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1. Introduction

Given a knot K let JK(n) denote its n-th colored Jones polynomial, which is a Lau-
rent polynomial in a variable t. Let d+[JK(n)] and d−[JK(n)] denote the maximal and 
minimal degree of JK(n) in t and set

d[JK(n)] := 4d+[JK(n)] − 4d−[JK(n)].

The set of cluster points 
{

n−2d[JK(n)]
}′

n∈N
is known to be finite and the point with the 

largest absolute value, denoted by jdK , is called the Jones diameter of K. For precise 
definitions of the terms used here the reader is referred to Section 2.

Given a knot K we will use c(K) to denote the crossing number of K, the smallest 
number of crossings over all diagrams that represent K. We prove the following.

Theorem 1.1. Let K be a knot with Jones diameter jdK and crossing number c(K). 
Then,

jdK ≤ 2c(K),

with equality jdK = 2c(K) if and only if K is adequate.

Adequate knots form a broad class that contains in particular all alternating knots. 
The works of Kauffman, Murasugi, and Thistlethwaite [16,11,20,25] imply that for any 
knot K we have jdK ≤ 2c(K), and that we have equality if K is adequate. Our contri-
bution here is to show that if jdK = 2c(K), then K must be adequate.

Theorem 1.1 has significant applications to the study of knot crossing numbers. To 
state our result, recall that the writhe of an adequate diagram D = D(K) is an invariant 
of the knot K [16]. We will use wr(K) to denote this invariant.

Theorem 1.2. For a knot K with crossing number c(K), let W±(K) denote its positive 
or negative untwisted Whitehead double. Suppose that K is a non-trivial adequate knot 
with wr(K) = 0. Then, W±(K) is non-adequate and we have c(W (K)) = 4c(K) + 2.

Theorem 1.2 should be compared with classical results in the literature asserting that 
the crossing numbers of several important classes of knots are realized by a “special 
type” of knot diagrams. These classes include alternating and more generally adequate 
knots, torus knots and Montesinos knots [11,20,25]. The works of Murasugi, Kauffman 
and Thistlethwaite, that settled the well known Tait conjectures on alternating knots, 
showed that adequate diagrams realize the crossing numbers of knots they represent. 
Moreover they showed that the crossing number is additive under connected sum of 
adequate knots. These results used in an essential way properties of the degree of the 
Jones polynomial. The Jones polynomial was also used to derive lower bounds on crossing 
numbers of Whitehead doubles of adequate knots in an unpublished preprint of Pascual 
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[21]. However, these bounds are not strong enough to exactly determine the crossing 
numbers of any of these knots. For the proof of Theorem 1.2 it is crucial that we have 
a sharper lower bound, that is also derived using the colored Jones polynomial, and 
Theorem 1.1. See section 5 for details. To the best of our knowledge, Theorem 1.2 and 
Corollary 1.3 below are the first instances of results that allow the exact determination 
of the crossing numbers for broad families of prime satellite knots.

Theorem 1.2 applies to adequate knots that are equivalent to their mirror images 
(a.k.a. amphicheiral) since such knots must have wr(K) = 0. One way to obtain an 
amphicheiral adequate knot is to take the connected sum of an adequate knot with its 
mirror image. For more discussion and examples of prime, amphicheiral, adequate knots 
see Section 5.

Corollary 1.3. For a knot K let K∗ denote the mirror image of K and, for every m > 0, 
let Km := #m(K#K∗) denote the connected sum of m-copies of K#K∗. Suppose that K
is adequate with crossing number c(K). Then, the untwisted Whitehead doubles W±(Km)
are non-adequate, and we have c(W±(K)) = 8mc(K) + 2.

The method we use for the proof of Theorem 1.2 also leads to the following application 
to the open conjecture on the additivity of crossing numbers [13, Problem 1.68] under 
connected sums of knots.

Theorem 1.4. Suppose that K is an adequate knot with wr(K) = 0 and let K1 := W±(K). 
Then for any adequate knot K2, the connected sum K1#K2 is non-adequate and we have

c(K1#K2) = c(K1) + c(K2).

Let us now briefly describe the contents of the paper and our approach to proving the 
main theorems. It is known that the degree of the colored Jones polynomial of a knot K
satisfies d[JK(n)] ≤ 2c(D)n2+O(n), for all n ∈ N and any diagram D = D(K) with c(D)
crossings. Theorem 1.1 will follow from a more general result, Theorem 2.4, stating that if 
the diagram D is not adequate then in fact we have d[JK(n)] ≤ (2c(D) −q(D))n2 +O(n), 
where q(D) is a positive constant depending on D. Several terms used in the statement 
of Theorem 2.4 as well as in this introduction are also defined in Section 2, where we 
also show how Theorem 1.1 follows from Theorem 2.4.

Sections 3 and 4 are devoted to the proof of Theorem 2.4, which relies on skein 
theoretic techniques and the fusion theory of the SU(2)-quantum invariants for knots 
and trivalent graphs. In Section 3 we include some background and preliminaries from 
these theories that we will use in the proof of Theorem 2.4. For an outline of the proof 
and the ideas involved, the reader is referred to the beginning of Section 4.2.

Theorem 1.2, Corollary 1.3, and Theorem 1.4 are proved in Section 5. Corollary 5.1
of Theorem 1.1 gives a criterion for determining the crossing number of a non-adequate 
knot provided that it admits a diagram whose number of crossings is close enough to 
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Fig. 1. The A- and B-resolution at a crossing. The dashed segments indicate the original location of the 
crossing.

the Jones diameter of the knot. The proof of Theorem 1.2 uses this criterion and a 
result of Baker, Motegi and Takata [3] that allows us to calculate the Jones diameter 
of Whitehead doubles. We expect that Corollary 5.1 will have similar applications for 
determining the crossing number of more classes of non-adequate knots.

We’ve made an effort to make the paper self-contained, by including some background 
and definitions, and by restating results we will use in the form we need them.

Acknowledgment. Kalfagianni acknowledges partial research support from NSF, Grant 
DMS-2004155, and Lee acknowledges partial research support from NSF, Grant DMS-
1907010. We thank Ken Baker and Kimihiko Motegi for their interest in this work and 
for helpful comments and questions on an earlier version of the paper. We also thank 
the referee for their careful reading of an earlier version of our manuscript and for their 
comments that helped to improve our exposition and for noticing a slight oversight in 
the proof of Theorem 2.5.

2. Degree bounds and Jones slope diameter

2.1. Diagrammatic degree bounds

Given a knot diagram D, a Kauffman state [12] is a choice of either the A-resolution 
or the B-resolution for each crossing of D as shown in Fig. 1. Applying a Kauffman state 
σ to a diagram leads to a collection σ(D) of disjoint simple closed curves called state 
circles. The all-A state on a knot diagram D, denoted by σA, is the state where the 
A-resolution is chosen at every crossing of D. Similarly, the all-B state, denoted by σB, 
is the state where the B-resolution is chosen at every crossing of D.

Definition 2.1. For a knot diagram D, the Kauffman state graph Gσ(D) is the graph with 
vertices the set of state circles from applying σ to D and edges the dashed segments 
recording the original location of the crossing. We will use vσ(D) to denote the number 
of vertices of Gσ(D). We write GA to denote the state graph of σA and vA(D) its number 
of vertices. Similarly, we will denote by GB the state graph for σB and its number of 
vertices by vB(D).



E. Kalfagianni, C.R.S. Lee / Advances in Mathematics 417 (2023) 108937 5
Fig. 2. A positive crossing and a negative crossing.

We define the following combinatorial quantities:

• c(D) is the number of crossings of the knot diagram D.
• Given an orientation on D, c+(D) and c−(D) are respectively the number of positive 

crossings and the number of negative crossings in the knot diagram D with the 
conventions specified in Fig. 2.

• cA(σ), respectively, cB(σ) is the number of crossings on which the Kauffman state σ
chooses the A-resolution, or respectively the B-resolution.

• sgn(σ) = cA(σ) − cB(σ) for a Kauffman state σ.
• The writhe of a knot diagram D, denoted by wr(D), is c+(D) − c−(D).
• The Turaev genus gT (D) of D is defined by 2gT (D) := 2 − vA(D) − vB(D) + c(D)

[26,6].

Definition 2.2. [17,16] We say that a knot K is A-adequate if it admits a diagram 
D = D(K) whose all-A state graph has no one-edged loops. Such a diagram is called 
A-adequate. Similarly, a knot K is B-adequate if it admits a diagram whose all-B state 
graph has no one-edged loops. A knot is adequate if it admits a diagram D = D(K) that 
is both A- and B-adequate.

Recall that given a knot K we use JK(n) to denote its n-th colored Jones polynomial, 
which is a Laurent polynomial in a variable t. Also d+[JK(n)] and d−[JK(n)] denotes the 
maximal and minimal degree of JK(n) in t, and d[JK(n)] := 4d+[JK(n)] − 4d−[JK(n)].

We will need the following well known lemma [16,9].

Lemma 2.3. Given a knot diagram D = D(K), for all n ∈ N, we have the following.

(a) d+[JK(n)] ≤ c+(D)
2 n2 + O(n) and we have equality if D is B-adequate.

(b) d−[JK(n)] ≥ − c−(D)
2 n2 + O(n) and we have equality if D is A-adequate.

(c) d[JK(n)] ≤ 2c(D)n2 + (2 − 2gT (D) − 2c(D))n + 2gT (D) − 2, and we have equality if 
D is adequate.

The Turaev genus of a knot K, denoted by gT (K), is defined to be the minimum gT (D)
over all diagrams representing K. It is known [1] that if D is an adequate diagram of a 
knot K then gT (K) = gT (D).

We have the following theorem which shows that the diagrammatic bounds on the 
degrees of the colored Jones polynomials given in Lemma 2.3 are never achieved for 
non-adequate knot diagrams.
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Theorem 2.4. Given D = D(K) any diagram of a knot K ⊂ S3 we have the following.

