
ATG
Algebraic & Geometric
Topology

msp

Volume 22 (2022)

Cusp volumes of alternating knots on surfaces

BRANDON BAVIER





msp
Algebraic & Geometric Topology 22 (2022) 2467–2532

Cusp volumes of alternating knots on surfaces

BRANDON BAVIER

We study the geometry of hyperbolic knots that admit alternating projections on
embedded surfaces in closed 3–manifolds. We show that, under mild hypothesis, their
cusp area admits two-sided bounds in terms of the twist number of the alternating
projection and the genus of the projection surface. As a result, we derive diagrammatic
estimates of slope lengths and give applications to Dehn surgery. These generalize
results of Lackenby and Purcell about alternating knots in the 3–sphere.

Using a result of Kalfagianni and Purcell, we point out that alternating knots on
surfaces of higher genus can have arbitrarily small cusp density, in contrast to
alternating knots on spheres whose cusp densities are bounded away from zero
due to Lackenby and Purcell.
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1 Introduction

Given a knot K in a closed 3–manifold Y , we get a 3–manifold by looking at the
complement, Y n K. By W Thurston [36] and Epstein and Penner [14], this manifold
admits a canonical decomposition into geometric pieces. Often, Y n K is hyperbolic —
that is, it admits a Riemannian metric of constant curvature �1 and has finite volume.
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By Mostow–Prasad rigidity [34], geometric measurements in the hyperbolic metric are
also topological invariants of Y n K.

In S3, we study knots through their projections onto a 2–sphere, and in this setting,
a goal of modern knot theory is to relate the geometry of the knot complement to
diagrammatic quantities and invariants. Lackenby has shown that the volume of
hyperbolic alternating links in S3 admits two-sided bounds in terms of the twist number
of any alternating diagram [28], while Agol and D Thurston, in the appendix of [28],
improved the upper bound for all hyperbolic links. This upper bound was then improved
by Adams [2]. Futer, Kalfagianni, and Purcell have extended the lower bound to more
general classes of links [15; 16; 20], and have obtained other diagrammatic lower
volume bounds by looking at the guts of state surfaces of semiadequate links [18; 19].

In the study of knots through their projections, it is also natural and important to
search for diagrammatic criteria for recognizing hyperbolicity. A classical result
of Menasco [31] states that prime alternating knots in S3 are either hyperbolic or
.2; p/–torus knots. Several authors have looked at generalizations of alternating links
and were able to extract geometric information from their projections. Adams, for
example, studied knots and links projected onto a torus [1], and found conditions
for when these were hyperbolic. Hayashi [22] and Ozawa [33] also extended these
for knots on higher genus closed surfaces in S3. Adams, Albors-Riera, Haddock,
Li, Nishida, Reinoso, and Wang [4] studied alternating links in thickened surfaces,
and Champanerkar, Kofman, and Purcell [10] looked at alternating links in thickened
tori arising from biperiodic alternating links. Howie and Purcell studied a different
generalization of alternating knots, called weakly generalized alternating knots [23] (see
Definition 2.3 below), which are projected onto a general surface in any 3–manifold.
They showed that such knots are hyperbolic and found lower bounds for their volume,
under the condition that the regions of the projection are disks.

An important geometric invariant of hyperbolic knots, which is much less understood
than the volume of the knot complement, is the cusp volume. Futer, Kalfagianni, and
Purcell [17] gave two-sided diagrammatic bounds for cusp volumes of closed 3–braids
and of 2–bridge knots. More recently, Lackenby and Purcell gave two-sided linear
bounds for the cusp volume of usual alternating knots in terms of twist numbers of
alternating projections [29].

In this paper, we generalize the work of Lackenby and Purcell for weakly generalized
alternating knots in irreducible 3–manifolds. Our main result is the following theorem,
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which gives two-sided bounds on the cusp volume of such knots, under mild restrictions.
The terms involved in the statement of the theorem are defined in Section 2. These
restrictions are given in terms of two quantities, the edge representativity e.�.K/; F /

and the representativity r.�.K/; F /, that are naturally associated to weakly generalized
alternating knots. We note that the hypothesis on r.�.K/; F / is automatically satisfied
in the case that the projection surface is incompressible in Y (Definition 2.2).

Theorem 1.1 Let Y be a closed, irreducible 3–manifold and F � Y a closed surface
with �.F / � 0 and such that Y n N.F / is atoroidal. Suppose that K is a weakly
generalized alternating knot with a projection �.K/ � F that is weakly twist-reduced,
and we have e.�.K/; F / > 2 and r.�.K/; F / > 4. Then Y n K is hyperbolic, and

5:8265514 � 10�7

2.120 � �.F //6
.tw�.K/ � �.F // � CV.K/ �

.360 tw�.K/ � 3�.F //2

tw�.K/
;

where CV.K/ is the cusp volume of K and tw�.K/ the twist number of �.K/.

The case that F is a Heegaard torus in a Lens space (including in S3), Theorem 1.1
has the following topological application:

Theorem 1.2 Suppose that Y is a Lens space or S3 and that F is a Heegaard torus
in Y . For any closed 3–manifold M with Gromov norm at least 2:3984 � 1023, there
are finitely many weakly generalized alternating knots K � Y with projections �.K/

as in Theorem 1.1 and slopes � such that M is obtained by Dehn filling Y nK along � .

Theorem 1.2, which generalizes Lackenby and Purcell [30, Theorem 1.3], is related
to Problem 3.6(D) in Kirby’s list [26], which asks if there are any 3–manifolds which
can be obtained by surgery along an infinite number of distinct knots in S3. While
Osoinach [32] proved that such manifolds exist, by Theorem 1.2, when we restrict
to certain weakly generalized alternating knots we can’t find such manifolds of large
Gromov norm. We will prove this theorem in Section 1.3.

1.1 Slope lengths on the cusp

Given a hyperbolic knot complement M D Y n K there is a well defined notion of its
maximal cusp C . The boundary of C , denoted by @C , inherits a Euclidean structure
from the hyperbolic metric. Given an essential simple closed curve � � @C (aka a
slope), the length of � is the Euclidean length of the unique geodesic in the homotopy
class of � . We will denote this length by `.�/.

