9. The bounds (3.13) can be reformulated in terms of the action
of d't on the spaces Eu, Es: for all x 2 M and t � 0

(3.14)
| det d't(x)|

1
2 · kT t

X(x)k ·
��d't(x)|Es

���mu
 C"e

(ru(mu)+")t
,

| det d't(x)|
1
2 · kT t

X(x)k ·
��d't(x)�1

|Eu

��ms
 C"e

(rs(ms)+")t
.

We see that

(3.15) ru(mu)  C1 + ✓mu, rs(ms)  C1 � ✓ms

for some constant C1 depending only on the lift X, where ✓ > 0 is the
constant in the exponential contraction property (2.2).

The next lemma introduces the threshold regularity conditions and con-
structs the multipliers used in the proofs of the radial estimates:

Lemma 3.10. Assume that mu  0  ms and � 2 C satisfy the threshold
condition

(3.16) ru(mu) < Re�, rs(ms) < Re�.

Then there exist wu,ws 2 C
1(T ⇤

M \ 0; End(⇡⇤E)) such that:

• w
⇤
u = wu, w⇤

s = ws, and wu,ws are positive definite everywhere;
• wu, ws are positively homogeneous of degrees 2mu, 2ms, that is for
each (x, ⇠) 2 T

⇤
M \ 0 and ⌧ > 0

wu(x, ⌧⇠) = ⌧
2muwu(x, ⇠), ws(x, ⌧⇠) = ⌧

2msws(x, ⇠);

• if HX is the operator defined in Lemma 3.6, then

(HX � 2Re�)wu(x, ⇠), (HX � 2Re�)ws(x, ⇠)

are self-adjoint, positively homogeneous of degrees 2mu, 2ms respec-
tively, and negative definite for all (x, ⇠) in E

⇤
u \ 0 and E

⇤
s \ 0 respec-

tively.

Proof. For two self-adjoint elements a,b 2 End(E(x)), we write a < b if
b� a is positive definite.
1. Fix a metric onM and define the sectionsw0

u,w
0
s 2 C

1(T ⇤
M\0; End(⇡⇤E))

by
w

0

u(x, ⇠) := |⇠|
2muIE(x), w

0

s(x, ⇠) := |⇠|
2msIE(x)

where IE(x) is the identity map in End(E(x)). We claim that under the
threshold condition (3.16) we have for all t > 0 large enough

(3.17)
e
tHXw

0

u(x, ⇠) < e
2Re�t

w
0

u(x, ⇠) for all (x, ⇠) 2 E
⇤
u \ 0,

e
tHXw

0

s(x, ⇠) < e
2Re�t

w
0

s(x, ⇠) for all (x, ⇠) 2 E
⇤
s \ 0.

We show the first statement in (3.17), with the second one proved similarly.
Let (x, ⇠) 2 E

⇤
u \ 0 and v 2 E(x). Using the formula (3.10) for e

tHX we
compute

he
tHXw

0

u(x, ⇠)v,viE = | det d't(x)| · |d't(x)�T
⇠|

2mu · kT t

X(x)vk2E('t(x))
,

hw
0

u(x, ⇠)v,viE = |⇠|
2mukvk

2

E(x).
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We have mu  0 and |d'
t(x)�T

⇠| � kd'
t(x)T |E⇤

u
k
�1

· |⇠|, so

|d'
t(x)�T

⇠|
2mu  kd'

t(x)T |E⇤
u
k
�2mu · |⇠|

2mu .

Now (3.17) follows from the bound

| det d't(x)| · kd't(x)T |E⇤
u
k
�2mukT t

X(x)k2 < e
2Re�t

which holds for t > 0 large enough by (3.16) since the left-hand side is
O"(e(2ru(mu)+")t) for any " > 0.
2. Fix t0 > 0 such that (3.17) holds with t := t0. We define

wu :=

Z
t0

0

e
�2Re�t

e
tHXw

0

u dt, ws :=

Z
t0

0

e
�2Re�t

e
tHXw

0

s dt.

It is straightforward to check using (3.10) that wu,ws are self-adjoint, pos-
itively homogeneous of degrees 2mu, 2ms respectively, and positive definite.
Since e

tHX is the evolution group associated to HX, we have

(HX � 2Re�)wu =

Z
t0

0

@t

�
e
�2Re�t

e
tHXw

0

u

�
dt = e

�2Re�t0e
t0HXw

0

u �w
0

u

and similarly (HX�2Re�)ws = e
�2Re�t0e

t0HXw
0
s�w

0
s . We see that (HX�

2Re�)wu, (HX � 2Re�)ws are self-adjoint and positively homogeneous
of degrees 2mu, 2ms respectively. Moreover, by (3.17) these sections are
negative definite on E

⇤
u \ 0, E⇤

s \ 0 respectively. ⇤

3.3.1. Examples. We now compute the growth factors ru(mu), rs(ms) from
Definition 3.7 in a couple of special cases of the examples considered in §2.3.2.
More precisely, we study the threshold regularity condition Re� > max(ru(mu), rs(ms))
given in (3.16).