(a) If D is not B-adequate, then there is a constant p+(D) > 0 depending on D, such 
that d+[JK(n)] ≤ ( c+(D)

2 − p+(D))n2 + O(n), for all n ∈ N.
(b) If D is not A-adequate, then there is a constant p−(D) > 0 depending on D, such 

that d−[JK(n)] ≥ ( −c−(D)
2 + p−(D))n2 + O(n), for all n ∈ N.

(c) If D is not adequate, then there is a constant p(D) > 0 depending on D, such that 
d[JK(n)] ≤ (2c(D) − 4p(D))n2 + O(n), for all n ∈ N.

The proof of Theorem 2.4 occupies the next two sections and, as we discuss next, 
Theorem 1.1 follows from it.

2.2. Knots with maximal diameter

Garoufalidis [7] showed that for every knot K there is a number nK > 0 such that for 
n > nK , the degrees d±[JK(n)] are quadratic quasi-polynomials. That is, we have

4d+[JK(n)] = s2(n)n2 + s1(n)n + s0(n) and 4d−[JK(n)] = s∗
2(n)n2 + s∗

1(n)n + s∗
0(n),

where for 0 ≤ i ≤ 2, si, s∗
i : N → Q are periodic functions with integral period.

The elements of the sets

jsK := {s2(n) | n > nK} and js∗
K := {s∗

2(n) | n > nK}

are called Jones slopes of K. Define the Jones slope of K by

jdK := max{|s2(n) − s∗
2(n)| | n > nK }.

Let c+(K) (resp. c−(K)) denote the minimum of c+(D) (resp. c−(D)) over all knot 
diagrams of K. Next we use Theorem 2.4 to derive the following result which in particular 
gives Theorem 1.1 stated in the Introduction.

Theorem 2.5. Given a knot K we have the following.

(a) K is B-adequate if and only if 2c+(K) ∈ jsK .
(b) K is A-adequate if and only if −2c−(K) ∈ js∗

K .
(c) K is adequate if and only if jdK = 2c(K).

Proof. One direction of all three statements above is given in Lemma 2.3. To deduce 
the other direction, recall that for n > nK , 4d+[JK(n)], 4d−[JK(n)] become quadratic 
quasi-polynomials and let s2(n), s∗

2(n) denote their quadratic coefficients respectively [7]. 
Recall that s2(n), s∗

2(n) : N → Q are periodic functions with integral period.
If 2c+(K) ∈ jsK , then there is an infinite sequence {ni > nK}i ⊂ N such that 

s2(ni) = 2c+(K). Then Theorem 2.4 (a) implies that the diagram D = D(K) that sat-
isfies c+(K) = c+(D) is B-adequate. Similarly, if −2c−(K) ∈ js∗

K then by Theorem 2.4
(b) the diagram D′ = D′(K) that satisfies c−(K) = c−(D′) is A-adequate.
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Suppose now that we have jdK = 2c(K). Then, there are Jones slopes s2 ∈ jsK and 
s∗

2 ∈ js∗
K so that |s2 − s∗

2| = 2c(K). By the definitions, there is an infinite sequence 
{ni > nK}i so that s2(ni) = s2 and s∗

2(ni) = s∗
2 for every ni. Now let D = D(K) be a 

diagram that realizes c(K) and let c−(D), c+(D) be the number of negative and positive 
crossings in D. We have c(K) = c−(D) + c+(D) and

4d+[JK(ni)] − 4d−[JK(ni)] = (s2 − s∗
2)n2

i + O(ni) = 2c(K)n2
i + O(ni),

for the infinite sequence {ni > nK}i. Now Theorem 2.4 (c) implies that D is ade-
quate. �
Remark 2.6. The definition of Jones diameter used in [7] is slightly different than the 
one used in this paper. In [7] the Jones diameter is defined to be the quantity

max{|s2 − s∗
2| | s2 ∈ jsK , s∗

2 ∈ js∗
K}.

Currently there are no examples of knots known for which the functions s2, s∗
2 : N → Q

(n > nK) are not constant. Thus in all the cases where the Jones slopes have been 
computed the two definitions agree.

3. Fusion theory preliminaries and tools

In this section, first, we recall some background from the skein and fusion theory of 
the colored Jones polynomial, and restate some results from the literature that we will 
use in the proof of Theorem 2.4.

3.1. Kauffman brackets and skein theory

Definition 3.1. The Kauffman bracket skein module K(F ) [22], [12] of a compact, ori-
ented surface F with (possibly empty) boundary is the formal vector space over C(A)
of properly embedded tangle or knot diagrams in F (including the empty knot), consid-
ered up to isotopy fixing the boundary points, and modulo the Kauffman bracket skein 
relations:

• = A−1 + A .

• � D = (−A−2 − A2)D.

An element of K(F ) is called a skein element. Using the Kauffman bracket skein relations, 
any skein element in K(S2) can be reduced to an empty diagram with coefficient a 
rational function in C(A).

Definition 3.2. Define the Kauffman bracket of the empty knot to be 1. For a skein 
element D ∈ K(S2), the Kauffman bracket 〈D〉 is the rational function in C(A).
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Fig. 3. An elementary generator en
i where n = 6 and i = 4.

The Temperley-Lieb algebra TLn is a specialization of the Kauffman bracket skein 
module of the 2-disk D2 viewed as a rectangle with n marked points above and below. 
As a module, TLn is the vector space over C(A) of properly-embedded tangle or knot 
diagrams in D2 such that the endpoints of a tangle are in 1-1 correspondence with the 
2n marked points on ∂(D2), modulo the Kauffman bracket skein relations.

The module TLn forms an algebra with the multiplication operation induced by stack-
ing one disk on top of another, identifying the n marked points on the bottom of the 
first disk with the n marked points on top of the second disk, forming a new disk. The 
identity of the multiplication operation is the identity element 1n of n parallel arcs. For 
two skein elements U , V ∈ TLn, we will denote the result of the multiplication operation 
by U · V. Every skein element in TLn can be written as a sum of products of elementary 
generators en

1 , . . . , en
n−1 by the Kauffman bracket skein relations (cf. Fig. 3).

We will not explicitly mark the n points on the boundary of the disk for TLn from 
this point on.

Definition 3.3. [27], [16, Lemma 13.2] The Jones-Wenzl projector in TLn, denoted by 

n
, is a unique element in TLn characterized by the following properties:

(a)
n

· en
i = 0 = en

i ·
n

for 1 ≤ i ≤ n − 1.
(b)

n
− 1 belongs to the algebra generated by {en

1 , en
2 , . . . , en

n−1}.
(c)

n
·

n
=

n
.

(d) Let 
n

be the skein element in K(S2) obtained by embedding the disk D2 con-
taining 

n
in the standard way into S2, and then joining the top n points of D2

to the bottom n points by n parallel arcs in the projection plane. The Kauffman 

bracket of 
n

is given by 〈
n
〉 = (−1)n A2(n+1)−A−2(n+1)

A2−A−2 .
To simplify notation we will denote 
n := 〈

n
〉.

We will depict a skein element in TLn containing Jones-Wenzl projectors by drawing 
rectangular boxes and say that the skein element is decorated by a Jones-Wenzl projector 
if it contains a Jones-Wenzl projector.

3.2. Fusion and untwisting formulas

For a skein element in K(S2), we shall take for granted the fusion and untwisting 
formulas from [19], depicted in Fig. 5. As in [19], a trivalent graph colored with nonneg-
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Fig. 4. A skein element (left) is recovered from a colored trivalent graph (right) by replacing a vertex locally 
by the skein element in K(D2) with a + b marked points above and c points below.

Fig. 5. The fusion (left) and untwisting (right) formulas.

Fig. 6. We have x = a+c−b
2 , y = b+c−a

2 , z = a+b−c
2 .

ative integers represents a skein element containing Jones-Wenzl projectors by making 
the local replacement shown below in Fig. 4 at a vertex of the trivalent graph.

We call a triple of nonnegative integers (a, b, c) admissible if a +b +c is even, a ≤ b +c, 
b ≤ a + c, and c ≤ a + b. Given an admissible triple, the rational function θ(a, b, c) is 
defined as the Kauffman bracket of a particular skein element as shown in Fig. 6.

Lemma 3.4 ([16, Lemma 14.5]). Suppose the triple of nonnegative integers (a, b, c) is 
admissible. Then, we have

θ(a, b, c) = 
x+y+z!
x−1!
y−1!
z−1!

y+z−1!
z+x−1!
x+y−1! , (1)

where 
n! := 
n
n−1
n−2 · · · 
1 and 
−1 = 
0 := 1.

3.3. A definition of the colored Jones polynomial

Given a knot diagram D ⊂ S2 with � components, let A = ∪�
i=1Ai be the collection 

of annuli in S2 containing D with boundaries the 2-blackboard cable of the diagram D. 
The natural inclusion map ι : A ↪→ S2 induces a map ι∗ : K(A) ↪→ K(S2).

Define the skein element Dn as the image of the element (
n
, 

n
, . . . , 

n
) in 

K(A1) × K(A2) × · · · × K(A�) under the map ι∗. That is,
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Fig. 7. Left: An example of a link diagram D and the resulting Dn.

Dn := ι∗(
n
,

n
, . . . ,

n
).

For depiction of skein elements we follow the convention of [19,16] where a label n
next to a strand indicates number of parallel strands. We use boldface for Dn to denote 
n-blackboard cable Dn of D, decorated by Jones-Wenzl projectors as defined above (cf. 
Fig. 7).

Definition 3.5. The (unreduced) n-th colored Jones polynomial of the knot K, with a 
diagram D = D(K) is given by JK(n)(t) = ((−1)n−1An2−1)wr(D)〈Dn−1〉|A=t−1/4 , where 

for the unknot U = we have JU (n)(t) = (−1)n−1 t−n/2−tn/2

t−1/2−t1/2 for n ≥ 2.
To simplify the notation we will omit the variable t and write JK(n) for JK(n)(t).