Algebraic & Geometric Topology, Volume 22 (2022)
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Definition 1.3 If K is a knot in a 3–manifold Y , take a regular torus neighborhood
of K. The meridian m is the curve that bounds a disk in Y that intersects K exactly once.

The 6–theorem of Agol and Lackenby [7; 27] implies that every hyperbolic knot in
a nonhyperbolic 3–manifold has meridian with length at most 6. Adams, Colestock,
Fowler, Gillam, and Katerman [5] proved that, for hyperbolic knots in S3, the meridian
has length strictly less than 6. The techniques of [5] where extended in Burton and
Kalfagianni [9] to obtain upper bounds on slope lengths of hyperbolic knots in 3–
manifolds in terms of spanning surfaces of the knots.

By W Thurston [36], the length of any slope with respect to the maximal cusp is
bounded below by 1, but more effective lower bounds are hard to find. Adams [3]
showed that the meridian of any knot except 41 and 52 is bounded below by 21=4. For
knots in S3 with projections that have at least 145 crossings per region, Purcell showed
that the length of nonmeridian slopes is bounded below by a constant times the twist
number [35]. Futer, Kalfagianni, and Purcell [17] found a similar bound for two-bridge
knots. This was generalized by Lackenby and Purcell [29] for all alternating hyperbolic
knots in S3. Here we will discuss slope length bounds for alternating knots on surfaces.

The cusp area, denoted by area.@C /, is the Euclidean area of @C , and it is also twice
the cusp volume CV.K/. Given a nonmeridian slope � � @C , as in Cooper and
Lackenby [11], we see that

`.�/`.�/ � area.@C /�.�; �/;

where �.�; �/ is the geometric intersection number of our slopes on @C .

Using Theorem 1.1 and a result of Burton and Kalfagianni [9], we obtain the following
corollary, the proof of which is given in Section 3.

Corollary 1.4 Let Y be a closed, irreducible 3–manifold and F � Y a closed surface
with �.F / < 0 and such that Y n N.F / is atoroidal. Suppose that K is a weakly
generalized alternating knot with a projection �.K/ � F that is weakly twist-reduced,
and we have e.�.K/; F / > 2, and r.�.K/; F / > 4. Let � be the meridian and � any
nonmeridian slope on the maximal cusp of Y n K. Then

`.�/ �
720.tw�.K/ � �.F //

tw�.K/
and `.�/ �

�
5:8265514 � 10�7

720.120 � �.F //6

�
tw�.K/;

where tw�.K/ is the twist number of �.K/.
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1.2 Dehn filling applications

The bounds on slopes from Corollary 1.4 have applications for Dehn surgery along
knots that admit weakly generalized alternating projections. The 2� theorem of Futer,
Kalfagianni, and Purcell [15] gives us volume bounds for Dehn filling a cusped manifold
along a slope of length at least 2� :

Theorem 1.5 [15, Theorem 1.1] Let M be a complete , finite-volume hyperbolic
manifold with a single cusp C . Let � be a slope on @C with length `.�/ greater
than 2� , and let M.�/ denote the 3–manifold obtained by Dehn filling M along � .
Then M.�/ is hyperbolic and we have

vol.M.�// �

�
1 �

�
2�

`.�/

�2 �3=2

vol.M /:

Combining this with Theorems 1.1, 2.5 [23, Theorem 1.1], and 1.5 and W Thurston [36],
we get:

Theorem 1.6 Let K be a weakly generalized alternating knot on a surface F ¤ S2 in
a closed manifold Y with conditions as in Theorem 1.1. Suppose that

tw�.K/ > .2:32928 � 1010/.120 � �.F //6:

Then any manifold M obtained from nonmeridional surgery along K is hyperbolic and

1
4
v8.tw�.K/ � �.F // �

1
2

vol.Y n K/ � vol.M / < vol.Y n K/:

Here v8 � 3:66386 is the volume of a regular hyperbolic ideal octahedron.

To get the leftmost inequality, we can first use Lemma 2.6 to get that the regions of
F n K are all disks, which then allows us to use Theorem 2.5 to get a lower bound on
volume. Then, for the center inequality, by taking our number of twist regions to be
high enough, we get that the lengths of any slopes must be at least 2� , and so we can
apply Theorem 1.5. Finally, the rightmost inequality comes from W Thurston and the
fact that volume must decrease under surgery [36].

1.3 Weakly generalized alternating knots in lens spaces

While the geometry of these generalized knots has several features in common with alter-
nating knots, there are still several key differences. In particular, because we can change
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which projection surface we are working with, we must often consider the topology
of F in our formulas. For example, in the case of volume, every alternating knot in S3

has an upper and lower bound on volume based solely on the number of twist regions
of a diagram on S2, by work of Lackenby, and improved by Agol and D Thurston [28].
Kalfagianni and Purcell obtained a similar result for weakly generalized alternating
knots on Heegaard tori of Lens spaces. Specifically, Corollary 1.5 of [25] states the
following: Suppose K has a weakly generalized alternating projection �.K/ to a
Heegaard torus F in Y D S3, or in Y a lens space. Suppose that �.K/ is twist-reduced,
the regions of F n �.K/ are disks, and the representativity satisfies r.�.K/; F / > 4.
Then Y n K is hyperbolic, and we have vol.Y n K/ � 10v3 tw�.K/, where v3 is
the volume of an ideal hyperbolic tetrahedron. We will now use this result to prove
Theorem 1.2.

Proof of Theorem 1.2 We proceed as in Kirby [30], and will need a theorem of Cooper
and Lackenby [11], which states that, for any � > 0 and any closed 3–manifold M ,
there are at most finitely many cusped hyperbolic manifolds X and slopes � on cusps
@X , with length at least 2� C �, such that M is obtained by Dehn filling X along the
slopes � . Set B.F / D .5:8265514�10�7/=

�
720.120��.F //6

�
, the quantity appearing

in the lower bound for `.�/ in Corollary 1.4.

We will also use Corollary 1.4 in the case that F is a torus, so �.F / D 0. By a direct
calculation we get 1

720
B.F / � 2:710139�10�22. This means that for any nonmeridian

slope � on the maximal cusp of X D Y nK we have `.�/ � 2:710139�10�22 tw�.K/.