We start with the basic case when E = M ⇥ C is trivial, X = X, and 't

is volume preserving. In this case the condition (3.16) becomes

(3.18) Re� > max(✓smu,�✓ums)

where ✓s, ✓u > 0 are the largest numbers such that for each " > 0 there
exists C" > 0 such that for all t � 0

kd'
t
|Esk  C"e

�(✓s�")t
, kd'

�t
|Euk  C"e

�(✓u�")t
.

We next discuss the case when X is the generator of the geodesic flow
on an n + 1-dimensional compact hyperbolic manifold (⌃, g) and X = LX

acts on sections of the bundle of perpendicular di↵erential k-forms ⌦k

0
. In

this case 't is volume preserving, dimEu = dimEs = n, and for the correct
choice of metric on M (the Sasaki metric) we have

|d'
t(x)v| =

8
><

>:

|v|, v 2 E0(x);

e
t
|v|, v 2 Eu(x);

e
�t
|v|, v 2 Es(x).
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It follows that the parallel transport T t

X(x) has norm e
min(k,2n�k)t for t � 0,

and the condition (3.16) becomes

(3.19) Re� > max(mu,�ms) + min(k, 2n� k).

4. Meromorphic continuation

In this section we state and prove the main result of this paper, Theo-
rem 4.1 (see §4.1.1).

4.1. Anisotropic Sobolev spaces and statement of the result. We
first introduce the spaces on which meromorphic continuation holds. We fix
a function

m 2 C
1(T ⇤

M \ 0;R)
which satisfies the following conditions:

• m is positively homogeneous of degree 0, that is m(x, ⌧⇠) = m(x, ⇠)
for all (x, ⇠) 2 T

⇤
M \ 0 and ⌧ > 0;

• there exist constants mu  0  ms such that mu  m  ms every-
where and

m = mu near E⇤
u \ 0, m = ms near E⇤

s \ 0

where the dual unstable/stable spaces E
⇤
u, E

⇤
s ⇢ T

⇤
M were intro-

duced in (3.6);
• Hpm  0 everywhere, where the vector fieldHp is introduced in §3.2.1;
equivalently, m('t(x), d't(x)�T

⇠)  m(x, ⇠) for all (x, ⇠) 2 T
⇤
M \ 0

and t � 0.

Such m exists for any choice of mu  0  ms by Lemma 3.4.
Given m, we fix a semiclassical pseudodi↵erential operator Fm such that:

• Fm lies in  0+

h
(M ; End(E)) :=

T
">0

 "

h
(M ; End(E)) and F

⇤
m = Fm;

• Fm is principally scalar and, for some fixed choice of Riemannian
metric on M ,

�h(Fm)(x, ⇠) = m(x, ⇠) log |⇠| when |⇠| � 1.

For t � 0 we can define the exponential operators

(4.1) e
tFm 2  tms+

h
(M ; End(E)), e

�tFm 2  �tmu+

h
(M ; End(E)).

See [Zwo12, Theorem 8.6] for the case of scalar operators and Weyl quanti-
zation on Rn (with Beals’s theorem for the Kohn–Nirenberg calculus given
in [Zwo12, Theorem 9.12]); the proof adapts to the case of manifolds and
vector bundles studied here. Alternatively, see [FRS08, Appendix A].

We now define the semiclassical anisotropic Sobolev space H
m
h
(M ; E) sim-

ilarly to [Zwo12, §8.3.1]:

H
m
h
(M ; E) := e

�FmL
2(M ; E), kukHm

h
:= ke

FmukL2 .

The spaces H
m
h
(M ; E) for di↵erent values of h are all equivalent, with con-

stants in the norm equivalency bounds depending on h. Therefore, we may
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use the notation H
m(M ; E) when the choice of norm is not important. We

have

(4.2) H
ms(M ; E) ⇢ H

m(M ; E) ⇢ H
mu(M ; E)

and the space C
1(M ; E) is dense in H

m(M ; E).
Fix open subsets

(4.3) eVu,
eVs ⇢ T ⇤M \ 0, (E⇤

u) ⇢ eVu, (E⇤
s ) ⇢ eVs,

such that m = mu on eVu and m = ms on eVs. Then the space H
m
h
(M ; E) is

equivalent to the usual Sobolev space H
mu
h

(M ; E) microlocally on eVu, that

is for each A 2  0

h
(M ; End(E)) with WFh(A) ⇢ eVu, there exists a constant

C such that for each u 2 C
1(M ; E) and each N

(4.4)
kAukHm

h
 CkukHmu

h
+O(h1)kuk

H
�N
h

,

kAukHmu
h

 CkukHm
h
+O(h1)kuk

H
�N
h

.