3.4. Fusion calculus and degree bounds on Kauffman brackets of skein elements

Let f(A) be a rational function P (A)
Q(A) with P (A), Q(A) polynomials with complex 

coefficients in the variable A. We define deg f(A) to be the maximum power of A in the 
formal Laurent series expansion of f(A) whose A-power is bounded from above.

For example, to compute deg( A
−A2−A−2 ) we write A

−A2−A−2 = A
−A2(1+A−4) =

−A−1 1
1+A−4 . Then, we expand 1/(1 + A−4) = 1 − A−4 + A−8 − · · · and multiply by 

−A−1 to obtain A
−A2−A−2 = −A−1 + A−5 − A−9 + · · · , so deg( A

−A2−A−2 ) = −1.
Note deg f(A) = deg P (A) − deg Q(A). With this example of f(A), if we factor the 

denominator Q(A) in the other way: Q(A) = −A−2(A4 + 1), then we would obtain the 
Laurent series expansion of f(A) whose minimum A-power is bounded from below which 
can be used to find the minimum degree of f(A).

We are interested in using the degrees of rational function summands from the Kauff-
man bracket definition of the n-th colored Jones polynomial to estimate the degree. To 
that end, it will be useful to keep in mind the degrees of the following rational func-
tions.

Lemma 3.6. We have the following.

(a) deg 
c = 2c.
(b) deg θ(a, b, c) = a + b + c.
(c) deg �c = 2c − (a + b + c) = c − a − b.
θ(a,b,c)



E. Kalfagianni, C.R.S. Lee / Advances in Mathematics 417 (2023) 108937 11
Fig. 8. The skein element Jn.

Fig. 9. Fusion on a twist region.

Proof. To compute the degree of a rational function P (A)/Q(A), we take the difference 
deg P (A) −deg Q(A). This is shown in statement (c) of the lemma for the degree of �c

θ(a,b,c)
after determining deg 
c and deg θ(a, b, c). So we compute deg 
c. By Definition 3.3 (d),


c = (−1)c A2(c+1) − A−2(c+1)

A2 − A−2 .

Therefore deg 
c = 2(c + 1) − 2 = 2c. Next from the explicit formula of θ(a, b, c) from 
Equation (1), we get

deg θ = deg(
x+y+z!
x−1!
y−1!
z−1!) − deg(
y+z−1!
z+x−1!
x+y−1!),

with x = a+c−b
2 , y = b+c−a

2 , z = a+b−c
2 . Note deg(
c!) = c(c + 1) by summing over the 

degrees in the factorial. Plugging this into the equation above and simplifying gives the 
desired result. �

A twist region T is a (2, 2)-tangle of crossing(s) arranged end-to-end. If there is more 

than one crossing, then we require that the crossings alternate. For example, and 

are both twist regions with two crossings, and is not.
We will consider T as a skein element in TL2. Let Jn be the skein element in TL2n

that is two Jones-Wenzl projectors 
n

placed side by side, see Fig. 8. Let T n ∈ TL2n

be the n-blackboard cable of T and let Tn = Jn · T n · Jn.

Lemma 3.7. Given an admissible triple (a, n, n) and an integer r �= 0, let d(a, r, n) de-
note the degree of the coefficient function I(a, r, n) := �n

θ(n,n,a)(−1)n− a
2 Ar(2n−a+n2− a2

2 )

resulting from first applying the fusion and then the untwisting formula to evaluate 〈Tn〉
from a twist region T with r crossings. Then, we have

d(a, r, n) := deg I(a, r, n) = 2(r − 1)n + (1 − r)a + rn2 − r
a2

2 .

The case r = 4 is illustrated in Fig. 9.
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Proof. This is a straightforward application of the fusion and untwisting formulas and 
Lemma 3.6 for the degree of �n

θ(n,n,a) . �
Definition 3.8. We will denote the skein element in TL2n in the sum resulting from 
applying the fusion and untwisting formulas to Tn by I(a, r, n).

Let S be a skein element in TLn with crossings which may or may not contain a Jones-
Wenzl projector. The definition of Kauffman states on knot diagrams with crossings 
extends naturally to skein elements in TLn with crossings. We denote by σ(S) the skein 
element resulting from applying a Kauffman state σ to the crossings of S, and Gσ(S) will 
denote σ(S) with the dashed segments of Fig. 1, which will still be called “edges” even 
though Gσ(S) may no longer be a graph. For a skein element S that is a knot diagram 
in K(S2), σ(S) is the same as the set of state circles. The collection of arcs and circles 
in σ(S) are called the state arcs and state circles of σ(S).

3.5. Some useful lemmas

Here we will restate some technical lemmas and definitions from [15] and we will prove 
an auxiliary lemma that we will be using in the proof of Theorem 2.4. The reader may 
choose to move directly to the proof of the theorem in the next section and return to 
the statements as they are called in the course of the proof of Theorem 2.4.

Definition 3.9. Given a positive integer k, let P = {k1, . . . , ks} be a nonnegative integer 
partition of k into s parts. We say that P is a minimal partition, denoted by Pm, if it 
minimizes the quantity m(P ) = max1≤i≤s{ki} over all partitions P of k into s parts.

For example, Pm = {1, 2, 2} is a minimal partition of 5 = 1 + 2 + 2 into 3 parts, and 
P = {3, 2, 0} is not a minimal partition of 5 into 3 parts.

A minimal partition exists by the following elementary lemma.

Lemma 3.10. Given k and s, one can find a minimal partition by writing k = μs + b, 
where μ, b are positive integers and b < s using Euclidean division. A minimal partition 
of k is given by:

{k/s� = k/s + (s − b)/s, . . . , k/s�︸ ︷︷ ︸
b times

, �k/s� = k/s − b/s, . . . , �k/s�︸ ︷︷ ︸
s − b times

}. (2)

Next we recall the following lemma.

Lemma 3.11 ([15, Lemma 3.12]). Fix k and s. The minimal partition Pm = {m1, . . . , ms}
of k into s parts is unique up to rearrangement of indices. If P = {k1, . . . , ks} is another 
partition of k into s parts, then
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Fig. 10. The skein element S′ in K(D2).

s∑
i=1

m2
i ≤

s∑
i=1

k2
i .

The next lemma provides conditions under which a skein element that arises in the 
evaluation of the Kauffman bracket of 〈Dn〉, by applying the fusion and the untwisting 
formula to the n-cable of a twist region in Dn, evaluates to zero.

Lemma 3.12 ([15, Lemma 3.2]). Let S ∈ K(S2) be a skein element. Suppose that there 
is a disk D2 in S2 so that the intersection of D with S is the skein element S ′ ∈ K(D2)
shown in Fig. 10. If a

2 − k > 0, then 〈S〉 = 0.

The final results in this section, that we will use for the proof of Theorem 4.2 to 
imply Theorem 2.4, are Lemma 3.15 and Corollary 3.16 that provide upper bounds on 
the degree of the Kauffman bracket of any skein element, in terms of the degree of 
the bracket of certain “simpler” skein elements. Before we state the results we need to 
introduce some notation and terminology.

Definition 3.13. [23, Definition 2.3]1 A crossingless matching on 2n points is an element 
in TLn that is a collection of n disjoint arcs connecting the 2n points on the boundary 
of the disk D2 defining TLn.

The set of crossingless matchings forms a basis for TLn as a vector space over C(A). 
Hence, every U ∈ TLn may be written in the form 

∑
u h(u)u where h(u) ∈ C(A) and u

runs over all crossingless matchings. In particular, the Jones-Wenzl projector has such 
an expansion from the following recursive formula [16, Figure 13.6]:

(3)

Fig. 11. Recursive formula for the Jones-Wenzl projector.

1 The version of the definition given in this paper has “points” rather than “nodes” and we specialize to 
matching points on the boundary of a disk.
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We note that, in contrast with crossingless matchings, crossingless skein elements in 
TLn may be empty.

Definition 3.14. Given a crossingless skein element S ∈ K(S2) (resp. T ∈ K(D2)) deco-
rated with Jones-Wenzl projectors, we will use S (resp. T ) to denote the skein element 
obtained from S (resp. T ∈ K(D2)) by replacing each projector with the identity element 
in the corresponding Temperley-Lieb algebra.

Thus, S is a union of disjoint circles while T is a collection of disjoint arcs.

Next we prove the following lemma.

Lemma 3.15. Suppose that S ∈ K(S2) is a crossingless skein element decorated by a 
number of Jones-Wenzl projectors 

n
∈ TLn and, as above, let S denote the skein 

element resulting from replacing each copy of 
n

by 1n ∈ TLn. Then, we have

deg〈S〉 ≤ deg〈S〉.

Proof. Suppose that the number of projectors contained in S is s. The proof will be by 
induction on n.

Suppose n + 1 = 2. Let S be a skein element decorated by s copies of 2, and let 
S denote the skein element resulting from replacing each copy of the projector with 12. 
Using (3) we can expand each of the s copies of 2 in terms of the basis of crossingless 
matchings {12, e2

1}, to write 〈S〉 into a sum of 2s terms where each term is of the form

deg
(

−
0


1

)l

〈S ′〉 ≤ deg〈S〉,

where 0 ≤ l ≤ s and S ′ is a skein element obtained from S by replacing l copies of the 
identity that were copies of 2 on the original S. We can realize this process by a length 
l sequence of skein elements

S0 = S −→ S1 −→ · · · −→ Sl = S ′
,

such that at each step one identity 12 replacing the projector is changed to e2
1. Since S

is crossingless, for 0 ≤ i ≤ l, Si is a collection of disjoint circles and in Si+1 we merge or 
split two curves of Si. Thus

deg
(

−
0


1

)
〈Si+1〉 = deg〈Si〉 − 2 ± 2 ≤ deg〈Si〉,

and the conclusion follows in this case.
Assuming inductively that the conclusion holds for n > 1, let S be a crossingless 

element decorated by s copies of . Using (3) we can expand each of the s copies in 

n+1
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terms of the skein elements {T n
0 , T n

1 } of Fig. 11. Consider the function α from the set of 
s copies of 

n+1 to {T n
0 , T n

1 }. Using (3) we write a sum of 2s terms

〈S〉 =
∑

α

fα〈Sα〉,

where fα :=
(

−�n−1
�n

)α1
and α1 is the number of times α chooses T n

1 for a copy of 
n+1

and Sα is the skein element obtained from S by applying α. By the induction hypothesis, 
we have

deg〈Sα〉 ≤ deg〈Sα〉. (4)

Note that each Sα comes from Sα by replacing each T n
0 , T n

1 assigned by α by T n
1 , T n

0 , 
respectively. Also S comes from the function α0 that chooses T n

0 for each of the s copies 
of the projector. For any Sα we can take a sequence of α1 skein elements that starts from 
S and ends at Sα, where each step switches a single copy of T n

0 to T n
1 . The replacement 

of a copy of T n
0 by T n

1 can merge or split two circles in the previous skein element of 
sequence. As earlier we conclude that for α �= α0, deg fα〈Sα〉 ≤ 〈S〉. Combining this 
with (4) we get

deg fα〈Sα〉 ≤ deg fα〈Sα〉 ≤ deg〈S〉.