Let K be a weakly generalized alternating knot K on the torus F , with r.�.K/; F / > 4

and e.�.K/; F / > 2 as in the statement of the corollary. Also let M be a 3–manifold
with Gromov norm at least 2:3984 � 1023, and suppose that M is obtained by Dehn
filling from X D Y nK, along a slope � . As the Gromov norm does not increase under
Dehn filling, X must also have Gromov norm at least 2:3984 � 1023. As hyperbolic
volume and Gromov norm are proportional, this tells us that

v32:3984 � 1023
� vol.X / � 10v3 tw�.K/;

with the last inequality coming from [25, Corollary, 1.5] mentioned above. So then
tw�.K/ must be at least 2:3984 � 1022.

Finally, by Corollary 1.4 in the case where F is a torus, we have that the length `.�/ is
at least .2:3984�1022/.2:710139�10�22/ > 6:5. If we take � D 6:5�2� , then using
the theorem of Cooper and Lackenby, we are done.
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The proof of Theorem 1.2 doesn’t work for weakly generalized alternating knots on
higher genus surfaces. This is due to a lack of an upper bound on volume in terms of
tw�.K/. Indeed, Kalfagianni and Purcell [25] found a family of weakly generalized
alternating knots in S3 with constant tw�.K/ on a Heegaard surface of genus two,
whose volumes are arbitrarily large. The cusp density of a knot K � Y is the ratio of
the cusp volume of K over the volume of Y n K. As a consequence of this, and the
upper bound of Theorem 1.1, one obtains the following:

Corollary 1.7 [25, Corollary 1.5] There exist weakly generalized alternating knots
in S3 with arbitrarily small cusp density.

Corollary 1.7 shows that weakly generalized alternating knots even in S3 are geo-
metrically genuinely different than usual alternating knots. Indeed, due to Lackenby
and Purcell [29], ordinary alternating knots are known to have cusp densities that are
bounded below uniformly away from zero.

Organization and outline

The remainder of this paper is split into six sections. In Section 2, we introduce several
relevant definitions and constructions, including weakly generalized alternating knots,
twisted checkerboard surfaces, and cusp area. The twisted surfaces are obtained by
appropriate modifications of the checkerboard spanning surfaces associated with a
weakly generalized alternating knot projection. We finish the section with the statement
of Theorem 2.7, that, under appropriate hypotheses, the twisted checkerboard surfaces
are �1–injective in the knot complement. This theorem and results we obtain during
the course of its proof, are key ingredients for the proof of Theorem 1.1. The proof of
Theorem 2.7 occupies Sections 4–7 of the paper.

In Section 3 we prove Theorem 1.1, assuming Theorems 2.7 and 3.4. The proof of the
latter result is also postponed till Section 7, as it relies on the machinery developed for
the proof of Theorem 1.1. There are several geometric results we use from Lackenby
and Purcell [29], especially those relating essential surfaces to geodesics and area.
While we will mention the relevant results and their proofs, including why they hold
for our general case, for the complete picture it is recommended to look at the original
paper.

In Section 4, we talk more in depth about weakly generalized alternating knots, focusing
particularly on what happens to them under augmentation (removing or adding crossings
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in pairs). In Sections 5–7, we generalize Lackenby and Purcell [30], focusing on how
disks in the knot complement might intersect the twisted checkerboard surfaces. The
combinatorics of these intersections are encoded by certain planar graphs. The proof
of Theorem 2.7 relies on a careful analysis of properties of these graphs that lead us to
understand how a potential disk might intersect the twisted surface, as well as other
surfaces arising from the knot projection.
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2 Definitions

Before we begin, we’ll introduce some definitions and tools we will use throughout this
paper. We will start with a generalization of alternating knots, called weakly generalized
alternating knots. Then, we will introduce the surfaces we will be examining. Finally,
we will summarize a few of the proofs from [29] that can be used for generalized knots
with few to no changes.

2.1 Weakly generalized alternating knots

These definitions are covered in more detail, and slightly more generality, in [23]. Let
Y be a compact, orientable, irreducible 3–manifold with a closed, orientable surface
F with Y n N.F / irreducible, which we call a projection surface. Given a knot
K � F � I � Y , we can get a projection �.K/ by flattening F � I down to just F ,
and keeping track of where the knot goes. We call �.K/ a generalized diagram. Note
that the original definition of a projection surface also includes the case of F being a
disconnected surface [23]. However, as we will only be dealing with knots, we are safe
to assume that F is connected.

As we are not working with F D S2 � S3, we need to modify some of the usual
definitions we have for knots. In the setting of F D S2, one uses the fact that all
curves in S2 bound disks to define primeness. Because we do not have this property
for general surfaces, we modify as below:

Algebraic & Geometric Topology, Volume 22 (2022)
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Definition 2.1 We say that �.K/ � F is weakly prime if, whenever D � F is a disk
with @D intersecting �.K/ transversely exactly twice, either

� F D S2 and either �.K/ \ D or �.K/ \ .F n D/ is a single arc; or

� F has positive genus and �.K/ \ D is a single arc.

In order to generalize the proofs that follow, we will want to make sure that our knots
are sufficiently complex. To do this, we will introduce two conditions on the knot:

Definition 2.2 The edge representativity e.�.K/; F / is the minimum number of inter-
sections between �.K/ and any essential curve on F . The representativity r.�.K/; F /

is the minimum number of intersections between �.K/ and a compression disk of F ,
taken over all compressions disks of F . If there are no essential curves, we set
e.�.K/; F / to be 1, while if there are no compression disks, we set r.�.K/; F / to
be 1.

While the definition of a weakly generalized alternating knot only uses the representa-
tivity, many of our proofs will also need the edge representativity to be high enough to
deal with some edge cases. Now, though, we have enough to give a definition for a
weakly generalized alternating knot.

Definition 2.3 Let F � Y be a projection surface as above. Then the diagram �.K/

on F of a knot K is reduced alternating if

(1) �.K/ is alternating on F ,

(2) �.K/ is weakly prime,

(3) �.K/ \ F ¤ ∅,

(4) �.K/ has at least one crossing on F .

