POLLICOTT-RUELLE RESOLVENT
AND SOBOLEV REGULARITY

SEMYON DYATLOV

ABSTRACT. In this note we compute the threshold regularity for mero-
morphic continuation of the Pollicott—Ruelle resolvent of an Anosov flow
as an operator on anisotropic Sobolev spaces, in the setting of lifts to
general vector bundles. These thresholds are related to the Sobolev
regularity needed for the decay of correlations.

1. INTRODUCTION

Let M be a compact d-dimensional C* manifold (without boundary) and
X € C*°(M;TM) be a nonvanishing vector field. This field generates a flow

o' i =exp(tX): M — M, tcR.

A fundamental topic in dynamical systems is the study of the behavior of
correlations

,0f7g(t) = /M(f o @_t)g, teR

where f is an L? function and ¢ is an L? density on M. (Here the line
bundle of densities on M is used because the integral of a density over M
is invariantly defined; we do not assume a priori that the flow preserves a
smooth volume form.) In particular, one is interested in mizing (when py 4(%)
has a limit as t — co) and also in the stronger property of exponential mixing
(when the remainder in the mixing property decays exponentially fast as
t — o0). We note that even when exponential mixing is known, it does not
hold for all f,g € L?, instead one has to restrict to more regular functions.

In this paper we focus on the case when ¢’ is an Anosov flow, that is
the tangent spaces to M decompose into the flow, stable, and unstable
directions — see for a precise definition. There are many examples
of such flows, including geodesic flows on manifolds of negative curvature
(see . A key tool in studying long time asymptotics of correlations is
the Pollicott—Ruelle resolvent

Rx(\)f = / e M(fop™Hdt, RedA>0, fe&C®M)
0
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2 S. DYATLOV

with the integral converging in the space of continuous functions C°(M).
The integral [,,(Rx())f)g is the Fourier-Laplace transform of the correla-
tion py4(t) at .

Since X is a smooth vector field, differentiation along it defines a first
order differential operator which we also denote by X. This operator acts
in particular on the space of smooth functions C°°(M) and on the space of
distributions D/(M). Now, Rx()\) is an inverse of X + X in the following
sense:

(1.1)
Rx(N(X4+Nf=(X+XNRx(\)f=f foral feC>®(M), ReA>0.

A fundamental property of Rx(A) is that it continues meromorphically to
the entire complex plane:

Theorem 1.1. Assume that X is an Anosov flow. Then Rx(\) admits a
meromorphic extension

Rx()\) : C®°(M) — D/(M), XeC.

The poles of the extended family Rx (), called the Pollicott—Ruelle reso-
nances of ', are the complex characteristic frequencies governing the decay
of correlations. They also appear as singularities (zeroes and/or poles) of
dynamical zeta functions.

A typical proof of Theorem is to use and construct the mero-
morphic continuation of Rx(\) as the inverse of X + X\ acting between two
Banach spaces of distributions D — H which are carefully designed so that
X+ AX:D — H is a Fredholm operator. This gives the continuation to
a half-plane Re A > —c where the value of the constant ¢ depends on the
choice of the spaces, and it is possible to choose D, H to make c arbitrarily
large.

The present paper establishes a version of Theorem in the more gen-
eral setting of a smooth vector bundle £ over M and an arbitrary lift
X : C®¥(M;E) — C®(M;€E) of X — see for details and for
examples. It is already known that such an extension holds, however in
this paper we compute the needed regularity for the spaces on which Fred-
holm property holds. This can be used in particular to better understand
the regularity assumptions for exponential decay of correlations as well as
regularity of resonant states.

We use an anisotropic Sobolev space H™(M; &) associated to a weight
function m € C°°(T*M \ 0; R) which is homogeneous of degree 0. This func-
tion needs to satisfy natural dynamical assumptions (see , in particular
to it correspond two numbers

my <0 < mg

such that H™s(M;E) C H™(M;E) C H™+(M;E). See Adam-Baladi [AB18|,
§3.3] for the threshold regularity computation for the case of trivial one-
dimensional bundles, giving in that case (see also Guillarmou—Poyferré—
Bonthonneau |GdP21, Appendix A]), Wang [Wan20] for radial estimates
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giving regularity in the more general Besov spaces in the scalar case, and
Bonthonneau-Lefeuvre [BL21] for a related result giving the regularity thresh-
old in the case of general bundles for Holder-Zygmund spaces. For an esti-
mate of the regularity threshold in anisotropic Banach spaces in the related
case of Anosov maps, see [BT08, Theorem 4.1] or [Ball8, Theorem 6.12].

The main result of this paper, Theorem [4.1]in shows meromorphic
continuation of the Pollicott—Ruelle resolvent Rx () associated to the lift X
to a half-plane which is explicitly described in terms of m,, ms and the
dynamics of the flow ¢'. More precisely, the condition on \ is that there
exists € > 0 and a constant C' such that for all x € M and ¢t > 0

|det dg(@)|2 - | T (@)]] - [|d! @)l [| ™ < CeBrr,

|
|det d!(@)]7 - | T ()] - [[dg' (2) [, || < CeBer0,

(1.2)

Here E,, E; are the unstable/stable spaces of the flow and % () : (z) —
E(¢!(z)) is the parallel transport associated to the lift X. See and the
statement of Theorem [4.1] for details and for examples.

The use of anisotropic Hélder and Sobolev spaces to prove Theorem [1.1
and an analogous statement in the related setting of Anosov maps has a
long tradition, see in particular the works of Blank—Keller—Liverani [BKL02],
Liverani [Liv04, Liv05], Gouezel-Liverani [GL06], Baladi-Tsujii [BT07], and
Butterley—Liverani [BLO7]. We use the microlocal approach originating in
the papers of Faure-Roy—Sjostrand [FRS08] and Faure-Sjostrand [FS11].
See the review of Zworski [Zwol7, §4] for a comprehensive introduction to
this microlocal approach. Our proof is similar in structure to the one in the
paper of Dyatlov—Zworski [DZ16] on dynamical zeta functions. (See also
the work of Dyatlov—Guillarmou [DG16], [DG18] for the more general setting
of basic sets of Axiom A flows.) The main difference between the present
paper and [DZ16] is the precise analysis of what regularity is needed for
radial estimates — see §§3.2.3] and

We also address a minor mistake present in [DZ16, [DG16]: when the
vector bundle £ is not trivial, it is not possible to extend pseudodifferential
operators on C'*°(M) canonically to operators on C*°(M;&). Thus all the
pseudodifferential cutoffs A, B, B1,... used in the propagation estimates
in [DZ16, [DG16] should be taken to be principally scalar operators rather
than operators on C*°(M).

For applications of anisotropic spaces to exponential mixing for contact
flows, see the works of Liverani [Liv04], Tsujii [Tsul2], and Nonnenmacher—
Zworski [NZ15]. We note that the latter paper [NZ15] uses the microlocal
approach and thus could be potentially combined with the present result
to yield exponential mixing for more general bundles, however in the case
when X* # —X more adjustments would be needed to the argument there.
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2. ANOSOV FLOWS

2.1. Definition. As in the introduction, we assume that X is a nonva-
nishing vector field on a compact manifold M and ¢! = exp(tX) is the
corresponding flow.

Definition 2.1. We say that ¢! is an Anosov flow if there exists a splitting
of tangent spaces into the flow/unstable/stable spaces

(2.1) TyM = Ey(z) & Ey(z) & Es(z), xeM

such that:

o Fo(z) = RX(2);
e E,(z), Es(r) depend continuously on x and are invariant under the
flow:

dp' () Bu(z) = Eu(¢'(2)),  dg'(2)Es(z) = Es(¢'(2));

e we have the exponential contraction property under the differential
of the flow,

ve Ey(x), t<0 or

2.2 dot (z)v] < Ce=WMy| if

T L v,
Here C, 6 > 0 are some constants and we fix an arbitrary Riemannian
metric on M; C depends on the choice of the metric but 6 does not.

Remark 2.2. The dependence of E, (), Es(x) on the base point x is Hélder
continuous but typically not C'*°, see for example [HK90].