Similarly,Hm
h
(M ; E) is equivalent to the spaceHms(M ; E) microlocally on eVs.

4.1.1. Statement of the result. We can now state the main result of this pa-
per, which gives meromorphic continuation of the Pollicott–Ruelle resolvent
on anisotropic Sobolev spaces to a specific half-plane:

Theorem 4.1. Let X be the generator of an Anosov flow '
t on a compact

manifold M , E be a smooth vector bundle over M , and X : C1(M ; E) !

C
1(M ; E) be a lift of X (see Definition 2.7).
Assume that the function m 2 C

1(T ⇤
M \ 0;R) satisfies the conditions in

the beginning of §4.1, for some constants mu  0  ms. Let Hm(M ; E) be
the corresponding anisotropic Sobolev space.

Then the Pollicott–Ruelle resolvent RX(�) defined in (2.10) admits a
meromorphic continuation as a family of operators Hm(M ; E) ! H

m(M ; E)
to the half-plane

(4.5) Re� > max(ru(mu), rs(ms))

where ru(mu), rs(ms) were introduced in Definition 3.7.

Remark 4.2. By (3.15), if we fix � then for �mu,ms large enough the
condition (4.5) holds. Since C

1(M ; E) ⇢ H
m(M ; E) ⇢ D

0(M ; E), we see
thatRX(�) continues meromorphically as a family of operators C1(M ; E) !
D

0(M ; E) to � 2 C.

4.1.2. The conjugated operator. The action of P = �ihX on H
m
h
(M ; E) is

equivalent to the action on L
2(M ; E) of the conjugated operator

(4.6) eP := e
FmPe

�Fm .

Using Taylor’s formula with integral remainder for the family of operators
e
tFmPe

�tFm , t 2 [0, 1], we see that for any N 2 N, we can expand eP as
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follows:

(4.7) eP =
N�1X

j=0

adjFm
P

j!
+

Z
1

0

(1� t)N�1
e
tFm

adNFm
P

(N � 1)!
e
�tFm dt

where adFm A = [Fm,A] for any operator A on C
1(M ; E).

Since Fm 2  0+

h
(M ; End(E)) is principally scalar, we have adFm :  m+

h
(M ; End(E)) !

h m�1+

h
(M ; End(E)) for all m. Therefore, the j-th term in the sum in (4.7)

is in h
j 1�j+

h
; using (4.1), we see that the remainder is in h

N 1�N+ms�mu+

h
.

Since N can be chosen arbitrarily large, we in particular get the expansion

eP = P+ [Fm,P] +O(h2)
 

�1+
h (M ;End(E)).

It follows that eP lies in  1

h
(M ; End(E)) and is principally scalar with

(4.8) �h(eP) = p+ ih(Hpm) log |⇠|,

where we used that Hp log |⇠| 2 S
0 for |⇠| � 1.

An expansion of the form (4.7) is valid for any pseudodi↵erential operator
in place of P. In particular, we get

(4.9) A 2  0

h
(M ; End(E)) =) e

FmAe
�Fm 2  0

h
(M ; End(E))

and the wavefrontset / elliptic set of A coincide with those of eFmAe
�Fm .

4.2. Invertibility of the perturbed operator. We now state the key es-
timate for the proof of Theorem 4.1, which gives invertibility for the operator
P = �ihX on the anisotropic Sobolev space H

m
h
(M ; E) when modified by

a complex absorbing operator. Consider the dual space of Hm
h
(M ; E) (with

respect to the L
2 inner product), given by

H
�m
h

(M ; E) := e
FmL

2(M ; E).

Fix a principally scalar pseudodi↵erential operator

Q 2  0

h
(M ; End(E)), �h(Q) � 0

such that WFh(Q) does not intersect the fiber infinity @T ⇤M and the elliptic
set ellh(Q) contains the zero section of T ⇤

M . For technical reasons we also
assume that

(4.10) WFh(Q) \ eVu = WFh(Q) \ eVs = ;

where eVu,
eVs ⇢ T ⇤M \ 0 were introduced in (4.3).