If we also have

(5) �.K/ is checkerboard colorable on F ,

(6) r.�.K/; F / � 4,

then �.K/ is a weakly generalized alternating diagram, and K is a weakly generalized
alternating knot.
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These knots have been studied in several other papers, as well as knots that satisfy
subsets of this definition. These were introduced by Howie and Rubenstein [24] in S3

as generalizations of Hayashi [22] and Ozawa [33], and generalized further to other
manifolds Y by Howie and Purcell [23].

If we ignore the final two conditions of the above definition, and just look at reduced
alternating, we get as a subset generalized alternating knots in S3, as studied by Ozawa
in [33], with the additional restrictions that Y D S3 and �.K/ is strongly prime, which
implies weakly prime. These knots are also checkerboard colorable, although the
representativity is only at least 2 [33, Theorem 2.2]. If we don’t require �.K/ to be
weakly prime, and let F be a Heegaard torus, we get toroidally alternating knots, as
studied by Adams [1]. More broadly, this category also includes alternating knots on a
Heegaard surface F , as studied by Hayashi [22]. This also fits the alternating projection
of a knot �.K/ onto its Turaev surface F , which also has the property that the regions
of F n�.K/ are disks [13]. By contrast, for reduced alternating and weakly generalized
alternating knots, F does not need to be a Heegaard surface, nor does F n �.K/ need
to be disks. In addition, the requirement that r.�.K/; F / be large enough also often
guarantees that our diagram will be sufficiently complicated.

In this paper, we will narrow our definition by requiring the representativity r.�.K/; F /

to be strictly greater than 4, and adding in that the edge representativity e.�.K/; F / is
at least 4. These restrictions will allow us to later rule out certain troublesome cases
caused by working on a surface with genus. We will also define twist-reduced in this
general case, following Howie and Purcell [23, Definition 6.3]:

Definition 2.4 A reduced alternating knot diagram �.K/ on F is weakly twist-reduced
if every disk D in F , with @D meeting �.K/ in exactly two crossings, either contains
only bigon faces of F n �.K/ or is disjoint from a disk D0, where @D0 meets �.K/ in
the same two crossings and bounds only bigon disks.

We will need the following result of Howie and Purcell, which allows us to determine
when a knot (or link) is hyperbolic based on a generalized alternating projection, and
bounds the volume with diagrammatic quantities.

Theorem 2.5 [23, Theorem 1.1] Let �.L/ be a weakly generalized alternating projec-
tion of a link L onto a generalized projection surface F in a 3–manifold Y . Suppose
Y is compact , orientable , irreducible , and has empty boundary. Finally , suppose
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Y n N.F / is atoroidal. If F has genus at least one , the regions in the complement
of �.L/ on F are disks , and the representativity r.�.L/; F / > 4, then:

(1) Y n L is hyperbolic.

(2) Y n L admits two checkerboard surfaces that are essential and quasifuchsian.

(3) The hyperbolic volume of Y n L is bounded below by a function of the twist
number of �.L/ and the Euler characteristic of F :

vol.Y n L/ �
1
2
v8.tw�.L/ � �.F //:

In order to use this, we must show:

Lemma 2.6 Let �.K/ be a weakly generalized alternating projection of K onto a
generalized projection surface F . If e.�.K/; F / � 4, then the regions of F n �.K/ are
all disks.

Proof Suppose not. Then one of the regions of F n �.K/ either contains an annulus
whose core is essential or there is a region that meets itself at a crossing. If the
region has an annulus, take 
 to be the core. Then 
 doesn’t intersect �.K/, and so
e.�.K/; F / D 0, a contradiction. If a region meets itself at a crossing, let 
 be the
curve that meets this crossing and then connects back to itself in the region. Then 


intersects �.K/ exactly twice (at just the crossing), so e.�.K/; F / � 2, a contradiction.
Thus if e.�.K/; F / � 4, then the regions of F n �.K/ are all disks.

2.2 Twist number remarks

The twist number of a knot diagram is the number of twist regions in the diagram D,
often labeled tw.D/. In the traditional case, working with projection surface S2

inside S3, we can look at the minimum twist number over all diagrams, and get the twist
number of the knot, tw.K/. This is an invariant of the knot. If we require our diagram
to be prime, reduced, twist-reduced, and alternating, we get that tw.D/ D tw.K/, and
so the twist number of this diagram is an invariant.

In the case of knots projected onto a surface that isn’t S2, however, we don’t necessarily
have an invariant. Howie was able to find two different weakly generalized alternating
diagrams of the 929 knot on a Heegaard torus in S3 with two different twist numbers.

It is not known, however, if the twist number of a twist-reduced diagram of a weakly
generalized alternating knot is an invariant in other settings. For example, when we
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even odd

Figure 1: The steps of augmenting a link. From left to right: a knot K with
three twist regions, only two of which are highly twisted; adding crossing
circles to get L; removing all but one or two crossings to get L2; removing
crossing circles to get K2.

look at knots in thickened surfaces S � I , we know the crossing number of a reduced
alternating diagram is an invariant [6]. As such, it’s natural to ask if the twist number
is invariant here.

2.3 Twisted surfaces

Now that we have a knot, we can look at different spanning surfaces for K. Two
immediate surfaces we get are the checkerboard surfaces, which we can color red and
blue, and label R and B respectively, both of which are essential in Y n �.K/. While
we could, as in the first half of [29], proceed with just R and B, this will give us a lower
bound based on both the twist number as well as the number of crossings. Instead, we
will follow the second half, and use the twisted checkerboard surfaces of Lackenby
and Purcell [30], which we will now describe how to construct.

Let K be a weakly generalized alternating hyperbolic knot on a surface F . Before we
build the twisted surfaces for our knot, we must first augment our link. Technically, we
will be working with the projected diagram �.K/ � F as opposed to the knot itself,
however we will abuse notation and refer to this diagram as K.

Let Ntw be some number. While we will eventually set this number to be at least 121,
for definitions it can be as large or as small as we want. Around each twist region with
at least Ntw crossings in it, add a crossing circle, and call the augmented link L. For
each encircled twist region, remove pairs of crossings until only one or two remain.
We call this new link L2. Note that Y n L is homeomorphic to Y n L2 by twisting
along the neighborhoods of the crossing circles. Let K2 be the diagram where we have
removed all of the crossing circles from L2.