In this paper we always assume that ¢’ is an Anosov flow. It is sometimes
useful to make additional assumptions, given by

Definition 2.3. Let X be a nonvanishing vector field on a manifold M. We
say that the flow ¢! = exp(tX) is:

e a volume preserving flow, if there exists a C°° density p on M which
is invariant under pullback by ?;
e a contact flow, if d = dim M is odd and there exists a 1-form o €
d—1

C°(M;T*M) such that o A (dar) 2z is nonvanishing, txa = 1, and
txda = 0.

Remark 2.4. For contact flows, the form « is called a contact form and X

is called the Reeb vector field associated to «. The manifold M is oriented
d—1

by requiring that dvol, := a A (da) 2 be positive. Moreover, dvol, is

invariant under the flow ¢!, so contact flows are always volume preserving.

2.2. Examples. We now give a few standard examples of Anosov flows.
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2.2.1. Geodesic flows. Assume that (X, ¢) is a compact Riemannian mani-
fold. We let M be the sphere bundle of X:

M =S¥ :={(y,w) e TE: |w|y = 1}.

The geodesic flow ¢! is the flow on M defined as follows: if (y,w) € S and
v : R — ¥ is the geodesic such that v(0) = y, ¥(0) = w, then ¢!(y,w) =
(7(t),%(t)). The flow ¢’ is a contact flow, where the contact 1-form « on
S3 is defined as follows:

Ayw)(€) = {7 (yw)8, W)y
where 7 : S¥. — ¥ is the projection map — see for example [Pat99| §1.3.3].

Proposition 2.5. If (X,9) has everywhere negative sectional curvature,
then the geodesic flow @' on M = S¥. is Anosov.

For the proof, see for example [K1i95, Theorem 3.9.1].

2.2.2. Suspensions of Anosov maps. An Anosov map is a discrete time ana-
log of an Anosov flow:

Definition 2.6. Let M be a compact manifold and T : M — M be a
diffeomorphism. We say that T is an Anosov map if the tangent spaces
to M admit a decomposition T,M = E,(x) & Es(x) which is invariant
under T', depends continuously on x, and satisfies the following exponential
contraction property for some constants ;¢ > 0 and a Riemannian metric
on M:

veE FEy(x), k<0 or

|dT*(z)v] < Ce || if
v € Es(x), k=>0.

Basic examples of Anosov maps are the toric automorphisms
T:T% = T4 T(x) = Az mod Z¢

where T¢ = R?/Z¢ is the d-dimensional torus and the matrix A € GL(d, Z),
|det A] = 1, has no eigenvalues on the unit circle.

To make an Anosov map into an Anosov flow, we use suspensions. Let
T : M — M be an Anosov map and 7: M — (0,00) be a smooth function,
called the roof function of the suspension. Let M be the manifold obtained
by taking the cylinder {(z,s) | x € M, 0 < s < 7(z)} and gluing its two
ends by identifying (z,7(z)) with (T'(z),0). Alternatively, we may define
M as the quotient of M xR by the action of Z generated by the map
(z,s + 7(x)) — (T(x),s). Now, the vector field X := 0s is well-defined
on M and generates an Anosov flow called the suspension of T with roof
function 7. Here the Anosov property is easy to check when 7 is constant
and the general case is obtained by a time change, which does not change
the Anosov property — see for example [KH95, Proposition 17.4.5].
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2.3. Operators and resolvents. Let ¢! = exp(tX) be an Anosov flow on
a manifold M. The vector field X defines a first order differential operator
X :C®(M)— C>®(M). For t € R, define the operator

e X C®(M) = C®(M), e Xf:=fopt
The notation e~*¥X is justified as follows: for each f € C°°(M) we have
(2.3) ole™ X f) = —e X f=—Xe Xf.

Now, for a complex number A such that Re A > 0 we define the Pollicott—
Ruelle resolvent

(2.4) Rx(\)f := /OO e Me X f dt.
0

Here the integral converges exponentially fast in the sup-norm when f is
continuous.

We have the identity (L.1). Indeed, take f € C°°(M) and assume that
Re A > 0. Then

Ry (VX + N f = (X + NRx(\)f = - /0 T o Ne X e = f

where in the second equality we consider X + A as a differential operator on
distributions.

2.3.1. More general operators. We now extend the definition of Pollicott—
Ruelle resolvent to more general operators. Let £ be a (finite dimensional
complex) C*° vector bundle over M. Denote by C*(M;E&) the space of
smooth sections of €.

Definition 2.7. An operator X : C®°(M; &) — C°(M;E) is called a lift of
the vector field X to & if
(2.5)

X(fu) = (Xflu+ f(Xu) forall feC?(M;C), ueC®M;E).

If we fix a local frame ey, ...,e, € C®(U;€&) on &, where U C M is an
open set, then lifts of X have the form
26) XY fiales() =3 (X0 + X Ao Jeyta). v

j=1 j=1 k=1
for all fi,..., fn € C*°(M;C) where (Ajr(x)) is an n x n complex matrix
with entries which are smooth functions on U.

We next define parallel transport on £. Let xg € M and define the curve
z(t) := p'(xg). Assume that v(t) € £(x(t)), t € R, is a smooth section of the
pullback of £ to the curve x(t). We define the derivative Dxv(t) € E(z(t))
by requiring that

Dx(u(z(t))) = Xu(z(t)) forall ue C®(M;E).
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In a local frame we can write
n

n n
1) Dx X fie(e) = 3 (£0+ X An)(® ) es(ato)
j=1 j=1 k=1
We say that v(t) is parallel if Dxv(t) = 0 for all ¢. Using the coordinate
expression ([2.7) and the existence/uniqueness theorem for linear systems of
ODEs, we see that for each vy € £(z(0)) there exists a unique parallel field
v(t) such that v(0) = vo. We then define the parallel transport operator
(2.8) Txi(z): E(x) = E('(z), teR
such that for any parallel field v(¢) we have Z(z(0))v(0) = v(¢).

We now define the family of operators

"X C®(M;E) —» C°(M;E), teR

so that the evolution equation (2.3) holds with X replaced by X. In terms
of parallel transport it can be described as follows: for each u € C*°(M;¢)
and x € M we have

(2.9) e () = F (¢ (2)u(p" ().
We now want to define the Pollicott—Ruelle resolvent of X similarly to (2.4)).
For that fix an inner product on the fibers of £ and take constants Cx, C
such that

‘|<7)€(l')||g(x)_>g(¢t($)) < C1ext for all t > 0, zeM.

Note that the constant C; depends on the choice of the inner product but
Cx does not. Now we define

(2.10) Rx(Mu ::/ e MemXudt for Rel>Cx, ueC®(M;E).
0

The integral converges in the space of continuous functions C°(M;&). We
have the identities similar to (1.1)):

(2.11)

Rx(N)(X4+MNu = (X+N)Rx(M)u=u forall ueC®(M;E), Rel>Ck.

2.3.2. Ezamples. We now give several natural examples of lifts X. First of
all, if £ = M x C is the trivial line bundle over M, then lifts of X have the
form

X =X+ V for some potential V € C*°(M;C).

The operator e ¥ is given by
t
e Xutw) =exp (= [ Vit @) ds Jue(a).
The next example is given by the bundles of differential forms
OF .= AFT* M

and X := Ly is the Lie derivative. In this case the operator e~X is the
pullback of differential forms by ¢~ .
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One can also consider the smaller bundle of perpendicular forms
Q= {uec Q| ixu=0}

with the same operator X = Lx, which is important for the analysis of the
Ruelle zeta function (see for example [DZ16]).

We can consider a more general setting by taking a complex vector bundle
VY over M equipped with a flat connection V, considering the bundle £ :=
OF ®V, and putting

X:=Lxv= deX + Lxdv

where dV : C®(QF @ V) — C®(QF1 @ V) is the twisted exterior derivative
associated to V. The resulting Pollicott—Ruelle resonances have important
applications to Fried’s conjecture relating dynamical zeta functions and tor-
sion — see for example Dang—Guillarmou—Riviere-Shen [DGRS20, §3.3].

A special case of the flat connection example above is when £ is the
orientation bundle of the bundle E. This bundle can be used to generalize

known results on meromorphic continuation of dynamical zeta functions to
the case of nonorientable E5 — see Borns-Weil-Shen [BWS20].