Lemma 4.3. Let m satisfy the conditions in the beginning of §4.1 and as-
sume that ⌦ ⇢ C is a compact set such that

(4.11) Re� > max(ru(mu), rs(ms)) for all � 2 ⌦.
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Then we have the following estimates for h small enough, all � 2 ⌦, and all
u 2 C

1(M ; E), with the constants independent of h,�,u:

kukHm
h
 Ch

�1
k(P� ih�� iQ)ukHm

h
,(4.12)

kuk
H

�m
h

 Ch
�1

k(P� ih�� iQ)⇤uk
H

�m
h

.(4.13)

We will only give the proof of the direct estimate (4.12). The adjoint es-
timate (4.13) follows from the direct estimate for the operator X⇤ which is a
lift of the vector field �X. Note that �(P�ih��iQ)⇤ = �ihX

⇤
�ih�̄�iQ

⇤.
The associated flow is '�t and the stable/unstable spaces are switched
places. The constants mu,ms are replaced by �ms,�mu and the weight m
is replaced by �m. Using (3.13), we see that the threshold condition (4.11)
gives the analogous condition for the operator X⇤. (Here the parallel trans-
port corresponding to X

⇤ can be computed using (2.9), as (e�tX)⇤ = e
�tX⇤

.)
The proof of (4.12) is broken into several components. Throughout this

section we assume that h is small, � 2 ⌦, and u 2 C
1(M ; E). The constants

in the estimates below are independent of h, and the Sobolev exponent N

in the remainders can be chosen arbitrarily.

4.2.1. Elliptic estimate. We first state the elliptic estimate:

Lemma 4.4. Assume that A 2  0

h
(M ; End(E)) and

WFh(A) ⇢ ellh(P) [ ellh(Q).

Then

(4.14) kAukHm
h
 Ck(P� ih�� iQ)ukHm

h
+O(h1)kuk

H
�N
h

.

To prove Lemma 4.4, we first reduce it to an estimate in the space L
2 for

the conjugated operator eP� ih�� eQ where

(4.15) eQ := e
FmQe

�Fm .

Denote eA := e
FmAe

�Fm . Then (4.14) follows from the estimate

(4.16) keAvkL2  Ck(eP� ih�� ieQ)vkL2 +O(h1)kvk
H

�N
h

where we put v := e
Fmu 2 C

1(M ; E).
Since WFh(Q) does not intersect the fiber infinity @T ⇤M , using the ex-

pansion (4.7) for Q in place of P we see that eQ = Q+O(h)
 

�1
h (M ;End(E)).

Moreover, by (4.9) the operator eA 2  0

h
(M ; End(E)) has the same wavefront

set as A. It follows that WFh(eA) ⇢ ellh(eP � ih� � ieQ). Now (4.16) fol-
lows from the standard elliptic estimate [DZ19, Theorem E.33] whose proof
adapts directly to the case of operators on vector bundles.
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4.2.2. Propagation of singularities. Our next estimate is propagation of sin-
gularities:

Lemma 4.5. Assume that A,B,B1 2  0

h
(M ; End(E)) and the following

control condition holds:

for all (x, ⇠) 2 WFh(A) there exists T � 0 such that

e
�THp(x, ⇠) 2 ellh(B) and e

�tHp(x, ⇠) 2 ellh(B1) for all t 2 [0, T ].

Then

kAukHm
h
 CkBukHm

h
+ Ch

�1
kB1(P� ih�� iQ)ukHm

h
+O(h1)kuk

H
�N
h

.

Similarly to §4.2.1, Lemma 4.5 can be reduced to an estimate in the
space L

2 for the conjugated operator eP � ih� � ieQ. The latter estimate
is proved using the same positive commutator estimate as standard scalar
propagation of singularities [DZ19, Theorem E.47], using a principally scalar
multiplier G, given that:

• eP� ih�� ieQ 2  1

h
(M ; End(E)) is principally scalar;

• Re�h(eP� ih�� ieQ) = p;
• Im�h(eP�ih��ieQ)  0. Indeed, Im�h(eP) = h(Hpm) log |⇠| by (4.8)
and Hpm  0 as required in the beginning of §4.1. Moreover,

�h(eQ) = �h(Q) � 0;
• the sharp G̊arding inequality applies to principally scalar operators
in  2m

h
(M ; End(E)) with nonnegative principal symbol, as follows

for example from Lemma 3.1.