This new knot, K2, remains weakly generalized alternating, which we shall prove in
Section 4. As such, as long as Y n K is hyperbolic, so is Y n K2.
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In order to get our twisted surfaces for K, we will start with surfaces for K2, and
work our way back up the chain. As K2 is weakly generalized alternating, it has two
checkerboard surfaces on F , which we can color blue and red. Next, when we go
back to L2, that is, when we put our crossing circles back in, each crossing circle will
intersect either the red or the blue surface. Furthermore, when we look at Y n L2, each
crossing circle will have a regular neighborhood that intersects either the red surface
or the blue surface in a meridian disk. So then define the blue and red surfaces in the
exterior of L2 to be the blue and red surfaces of K2 punctured by the crossing circles
of L2. We will denote these by B2 and R2, respectively.

Now we need to send B2 and R2 back to Y n L. Adding back in the crossings is the
same as twisting along the crossing circles. Most of B2 and R2 will twist to give us the
usual checkerboard surface of L. Things will change, however, where the surfaces meet
the crossing circle. If we removed 2n crossings from a twist region to get to L2, we
will need to twist a full n times around in order to get them back. That is, the meridian
curves where our surface intersects our crossing circles will go to ˙1=n curves on the
boundary of the crossing circle, with sign chosen appropriately.

Finally, to get back to Y n K, we need to fill in the crossing circles with a meridian
Dehn filling. So in order to get our twisted surfaces, we will need to complete them in
a way that makes sense with this filling. Note that each (meridional) cross-section of
the crossing circle intersects the punctured surfaces 2n times on the boundary. We then
connect opposite points by an interval running between them. When we do this for the
whole crossing circle, we will either be attaching a single annulus or two Möbius bands,
depending on the value of n. In either case, however, we now have two immersed
surfaces, which we can still color blue and red, and which we call twisted checkerboard
surfaces. We will denote them by SB;2 and SR;2 as appropriate.

Our goal with these surfaces is to prove:

Theorem 2.7 Let f W SB;2 ! Y nK be the immersion of our blue twisted surface SB;2

into our knot complement Y n K, where Y has no boundary components. Then this
immersion is �1–injective and boundary �1–injective provided that Ntw � 121.

Switching the roles of blue and red surfaces, Theorem 2.7 implies that the immersed
surfaces SR;2 are �1–injective and boundary �1–injective provided that Ntw � 121.

The proof of Theorem 2.7 will be given in Section 7. However, in Section 3, we will
assume Theorem 2.7, to derive Theorem 1.1.
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Figure 2: Left: L2 with the torus around the twist region. Blue circles mark
where the torus punctures the blue surface. Center left: twisting around the
torus gives us back L. In this case, we are only adding in one full twist for
simplicity. Center right: to complete the twisted surface, attach opposite sides
of the torus with a band, as represented on top and bottom. Here this amounts
to adding an Möbius band. Right: when we have more twists, things can
become more complicated. In addition, we might be adding two annuli instead.

2.4 Cusp volume and area

Let M be a finite-volume hyperbolic manifold with @M a collection of tori. Then the
ends of M are of the form T 2 � Œ1; 1/. As M is hyperbolic, we have some covering
map � W H3 ! M . Then if we look at the preimage of these ends, they look like
horoballs in H3.

For each end, we can choose a horoball representative Hi . The image of this represen-
tative, �.Hi/ D Ci is called a cusp of M . In actuality, we get a family of such cusps
as we shrink or expand Hi . In our case (a knot complement), there is only a single
cusp — the place where we removed the knot. When we only have a single cusp, we
can expand it as much as possible, until it becomes tangent to itself. In H3, this is
expanding each horoball preimage until they begin to become tangent to each other.
Once we have done this, we get what is called the maximal cusp of M . In the case of a
single cusp, this expansion is unique. We can, of course, generalize this to multicusped
manifolds, however it is not quite as neat. Depending on the order we expand the cusps,
we can get several maximal cusps, and each can have different properties.

Now, once we have our choice of cusp, C , we can start analyzing it. As our manifold
M has some (hyperbolic) geometric structure to it, C will naturally inherit a geometry
from it. And because we know the preimage of C is a horoball in H3, it must inherit a
hyperbolic structure and its boundary must be Euclidean. We can then ask about the
geometric properties of the cusp.
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Definition 2.8 The volume of a cusp C , denoted by vol.C /, is the Euclidean volume
of C . The area of a cusp, area.@C /, is the Euclidean area of @C . In the case that
M D Y n K we will use CV.K/ to denote the volume of the maximal cusp of M .

As we can view the boundary of a cusp as T 2 �1, by some simple calculus, we can see
that 1

2
area.@C / D vol.C /. As the volume can be found from the area, we will often

focus on just finding a single value, usually the area, and seeing what that gives us.

We have several methods to help us calculate the cusp area. First, if we have a
triangulation of M , we can find the area by direct computation, as has been implemented
in SnapPy [12]. When we work with fully augmented links, where all crossings of a
knot have been removed and crossing circles have been added in, we can completely
determine the geometry by a circle packing. In this case, we can use the circle packing
to find the cusp area [21].

Definition 2.9 Let � be the meridian of our knot, and � the shortest longitude. Then the
lengths of these curves, `.�/ and `.�/, determine the similarity class of the Euclidean
structure on @C . We call this similarity class the cusp shape.

Knowing the cusp shape can tell us about the area of the cusp since area.@C /�`.�/`.�/.

Adams, Colestock, Fowler, Gillam, and Katerman found upper bounds of slope lengths
and cusp shapes of a knot based on its crossing number [5]. Burton and Kalfagianni
found upper bounds coming from essential spanning surfaces of knots [9]. We need to
recall their result as we will use it in the next section.