3. MICROLOCAL FRAMEWORK AND THE LIFTED FLOW

In this and the next section we assume that ¢f = !X is an Anosov flow on

a compact manifold M, £ is a vector bundle over M, and X : C*°(M; &) —
C>®(M;€) is a lift of X in the sense of Definition (In particular, this
includes the special scalar case when £ = M x C and X = X.)

We henceforth fix a density pp on M and an Hermitian inner product
(e, @)c on the fibers of £, which together fix the inner product on the space
L3(M;€).

We use the semiclassically rescaled version of X,

P := —ihX.

Here h € (0,1] is a small number called the semiclassical parameter. In
the present paper the semiclassical rescaling is a technical tool useful in the
proof of the meromorphic continuation of the Pollicott—Ruelle resolvent, and
h will be ultimately fixed small enough (so that the O(h*) remainders in
semiclassical estimates can be removed and Lemma holds). In applica-
tions to spectral gaps (such as the work of Nonnenmacher—Zworski [NZ15])
one has h =~ |Re A\|~! and studies the limit h — 0.

3.1. Semiclassical analysis. We discuss the behavior of P from the point
of view of microlocal analysis, more precisely its semiclassical version. We
refer the reader to the book of Zworski [Zwo12] for an introduction to semi-
classical analysis and to the book of Dyatlov—Zworski [DZ19, Appendix E]
(which builds on |[Zwo12]) for some of the more advanced tools used here.
For m € R, denote by S} (T M) the class of h-dependent Kohn—Nirenberg
symbols of order m on the cotangent bundle T M, consisting of h-dependent



POLLICOTT-RUELLE RESOLVENT AND SOBOLEV REGULARITY 9

functions a(x, &; h) € C°(T* M) satisfying the derivative bounds for all mul-
tiindices «, 5

0907 a(x,& )| < Cap(§)™ 1 forall (z,6) € T°M, 0<h<l1.

Here (§) := /1+[£|?. This is the class used in [Zwol2| §14.2.2]. The
estimates from the book [DZ19], on which this paper relies, use instead the
smaller class of polyhomogeneous symbols with expansions in powers of &
and h, see [DZ19, Definition E.3]. We will apply these estimates to the
conjugated operator P (see 3.} which is not polyhomogeneous and we
explain below why the results of [DZ19] still hold.

Denote by ¥} (M) the class of semiclassical pseudodifferential operators
with symbols in S;*(T*M). These are h-dependent families of operators
on C°°(M) and on the space of distributions D'(M). We refer to [Zwol2,
§14.2.2] and [DZ19l §E.1.7] for details. We use the semiclassical principal
symbol isomorphism

(M) Sy (T* M)
— — — )
hU (M) hS N (T*M)
The space T*M is not compact because ¢ is allowed to go to infinity. We

will use the fiber-radial compactification T*M obtained by adding to T M
a sphere at infinity. See for example [DZ19, §E.1.3] for details.

(3.1) op

3.1.1. Operators on sections of wvector bundles. We now discuss the class
of semiclassical pseudodifferential operators W} (M;End(€)) acting on the
space of sections C*°(M;E&) of the vector bundle £. If £ is trivial and
n = dim &, then operators on C*°(M;¢&) are identified with n x n matrices
of operators on C*°(M). We say such a matrix is in ¥}*(M;End(€)) if all
of its entries are in W}*(M). This class does not depend on the choice of a
(smooth) trivialization of £ since composition with multiplication operators
maps V(M) into itself. Since pseudodifferential operators are smoothing
and rapidly decaying in h away from the diagonal, one can use the above
definition locally to make sense of W}"(M;End(€)) for a general bundle £.
See [HorQ7, Definition 18.1.32] for more details (in the related nonsemiclas-
sical setting). Any element of ¥}"(M;End(£)) is bounded uniformly in A
in operator norm Hj(M;E) — H; ™ (M;&) where Hj(M;E) denotes the
semiclassical Sobolev space defined similarly to [DZ19, Definition E.20].

For A € V(M ;End(€)), we use the above procedure and the map (3.1])
to define the semiclassical principal symbol

ST(T*M; End(n*&
) SETMERE)
RSy (T*M; End(7*E))
Here m : T*M — M is the projection map, 7*E is the pullback of £ to a
vector bundle over T*M, and End(7*E) is the bundle of homomorphisms

from 7*& to itself. Note that oy, is surjective and op,(A) = 0 if and only if
A € hU"H(M;End(€)).
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We say A is principally scalar if op(A) is scalar, that is there exists
a € S(T*M) such that o,(A) = al+g modulo hS}" 1 (T*M;End(7*E)).
In this case we treat o,(A) as a scalar function on T*M by identifying it
with (the equivalence class of) a.

Using the standard algebraic properties of the scalar calculus W} (M) (see
for instance |[Zwo12, Theorem 14.1] and [DZ19| Proposition E.17]) we obtain
the following properties of the calculus W}*(M;End(£)):

e Product Rule: if A € U(M;End(€)) and B € W (M;End(€)),
then

(32)  AB e W(M;End(£)),  on(AB) = oy(A)on(B)

where the right-hand side is understood as composition of sections
of End(7*&).

e Commutator Rule: if A € ¥7*(M;End(€)), B € ¥4 (M;End(£))
are both principally scalar, then, with {e e} denoting the Poisson
bracket on T*M,

(3.3)
[A7 B] € hqun+€_1(M; End(£)>7 Uh(h_l [Av B]) = _i{gh(A)a Uh(B)}

e Adjoint Rule: if A € ¥}'(M;End(£)), then its formal adjoint A*
satisfies

A* € W' (M;End(€)),  on(A") =op(A)

where the right-hand side is defined using the adjoint operation on

End(7*€) induced by the inner product (e, e)¢.
We next discuss the wavefront set and the elliptic set of an operator A €
U (M;E). The wavefront set WF,,(A) is a compact subset of T*M giving
the essential support of the full symbol of A. In terms of the wavefront set of
scalar pseudodifferential operators (see for example [DZ19] Definition E.27]),
we define WFj,(A) as the union of the wavefront sets of the entries of A as
an n X n matrix of operators, with respect to any trivialization of £.

The elliptic set ell,(A) is the open subset of 7*M on which the principal
symbol o, (A) is essentially invertible (as an endomorphism of 7*&). More
precisely, a point (zq,&) € T*M lies in ell,(A) if there exists a constant C
such that we have H (Uh(A)(x,f))_IH < C(§)™™ for all sufficiently small h
and all (z, &) in some neighborhood of (xg,&y) in T*M.

Finally, we give the following version of sharp Garding inequality for pseu-
dodifferential operators on vector bundles. It is an analog of [DZ19l Propo-
sition E.34] but we restrict a simpler case, putting B := 0 and considering
a special subclass of nonnegative symbols in C*° (T M; End(7*E)).

Lemma 3.1. Assume that A € U3™(M;End(£)) and By € ) (M;End(€))
satisfy WEL(A) C ell(By). Assume moreover that the principal symbol
on(A) has the form

(3.4) op(A) =xa, x€C®(T*M), x>0, acS*(T*M;End(n*E))
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where x,a are h-independent and Re a is uniformly positive definite on some
neighborhood V- C T*M of supp x, that is there exists a constant ¢ > 0 such
that

Re(a(z, v, V)g() > (&) M|[V|2y forall (2,6) €V, ve&(a).

Then there exists a constant C' such that for each N, all small h, and all
uec H"(M;E)

(3.5) Re(Au,u)r2pr.6) 2 —Ch||Bul? ol O(hoo)HuH?{,N.

H, 2 h
Remark 3.2. In fact can be replaced by the weaker and more natural
assumption that Re o, (A) is nonnegative everywhere, see [H6r07, Remark 2
on p.79] for the nonsemiclassical case. Instead of establishing a semiclassical
version of this result here, we choose to make the stronger assumption
which allows us to use the scalar sharp Garding inequality as a black box.