4.2.3. Radial estimates. We now prove the two radial estimates that are
crucial in the proof of Lemma 4.3. This is the place in the argument
where the threshold regularity condition (4.11) is important. Recall the
sets eVu,

eVs ⇢ T ⇤M introduced in (4.3).
We start with the high regularity radial estimate at the set (E⇤

s ) ⇢

@T ⇤M .

Lemma 4.6. There exist operators

As,B1,s 2  
0

h
(M ; End(E)), (E⇤

s ) ⇢ ellh(As), WFh(As)[WFh(B1,s) ⇢ eVs

such that the following estimate holds:

(4.17) kAsukHm
h
 Ch

�1
kB1,s(P� ih�� iQ)ukHm

h
+O(h1)kuk

H
�N
h

.

Proof. 1. Since H
m
h

is equivalent to H
ms
h

microlocally on eVs (see (4.4)) and

WFh(Q) \ eVs = ; (see (4.10)), it su�ces to show the estimate

(4.18) kAsukHms
h

 Ch
�1

kB1,s(P� ih�)ukHms
h

+O(h1)kuk
H

�N
h

.

2. We now follow the proof of [DZ19, Theorem E.52], indicating the nec-
essary changes. Since the threshold condition (4.11) holds, Lemma 3.10



POLLICOTT–RUELLE RESOLVENT AND SOBOLEV REGULARITY 23

applies to give a section ws 2 C
1(T ⇤

M \0; End(⇡⇤E)) which is positive def-
inite everywhere, positively homogeneous of degree 2ms, and satisfies (where
‘< 0’ means ‘negative definite’)

(4.19) (HX � 2Re�)ws(x, ⇠) < 0 for all � 2 ⌦, (x, ⇠) 2 E
⇤
s \ 0.

Fix an open set Us ⇢
eVs such that (E⇤

s ) ⇢ Us and there exists � > 0 such
that

(4.20) (1
2
HX � Re�+ �)ws(x, ⇠) < 0 for all � 2 ⌦, (x, ⇠) 2 Us.

Arguing as in the proof of Lemma 3.4 (see also [DZ19, Lemma E.53]), we
construct a function

(4.21) �s 2 C
1
c (Us; [0, 1]), �s = 1 near (E⇤

s ), Hp�s  0.

Denote by
p
ws the square root of ws, which is a positive definite section in

C
1(T ⇤

M \ 0; End(⇡⇤E)) and positively homogeneous of degree ms. Define

gs := �s

p
ws 2 C

1(T ⇤
M ; End(⇡⇤E))

and note that gs lies in the symbol class Sms .
3. Take a pseudodi↵erential operator

Gs 2  
ms
h

(M ; End(E)), WFh(Gs) ⇢ Us, �h(Gs) = gs.

Note thatGs is elliptic on (E⇤
s ). Fix also operatorsAs,B2,s 2  0

h
(M ; End(E))

such that

(E⇤
s ) ⇢ ellh(As), WFh(As) ⇢ ellh(Gs), WFh(Gs) ⇢ ellh(B2,s), WFh(B2,s) ⇢ Us.

By Lemma 3.6, we have

(4.22) h
�1 Imh(P� ih�)u,G⇤

sGsuiL2 + �kGsuk
2

L2 = hZsu,uiL2

where

Zs 2  
2ms(M ; End(E)), Z

⇤
s = Zs, WFh(Zs) ⇢ ellh(B2,s)

has principal symbol
(4.23)
�h(Zs) = (1

2
HX�Re�+ �)(�2

sws) = �s(Hp�s)ws+�
2
s(

1

2
HX�Re�+ �)ws.

By (4.20)–(4.21), each of the two summands on the right-hand side of (4.23)
is the product of a nonnegative function in C

1
c (Us) and a self-adjoint section

of End(⇡⇤E) which is positively homogeneous of degree 2ms and negative
definite on Us. Thus the version of the sharp G̊arding inequality given in
Lemma 3.1 gives

hZsu,uiL2  ChkB2,suk
2

H
ms� 1

2
h

+O(h1)kuk2
H

�N
h

.

Together with (4.22) this implies

kGsuk
2

L2  Ch
�1

kB2,s(P�ih�)ukHms
h

·kGsukL2+ChkB2,suk
2

H
ms� 1

2
h

+O(h1)kuk2
H

�N
h
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which gives the estimate
(4.24)

kGsukL2  Ch
�1

kB2,s(P�ih�)ukHms
h

+Ch
1
2 kB2,suk

H
ms� 1

2
h

+O(h1)kuk
H

�N
h

.