Theorem 2.10 [9, Theorem 4.1] Let K be a hyperbolic knot with maximal cusp C , in
an irreducible 3–manifold Y . Suppose that S1 and S2 are essential spanning surfaces
in M D Y nK, and let i.@S1; @S2/ ¤ 0 denote the minimal intersection number of @S1

and @S2 in @C . Let `.�/ and `.�/ denote the lengths of the meridian and the shortest
longitude of K, respectively. Then:

`.�/ �
6j�.S1/j C 6j�.S2/j

i.@S1; @S2/
and `.�/ � 3j�.S1/j C 3j�.S2/j;

and

area.@C / �
18.j�.S1/j C j�.S2/j/2

i.@S1; @S2/
:

Algebraic & Geometric Topology, Volume 22 (2022)



2482 Brandon Bavier

Note that, while the authors in [5] state their result for hyperbolic knots in more
general manifolds, the original theorem of Burton and Kalfagianni is only stated in S3.
However, as remarked in their paper, the results also generalize to our broader category,
as well [9].

When looking at weakly generalized alternating knots, we can look at the two checker-
board surfaces, obtained by “checkerboard coloring” F n �.K/, and attaching same-
colored adjacent pieces by a twisted band at crossings. In the case of the weakly gener-
alized alternating knots we are studying, these surfaces are essential [23, Theorem 1.1].
Furthermore, with the proof that our twisted surfaces are essential in Theorem 2.7, we
get another upper bound based on tw�.K/ and �.F /, which we state and prove in
Theorem 1.1 at the end of the next section.

3 Cusp volumes of weakly generalized alternating knots

Now, assuming Theorem 2.7, which shows twisted surfaces are essential, we will prove
Theorem 1.1, and get a lower bound for the cusp area based on the twist number of
our knot and �.F /. For the lower bound we will adapt the approach of Lackenby and
Purcell [29] to our setting. We note that some of the results we reference from [29],
used there for knot complements in S3, apply immediately to knot complements in any
closed Y . For the convenience of the reader we will restate them and we will review
them and their proofs briefly below.

As a reminder of our goal, we’ll restate Theorem 1.1 here, but will postpone its proof
until the end of this section:

Theorem 1.1 Let Y be a closed, irreducible 3–manifold and F � Y a closed surface
with �.F / � 0 and such that Y n N.F / is atoroidal. Suppose that K is a weakly
generalized alternating knot with a projection �.K/ � F that is weakly twist-reduced,
and we have e.�.K/; F / > 2 and r.�.K/; F / > 4. Then Y n K is hyperbolic, and

5:8265514 � 10�7

2.120 � �.F //6
.tw�.K/ � �.F // � CV.K/ �

.360 tw�.K/ � 3�.F //2

tw�.K/
;

where CV.K/ is the cusp volume of K and tw�.K/ the twist number of �.K/.

Before we start the proofs, there is an important definition that we will use throughout.
Most geodesics in a hyperbolic manifold are bi-infinite, but we will want to be able to
talk about their lengths. As such, we use the following definition to get around this
complication:
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Definition 3.1 Let 
 be a (bi)infinite geodesic in a hyperbolic surface R, with both
ends in a horoball neighborhood H of the cusps of R. Then 
 \ H is a collection
of closed intervals (if 
 enters and exits H ) along with two half-open intervals (the
ends). The length of 
 with respect to H is the hyperbolic length of 
 minus the two
half-open intervals.

If ˛ is an arc with boundary on @R, we first find a geodesic 
 such that ˛ is homotopic
to 
 in R, and define the length of ˛ with respect to H to be the length of 
 with
respect to H .

The next result concerns an estimate of geodesic arcs on hyperbolic surfaces. We
will apply the result specifically to our twisted surfaces, but it works in more general
settings.

Theorem 3.2 [29, Theorem 2.7] Let S be a (possibly disconnected ) finite-area
hyperbolic surface. Let HS be an embedded horoball neighborhood of the cusps of S .
Let k D area.HS /=area.S/ and let d > 0. Then there is a collection of at least

.ked � 1/�

.ed � 1/.sinh.d/ C 2�/
j�.S/j

embedded disjoint bi-infinite geodesic arcs , each with both ends in HS , and each
having length at most 2d with respect to HS .

The next lemma that holds without change deals with estimating the cusp area of a
manifold, based on essential arcs of bounded length:

Lemma 3.3 Suppose that a one-cusped hyperbolic 3–manifold M contains at least p

homotopically distinct essential arcs , each with length at most L measured with respect
to the maximal cusp H of M . Then the cusp area area.@H / is at least p

p
3e�2L.

Proof (sketch) The proof is similar to that of Lemma 2.8 in [29]: each arc in our
collection has a geodesic representative in M , which then lifts to two geodesics in
the universal cover H3. Look at the “shadows” of these geodesics on the lift of the
maximal cusp @H (that is, a neighborhood of where the geodesic intersects @H ). For
the maximal cusp to be embedded, each of these neighborhoods must be disjoint, and,
because the length is at most L, the diameter of this neighborhood must be at least e�L.
This means that the total area of the disks must be 1

2
p�e�2L. Finally, combining with

a disk packing argument, we get that the area of the cusp must be at least p
p

3e�2L.
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Figure 3: The subsurface associated to the twist region. When it comes from
checkerboard surfaces, the subsurface can be colored red and blue, with one
component (blue in the picture) being two disks attached with Möbius bands
at each crossing, and the other being a twisted disk.

While these two lemmas suggest that we should use them one after the other, we must
be careful. The cusp in Theorem 3.2 is a two-dimensional cusp, while the cusp in
Lemma 3.3 is three-dimensional. In addition, the geodesic arcs of Theorem 3.2 live on
a surface, while the essential arcs of Lemma 3.3 are in the whole manifold. To get from
one to the other, we will need the following theorem, the proof of which is postponed
till Section 7.

Theorem 3.4 Let S be the disjoint union of our twisted surfaces SB;2 tSR;2. Suppose
that two distinct essential arcs in the surface SB;2 have homotopic images in Y nK, but
not SB;2. Then the two arcs are homotopic in SB;2 into the same subsurface associated
with some twist region of K2.

Here, a subsurface associated to a twist region is the intersection of one of the checker-
board surfaces with a regular neighborhood of the twist region; see Figure 3.

Corollary 3.5 Suppose N � 121. Let C be a collection of disjoint embedded essential
nonparallel arcs in SB;2 t SR;2 which are all homotopic in Y n K. Then the number of
arcs in C is at most 2.3N � 2/.