Proof. If o,(A) = 0, then A € h¥;™ ! (M;End(€)) so holds by the
elliptic estimate (see §4.2.1 below) since WF(A) C ell,(B1). Therefore, we
may replace A with any other operator with the same principal symbol and
wavefront set contained in ell,(B;). Moreover, from the Adjoint Rule above
we see that one may replace a by Rea := %(a + a*). We thus henceforth
assume that a is self-adjoint. Since WFj(A) C elly(B1), we may also assume
that supp x C ellp(Bq).
Since a is positive definite on V' 5 supp x, we may write

a=f"f near suppy for some f e S"(T*M;End(n*E)), suppf C ell,(By).

For example, we may take x’ € C°°(T*M) such that x’ = 1 near supp y and
suppx’ C V nelly(B1), and put f := x'\/a.

Using a partition of unity on yx, we reduce to a case when Yy is supported
in some open set over which &£ is trivialized by some orthonormal frame.
Using that frame, we may consider the pseudodifferential operator Opy, () €
U9 (M) as an operator on sections of £. Take F € U(T*M;End(£)) with
principal symbol f and WF,(F) C ell;(B1), then o1, (A) = o1, (F* Op;, (X)F),
so we may assume that A = F* Op, (x)F. Now

(Au,u)r2(are) = (Opp ()Fu, Fu) p2 5.6y > —Ch”FuHZ,%
h
o 2 o 00
> ChHBlullH}T,% O(r>)[ull g~
Here in the first inequality we use that x > 0 and apply the scalar sharp
Garding inequality [DZ19, Proposition E.23] for the operator Opj,(x). In
the last inequality we use the elliptic estimate. (Il

3.2. Semiclassical properties of P. The operator P = —ihX is a semi-
classical differential operator in the class \I/,IL(M ; End(&)), as follows from (12.6]).
It is principally scalar with the principal symbol given by

p(z,&) =, X(x)), zeM, &ecTiM.
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Note that p is real valued and homogeneous of degree 1 in &.

3.2.1. The lifted flow. For semiclassical estimates, it is important to under-
stand the characteristic surface {p = 0} C T*M and the Hamiltonian flow
ety on this surface. For that we introduce the dual flow/unstable/stable
decomposition of the fibers of the cotangent bundle 7 M:

(3.6) T:M = Ej(z) ® E;(x) ® El(x), ze€M
which is defined in terms of the original flow/unstable/stable decomposi-
tion (12.1)) as follows:

E::=(B,®E,)*, E' =(E,®E,)", E':=(Ey®E,)".

Any continuous subbundle of 7*M can be considered as a closed subset of
T*M, and the characteristic surface of p is

{p=0} ={(2,§) e T*M | (£, X()) = 0} = E;, & E.
Next, the Hamiltonian flow of p has the form

e (2, €) = (¢! (x), dg ()~ T€)
and extends to a smooth flow on T*M. Here dyo'(z)~7 : T/ M — T;t(x)M
is the inverse of the transpose of do'(x) : ToM — Tt(p) M.
Following [DZ19, (E.1.11)], denote by
K T*M\ 0 — OTM

the canonical projection to fiber infinity OT*M. Then x(E}), k(E¥) are
compact subsets of 9T*M invariant under the flow e*f».

The Anosov property carries over to the decomposition as
follows: if | @ | denotes some smooth norm on the fibers of T7*M, then

e Eix), t<0 or

tHp —0lt| i
et (.6 < Ce~ M| i {geE:@:), t=0

Moreover, if ¢ € Ej(z), then |etfr(z,€)| < C|¢| for all t. This implies the
following global dynamical properties of the flow ef» on T*M:

o if (v,8) € T*M \ (E} @ E?), then as t — oo, e'Hr(x, £) converges to
x(E?) (in the topology of T*M) and |e!H» (z, )| — oo exponentially
fast;

o if (2,6) € T*M \ (E @ E}), then as t — —oo, e'flr(x,€) converges
to k(EY) and |e'r(z, )| — oo exponentially fast.

Indeed, to show for example the first statement we may write & = {o+E&,+&;
where & € Ej(z), & € Ej(x), & € Ef(x) and &, # 0. Then as t — oo,
etHr (z, &9 +€,) stays bounded while 7 (z, £,) grows exponentially and thus
is the dominant component of e'»(z, ¢).

The above statements are locally uniform in (z,¢). They imply in par-
ticular that x(E}) is a radial sink and x(EY) is a radial source for the flow
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ey in the sense of [DZ19, Definition E.50]. They also give the following
statement about the flow on the characteristic set:

Lemma 3.3. Fiz arbitrary neighborhoods V,,, Vs, Vo of k(E}), k(EY), and
the zero section in T*M. Let (z,§) € {p =0} C T*M. Then:

o if (2,€) € K(EY), then there exists t > 0 such that e'fr(x,¢) €
VU Vo

o if (1,€) & K(E}), then there exists t < 0 such that e'fr(z &) €
Vs UVh.

Proof. We only show the first statement. If (z,&) € E¥ then, since (z,§) €
{p = 0}, we have (z,€) € Ej @ EZ, so e'flr(x,£) converges to x(E}) as
t — 0o. Thus et (x, &) € V, for t > 0 large enough. Now, if (z,&) € E*
and ¢ is finite, then €7 (, £) converges to the zero section as t — oo. Thus
etfr (2, ¢) € Vp for t > 0 large enough. O

3.2.2. Weight functions. The dynamical properties of the flow e!» discussed
in §3.2.1] make it possible to construct weight functions decaying along this
flow, which are used later to define the anisotropic Sobolev spaces:

Lemma 3.4. Fix some real numbers m, < mg < ms and conic neigh-
borhoods Vi, Vs C T*M \ 0 of E}, EX. Then there exists a function m €
C®(T*M \ 0;R) such that:

m(x, &) is positively homogeneous of degree 0 in &;

my, < m < mg everywhere;

m = m,, in some conic neighborhood of E;

m = myg in some conic neighborhood of E%;

m = mg outside of Vo, U Vy;

Hpym < 0 everywhere.

Remark 3.5. A more refined version of Lemma can be found in [FS11,
Lemma 1.2]. In the present paper we do not use that m = mg outside of
V. U Vg, but it is a convenient property to have for wavefront set analysis,
see [FS11, Theorem 1.7].

Proof. A positively homogeneous function of degree 0 on 7% M \ 0 is the pull-
back by & of a function on the fiber infinity OT*M, and V,,, V, are preimages
by & of some neighborhoods of x(E:), k(E*). Moreover, the flow e!f» com-
mutes with x. Thus we will construct m as a function on OT*M, consider
Vi, Vs as open subsets of 9T*M, and work with the flow e!"r restricted to
oT*M.

We now construct dynamically adapted cutoffs on V,,, V; following a stan-
dard argument presented for example in [DZ19, Lemma E.53]. We shrink V,,
if necessary so that it does not intersect k(EF®E}). Take 1, € C°(V,; [0, 1])
such that 1, = 1 near x(E}). Since x(E}) is a radial sink for the flow e!/r,
there exists T > 0 such that

(3.7) e (supp ) € {1y =1} forall t>T.
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Put
1 [2T
Xu = Yyoe Mgt € C°(0T*M;|0,1]).
T

Then supp x,, C V,, (as follows from (3.7))) and x,, = 1 near x(E;). Moreover

1 [2r —~TH, _ —2TH,

Hoxe = —— [ Oy oethrygr = 0@ 7 —WYuoe T
T /) T

where we again use (3.7): for each (z, &) € 9T*M we have ¢, (e~ 2T Hr (2, £)) =
0 or ¢y (e~ r(2,6)) = 1.

A similar argument gives a function xs € C°(V5;[0,1]) such that x5 =1
near k(E}) and Hpxs < 0 everywhere. It remains to put

m = (my — mo)Xu + (Mms —mo)xs +mo. O

3.2.3. Computing the adjoint-commutator. We now give the following lemma
which computes the expression in the positive commutator argument for the
radial estimates in §4.2.3| below:

Lemma 3.6. Assume that W € V2"(M;End(€)) and W* = W. Then
there exists Z € V3™ (M;End(€)) such that Z* = Z, WFy(Z) C WF,(W),
and for each A € C and u € C*°(M;End(&))

(3.8) Im((P — ihA\)u, Wu) 12316y = h((Z — (Re \)W)u, u>L2(M;5).