4. We now argue similarly to step 2 of the proof of [DZ19, Theorem E.52]. By
the elliptic estimate we can replace kGsukL2 on the left-hand side of (4.24)
by kAsukHms

h
. If the set Us is chosen small enough, then propagation of

singularities gives
(4.25)
kB2,suk

H
ms� 1

2
h

 CkAsuk
H

ms� 1
2

h

+Ch
�1

kB1,s(P�ih�)ukHms
h

+O(h1)kuk
H

�N
h

for some B1,s 2  0

h
(M ; End(E)) such that

WFh(B2,s) ⇢ ellh(B1,s), WFh(B1,s) ⇢ eVs.

Combining (4.24) and (4.25) and taking h small enough, we get (4.18). ⇤
We next give the low regularity radial estimate at the set (E⇤

u):

Lemma 4.7. There exist operators

Au,Bu,B1,u 2  0

h
(M ; End(E)), (E⇤

u) ⇢ ellh(Au),

WFh(Au) [WFh(B1,u) ⇢ eVu, WFh(Bu) ⇢ eVu \ (E⇤
u)

such that the following estimate holds:
(4.26)
kAuukHm

h
 CkBuukHm

h
+Ch

�1
kB1,u(P� ih�� iQ)ukHm

h
+O(h1)kuk

H
�N
h

.

Proof. 1. We argue similarly to the proof of [DZ19, Theorem E.54], making
changes similar to the proof of Lemma 4.6. Since H

m
h

is equivalent to H
mu
h

microlocally on eVu, it su�ces to show the estimate
(4.27)
kAuukHmu

h
 CkBuukHmu

h
+Ch

�1
kB1,u(P� ih�)ukHmu

h
+O(h1)kuk

H
�N
h

.

2. Since the threshold condition (4.11) holds, Lemma 3.10 applies to give a
section wu 2 C

1(T ⇤
M \ 0; End(⇡⇤E)) which is positive definite everywhere,

positively homogeneous of degree 2mu, and satisfies

(HX � 2Re�)wu(x, ⇠) < 0 for all � 2 ⌦, (x, ⇠) 2 E
⇤
u \ 0.

Fix an open set Uu ⇢ eVu such that (E⇤
u) ⇢ Uu and there exists � > 0 such

that

(4.28) (1
2
HX � Re�+ �)wu(x, ⇠) < 0 for all � 2 ⌦, (x, ⇠) 2 Uu.

Take an arbitrary cuto↵

�u 2 C
1
c (Uu; [0, 1]), �u = 1 near (E⇤

u)

and define
gu := �u

p
wu 2 C

1(T ⇤
M ; End(⇡⇤E))

which lies in the class Smu .
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3. Take a pseudodi↵erential operator

Gu 2  mu
h

(M ; End(E)), WFh(Gu) ⇢ Uu, �h(Gu) = gu.

Note that Gu is elliptic on (E⇤
u). Fix a cuto↵ function

(4.29)  u 2 C
1
c (Uu \ (E⇤

u)) such that �u(Hp�u)  | u|
2 everywhere

and an operator Eu 2  mu
h

(M ; End(E)) such that

WFh(Eu) ⇢ Uu \ (E⇤
u), �h(Eu) =  u

p
wu.

Now, fix Au,Bu 2  0

h
(M ; End(E)) such that, putting B1,u := A

⇤
uAu +

B
⇤
uBu,

(E⇤
u) ⇢ ellh(Au), WFh(Au) ⇢ ellh(Gu), WFh(Eu) ⇢ ellh(Bu),

WFh(Bu) ⇢ Uu \ (E⇤
u), WFh(Gu) ⇢ ellh(Au) [ ellh(Bu) ⇢ ellh(B1,u).

By Lemma 3.6, we have

(4.30) h
�1 Imh(P�ih�)u,G⇤

uGuuiL2�kEuuk
2

L2+�kGuuk
2

L2 = hZuu,uiL2

where

Zu 2  2mu(M ; End(E)), Z
⇤
u = Zu, WFh(Zu) ⇢ ellh(B1,u)

has principal symbol

(4.31) �h(Zu) = (�u(Hp�u)� | u|
2)wu + �

2

u(
1

2
HX � Re�+ �)wu.

By (4.28)–(4.29), each of the two summands on the right-hand side of (4.31)
is the product of a nonnegative function in C

1
c (Uu) and a self-adjoint sec-

tion of End(E) which is positively homogeneous of degree 2mu and negative
definite on Uu. Thus Lemma 3.1 gives

hZuu,uiL2  ChkB1,uuk
2

H
mu� 1

2
h

+O(h1)kuk2
H

�N
h

which together with (4.30) implies

(4.32)
kGuukL2 CkEuukL2 + Ch

�1
kB1,u(P� ih�)ukHmu

h

+ Ch
1
2 kB1,uuk

H
mu� 1

2
h

+O(h1)kuk
H

�N
h

.