Then, since

deg〈S〉 ≤ max{deg fα〈Sα〉},

we have deg〈S〉 ≤ deg〈S〉. �
A consequence of Lemma 3.15 is the following.

Corollary 3.16. Suppose that S ∈ K(S2) is a skein element with crossings which contains 
a number of Jones-Wenzl projectors 

n
∈ TLn. Let SA be the skein element obtained 

from S by first applying the all-A Kauffman state, then replacing each of the projectors 
in SA by the identity 1n. Then, we have

deg〈S〉 ≤ deg
(

Asgn(σA)〈SA〉
)

.

Proof. If S does not contain any Jones-Wenzl projectors, then S = S and we have a link 
diagram in K(S2) for which it is well known [16] that

deg〈S〉 ≤ max{deg
(

Asgn(σ)〈Sσ〉
)

} ≤ deg
(

Asgn(σA)〈SA〉
)

.

σ
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If S contains Jones-Wenzl projectors, then first we apply Kauffman states to all the 
crossings of S to expand S =

∑
σ Asgn(σ)〈Sσ〉 and then apply Lemma 3.15 to each term 

to get

deg〈Sσ〉 ≤ deg〈Sσ〉.

Hence we have

deg〈S〉 ≤ max
σ

{deg
(

Asgn(σ)〈Sσ〉
)

} ≤ max
σ

{deg
(

Asgn(σ)〈Sσ〉
)

}.

Now for each state we have Sσ = (S)σ, where (S)σ comes from applying the Kauffman 
state σ to the link diagram S. Thus we can write

deg
(

Asgn(σ)〈Sσ〉
)

≤ deg
(

Asgn(σ)〈(S)σ〉
)

≤ deg
(

Asgn(σA)〈(S)A〉
)

= deg
(

Asgn(σA)〈SA〉
)

.

Now the conclusion follows by combining the last inequality with the preceding one. �
4. Refined bounds on the quadratic growth rate of the degree

In this section we will prove Theorem 2.4. It follows from Corollary 3.16 that there is 
an upper bound Hn(D) for deg〈Dn〉:

deg〈Dn〉 ≤ Hn(D) := c(D)n2 + 2vA(D)n.

This is obtained by directly calculating the number of circles in the all-A state on Dn

and the number of crossings on which the A-resolution is chosen.

Definition 4.1. For a diagram D = D(K) recall that wr(D) is the writhe of D and define

hn(D) := −Hn(D)
4 + wr(D)n2 − 1

4 . (5)

By Definition 3.5, hn(D) is a lower bound of deg JK(n).

Theorem 4.2. Suppose a knot diagram D is not A-adequate, then

d−[JK(n)] ≥ hn(D) + p−(D)n2 + O(n),

for a constant p−(D) > 0 which depends on the diagram D.

Before proving Theorem 4.2 we show it implies Theorem 2.4.
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Fig. 12. N(u + v) for u, v ∈ T L6.

Proof of Theorem 2.4. First, the statement of Theorem 4.2 directly gives Theorem 2.4
(a) since hn(D) = −c(D)+wr(D)

4 n2 + O(n). Secondly, if D is not B-adequate, then taking 
the mirror image of D gives a diagram D∗ that is not A-adequate. Applying Theorem 4.2
to K∗ = D∗ and using the fact that d+[JK(n)] = −d−[JK∗(n)] gives Theorem 2.4 (b). 
Part (c) follows from combining parts (a) and (b) to get s2 ≤ 2c+(D) − 4p+(D) and 
s∗

2 ≥ −2c−(D) + 4p−(D). This implies

d[JK(n)] ≤ (2c(D) − 4p(D))n2 + O(n),

where p(D) := p+(D) + p−(D). �
4.1. State graphs and through strands

It turns out that information about contributions of individual Kaufman states on 
Dn to deg〈Dn〉 is encoded in certain walks on the all-A state graph GA of D. In this 
subsection, we set up this correspondence and prove an auxiliary lemma that will be 
used in the proof of Theorem 4.2.

Let u, v ∈ TL2n be two crossingless matchings embedded in two copies of the disk 
D2 ⊂ S2 as shown in the left panel of Fig. 12. The points of each of u, v on the boundary 
∂D2 of the disk are separated into four groups that can be labeled as northwest (NW), 
northeast (NE), southwest (SW) and southeast (SE). Generalizing the notions of addition 
and numerator closure of (2n, 2n)-tangles, we define N(u + v) to be the skein element in 
K(S2) obtained by joining the NE (resp. SE) points of u on ∂D2 to the NW (resp. SW) 
points of v by parallel arcs (right panel of Fig. 12). Similarly we join the NW (resp. SW) 
points of u on ∂D2 to the NE (resp. SE) points of v.

For two skein elements U =
∑

h(u)u and V =
∑

g(v)v, where u and v are crossingless 
matchings in TL2n, we define an addition operation N(U + V) to be

N(U + V) :=
∑

h(u)g(v)N(u + v).

Definition 4.3. Let S be a crossingless skein element in TLn which does not contain a 
Jones-Wenzl projector. A through strand of S is an arc in S with one endpoint on the 
top of the disk and the other endpoint on the bottom of the disk.
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Fig. 13. The skein σA(yn) with horizontal strips between state arcs.

Fig. 14. The through strands in σ(y2) come from changing the A-resolution to the B-resolution on the 
leftmost crossing in y2.

Given a skein element S ∈ K(S2) with crossings and a Kauffman state σ = σ(S), 
there is a sequence of states s := {σ1 = σA → . . . → σf = σ} from the all-A state σA to 
σ such that, for 1 ≤ i ≤ f − 1, σi+1 is obtained from σi by replacing the A-resolution at 
a single crossing with the B-resolution.

Given a single crossing y on S ∈ K(S2), it will be convenient for us to view it as a 
skein element in TL2. Then the n-cable of y is an element in TL2n which we will denote 
by yn. If yn is part of a skein element S ∈ K(S2) and σ is a state on S we will use σ|yn

to denote the restriction of σ on yn and we will use σ(yn) to denote the element of TL2n

resulting from σ|yn.

Lemma 4.4. [15, Lemma 3.7(b)] Let y be a single crossing viewed as an element of 
TL2. If the skein element σ(yn) has 2k through strands, then the sequence of states from 
σA|yn to σ|yn contains a subsequence of length k2.

Proof. Viewing the disk D2 as [0, 1] × [0, 1], consider σA(yn) in the disk and isotope yn

so that each set of dashed segments between the same pair of state arcs in σA(yn) are 
in the same horizontal strip [0, 1] × [yi, yi′ ] without any overlap, see Fig. 13.

We consider σ(yn) in the same disk. The intersection of any horizontal segment [0, 1] ×
y0 with σ(yn) has to contain 2k points since σ(yn) is assumed to have 2k through strands. 
For each horizontal strip that contains 0 ≤ � ≤ n crossings, there are 2(n − �) state arcs 
providing part of the requisite 2k intersections. We add up the remaining number of 
crossings necessary: k, 2(k − 1), 2(k − 2), . . . , 2 to get k2 crossings in cB(σ), where recall 
cB(σ) is the number of crossings on which σ chooses the B-resolution. �
Remark 4.5. Let y be a single crossing viewed as an element of TL2 and let σ be a 
Kauffman state on yn. Then a through strand of σ(yn) runs in a direction parallel on the 
projection plane to the dashed segment of Fig. 1 on σA(y). If y is part of a skein element 
S ∈ K(S2) then this dashed segment gives an edge ey of GA(S) of D. See Fig. 14.

More generally, a (2, 2)-tangle T that is part of a skein element S ∈ K(S2), where T is 
with crossings and without Jones-Wenzl projectors, is viewed as an element in TL2. On 
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the n-blackboard cable of Sn, we have the n-blackboard cable T n, which is an element in 
TL2n. A Kauffman state σ on Sn restricted to T n produces a crossingless skein element 
σ(T n) without projectors, and it makes sense to talk about its through strands.

Definition 4.6. With the notation and setting as above, we will say that a through strand 
of σ(T n) passes through a crossing y of S, if it contains some state arcs of σ|yn.

Now recall that for a graph with edge set E and vertex set V , where v0(e), v1(e)
denote the vertices of an edge e ∈ E, a walk is a sequence of edges e1, . . . , em ∈ E such 
that v1(ei) = v0(ei+1). A walk is closed if v0(e1) = v1(em).

If the skein element S is a knot diagram D = D(K), then for every through strand, 
say α, of σ(T n) in Dn we obtain a walk of edges on the all-A state graph GA of D. 
Namely, the walk consists of edges {ey} corresponding to all crossings y ∈ S that α

passes through.
The observation that we can view through strands of skein elements resulting from 

applying Kauffman states to tangles as walks on GA will be used in the proof of Theo-
rem 4.2.