Moreover, the semiclassical principal symbol of Z is given by
1
(3.9) on(2) = ¢ Hxon(W)

where Hx : C®°(T*M;End(7*E)) — C®(T*M;End(7*E)) is a lift of the
vector field H, (see Deﬁnition which can be applied to any vector field).
Finally, the evolution group e is described in terms of the parallel

transport from .'
(3.10) w2, €) = | det dy' () |(Fx («)) w(e!Tr (x, £)) Tx ()

for all w € C°(T*M;End(n*E)). Here the adjoint is taken with respect to
the inner product (e, e)c on & and the determinant is taken with respect to
the density po fized in the beginning of §3

Proof. 1. A direct computation shows that (3.8]) holds with
1
Z .= —(P"W — WP).
57 )

Since P € W} (M;End(€)) is principally scalar with real-valued principal
symbol, the principal symbol of P*W — WP is equal to 0. Thus Z €
U2m(M;End(€)). From the definition of Z we see also that Z* = Z and
WF(Z) C WEF,(W).

2. Fix a frame eq,...,e, on & over some open set U C M which is or-
thonormal with respect to the inner product (e, e)c. The operator X is



POLLICOTT-RUELLE RESOLVENT AND SOBOLEV REGULARITY 15

given by (2.6) for some matrix A(z) = (A;x(2))};—; depending on z € U,
so the operator P is given by

Pijej zhz (Xf] +ZA]kfk>ej
j=1

j=1

Denoting by div,, X = py LLxpo the divergence of the vector field X with
respect to the density pg, we compute the adjoint operator:

P* Z fjej = —ihz <(X + dinO X)fj - Z%fk)e]
j=1 j=1 k=1

Using this we see that (3.9)) holds with

(3.11)

Hxw(z,§) = Hyw(z,§) + divy, X (z)w(z, &) — A(z) " w(z, &) — w(z, §)A(z)

where we identify sections of End(7*€) with n x n matrices using the frame
ei,...,e, and H, on the right-hand side acts on each matrix entry sepa-
rately.

3. The operator defined by forms a group in ¢, so it suffices to check
that for each w € C*°(T*M; End(7*E)) we have

(3.12)  Orle=o(] det dy' ()|(Fx (2)) w(e "' (,€)) Tx (2)) = Hxw(w,€).

We argue in a local frame as in Step 2 above. Using this frame we view 74 ()
as an n X n matrix. Using the definition of parallel transport (see (2.8))) and
the formula (2.7]) we see that

813’15:03)2(.%) = —A(ac)
We also have 0;|;—¢det dp'(z) = div,, X(z). Using these two identities

and -, we verify that (| - 3.12) holds. O

3.3. The threshold conditions and existence of multipliers. We now
introduce the threshold regularity conditions needed for the proof of the
Fredholm property of P — ih\; more specifically, they are used in the proofs
of the radial estimates in below. We start with the following

Definition 3.7. Assume that m, < 0 < m, are given constants. Define the
growth factors ry(my),rs(ms) € R as the smallest numbers such that for
each € > 0 there exists a constant C. > 0 such that for all z € M and ¢t > 0

N|=

| det d' ()]
| det d' ()

N Fx @ - [[dp' (@) | [T < Ceelretme ek,

(3.13) ’
T (@) - [|d (@) 7T | < Ceelrlma+or,

N

Remark 3.8. The constants r,(m,,), rs(ms) do not depend on the choice of
the inner product on &£, the metric on M, and the density pg used to define

the norms in (3.13).
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Remark 3.9. The bounds (3.13) can be reformulated in terms of the action
of dy' on the spaces E,, E: for all x € M and t > 0

| det dg!(2)|2 - || Z% (@) - |dp ()], | ™ < Celrulma ot

bl

(3.14) ) n

|det dg'(2)] - | (@) - det (@) |, || < Ceclrolmertel,
We see that
(3.15) ru(my) < C1+0my, rs(ms) < Cp — Omg

for some constant C'; depending only on the lift X, where 8 > 0 is the
constant in the exponential contraction property (2.2)).

The next lemma introduces the threshold regularity conditions and con-
structs the multipliers used in the proofs of the radial estimates:

Lemma 3.10. Assume that my, < 0 < mg and A € C satisfy the threshold
condition
(3.16) ru(my) < Re A, rs(ms) < Re .
Then there exist wy, ws € C°(T*M \ 0; End(7*E)) such that:
o W, =W,, Wi =W, and Wy, Wy are positive definite everywhere;
o w,, W, are positively homogeneous of degrees 2m,,,2mg, that is for
each (z,&) € T*M \ 0 and 7 > 0
Wu(x’ Tf) = szuwu(q:v 5)5 WS(:’U’ 7-5) = TQmst(a:’ f),
e if Hx is the operator defined in Lemma|3.6] then
(Hx — 2Re N)wy(z,€), (Hx — 2ReN)wy(z,€)
are self-adjoint, positively homogeneous of degrees 2m,,, 2mg respec-
tively, and negative definite for all (z,£) in E}\ 0 and E*\ 0 respec-
tively.
Proof. For two self-adjoint elements a,b € End(E(z)), we write a < b if
b — a is positive definite.
1. Fix a metric on M and define the sections w9, w? € C°(T*M\0; End(7*£))
by
Wg(ﬂzf) = |§’2mulg(w)a WS(I7£) = |€’2mslg(a¢)
where g,y is the identity map in End(£(z)). We claim that under the
threshold condition (3.16) we have for all ¢ > 0 large enough
eXw (,€) < R Mwi(2,6) forall (2,€) € E;\0,
exwl(z €) < 2ReMW0(z,€) forall (x,€) € EX\O0.
We show the first statement in (3.17]), with the second one proved similarly.
Let (7,€) € EX\ 0 and v € £(x). Using the formula (3.10) for 1% we

compute
(e Txw' (2, €)v, v)e = | det de! (x)] - [deg! () "TE2™ - || T (2)V]|2 e

(Wo(z, v, v)e = [P | VI[3 )

(3.17)
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We have m, < 0 and |do'(z)~T¢| > ||d80t($)T|E;;||_1 -1€], so
|de" ()~ TP < ld ()T |y |72 - €™
Now follows from the bound
| det dip ()] - [|d ()T |y || 727 | T () ||* < e2FeA

which holds for ¢ > 0 large enough by (3.16) since the left-hand side is
O, (eCra(mu)+e)ty for any e > 0.
2. Fix t9 > 0 such that (3.17) holds with ¢ := t;. We define

to to
Wy = / e_QRe’\tetHXwg dt, W = / e 2 Re)‘tetwag dt.
0 0
It is straightforward to check using (3.10) that w,, w, are self-adjoint, pos-
itively homogeneous of degrees 2m,,, 2m respectively, and positive definite.
Since !X ig the evolution group associated to Hx, we have

to
(Hx —2ReN)w, = / Oy (6_2Re)‘tetwa2) dt = 72 Re)‘toetOwag — wg
0

and similarly (Hx —2Re \)w, = e 2ReMoctofix w0 w0 We see that (Hx —
2ReN)w,, (Hx — 2Re\)w; are self-adjoint and positively homogeneous
of degrees 2m,, 2mg respectively. Moreover, by these sections are
negative definite on E \ 0, E7 \ 0 respectively. O

3.3.1. Ezamples. We now compute the growth factors r,(my), 7s(ms) from
Definition[3.7]in a couple of special cases of the examples considered in §2.3.2.
More precisely, we study the threshold regularity condition Re A > max (7, (1my,), 75(ms))
given in ([3.16)).

We start with the basic case when & = M x C is trivial, X = X, and ¢’
is volume preserving. In this case the condition becomes

(3.18) Re A > max(0smy,, —0,ms)

where 6,60, > 0 are the largest numbers such that for each € > 0 there
exists C. > 0 such that for all t > 0

ldg .| < Cee™ @, |l |, || < Cee™ o),

We next discuss the case when X is the generator of the geodesic flow
on an n + l-dimensional compact hyperbolic manifold (3, ¢) and X = Lx
acts on sections of the bundle of perpendicular differential k-forms Q’g. In
this case ¢! is volume preserving, dim £, = dim E,; = n, and for the correct
choice of metric on M (the Sasaki metric) we have

’U|7 v E EO(‘T);
|dg' (z)v] =  €'lol, v € Eylw);
e t|, ve Es(x).
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It follows that the parallel transport 74 (z) has norm emin(k.2n—=k)t fo1 ¢ > (),
and the condition (3.16) becomes

(3.19) Re A > max(my, —ms) + min(k, 2n — k).