Proof By Theorem 3.4, all such arcs in C that lie in SB;2 can be homotoped in SB;2

to lie in a subsurface associated with a twist region of K2. This homotopy keeps these
arcs disjoint, essential, and nonparallel. Because of this, we can use the fact that the
number of disjoint, essential, and nonparallel arcs in a subsurface is at most 3c � 2,
where c is the number of crossings in the twist region associated to that subsurface.
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Then, as we are working in K2, we have c � N , so there are at most 3N � 2 such arcs
in the blue twisted surface. By switching out blue for red, we get that there are also at
most 3N � 2 such arcs in SR;2. Adding these together, we get that there are at most
2.3N � 2/ such arcs in total.

From Corollary 3.5 we can then limit how many disjoint arcs we get from Theorem 3.2.

In addition to these, [29, Proposition 3.5] gives us an embedded cusp in our twisted
surfaces with a lower bound on area, which we will use with Theorem 3.2:

Lemma 3.6 [29, Proposition 3.5] If S is the disjoint union of our twisted surfaces
with an immersion f W S ! Y nK, and H is the maximal cusp for Y nK, then there is
an embedded cusp HS for S contained in f �1.H / with area at least 25=4 tw�.K/, as
long as K is neither the figure-eight knot nor the 52 knot.

We can find such a cusp by pleating S (such a pleating exists because our twisted
surfaces are essential by Theorem 2.7) and giving it a hyperbolic structure, and then
letting the embedded cusp be the union of the cusps of the two twisted surfaces. The
lower bound on area then comes from carefully examining the boundaries of our twisted
surfaces. By resolving any intersections between the boundaries, we will get a number
of curves with length the same as the union of the two boundaries. The exact number is
based on the intersection number of our surfaces; in our case, SB;2 and SR;2 intersect
2 cr.K2/ � tw�.K/ times. Then, as long as K isn’t the figure-eight knot or the 52

knot, by Adams [3], we get that each curve must have length at least 25=4. Putting this
together, we then get the desired lower bound on area.

Finally, we will need the following lemma computing the Euler characteristic of the
disjoint union of our twisted surfaces:

Lemma 3.7 Suppose K is a weakly generalized alternating knot on a projection
surface F . Let twN .K/ denote the number of twist regions of �.K/ with at least N

crossings , and let cr.K2/ be the number of crossings of the diagram of �.K2/, the
knot where we remove all but 1 or 2 crossings from twist regions with more than
N crossings in even pairs. Then the Euler characteristics of the blue and red twisted
surfaces satisfy

j�.SR;2/ C �.SB;2/j D cr.K2/ C 2 twN .K/ � �.F /:
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Proof Note that the union of the two (nontwisted) checkerboard surfaces in K2 will
have each crossing arc of K2 appear twice, once in the red surface, and once in the
blue surface. Then, by splitting the crossing arcs of K2 into two homotopic arcs and
attaching the blue regions to one arc and the red regions to the other, we get that the
Euler characteristic for the disjoint union of these nontwisted surfaces is cr.K2/��.F /.
To obtain R2 and B2, the punctured surfaces, we remove two disks from each crossing
circle, and get j�.B2/C�.R2/j D cr.K2/C2 twN .K/��.F /. Then, finally, to obtain
the twisted surfaces, we connect these punctures by annuli or Möbius bands. This
doesn’t change the Euler characteristic, and so we get our desired result.

We are now ready to give the proof of Theorem 1.1.

Proof We will begin with the upper bound, using Theorem 2.10 (from [9]) to almost
immediately get our result. We know that j�.S/j D cr.K2/ C 2 twN .K/ � �.F / �

120 tw�.K/ � �.F /. Then, note that, by construction, our twisted surfaces must inter-
sect at least once for every twist region in our projection, so i.@SB;2; @SR;2/ � tw�.K/.
Finally, as �.SR;2/ and �.SB;2/ are both negative, we get

j�.SB;2/j C j�.SR;2/j D j�.SB;2/ C �.SR;2/j � 120 tw�.K/ � �.F /:

So, combining with Theorem 2.10, we get

area.@C / �
18.j�.SB;2/j C j�.SR;2/j/2

i.@SB;2; @SR;2/
�

18.120 tw�.K/ � �.F //2

tw�.K/
;

which finishes the proof of the upper bound.

To proceed with the proof of the lower bound define

A.F / D
181=4

5776�4

1

23=4�.120 � �.F //6 C 4.120 � �.F //5
:

To prove the lower bound of CV.K/ in Theorem 1.1 we will show that

A.F /.tw�.K/ � �.F // � area.@C / and A.F / �
5:8265514 � 10�7

.120 � �.F //6
:

Since 2 CV.K/ D area.@C /, we obtain the desired bound.

Let S be the disjoint union of the twisted blue and red surfaces, SB;2 t SR;2, with
an immersion f into Y n K. Then let H be the maximal cusp of Y n K, and HS

the embedded cusp for S contained in f �1.H / with area at least 25=4 tw�.K/ from
Lemma 3.6. Note that cr.K2/ is less than or equal to 120 times the number of twist
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regions with fewer than 121 twists. Thus cr.K2/ C 2 twN .K/ � 120 tw�.K/. Then,
by Lemma 3.7, we have

area.S/ D 2�.cr.K2/ C 2 twN .K/ � �.F // � 2�.120 tw�.K/ � �.F //:

Recall that

k D area.HS /=area.S/ �

4
p

2

�

tw�.K/

120 tw�.K/ � �.F /
:

The inequality comes from combining our upper bound on area.S/ and the lower bound
on area.HS / of 25=4 tw�.K/ from Lemma 3.6. Then, let d D log.2=k/, so ked D 2,
sinh.d/ D

1
k

�
k
4

, and ed D
2
k

. Note that 1
k

� 2�1=4�.120 � �.F //, so

2

k
�1 < 23=4�

�
120�

�.F /

tw�.K/

�
D 23=4�O.F; K/;

sinh.d/C2� � 2�1=4

�
120�

�.F /

tw�.K/

�
�

k

4
C2� < 2�1=4O.F; K/C2�;�

2

k
�1

�
.sinh.d/C2�/ < 2�1=4�.23=4�O.F; K/2

C4O.F; K//;

where O.F; K/ D 120��.F /=tw�.K/. As a side note, while we will leave in O.F; K/

for our calculations, once we choose a projection surface, we immediately get an upper
and a lower bound: O.F; K/ is between 120 and 120 � �.F /.