4.2. Proof of Theorem 4.2

Before we embark on the formal proof of the theorem we give a brief outline of it. 
Starting with a knot diagram D = D(K) that is not A-adequate, we fix a crossing x
that corresponds to a one-edged loop e of the state graph GA = GA(D). For fixed n
we view Dn as a sum of two (2, 2)-tangles, one consisting of x and the complimentary 
tangle T . Using fusion rules (Lemma 3.7) on the fixed crossing x, we write Dn as a sum 
of skein elements Sσ(a) parametrized by pairs consisting of the fusion parameter, a of 
x, and Kauffman states σ. We write Sσ(a) = N(I(a, −1, n) + Tσ), where I(a, −1, n) are 
the skein elements of Definition 3.8 and Tσ ∈ TL2n are skein elements resulting from 
applying σ|T . Using Lemmas 3.12, 3.15 we are able to isolate the states σ that contribute 
to the maximum degree deg〈Dn〉. To estimate the degree contributions of such a state 
σ, we view the through strands of the skein elements Tσ as closed walks on GA starting 
and ending at the vertex containing the one-edged loop e. This allows us to relate the 
number of through strands of Tσ to the number of crossings on which σ chooses the 
B-resolution. This, in turn, combined with Lemma 4.4, allows us to estimate that the 
drop of the degree deg〈Dn〉 from the potential maximum Hn(D), grows quadratically 
in n. See (6) below for the precise statement.

Proof. Given a knot diagram D of K, it suffices to show that if D is not A-adequate, 
then

deg〈Dn〉 ≤ Hn(D) − ρn2 + O(n), (6)
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Fig. 15. The crossing corresponding to e framed with Jones-Wenzl projectors and fused along a direction 
transverse to e.

for a constant ρ > 0 depending on the diagram. The statement of the theorem then 
follows from (6) passing to hn(D) using Equation (5) with p−(D) = 1

4ρ.
Since D is not A-adequate, GA has one-edged loops. Fix a crossing x whose A-

resolution gives a one-edged loop e with vertex v in GA. Take the n-blackboard cable of 
D and decorate with a Jones-Wenzl projector as in Definition 3.5. Double and slide the 
projectors along the n-cable of the knot using its defining properties from Definition 3.3, 
so that there are four projectors framing xn. Let Dn be the resulting diagram.

To compute 〈Dn〉 first apply Lemma 3.7 (with r = −1) for the twist region T consist-
ing of the crossing x. See Fig. 15 for the illustration, where since e is a one-edged loop, 
its endpoints are on a single vertex v. Note that we are choosing a direction transverse 
to e for the fusion. We have

〈Dn〉 =
∑

a:(a,n,n) admissible,
0≤a≤2n


n

θ(n, n, a) (−1)n− a
2 A−(2n−a+n2− a2

2 )〈S(a)〉, (7)

where S(a) denotes the skein element corresponding to the parameter a in the sum of 
Fig. 15. Next, we expand the sum of (7) over all Kauffman states σ on the crossings of 
each S(a) to get

〈Dn〉 =
∑

σ Kauffman state on S(a),
a:(a,n,n) admissible,

0≤a≤2n

I(a, −1, n)Asgn(σ)〈Sσ(a)〉, (8)

where Sσ(a) denotes the skein element resulting from applying a Kauffman state σ to 
the crossings of S(a). Finally, as in Lemma 3.7,

I(a, −1, n) := 
n

θ(n, n, a) (−1)n− a
2 A−(2n−a+ 2n2−a2

2 ).

See [16, Proposition 5.1].2 As defined earlier in Definition 2.1, sgn(σ) denotes the number 
of crossings of Dn for which σ assigns the A-resolution minus the number of crossings 
for which σ assigns the B-resolution.

2 Proposition 5.1 in [16] extends to the case of a skein element with crossings and decorated with projectors 
with identical proof.
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Fig. 16. The skein element Jσ(a).

Note that S(a) = N(I(a, −1, n) + T ) where I(a, −1, n) is the skein element of Defi-
nition 3.8 for r = −1, and T is the diagram Dn with T n removed. Similarly,

Sσ(a) = N(I(a, −1, n) + Tσ),

where Tσ ∈ TL2n denotes the complement of I(a, −1, n) in Sσ(a).
The through strands of Tσ are the strands that run in a direction parallel, on the 

projection plane, to the edge of I(a, −1, n) labeled by a. Since Tσ ∈ TL2n, its number 
of through strands is even. Let kσ denote half of this number.

Since the component, say Jσ(a), of Sσ(a) decorated with Jones-Wenzl projectors 
contains I(a, −1, n), Lemma 3.12 applies to conclude that 〈Jσ(a)〉 and therefore 〈Sσ(a)〉
is 0 unless a

2 ≤ kσ. See Fig. 16 for an illustration, where the dashed circle indicates the 
skein element of a disk where Lemma 3.12 applies.

Thus, we can rewrite the sum in Equation (8) as

〈Dn〉 =
∑

σ Kauffman state on S(a),
a:(a,n,n) admissible,

0≤a≤2n, a
2 ≤kσ

I(a, −1, n)Asgn(σ)〈Sσ(a)〉. (9)

Now we consider the degree of each term in Equation (9). We have

deg
(

I(a, −1, n)Asgn(σ)〈Sσ(a)〉
)

= d(a, −1, n) + sgn(σ) + deg〈Sσ(a)〉,

where, by Lemma 3.7, d(a, −1, n) = deg I(a, −1, n) = −4n + 2a − n2 + a2

2 .
Lemma 3.15, which says that deg〈Sσ(a)〉 ≤ deg〈Sσ(a)〉, gives us

deg
(

I(a, −1, n)Asgn(σ)〈Sσ(a)〉
)

≤ d(a, −1, n) + sgn(σ) + deg〈Sσ(a)〉,

where, as defined in Definition 3.14, Sσ(a) is the skein element obtained from Sσ(a) by 
replacing every Jones-Wenzl projector by the identity element.

For fixed n, clearly d(a, −1, n) increases monotonically in a. Similarly for fixed n and 
σ, the function deg〈Sσ(a)〉 increases monotonically in a, since Sσ(a) is just a collection of 
disjoint circles whose number is determined by Jσ(a), and the number of circles increases 
with a. See Fig. 17. Thus, since we work with a ≤ kσ, we can isolate the terms that 
2
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Fig. 17. The crossingless skein Jσ(a).

contribute to the highest degree of the sum (9), to rewrite

〈Dn〉 =
∑

σ

∑
a≤2kσ

I(a = 2kσ, −1, n)Asgn(σ)〈Sσ(a = 2kσ)〉 + lower degree order terms.

(10)
We will distinguish two cases:

Case 1. Suppose we have kσ = 0, for all σ of Equation (10). Then the only nonzero term 
in the highest degree terms of the sum of (10) is when a = 2kσ = 0. In this case, applying 
Corollary 3.16 we have

deg
(

I(0, −1, n)Asgn(σ)〈Sσ(0)〉
)

≤ deg
(

I(0, −1, n)Asgn(σA)〈SσA
(0)〉

)
.

Now we compute

deg
(

I(0, −1, n)Asgn(σA)〈SσA
(0)〉

)
= deg(I(0, −1, n)) + sgn(σA) + deg〈SσA

(0)〉 =

= d(0, −1, n) + (c(D) − 1)n2 + 2vA(D)n + 2n =

= −4n − n2 + (c(D) − 1)n2 + 2vA(D)n + 2n.

With Hn(D) = d(2n, −1, n) + sgn(σA) + deg〈SA(2n)〉 we have

Hn(D) − deg〈Dn〉 ≥ 2n2 + 2n.

The statement of the theorem follows from setting ρ = 2.

Case 2. Suppose now that there exists some σ for which kσ �= 0. Discarding the lower 
degree terms and replacing the parameter a by 2kσ in (10), we have

deg〈Dn〉 ≤ max
σ

{d(2kσ, −1, n) + sgn(σ) + deg〈Sσ(2kσ)〉}. (11)

Let v ∈ GA denote the vertex to the one edge loop e corresponding to the crossing x
we fixed at the start of the proof. This vertex corresponds to a state circle in σA(Dn)
where, using the notation of Definition 3.14, we have Dn = Dn. Since any SA(a) is 
obtained by applying the all-A Kauffman state outside the fused edge, the number of 
through strands kσA

is zero. Thus we can only have a non-zero number of through strands 
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in Sσ(a), where σ �= σA. In other words, through strands come from state arcs of σ(Dn), 
created from the choice of the B-resolution on a crossing by σ. By Remark 4.5, to every 
though strand we can associate a finite closed walk in GA starting and ending at v: The 
sequence of edges in the walk are the edges {ey}y, corresponding to crossings {y} that 
the strand passes through, in the sense of Definition 4.6. Moreover, an edge in a walk 
coming from a through strand can repeat at most 2n times, since the maximal number 
of through strands possible for any state σ on yn is 2n.

To facilitate exposition we will use Σmax to denote the set of states that contribute 
to the right hand side of (11). For σ ∈ Σmax and a crossing y of D, let ky denote half 
the number of through strands of the skein σ(yn) obtained by restricting σ|yn. Also let 
σA|yn denote the restriction of the all-A state on yn.

By Lemma 4.4, since σ(yn) has 2ky through strands, a sequence of states from σA|yn

to σ|yn contains a subsequence of length k2
y. This means that the number of crossings 

on which σ chooses the B-resolution in yn is at least k2
y, and therefore,

sgn(σA|yn) − sgn(σ|yn) ≥ 2k2
y. (12)

Recall Hn(D) := sgn(σA) + d(2n, −1, n) + deg〈SA(2n)〉. For σ ∈ Σmax, by (11), we 
have

Hn(D) − deg〈Dn〉 ≥ d(2n, −1, n) − d(2kσ, −1, n)+ (13)

+
(
sgn(σA) − sgn(σ)

)
+

(
deg〈SA(2n)〉 − deg〈Sσ(2k)〉

)
.