4. MEROMORPHIC CONTINUATION

In this section we state and prove the main result of this paper, Theo-

rem (4.1 (see §4.1.1).

4.1. Anisotropic Sobolev spaces and statement of the result. We
first introduce the spaces on which meromorphic continuation holds. We fix
a function
me C®(T*M \ 0;R)
which satisfies the following conditions:
e m is positively homogeneous of degree 0, that is m(z,7§) = m(z,§)
for all (z,&) € T*M \ 0 and 7 > 0;
e there exist constants m, < 0 < myg such that m, < m < mg every-
where and

m=m, near E; \0, m=ms near E}\0

where the dual unstable/stable spaces Ef, E¥ C T*M were intro-
duced in ;

e Hym < (0 everywhere, where the vector field H), is introduced in
equivalently, m(¢f(z), dp!(x)~T¢) < m(z,€) for all (x,&) € T*M \ 0
and ¢t > 0.

Such m exists for any choice of m, <0 < mgz by Lemma|[3.4
Given m, we fix a semiclassical pseudodifferential operator Fy, such that:

o F,, lies in U)T(M;End(€)) := Neso ¥5,(M;End(€)) and Fjy = Fy;

e F,, is principally scalar and, for some fixed choice of Riemannian
metric on M,

oh(Fu)(@,€) = m(x, &) log || when [¢] > 1.

For t > 0 we can define the exponential operators
(4.1) €T e UM (MG ERd(E)), e e U, (M End(E)).

See [Zwo12, Theorem 8.6] for the case of scalar operators and Weyl quanti-
zation on R™ (with Beals’s theorem for the Kohn—Nirenberg calculus given
in [Zwol2l Theorem 9.12]); the proof adapts to the case of manifolds and
vector bundles studied here. Alternatively, see [FRS08, Appendix A].

We now define the semiclassical anisotropic Sobolev space Hi'(M; E) sim-
ilarly to |[Zwol12l §8.3.1]:

HP(M;€) = e T LA(M;E),  |[ullmy = [e™u] 2.

The spaces HJ'(M; &) for different values of h are all equivalent, with con-
stants in the norm equivalency bounds depending on h. Therefore, we may
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use the notation H™(M;E) when the choice of norm is not important. We
have

(4.2) H™(M;€) ¢ H™M;E) C H™ (M;E)

and the space C*°(M;E) is dense in H™(M;E).
Fix open subsets

(4.3) V. Ve CT*M\ O, w(E®) CVy, &(E¥)CVi,

such that m = m, on V, and m = mg on V. Then the space HM(M;E) is
equivalent to the usual Sobolev space H;"(M;&) microlocally on V,, that

is for each A € U9 (M;End(€)) with WF(A) C Vi, there exists a constant
C such that for each u € C*°(M;€) and each N

[Auf gy < Cllull gy +OX)[ul -~

(4.4) .
|Au] e < Cllully + OG) ull .

Similarly, H'(M; €) is equivalent to the space H™s (M ; £) microlocally on V.

4.1.1. Statement of the result. We can now state the main result of this pa-
per, which gives meromorphic continuation of the Pollicott—Ruelle resolvent
on anisotropic Sobolev spaces to a specific half-plane:

Theorem 4.1. Let X be the generator of an Anosov flow @' on a compact
manifold M, € be a smooth vector bundle over M, and X : C*°(M;E) —
C™(M; &) be a lift of X (see Definition[2.7).

Assume that the function m € C°(T*M \ 0;R) satisfies the conditions in
the beginning of for some constants m, < 0 < ms. Let H™(M;E) be
the corresponding anisotropic Sobolev space.

Then the Pollicott-Ruelle resolvent Rx(\) defined in admits a
meromorphic continuation as a family of operators H™(M;E) — H™(M;E)
to the half-plane

(4.5) Re A > max(ry,(my), rs(msg))
where ry(my), rs(ms) were introduced in Definition[3.7.

Remark 4.2. By , if we fix A then for —m,, ms large enough the
condition holds. Since C*°(M;&) ¢ H™(M;E) C D'(M;E), we see
that Rx () continues meromorphically as a family of operators C*°(M;E) —
D'(M;E) to X e C.

4.1.2. The conjugated operator. The action of P = —ihX on HJ'(M;E) is
equivalent to the action on L?(M; &) of the conjugated operator

(4.6) P = foPpeFo,

Using Taylor’s formula with integral remainder for the family of operators
eFmPe=tm ¢ ¢ [0,1], we see that for any N € N, we can expand P as
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follows:
N-1_4j 1 N
b adg, P adp_ P
4.7 P = m +/ 1—¢ N—letFmime_tFm dt
o jz; J! 0 ( ) (N —1)!

where adp,, A = [Fy, A] for any operator A on C*(M;¢E).
Since Fy, € U)T(M;End(£)) is principally scalar, we have adg,, : 7" (M;End(£)) —
h\ll;l"_lf(M; End(&)) for all m. Therefore, the j-th term in the sum in (4.7))
isin B/ \Ili_j *. using (@.1)), we see that the remainder is in AV \I/};N TMa—Mut
Since N can be chosen arbitrarily large, we in particular get the expansion

P =P+ [Fu, P] + O(h)y 1+ (appnace))

It follows that P lies in Ul (M;End(£)) and is principally scalar with

(4.8) on(P) = p + ih(H,m)log €],

where we used that Hy,log |¢| € SV for |¢] > 1.
An expansion of the form (4.7)) is valid for any pseudodifferential operator
in place of P. In particular, we get

(4.9) A cUY(M;End(€)) = eFmAe ™ ¢ U)(M;End(£))

and the wavefrontset / elliptic set of A coincide with those of eFm Ae=Fm,
4.2. Invertibility of the perturbed operator. We now state the key es-
timate for the proof of Theorem [4.1] which gives invertibility for the operator
P = —ihX on the anisotropic Sobolev space HJ'(M;&) when modified by

a complex absorbing operator. Consider the dual space of H'(M;E) (with
respect to the L? inner product), given by

H,™(M;E) := "™ L*(M;E).
Fix a principally scalar pseudodifferential operator
Q € VL(M;End(€)), on(Q) >0

such that WF(Q) does not intersect the fiber infinity 97*M and the elliptic
set ell,(Q) contains the zero section of T*M. For technical reasons we also
assume that

(4.10) WF,(Q) NV, = WF,(Q) NV, =0
where V,,, V, € T*M \ 0 were introduced in (%.3)).

Lemma 4.3. Let m satisfy the conditions in the beginning of and as-
sume that 0 C C is a compact set such that

(4.11) Re A > max(ry(my),7s(ms))  for all X\ € .
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Then we have the following estimates for h small enough, all A € Q, and all
u € C®(M;E), with the constants independent of h, A, u:

(4.12) lullip < CHY|(P = ik — iQ)ul .,
(4.13) [l < CHTY|(P = ihA — iQ) ] .

We will only give the proof of the direct estimate . The adjoint es-
timate follows from the direct estimate for the operator X* which is a
lift of the vector field —X. Note that —(P —ihA—iQ)* = —ihX* —ihA—iQ*.
The associated flow is ¢! and the stable/unstable spaces are switched
places. The constants m,, ms are replaced by —mg, —m,, and the weight m
is replaced by —m. Using , we see that the threshold condition
gives the analogous condition for the operator X*. (Here the parallel trans-
port corresponding to X* can be computed using (2.9), as (e 71¥)* = e7X"))

The proof of is broken into several components. Throughout this
section we assume that h is small, A € , and u € C*°(M; ). The constants
in the estimates below are independent of A, and the Sobolev exponent N
in the remainders can be chosen arbitrarily.