4. By the elliptic estimate, we can replace kGuukL2 on the left-hand side
of (4.32) by kAuukHmu

h
. Similarly we may replace kEuukL2 on the right-

hand side of (4.32) by kBuukHmu
h

. Finally, recalling the definition of B1,u

we see that

kB1,uuk
H

mu� 1
2

h

 C
�
kAuuk

H
mu� 1

2
h

+ kBuuk
H

mu� 1
2

h

�
.

Taking h small enough in (4.32), we now obtain (4.27). ⇤
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4.2.4. Proof of Lemma 4.3. We are now ready to finish the proof of Lemma 4.3,
following the proof of [DZ16, Proposition 3.4]. LetAs,Au,Bu 2  0

h
(M ; End(E))

be the operators from Lemmas 4.6–4.7. We first combine ellipticity, propa-
gation of singularities, and the high regularity radial estimate to get

Lemma 4.8. Let A 2  0

h
(M ; End(E)) satisfy WFh(A) \ (E⇤

u) = ;. Then

(4.33) kAukHm
h
 Ch

�1
k(P� ih�� iQ)ukHm

h
+O(h1)kuk

H
�N
h

.

Proof. Fix an operator eQ 2  0

h
(M ; End(E)) such that WFh(eQ) ⇢ ellh(Q)

and ellh(eQ) contains the zero section of T ⇤
M . Define the open set U ⇢ T ⇤M

as follows:

U := {(x, ⇠) 2 T ⇤M | 9t � 0 : e
�tHp(x, ⇠) 2 ellh(eQ) [ ellh(As)}.

Since ellh(As) contains (E⇤
s ), by Lemma 3.3 we have WFh(A)\ {p = 0} ⇢

U , that is WFh(A) ⇢ ellh(P) [ U . Using a microlocal partition of unity, we
write

A = A1+A2, A1,A2 2  
0

h
(M ; End(E)), WFh(A1) ⇢ ellh(P), WFh(A2) ⇢ U .

By the elliptic estimate, Lemma 4.4, we have

(4.34) kA1ukHm
h
+ keQukHm

h
 Ck(P� ih�� iQ)ukHm

h
+O(h1)kuk

H
�N
h

.

Next, by propagation of singularities, Lemma 4.5, with B := As + eQ,
ellh(B) = ellh(As) [ ellh(eQ), we have

(4.35)
kA2ukHm

h
CkAsukHm

h
+ CkeQukHm

h

+ Ch
�1

k(P� ih�� iQ)ukHm
h
+O(h1)kuk

H
�N
h

.

Finally, recall that by the high regularity radial estimate, Lemma 4.6,

(4.36) kAsukHm
h
 Ch

�1
k(P� ih�� iQ)ukHm

h
+O(h1)kuk

H
�N
h

.

Putting together (4.34)–(4.36), we get (4.33). ⇤
Now, recall that the low regularity radial estimate, Lemma 4.7, gives

(4.37)
kAuukHm

h
 CkBuukHm

h
+ Ch

�1
k(P� ih�� iQ)ukHm

h
+O(h1)kuk

H
�N
h

.

Take A 2  0

h
(M; End(E)) such that

T ⇤M \ ellh(Au) ⇢ ellh(A), WFh(A) ⇢ T ⇤M \ (E⇤
u).

Since WFh(Bu) \ (E⇤
u) = ;, Lemma 4.8 applies to both A and Bu to give

(4.38) kAukHm
h
+kBuukHm

h
 Ch

�1
k(P�ih��iQ)ukHm

h
+O(h1)kuk

H
�N
h

.

Since A
⇤
A+A

⇤
uAu 2  0

h
(M ; End(E)) is elliptic on the entire T ⇤M , we can

use the elliptic estimate to derive from (4.38) and (4.37) the bound

kukHm
h
 CkAukHm

h
+ CkAuukHm

h
+O(h1)kuk

H
�N
h

 Ch
�1

k(P� ih�� iQ)ukHm
h
+O(h1)kuk

H
�N
h

.
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For h small enough, we may remove the last term on the right-hand side,
obtaining (4.12) and finishing the proof of Lemma 4.3.

4.3. Meromorphic continuation. We finally give the proof of Theorem 4.1,
following [DZ16, §§3.3–3.4]. Let ⌦ ⇢ C be a compact set satisfying the
threshold regularity condition (4.11). Fix h > 0 small enough so that
Lemma 4.3 applies. We henceforth suppress the subscript h in the nota-
tion H

m
h
. Define the space

D
m := {u 2 H

m
| Pu 2 H

m
}

with the Hilbert norm

kuk
2

Dm := kuk
2

Hm + kPuk
2

Hm .