Consider the set W = {w1, · · · , ws} of closed walks on GA from v to v, such that the 
number of times that each edge of GA appears in a walk in W is at most 2n, and the 
walk consisting only of e is not in W . Let s denote the cardinality of W .

Given σ ∈ Σmax, for i = 1 ≤ · · · ≤ s, let ki denote half the number of through 
strands of Tσ corresponding to the walk wi. Here ki is not necessarily an integer. The 
set {2k1, . . . , 2ks} gives a nonnegative integer partition of 2kσ into s parts. For i = 1 ≤
· · · ≤ s, pick an edge on the walk wi. This gives a set of crossings {y1, . . . , ys} on the 
knot diagram D. Since we assume kσ �= 0, we have s > 0. Now remove any repeated 
edges yj and renumber, to get a set of s′ distinct edges {y1, . . . , ys′}.

For j = 1 ≤ · · · ≤ s′, set k′
j = kyj

and recall that a sequence of states from σA to σ
must contain a subsequence of length at least (k′

j)2. Note that by our choice of the set 
{y1, . . . , ys′} the s′ subsequences we get this way are distinct. Moreover, every through 
strand of Tσ is contained in yj for some j, so k′ =

∑
k′

j ≥ kσ.
Now using (12) we get

sgn(σA) − sgn(σ) ≥ 2
s′∑

(k′
j)2.
j=1
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Furthermore, since for each j = 1 ≤ · · · ≤ s′ the corresponding subsequence can create at 
most 2k′

j new state circles, we obtain deg〈SA(2n)〉 −deg〈Sσ(2k)〉 ≥ −2 
∑s′

j=1 k′
j . Finally, 

by Lemma 3.7, we have d(2kσ, −1, n) = −4n + 4kσ − n2 + 2k2
σ. With these observations 

at hand, (13) leads to

Hn(D) − (d(2kσ, −1, n) + sgn(σ) + deg〈Sσ(2kσ)〉) ≥ (14)

≥ 2(n2 − k2
σ) + 4(n − kσ) +

s′∑
j=1

2((k′
j)2 − k′

j).

Now {k′
1, . . . , k′

s′} is a nonnegative integer partition of k′ :=
∑s′

j=1 k′
j . Applying 

Lemma 3.10 to k′ and s′ we get a minimal partition of k′ into s′ part as in (2). Then, 
applying Lemma 3.11 to compare the resulting minimal partition to {k′

1 . . . k′
s′}, we have

b(k′/s′ + 1 − b/s′)2 + (s − b)(k′/s′ − b/s′)2 ≥ (k′)2/s′ =
s′∑

j=1
(k′/s′)2.

Now from (14) we obtain

Hn(D) − (d(2kσ, −1, n) + sgn(σ) + deg〈Sσ(2kσ)〉) ≥

≥ 2(n2 − k2
σ) + 4(n − kσ) + 2

s′∑
j=1

(
k′

s′

)2

− 2
s′∑

j=1
k′

j =

= 2(n2 − k2
σ) + 4(n − kσ) + 2(k′)2

s′ − 2
s′∑

j=1
k′

j .

Recall that k′ ≥ kσ by construction of the set {y1, . . . , ys′}. Also, s ≥ s′ and ns′ ≥ k′

since k′
j ≤ n. Hence we get

Hn(D) − (d(2kσ, −1, n) + sgn(σ) + deg〈Sσ(2kσ)〉) ≥

≥ 2(n2 − k2
σ) + 4(n − kσ) + 2k2

σ

s
− 2ns =

=
(2 − 2s

s

)
k2

σ − 4kσ + (2n2 + 4n − 2ns).

Denote the quantity on the right hand side of the last inequality by g(k), where 
k := kσ.

By assumption s ≥ 1. Since s is the cardinality of a set of walks on GA it is independent 
from σ. Thus for fixed n, g(k) is a function of k, where 0 ≤ k ≤ n.

If s = 1, then g(k) is a linear function in k with negative derivative -4, hence on [0, n]
it achieves its absolute minimum 2n2 + 2n on n.



E. Kalfagianni, C.R.S. Lee / Advances in Mathematics 417 (2023) 108937 25
Otherwise assume s ≥ 2. Since the critical point of g(k) is s
1−s < 0, the absolute 

minimum in [0, n] is achieved at k = 0 or k = n. Hence g(k) ≥ min{2n2−2ns, 2n2

s −2ns}. 
Thus setting ρ = 2

s > 0 we have that g(k) ≥ ρn2 + O(n) and the conclusion follows. �
5. Applications to crossing numbers

Determining the crossing number of an arbitrary knot K is a hard task as there are 
no general methods for it other than a brute-force search that would attempt to classify 
knots that admit diagrams with crossings less than or equal these of a diagram for K. 
Such methods have been used successfully to compile tables of knots with low crossing 
numbers [8] but become hopeless for arbitrary knots. Although there has been some 
progress in understanding the behavior of the crossing number under the operations of 
taking connected sums or forming satellites of knots [14], fundamental questions in this 
direction still remain out of reach [13, Problems 1.67, 1.68].

On the other hand the crossing numbers for broad families of knots that admit par-
ticular types of diagrams are well understood. In particular, it is known that adequate 
diagrams realize the crossing number of the knots they represent, and that the crossing 
number of adequate knots is additive under connected sums [20,24,11]. In addition, it 
is known that the “standard” diagrams of Montesinos knots and torus knots minimize 
their crossing number [17,16,2]. As a Corollary of Theorem 1.1 we obtain the following 
criterion that allows to determine the crossing number of non-adequate knots that admit 
diagrams with the number of crossings “close enough” to their Jones diameter.

Corollary 5.1. Suppose K is a non-adequate knot admitting a diagram D = D(K) such 
that jdK = 2(c(D) − 1). Then we have c(D) = c(K).

Proof. Since K is non-adequate, Theorem 1.1 gives

c(D) ≥ c(K) >
jdK

2 = c(D) − 1,

and the result follows. �
Next we will discuss lower bounds for the crossing number of Whitehead doubles of 

adequate and torus knots. Using Corollary 5.1 we will determine the crossing numbers 
of infinite families of Whitehead doubles.

5.1. Doubles of adequate knots

Let V be a standard solid torus in S3, with preferred meridian-longitude pair (μV , λV )
and with U± a copy of a ±-clasped unknot as shown in Fig. 18. Given K ⊂ S3 with a torus 
neighborhood VK and preferred meridian-longitude pair (μK , λK), take an embedding 
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Fig. 18. The positive Whitehead double of the figure-8 knot. By Theorem 5.2 the diagram shown is a minimal 
crossing diagram.

f : V −→ S3 with f(V ) = VK , f(μV ) = μK and f(λV ) = λK . Then W±(K) := f(U±)
is the untwisted (positive/negative) Whitehead double of K.

We recall that if D = D(K) is an adequate diagram, and with the notation of Def-
inition 2.1, the quantities c(D), c±(D) as well as the Turaev genus gT (D) are minimal 
over all diagrams representing K [16,11,20,25,1]. We denote them by c(K), c±(K), and 
gT (K), respectively. Furthermore, the writhe number of D is known to be an invariant 
of K and is denoted by wr(K).

In this section we prove the following result which, as we will explain later on, implies 
in particular Theorem 1.2 stated in the Introduction.

Theorem 5.2. Suppose that K is an adequate knot with crossing number c(K) and writhe 
wr(K). Suppose moreover that c+(K), c−(K) �= 0 and let W−(K) (resp. W+(K)) denote 
the negative (resp. positive) untwisted Whitehead double of K. Then, the crossing number 
c(W±(K)) satisfies the following inequalities.

4c(K) + 1 ≤ c(W±(K)) ≤ 4c(K) + 2 + 2|wr(K)|.

Furthermore, if wr(K) = 0 we have c(W±(K)) = 4c(K) + 2 and the diagram W±(D), 
formed by doubling an adequate diagram D = D(K) using the blackboard framing of D, 
is a minimum crossing diagram for W±(K).

Note that the lower bound of Theorem 5.2 is sharper than the general prediction 
stated in [13, Problem 1.68] and the one announced in the unpublished preprint [21]. 
For the proof of Theorem 1.2 it is crucial that we have the sharper lower bound of 
Theorem 5.2 and Theorem 1.1.

For the proof of Theorem 5.2 we will use the following result of Baker, Motegi and 
Takata which is a special case of [3, Proposition 2.4].3

3 Their result more generally assumes that d+[JK(n)] is a quadratic quasi-polynomial a(n)n2+b(n)n +c(n)
for all n ≥ 1 of period ≤ 2, with a1 := a(1), b1 := b(1), and c1 := c(1). In our notation, these assumptions 
are satisfied for the adequate knots we work with in this paper for whom d+[JK(n)] is a quadratic polynomial 
in n for all n ≥ 1.
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Proposition 5.3. Suppose that K is a knot such that d+[JK(n)] = a2n2 + a1n + a0 is a 
quadratic polynomial for all n > 0. Suppose that a1 ≤ 0 and that if a1 = 0 then a2 �= 0. 
Then we have the following.

(a) If a2 > 0 then, for n sufficiently large,

d+[JW−(K)(n)] = 4a2n2 + (−4a2 + 2a1 − 1
2)n + (a2 − a1 + a0 + 1

2).

(b) If a2 > 1
8 then, for n sufficiently large,

d+[JW+(K)(n)] = (4a2 + 1
2)n2 + (−4a2 + 2a1)n + (a2 − a1 + a0 − 1

2).

Proof. Following the conventions and notation of [3, Proposition 2.4] we take τ = 0, 
w = 1, for d+[JW−(K)(n)] and τ = 0, w = −1, for d+[JW+(K)(n)]. �

A key part in the proof of Theorem 5.2 is to show that if wr(K) = 0, then the 
Whitehead double W±(K) is non-adequate. This task is accomplished in the next two 
lemmas, using Proposition 5.3 and properties of adequate knots and of their colored 
Jones polynomials. Then, Theorem 5.2 will follow easily from Corollary 5.1. Note that 
our first lemma doesn’t require the hypotheses wr(K) = 0.