4.2.1. Elliptic estimate. We first state the elliptic estimate:

Lemma 4.4. Assume that A € ¥9(M;End(£)) and
WEL(A) C ell(P)Uelly(Q).

Then

(4.14) [Aul|gm < C[[(P —ihA —iQ)ul[pp + O(hOO)HuHH;N.

To prove Lemma [4.4] we first reduce it to an estimate in the space L? for
the conjugated operator P — thA — Q where

(4.15) Q = fmQeFm,
Denote A := eFmAe=Fm Then (4.14) follows from the estimate
(416)  Av] < OB — ihA = Q)] 2 + OB™)|vll

where we put v := eFmu € C®°(M;E).

Since WF},(Q) does not intersect the fiber infinity 07*M, using the ex-
pansion (4.7) for Q in place of I: we see that Q = Q + O(h)\l,;oo(M;End(S)).
Moreover, by (4.9) the operator é € ‘112(M : NEnd(E )) has the same wavefront

set as A. It follows that WF,(A) C ell,(P — ihX — iQ). Now (#.16) fol-
lows from the standard elliptic estimate [DZ19, Theorem E.33] whose proof
adapts directly to the case of operators on vector bundles.
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4.2.2. Propagation of singularities. Our next estimate is propagation of sin-
gularities:

Lemma 4.5. Assume that A,B,By € U9 (M;End(£)) and the following
control condition holds:

for all (x,€) € WE(A) there exists T >0 such that
e THe(z,€) €elly(B) and e r(x,€) € elly(By) for allt € [0,T].
Then
|Au||gp < C|Bullgm + Ch™!|B1(P — ihA — iQ)u| gr + O(h*) [ -

Similarly to Lemma [4.5] can be reduced to an estimate in the
space L? for the conjugated operator P — ih\ — z(NQ The latter estimate
is proved using the same positive commutator estimate as standard scalar
propagation of singularities [DZ19, Theorem E.47], using a principally scalar
multiplier G, given that:

e P—ih)— ZQ € \I',ll(M, End(€)) is principally scalar;

e Reoy(P —ihA —iQ) = p;

e Imoy,(P—ihA—iQ) < 0. Indeed, Im o, (P) = h(H,m) log |¢| by
and Hym < 0 as required in the beginning of Moreover,

on(Q) = on(Q) = 0;

e the sharp Garding inequality applies to principally scalar operators
in U#m™(M;End(£)) with nonnegative principal symbol, as follows
for example from Lemma [3.1

4.2.3. Radial estimates. We now prove the two radial estimates that are
crucial in the proof of Lemma [4.3] This is the place in the argument
where the threshold regularity condition is important. Recall the
sets 171“ ‘73 C T*M introduced in .

We start with the high regularity radial estimate at the set k(E¥) C
oT*M.

Lemma 4.6. There exist operators

A, By, € U (M;End(&)), k(E?) Celly(Ay), WFL(A,)UWF,(By,) C Vi
such that the following estimate holds:

(417)  [|Asu]gp < Ch7H[Byo(P — ihA — iQ)ul gp + O(h™)||u] ;-
Proof. 1. Since H}! is equivalent to H}™ microlocally on V, (see ([.4)) and
WF,(Q) NV =0 (see (4.10)), it suffices to show the estimate

(418)  [Asullgps < Ch7Y[By (P — ihA)ul| s + O(h%)||ul| ;7.

2. We now follow the proof of [DZ19, Theorem E.52|, indicating the nec-
essary changes. Since the threshold condition (4.11) holds, Lemma
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applies to give a section wg € C°(T*M \ 0; End(7*£)) which is positive def-
inite everywhere, positively homogeneous of degree 2m, and satisfies (where
‘< 0’ means ‘negative definite’)

(4.19) (Hx —2ReAN)wg(z,) <0 forall AeQ, (z,€) € E:\DO.

Fix an open set U, C V such that x(E¥) C Us and there exists § > 0 such
that

(4.20)  (3Hx —ReA+8)wy(z,&) <0 forall AeQ, (z,8) €U

Arguing as in the proof of Lemma (see also [DZ19, Lemma E.53]), we
construct a function

(4.21) Xs € CX(Us; [0, 1)), Xs =1 mnear k(E)), Hyxs < 0.

Denote by /w, the square root of wg, which is a positive definite section in
C*(T*M \ 0; End(7*€)) and positively homogeneous of degree ms. Define

g = Xsv/Ws € C®(T"M;End(n*E))

and note that g lies in the symbol class S™s.
3. Take a pseudodifferential operator

G, € U (M;End(€)), WFi(Gs) CUs, on(Gs) = gs.
Note that Gy is elliptic on £(E}). Fix also operators A, By s € W) (M;End(€))
such that
K(EY) Cell(As), WFL(Ag) Cellh(Gs), WF,(Gs) Cell,(Bas), WEFL(Bay) C Us.
By Lemma (3.6, we have
(4.22) A Im((P — ih\)u, GEGsu) 2 + §||Gsull3: = (Zsu,u) 2
where

Z, € V> (M;End(§)), Z!=1Z, WF(Z,)C elly(Bay)

s

has principal symbol
(4.23)
on(Zs) = (%HX —Re A +8)(2ws) = Xs(HpXs)Ws + X?(%HX —Re A+ 0)ws.

By (4.20)—(4.21), each of the two summands on the right-hand side of (4.23)

is the product of a nonnegative function in C2°(Us) and a self-adjoint section
of End(7*€) which is positively homogeneous of degree 2mg and negative
definite on Us. Thus the version of the sharp Garding inequality given in

Lemma [3.1] gives
(Zsu,u) 2 < C’hHstuHZmr% +O(h>)|ulf;
h

_N-
Hh

Together with (4.22) this implies
IGsulZ: < Ch_llle,s(P—ih/\)UIlH;ys'||GsuHLerChlle,suH;mr%+O(h°°)||u|\fq;zv

h
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which gives the estimate
(4.24)

— . 1
1Gsull2 < Ch 1|!B2,s(P—%h/\)ullH;;Ls+ChQIIBz,sllllens-%+(9(h°°)||u||Hh—N-

4. We now argue similarly to step 2 of the proof of [DZ19, Theorem E.52]. By
the elliptic estimate we can replace ||Ggsul|z2 on the left-hand side of
by [[Asulgms. If the set U is chosen small enough, then propagation of
singularities gives

(4.25)

Bl

for some By, € U9 (M;End(€)) such that
WF,(Ba,) Celly(Brs), WF;(By,) C V.
Combining (4.24) and (4.25) and taking h small enough, we get (4.18). O

We next give the low regularity radial estimate at the set x(E;):

3 < CHASUIIHmS_%+Ch_1IIBl,s(P—ih/\)uHH;ns+0(h°°)HHHH;N
h

5 —

Lemma 4.7. There exist operators
A,,B,, By, € U)(M;End(E)), k(E) Celly(Ay),
WFh(Au) U WFh(Bl,u) C ‘7% WFh(Bu) C ‘711 \ K(E'Z)

such that the following estimate holds:
(4.26)
|Ayullgr < C|Byul gy +C’h*1||B1,u(P—ih)\—iQ)u||H;y +O(h°°)HuHH;N.

Proof. 1. We argue similarly to the proof of [DZ19, Theorem E.54], making

changes similar to the proof of Lemma Since HJ!' is equivalent to H,"

microlocally on V,,, it suffices to show the estimate
(4.27)
[Auu] e < ClBuu] e + Ch™ By u(P — ihA)ul| g + O(h)ful| ;v

2. Since the threshold condition (4.11) holds, Lemma applies to give a
section w,, € C*°(T*M \ 0; End(7*E)) which is positive definite everywhere,
positively homogeneous of degree 2m,,, and satisfies

(Hx —2ReAN)wy(z,8) <0 forall AeQ, (z,€ €E;\DO.