Since WFh(Q) does not intersect the fiber infinity, Q is a smoothing oper-
ator. In particular, Q maps Hm to itself. Therefore,

(4.39) P� ih�� iQ : Dm
! H

m

is a holomorphic family of bounded operators.
The space C1(M ; E) is dense in D

m as follows from [DZ19, Lemma E.45]
applied to the conjugated operator eP from §4.1.2 (whose proof adapts di-
rectly to the case of operators on vector bundles). Therefore, the estimates
of Lemma 4.3 show that there exists a constant C such that for all � 2 ⌦

(4.40)
kukDm  Ck(P� ih�� iQ)ukHm for all u 2 D

m
,

kvkD�m  Ck(P� ih�� iQ)⇤vkH�m for all v 2 D
�m

.

Here C and Q depend on h, however we already fixed h small enough above.
By a standard argument from functional analysis (see for example the

proof of [DZ19, Theorem 5.30]), the estimates (4.40) imply that the opera-
tor (4.39) is invertible for all � 2 ⌦. Since Q is smoothing, it is a compact
operator D

m
! H

m. It follows that P � ih� : Dm
! H

m is a Fredholm
operator of index 0 for all � 2 ⌦. Recalling that P = �ihX and ⌦ is an
arbitrary compact subset of

⌦m := {� 2 C | Re� > max(ru(mu), rs(ms))},

we get the following Fredholm property:
(4.41)

X+ � : Dm
! H

m is a Fredholm operator of index 0 for all � 2 ⌦m.

Recall from (2.10) that the Pollicott–Ruelle resolvent RX(�) was defined for
Re� > CX by

(4.42) RX(�)f :=

Z 1

0

e
��t

e
�tX

f dt for f 2 C
1(M ; E).

The operator e
�tX is bounded on the space H

ms(M ; E) locally uniformly
in t. Since e

�tX forms a group in t, we see that there exists a constant
CX(ms) � CX such that

ke
�tX

kHms!Hms = O(eCX(ms)t) as t ! 1.
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For Re� > CX(ms) and f 2 C
1, the integral (4.42) converges in the

space H
ms and thus (recalling (4.2)) in the larger space H

m. Thus u :=
RX(�)f lies in H

m and (recalling (2.11)) satisfies (X + �)u = f . It fol-
lows that the range of the operator (4.41) contains C

1(M ; E) and is thus
dense in H

m. From the Fredholm property we then see that when Re� >

max(CX(ms), ru(mu), rs(ms)), the operator (4.41) is invertible and its in-
verse coincides on C

1(M ; E) with the Pollicott–Ruelle resolvent RX(�).
Now by Analytic Fredholm Theory [DZ19, Theorem C.8] we see that

(X+ �)�1 : Hm
! D

m
, � 2 ⌦m

is meromorphic with poles of finite rank. This operator gives the meromor-
phic continuation of the Pollicott–Ruelle resolvent, which finishes the proof
of Theorem 4.1.
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Birkhäuser Boston, Inc., Boston, MA, 1999.

[Tsu12] Masato Tsujii. Contact Anosov flows and the Fourier-Bros-Iagolnitzer trans-
form. Ergodic Theory Dynam. Systems, 32(6):2083–2118, 2012.

[Wan20] Jian Wang. Sharp radial estimates in besov spaces, 2020. arXiv:2003.11218.
[Zwo12] Maciej Zworski. Semiclassical analysis, volume 138 of Graduate Studies in

Mathematics. American Mathematical Society, Providence, RI, 2012.
[Zwo17] Maciej Zworski. Mathematical study of scattering resonances. Bull. Math. Sci.,

7(1):1–85, 2017.

(S. Dyatlov) Department of Mathematics, Massachusetts Institute of Tech-
nology, Cambridge, MA 02139

Email address: dyatlov@math.mit.edu

http://arxiv.org/abs/2103.15397
http://arxiv.org/abs/2003.11218

	1. Introduction
	2. Anosov flows
	2.1. Definition
	2.2. Examples
	2.3. Operators and resolvents

	3. Microlocal framework and the lifted flow
	3.1. Semiclassical analysis
	3.2. Semiclassical properties of P
	3.3. The threshold conditions and existence of multipliers

	4. Meromorphic continuation
	4.1. Anisotropic Sobolev spaces and statement of the result
	4.2. Invertibility of the perturbed operator
	4.3. Meromorphic continuation

	References