Lemma 5.4. Let K be an adequate knot with crossing number c(K) and writhe wr(K). 
Suppose moreover that c+(K), c−(K) �= 0. If W±(K) is adequate, then

c(W±(K)) = 4c(K) + 1 and gT (W±(K)) = c(K) + 2gT (K) − 1,

where gT (W±(K)) denotes the Turaev genus of W±(K).

Proof. Since K is adequate, by Lemma 2.3,

d+[JK(n)] − d−[JK(n)] = c(K)
2 n2 + (1 − gT (K) − c(K)

2 )n + gT (K) − 1, (15)

for every n ≥ 0. Furthermore, d+[JK(n)] satisfies the hypothesis of Proposition 5.3
with 4a2 = 2c+(K) > 0 and d−[JK(n)] = −d+[JK∗(n)] satisfies that hypothesis with 
4a2 = 2c+(K∗) = 2c−(K). The requirement that a1 ≤ 0 is satisfied since for adequate 
knots the linear terms of the degree of J∗

K(n) are multiples of Euler characteristics of 
spanning surfaces of K. See [10, Lemmas 3.6, 3.7]. Finally we have a2 �= 0 since the 
statement of Theorem 5.2 assumes that c+(K), c−(K) �= 0. Now Proposition 5.3 implies 
that for sufficiently large n we have that d+[JW±(K)(n)] − d−[JW±(K)(n)] is actually a 
quadratic polynomial. That is, there is some n0, depending on W±(K), so that for all 
n > n0, we have
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d+[JW±(K)(n)] − d−[JW±(K)(n)] = d2n2 + d1n + d0,

with di ∈ Q. Using Proposition 5.3, the fact that d+[JW+(K∗)(n)] = −d−[JW−(K)(n)], 
and Equation (15), we will compute the constant d1 + d2 in terms of the coefficients of 
d+[JK(n)] − d−[JK(n)].

To that end, write d+[JK(n)] = a2n2 + a1n + a0 and −d−[JK(n)] = a∗
2n2 + a∗

1n + a∗
0. 

By Equation (15) we have a2 + a∗
2 = c(K)

2 and a∗
1 + a1 = 1 − gT (K) − c(K)

2 .
We have d2 = 4a2 + 4a∗

2 + 1
2 = 2c+(K) + 2c−(K) + 1

2 = 2c(K) + 1
2 , and

d1 + d2 = 2a1 + 2a∗
1 = 2(1 − gT (K) − c(K)

2 ) = 2 − 2gT (K) − c(K).

Now if W±(K) is adequate, then, again by Lemma 2.3, we also have d2 = c(W±(K))
2

and d1+d2 = 1 −gT (W±(K)). Now comparing the right hand sides of the two expressions 
we have for d2 and for d1 + d2 we get the desired results. �

Next we show that, under the additional hypothesis that wr(K) = 0 the knots W±(K)
are non-adequate.

Lemma 5.5. Let K be a nontrivial adequate knot with wr(K) = 0. Then, the untwisted 
Whitehead doubles W±(K) are non-adequate.

Proof. We will work with the negative Whitehead doubles W−(K) first.
Recall that if K has an adequate diagram D = D(K) with c(D) = c+(D) + c−(D)

crossings, and the all-A (rep. all-B) resolution has vA = vA(D) (resp. vB = vB(D)) state 
circles, then

4 d−[JK(n)] = −2c−(D)n2 + 2(c(D) − vA(D))n + 2vA(D) − 2c+(D), (16)

4 d+[JK(n)] = 2c+(D)n2 + 2(vB(D) − c(D))n + 2c−(D) − 2vB(D). (17)

Equation (16) holds for A-adequate diagrams D = D(K). Thus in particular the 
quantities c−(D), vA(D) are invariants of K (independent of the particular A-adequate 
diagram). Similarly, Equation (17) holds for B-adequate diagrams D = D(K) and hence 
c+(D), vB(D) are invariants of K. Recall also that c(D) = c(K) since D is adequate.

Now we start with a knot K that has an adequate diagram D with wr(D) = wr(K) =
0. Hence we have c+(D) = c−(D). Since D is B-adequate, the double W−(D) is a B-
adequate diagram of W−(K) with vB(W−(D)) = 2vB(D) +1 and c+(W−(D)) = 4c+(D). 
These statements are proved, for instance, in [3, Proposition 7.1]. Furthermore, since as 
said above these quantities are invariants of W−(K), they remain the same for all B-
adequate diagrams of W−(K).

Now assume, for a contradiction, that W−(D) is adequate: Then, it has a diagram 
D̄ that is both A and B-adequate. By above observation we must have vB(D̄) =
vB(W−(D)) = 2vB(D) + 1 and c+(D̄) = c+(W−(D)) = 4c+(D).
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By Lemma 5.4, c(D̄) = c(W−(K)) = 4c(K) + 1 and, since gT (D̄) = gT (W−(K)) [1], 
we also obtain

gT (D̄) = gT (W−(K)) = c(K) + 2gT (K) − 1. (18)

Now we compare the two expressions of gT (W−(K)) in Equation (18) in order to get a 
relation between vA(D̄) and vA(D).

On one hand, 2gT (D̄) = 2 − vB(D̄) − vA(D̄) + c(D̄) = 2 − 2vB(D) − 1 − vA(D̄) +
4c(D) + 1 = 2 − 2vB(D) − vA(D̄) + 4c(D).

On the other hand, 2gT (W−(K)) = 2(c(K) + 2gT (K) − 1) = 2c(D) + 2(2 − vA(D) −
vB(D) + c(D)) − 2 = 2 − 2vB(D) − 2vA(D) + 4c(D).

Comparing the right-hand sides of the last two equations we find vA(D̄) = 2vA(D).
Write

−4 d−[JW−(K)(n)] = 4 d+[JW+(K∗)(n)] = xn2 + yn + z,

for some x, y, z ∈ Q.
For sufficiently large n, we have two different expressions for x, y, z.
On the one hand, because D̄ is A-adequate, we can use Equation (16) to determine 

x, y, z through −4 d−[JW−(K)(n)].
On the other hand, using 4 d+[JW+(K∗)(n)], x, y, z can be determined using Proposi-

tion 5.3(b) with a2 and a1 coming from Equation (16) applied to the diagram D∗, that 
is the mirror image of D.

We will use these two ways to find the quantity y. Applying Equation (16) to D̄ we 
obtain

y = 2(c(D̄) − vA(D̄)) = 2(4c(D) + 1)) − 2(2vA(D)) = 8c(D) − 4vA(D) + 2. (19)

On the other hand, using Proposition 5.3(b) with a2 and a1 coming from Equation 
(16) applied to the diagram D∗, we have: 4a2 = −2c−(D∗) = −c+(D) −c−(D) = −c(D). 
Also we have 2a1 = c(D∗) − vA(D∗) = c(D) − vB(D), since we have vA(D∗) = vB(D).

We obtain

y = 4(−4a2 + 2a1) = 4c(D) + 4(c(D) − vA(D∗)) = 8c(D) − 4vB(D). (20)

Since vA(D), vB(D) are positive integers we have −2vA(D) +1 �= −2vB(D). It follows 
that the two expressions derived for y from Equations (19) and (20) do not agree and 
we arrived at a contradiction. We conclude that W−(K) is non-adequate.

To deduce the result for W+(K), let K∗ denote the mirror image of K. Note that 
W+(K) is the mirror image of W−(K∗). If W+(K) were adequate, then the mirror 
image W−(K∗) would also be adequate. But K∗ is a non-trivial adequate knot with 
wr(K∗) = wr(K) = 0, and our argument above shows that W−(K∗) is non-adequate. �
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Table 1
Prime, adequate, amphicheiral knots up to 12 crossings.

41 818 1043 12a435 12a506 12a1105 12a1275
63 1017 1045 12a471 12a510 12a1127 12a1281
83 1033 1099 12a477 12a1019 12a1202 12a1287
89 1037 10123 12a499 12a1039 12a1273 12a1288

We now finish the proof of Theorem 5.2.

Proof. Let D be an adequate diagram of K with writhe wr(D). If needed, first adjust 
D by Reidemeister I moves so that it has zero writhe number. Then, let W−(D) (resp. 
W+(D)) be the diagram of W−(K) (resp. W+(K)) obtained by taking a parallel copy 
of D and connecting the two copies by a negative (resp. positive) clasp. Clearly W±(D)
has 4c(K) + 2|wr(K)| + 2 crossings. Thus the upper inequality follows.

As discussed in the proof of Lemma 5.4, we have

jdW±(K)

2 = 2(2c(D) + 1
2) = (4c(K) + 1) ≥ c(W±(D)) − 1 − 2wr(K),

and hence, if wr(K) = 0, we get jdW±(K)

2 = c(W±(D)) − 1. On the other hand, by 
Lemma 5.5, if wr(K) = 0 then W±(K) is non-adequate. Thus, if wr(K) = 0, Corollary 5.1
applies to give c(W±(K)) = c(W±(D)) = 4c(K) + 2. �
5.2. Doubles of amphicheiral knots

Note that amphicheiral (a.k.a. equivalent to their mirror image) adequate knots must 
have wr(K) = 0. This means that amphicheiral adequate knots admit adequate diagrams 
of zero writhe number. By Theorem 5.2 we have the following.

Corollary 5.6. Suppose that K is an amphicheiral adequate knot with crossing number 
c(K). Then c(W−(K)) = 4c(K) + 2.

The figure-8 knot is the first example on the knot table to which Corollary 5.6 applies. 
For m > 0, letting Km denote the connected sum of m-copies of the figure-8 knot we 
have c(W±(Km)) = 16m + 2. This should be compared with the discussion in [5].

For completeness, in Table 1 we give the list of all the prime knots up to 12 cross-
ings to which Corollary 5.6 applies. The information is taken from KnotInfo [18], where 
the terminology used for knots that are equivalent to their mirror images is fully am-
phicheiral.