Fix an open set U, C V, such that k(EY) C U, and there exists 6 > 0 such
that

(4.28)  (3Hx —ReA+0)wy(z,€) <0 forall A€, (2,8 €U,.
Take an arbitrary cutoff
Xu € C°(Uy; [0,1]), xu=1 near k(E))

and define
gy = Xuy/Wy € C®(T*M;End(n*E))
which lies in the class S™w.
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3. Take a pseudodifferential operator
Gy € V" (M;End(€)), WFL(Gy) C Uy 04(Gu) = gu-
Note that Gy, is elliptic on k(E}). Fix a cutoff function
(4.29) b, € C(U, \ K(E})) such that  x,(Hpxu) < [tu|*  everywhere
and an operator E, € ¥} (M;End(€)) such that
WFL(E,) C U\ K(E)), op(Ey) = /Wy

Now, fix A,, B, € ¥9(M;End(£)) such that, putting By, := ALA, +
B;B,,

K(ED) Celly(Ay), WFL(AL) Celly(Gy), WF,L(E,) C elly(By),
WF,(B,) C U\ k(E}), WF(G,) C elly(A,) Uell,(By,) C elly(By).
By Lemma we have
(4.30) A Im((P—ihA\)u, GLG,u) 12 — |Eyul|22 +5||Gyul2: = (Zyu, u) 2
where

Z, € V" (M;End(E)), Zi =Zu, WF(Z,) Celly(Byy)
has principal symbol

(4.31) on(Zy) = (Xu(HpXu) — Wu\Q)wu + XZ(%HX —ReA+ 0)wy,.
By (4.28)—(4.29), each of the two summands on the right-hand side of (4.31)

is the product of a nonnegative function in C$°(U,) and a self-adjoint sec-
tion of End(&) which is positively homogeneous of degree 2m,, and negative
definite on U,. Thus Lemma (3.1 gives

(Zyu,0) 2 < ChHBl,uuHiI,nu,% + O™ ully,
h

which together with (4.30) implies
IGuull 2 < Cl[Equll L2 + Ch™ By u(P — ikA)ul g
1
+Ch2[[Bryul .,y +O(R=)|ull g

h

(4.32)

4. By the elliptic estimate, we can replace ||Gyul|z2 on the left-hand side
of (4.32) by ||Auu||H;L"“- Similarly we may replace |E,ul/z2 on the right-
hand side of (4.32)) by ||Byul| - Finally, recalling the definition of By,
we see that

IBua oy < LA+ (B ).

Taking h small enough in (4.32)), we now obtain (4.27). O
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4.2.4. Proof of Lemmal[4.3. We are now ready to finish the proof of Lemmal4.3
following the proof of [DZ16} Proposition 3.4]. Let Ag, Ay, B, € U9 (M;End(€))
be the operators from Lemmas We first combine ellipticity, propa-
gation of singularities, and the high regularity radial estimate to get

Lemma 4.8. Let A € U9 (M;End(€)) satisfy WF,(A) N k(E;) = 0. Then
(4.33) [Au|| g < Ch™H|(P — ih\ — iQ)ul gy + O(hOO)HuHH;N.

Proof. Fix an operator Q € U0 (M;End(£)) such that WFL(Q) C elly(Q)

and ell,(Q) contains the zero section of 7% M. Define the open set U C T*M
as follows:

U:={(z,) €eT*M|3H>0: e () €ell,(Q) Uelly(Ay)}.

Since ell,(As) contains k(EY), by Lemma [3.3| we have WF,(A)N{p =0} C
U, that is WF,(A) C ell,(P) UU. Using a microlocal partition of unity, we
write

A=A+Ay, Ay A€ V) (M;End(€)), WFy(A1) Cell,(P), WF,(Ag) CU.
By the elliptic estimate, Lemma |4.4] we have

(4.34) [|Arul[gp + |Qullgp < C|(P —ihA — iQ)ul gy + O(h>)ull -~

Next, by propagation of singularities, Lemma with B := A + (Q,

ell,(B) = ell(As) Uelly(Q), we have
(4.35) |Azu g <CllAu]gr + CQul gn
' + Ch7Y|(P — ihA — iQ)ul| g + O(h>)||ull

Finally, recall that by the high regularity radial estimate, Lemma |4.6

(4.36) [Asulgm < Ch™H|(P —ihA —iQ)ul| gr + O(hm)HuHH;N.
Putting together (4.34)—(4.36), we get (4.33). O

Now, recall that the low regularity radial estimate, Lemma [4.7| gives
(4.37)
lAuu] gy < ClBuufmp + Ch7H|(P — ihd — iQ)ul g + O(h™)|ul| ;v
Take A € U9 (M;End(£)) such that
T*M \ ell,(A,) Cellp(A), WFL(A) CT*M \ k(E}).
Since WF,,(B,,) N k(E}) = (), Lemma [4.8 applies to both A and B, to give
(4.38) ||Au||gp+|Buullge < Ch™H|(P—ihA—iQ)u g +0(h%) [l -

Since A*A + AL A, € U9 (M;End(€)) is elliptic on the entire 7*M, we can
use the elliptic estimate to derive from (4.38) and (4.37) the bound

[ullzy < ClAullmy + CllAgu| e + ORT)|uf -~
< Ch7H|(P — ihA — iQ)ul p + O(h*)|[ul v
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For h small enough, we may remove the last term on the right-hand side,
obtaining (4.12) and finishing the proof of Lemma

4.3. Meromorphic continuation. We finally give the proof of Theorem{4.1
following [DZ16, §§3.3-3.4]. Let © C C be a compact set satisfying the
threshold regularity condition (4.11). Fix h > 0 small enough so that
Lemma [4.3| applies. We henceforth suppress the subscript £ in the nota-
tion Hj'. Define the space

D" :={ue H"|Puec H"}
with the Hilbert norm
[ul|Bm = [[ul|Fm + [[Pul|Fm.

Since WF,(Q) does not intersect the fiber infinity, Q is a smoothing oper-
ator. In particular, Q maps H™ to itself. Therefore,

(4.39) P—ih\—iQ:D™ — H™
is a holomorphic family of bounded operators.

The space C*°(M; ) is dense in D™ as follows from [DZ19, Lemma E.45]
applied to the conjugated operator P from (whose proof adapts di-
rectly to the case of operators on vector bundles). Therefore, the estimates
of Lemma [4.3] show that there exists a constant C such that for all A € Q

lul[pm < C||(P —ihA — iQ)u|gm for all ue D™,

IVIIp-m < C|[(P —ihA —iQ)*v| g-n forall ve D™

Here C' and Q depend on h, however we already fixed h small enough above.

By a standard argument from functional analysis (see for example the
proof of [DZ19, Theorem 5.30]), the estimates imply that the opera-
tor is invertible for all A € 2. Since Q is smoothing, it is a compact
operator D™ — H™. It follows that P — ¢thA : D™ — H™ is a Fredholm
operator of index 0 for all A € (2. Recalling that P = —ihX and €2 is an
arbitrary compact subset of

O = {A € C | Re A > max(ry(my), 7s(ms))},

we get the following Fredholm property:
(4.41)
X+ A: D™ — H™ is a Fredholm operator of index 0 for all A € Q.

Recall from ([2.10) that the Pollicott—Ruelle resolvent Rx (A) was defined for
Re X > CUx by

(4.40)

(4.42) Rx(\f := / e M Xfdt for fe C®(M;E).
0

The operator e *X is bounded on the space H™s (M; &) locally uniformly
in t. Since e~ *X forms a group in t, we see that there exists a constant
Cx(ms) > Cx such that

e grms —y prms = O(eXMI) as ¢ 0.
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For ReA > Cx(ms) and f € C°°, the integral converges in the
space H™: and thus (recalling (4.2)) in the larger space H™. Thus u :=
Rx(N)f lies in H™ and (recalling (2.11)) satisfies (X + A)u = f. It fol-
lows that the range of the operator contains C*°(M;E) and is thus
dense in H™. From the Fredholm property we then see that when Re A >
max(Cx (ms), ry(my), rs(ms)), the operator is invertible and its in-
verse coincides on C*°(M; &) with the Pollicott—Ruelle resolvent Rx ().
Now by Analytic Fredholm Theory [DZ19, Theorem C.8] we see that

X4+ H™ = D" A€ Qy

is meromorphic with poles of finite rank. This operator gives the meromor-
phic continuation of the Pollicott—Ruelle resolvent, which finishes the proof
of Theorem [4.1]
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