A way to produce amphicheiral knots is to take connected sums of knots with their 
mirror images as in Corollary 1.3 which we prove next.

Corollary 1.3. For a knot K let K∗ denote the mirror image of K. For every m > 0, let 
Km := #m(K#K∗) denote the connected sum of m-copies of K#K∗. Suppose that K is 
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adequate with crossing number c(K). Then, the untwisted Whitehead doubles W±(Km)
are non-adequate, and we have c(W±(K)) = 8mc(K) + 2.

Proof. Given an adequate diagram D = D(K), the mirror image of D, denoted by D∗

is an adequate diagram for K∗. The connected sum of adequate diagrams D#D∗ is an 
adequate diagram of K#K∗ with wr(K#K∗) = 0. Note, that the choice of orientations 
of K and K∗ may affect the (oriented) knot type K#K∗. Nevertheless, with any choice 
of orientations, the knot represented by the connected sum is adequate.

Similarly an adequate diagram of writhe zero for Km is obtained by taking the con-
nected sum of n-copies of D#D∗. Since the crossing number is known to be additive 
under connected sum of adequate knots, we have c(Km) = 2mc(K) and the result fol-
lows from Corollary 5.6. In fact, we get that W±(Dm) is a minimum crossing diagram 
for Km. �
Remark 5.7. Out of the 2977 prime knots with up to 12 crossings, 1851 are listed as 
adequate on KnotInfo [18]. Hence, Corollary 1.3 applies to them.

5.3. Doubles of torus knots

For co-prime integers p, q with 1 < p, q, let Tp,q denote the (p, q) torus knot. It is 
known that c(Tp,q) = min{p(q − 1), q(p − 1)}. On the other hand, as it can be found for 
example in [7], we have that jdK = pq < 2c(Tp,q), for q > 2. Thus Tp,q is not adequate 
for q > 2.

Proposition 5.8. We have c(W±(Tp,q)) > 2c(Tp,q).

Proof. The Jones diameter jdW for W = W±(Tp,q) has been calculated in [3, Lemma 
7.3] where it was also shown that W is non-adequate. We have jdW = 4pq + 2. Now 
Theorem 4.2 implies that c(W±(Tp,q) > jdW

2 = 2pq + 1 = 2c(Tp,q) + 2min{p, q} + 1 >
2c(Tp,q). �
5.4. Crossing number of connected sums

Here we give applications of Corollary 5.1 to the question on additivity of crossing 
numbers under connected sum of knots [13, Problems 1.67]. As already mentioned, for 
adequate knots the crossing number is additive under connected sum. The next result 
proves additivity for families of knots where one summand is adequate while the other 
is not.

Theorem 1.4. Suppose that K is an adequate knot with wr(K) = 0, and let K1 :=
W±(K). Then for any adequate knot K2, the connected sum K1#K2 is non-adequate 
and we have
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c(K1#K2) = c(K1) + c(K2).

Before we proceed with the proof of the theorem we need some preparation. Given a 
knot K, such that for n large enough the degrees of the colored Jones polynomials of K
are quadratic polynomials with rational coefficients, we will write

−4 d−[JK(n)] = x(K)n2 +y(K)n+z(K) and 4 d+[JK(n)] = x∗(K)n2 +y∗(K)n+z∗(K).

We also write

d+[JK(n)] − d+[JK(n)] = d2(K)n2 + d1(K)n + d0(K).

Now let K1, K2 be as in the statement of Theorem 1.4. By assumption and Proposi-
tion 5.3, for n large enough the degrees of the colored Jones polynomials of both K1 and 
K2 are quadratic polynomials. For the proof we need the following elementary lemma.

Lemma 5.9. For large enough n, the degrees d±[JK1#K2(n)] are polynomials, and we have 
the following.

(a) x(K1#K2) = x(K1) + x(K2) and x∗(K1#K2) = x∗(K1) + x∗(K2).
(b) y(K1#K2) = y(K1) + y(K2) − 2 and y∗(K1#K2) = y∗(K1) + y∗(K2) − 2.
(c) d2(K1#K2) = d2(K1) + d2(K2) and d1(K1#K2) = d1(K1) + d1(K2) − 1.

Proof. The reduced colored Jones polynomial of a knot K is defined by JK(n) := JK(n)
JU (n) , 

where JK(n) := JK(n)(t) and JU (n) := JU (n)(t) are given in Definition 3.5. Since the 
reduced polynomial is known to be multiplicative under connected sum [16], we get 
JK1#K2(n) = JK1(n) · JK2(n). The desired results follow easily since −4 d−[JU (n)] =
2n − 2 = 4 d+[JU (n)]. �

The second ingredient we need for the proof of Theorem 1.4 is the following lemma.

Lemma 5.10. Suppose that K is a non-trivial adequate knot with wr(K) = 0, and let 
K1 := W±(K). Then for any adequate knot K2, the connected sum K1#K2 is non-
adequate.

Proof. The claim is proved by applying the arguments applied to K1 = W±(K) in the 
proofs of Lemmas 5.4 and 5.5 to the knot K1#K2 and using the fact that the degrees 
of the colored Jones polynomial are additive under connected sum. For the convenience 
of the reader we outline the argument.

First we claim that if K1#K2 were adequate then we would have

c(K1#K2) = 4c(K) + 1 + c(K2), (21)

gT (K1#K2) = c(K) + 2gT (K) + gT (K2) − 1.



E. Kalfagianni, C.R.S. Lee / Advances in Mathematics 417 (2023) 108937 33
To see this first write

d+[JK1#K2(n)] − d−[JK1#K2(n)] = d2(K1#K2)n2 + d1(K1#K2)n + d0(K1#K2),

then as in the proof of Lemma 5.5, we compute the coefficients di(K1#K2), for i = 1, 2
in two ways.

One way to compute these coefficients is using Lemma 5.9 and Proposition 5.3. By 
Lemma 5.9, d2(K1#K2) = d2(K1) + d2(K2) while d1(K1#K2) = d1(K1) + d1(K2) − 1, 
where by the calculations in the proof of Lemma 5.4, d2(K1) = 2c(K) + 1

2 and d1(K1) +
d2(K1) = 2 − 2gT (K) − c(K). The corresponding quantities for K2 are computed via 
Equation (15).

The second way to compute these coefficients, is to use Equation (15) to obtain a 
second expression for d2(K1#K2) = c(K1#K2)

2 and d2(K1#K2) + d1(K1#K2) = 1 −
gT (K1#K2). Finally, compare these two expressions to obtain the claim.

Next apply the argument of the proof of Lemma 5.5 to show that K1#K2 is non-
adequate. By passing to mirror images as in the end of the proof of Lemma 5.5, it is 
enough to prove that K1#K2 with K1 = W−(K) is non-adequate. To that end, start 
with D = D(K) an adequate diagram of zero writhe and let D1 := W−(D). Also let D2
be an adequate diagram of K2.

As in the proof of Lemma 5.5 conclude that D2#D1 is a B-adequate diagram for 
K1#K2 and that the quantities vB(D1#D2) = (2vB(D) + 1) + vB(D2) − 1 = 2vB(D) +
vB(D2) and c+(D1#D2) = 4c+(D) + c+(D2) are invariants of K1#K2.

Next suppose, for a contradiction, that K1#K2 is adequate and let D̄ be an adequate 
diagram. We have

vB(D̄) = vB(D1#D2) = 2vB(D) + vB(D2) and c+(D̄) = 4c+(D) + c+(D2).

By [1] and Equations (21) we have

gT (D̄) = gT (K1#K2) = c(K) + 2gT (D) + gT (D2) − 1. (22)

By (21), and the fact that adequate diagrams realize the knot crossing number, c(D̄) =
4c(D) + 1 + c(D2) and c(K) = c(D).

Now using the definition of the Turaev genus of knot diagrams to expand the leftmost 
and the rightmost sides of Equation (22) we get vA(D̄) = 2vA(D) + vA(D2) − 1.

Next we will calculate the quantity y(K1#K2) of Lemma 5.9 in two ways:
Firstly, since we assumed that D̄ is an adequate diagram for K1#K2, applying Equa-

tion (16), we get y(K1#K2) = 2(c(D̄) −vA(D̄)) = 8c(D) +2c(D2) −4vA(D) −2vA(D2) +4.
Secondly, by Lemma 5.9, we get y(K1#K2) = y(K1) + y(K2) − 1, which combined 

with Equations (20) and (16) gives y(K1#K2) = 8c(D) −4vB(D) +2c(D2) −2vA(D2) −1. 
We note that in order for the two resulting expressions for y(K1#K2) to be equal we 
must have 4vA(D) + 4 = −4vB(D) − 1 or −1 ≡ 0 mod 4, which is absurd. We conclude 
that K1#K2 is non-adequate. �
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Now we give the proof of Theorem 1.4.

Proof. Note that if K is the unknot then so is W±(K) and the result follows trivially. 
Suppose that K is a non-trivial knot. Then by Lemma 5.10 we obtain that K1#K2 is 
non-adequate.

As discussed above jdK1 = 2(4c(K) + 1) = 2(c(W±(D)) − 1). On the other hand, 
jdK2 = 2c(D2) = 2c(K) where D2 is an adequate diagram for K2. Hence, by Lemma 5.9, 
jdK1#K2 = jdK1 +jdK2 = 2(c(W±(D)) +c(D2) −1), and setting D1 = W±(D) we obtain 
jdK1#K2 = 2(c(D1#D2) − 1). Thus by Corollary 5.1, we obtain that c(K1#K2) =
c(D1#D2) = c(D1) + c(D2) = c(K1) + c(K2), where the last equality follows since, by 
Theorem 5.2, we have c(K1) = c(D1) = c(W±(D)). �
Remark 5.11. In [4] Baker, Motegi and Takata computed the Jones slopes of Mazur 
doubles of adequate knots. Then they use the methods of this section to show that if 
K is an adequate knot with crossing number c(K) and writhe wr(K), then the crossing 
number of the Mazur double of K is either 9c(K) + 2 or 9c(K) + 3.
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