Putting this together, by Theorem 3.2, we have at least

.ked � 1/�

.ed � 1/.sinh.d/ C 2�/
j�.S/j >

21=4

23=4�O.F; K/2 C 4O.F; K/
j�.S/j

embedded disjoint bi-infinite geodesics, with both ends in HS , of length at most 2d .
Now we can map these arcs into Y n K. As S is essential, each arc remains essential
under this mapping. Furthermore, the length of these arcs can only decrease, so the
upper bound of length 2d remains. Some of these arcs may be homotopic now in Y nK;
however, by Corollary 3.5, there are at most 2.3N � 2/ D 722 such arcs. So, dividing
out, we have at least

21=4

722.23=4�O.F; K/2 C 4O.F; K//
j�.S/j

disjoint embedded geodesics with both ends in H and length at most 2d with respect
to H .

Now we can use Lemma 3.3 to say that, if the above number is p,

area.@H / � p
p

3e�2.2d/:
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Before we put all the math together, to make the numbers look nicer, we will find an
upper bound for e�4d :

e4d
D

�
2

k

�4
� .23=4�O.F; K//4

D 8�4O.F; K/4;

e�4d
�

1

8�4O.F; K/4
:

Now, combining this, with all of our other bounds, we get that our cusp volume satisfies

area.@H / �
21=4

p
3j�.S/j

722.23=4�O.F; K/2 C 4O.F; K//
e�4d

�
181=4

722.23=4�O.F; K/2 C 4O.F; K//

1

8�4O.F; K/4
.tw�.K/ � �.F //:

Because [29] gives us a lower bound for the case when F D S2, we will focus
on the other cases. When �.F / ¤ 2 we have O.F; K/ � 120 � �.F /, so we can
replace O.F; K/ in our equation with 120 � �.F /, and we get a lower bound of
A.F /.tw�.K/ � �.F //, and so are done with the lower bound, and our proof.

Remark In the course of proving the lower bound in Theorem 1.1, we proved that
we can replace A.F / with a function E.F; K/ depending on the Euler characteristic
of F and tw�.K/. In particular, we can replace A.F / with the following function for
a more precise lower bound:

E.F; K/ D
181=4

5776�4

1

23=4�O.F; K/6 C 4O.F; K/5

where
O.F; K/ D 120 �

�.F /

tw�.K/
:

We can get a better lower bound if we replace A.F / with E.F; K/. Table 1 shows
some values for E.F; K/ and A.F / for different values of �.F / and tw�.K/, showing
that, while as �.F / decreases both our bounds get worse, as tw�.K/ increases the
bound E.F; K/ starts to improve.

Next we apply Theorem 1.1 to obtain estimates of slope lengths on the maximal cusp
of K. We discuss an upper bound on the length on meridian curves for K and lower
length bounds for nonmeridian slopes.

Corollary 1.4 Let Y be a closed, irreducible 3–manifold and F � Y a closed surface
with �.F / < 0 and such that Y n N.F / is atoroidal. Suppose that K is a weakly
generalized alternating knot with a projection �.K/ � F that is weakly twist-reduced,
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E.F; K/

�.F / A.F / tw�.K/ D 10 tw�.K/ D 100

0 2:3059 � 10�19 2:3059 � 10�19 2:3059 � 10�19

�2 2:0884 � 10�19 2:2830 � 10�19 2:3036 � 10�19

�4 1:8945 � 10�19 2:2604 � 10�19 2:3013 � 10�19

�100 6:0903 � 10�21 1:4272 � 10�19 2:1941 � 10�19

Table 1

and we have e.�.K/; F / > 2, and r.�.K/; F / > 4. Let � be the meridian and � any
nonmeridian slope on the maximal cusp of Y n K. Then

`.�/ �
720.tw�.K/ � �.F //

tw�.K/
and `.�/ �

�
5:8265514 � 10�7

720.120 � �.F //6

�
tw�.K/;

where tw�.K/ is the twist number of �.K/.

Proof As shown in the proof of Theorem 1.1 above, if SB;2 and SR;2 are our two
twisted essential surfaces, then

j�.SB;2/j C j�.SR;2/j � 120 tw�.K/ � �.F / � 120.tw�.K/ � �.F //;

where the right inequality comes from the fact that �.F / � 0, so ��.F / � �120�.F /.
Also, i.@SB;2; @SR;2/ � tw�.K/. Using these results with Burton and Kalfagianni [9]
on upper bounds for slope lengths, we get our desired upper bound on `.�/:

`.�/ �
6j�.SB;2/j C j�.SR;2/j

i.@SB;2; @SR;2/
�

6.120 tw�.K/ � �.F //

tw�.K/
�

720.tw�.K/ � �.F //

tw�.K/
:

Next, Theorem 1.1 tells us that A.F /.tw�.K/ � �.F // � area.@C /. Then, as in [11],

`.�/`.�/ � area.@C /�.�; �/:

Then, using our bound for area.@C / and that � and � must intersect at least once, we get

`.�/`.�/ � A.F /.tw�.K/ � �.F //:

Next, we use our upper bound for `.�/ to get

720.tw�.K/ � �.F //

tw�.K/
`.�/ � `.�/`.�/ � A.F /.tw�.K/ � �.F //:

Finally, we rearrange:

`.�/ � A.F / tw�.K/ � �.F /
tw�.K/

720.tw�.K/ � �.F //
D A.F /

tw�.K/

720
;

giving the desired inequality.
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4 Weakly generalized alternating knots and augmentation

In this section, our main goal is to show that, if we start with a weakly generalized
alternating link with some additional properties, and then augment it by removing
crossings, we will still have a weakly generalized alternating link with those same
properties.

Let K be a weakly generalized alternating link with a closed, orientable projection
surface F in a 3–manifold Y . Fix a (twist-reduced) diagram �.K/ on F with edge
representativity e.�.K/; F / � 4, and representativity r.�.K/; F / > 4 (as defined in
Definition 2.2). We can then identify twist regions of �.K/. Let L be the link obtained
from K where we add a crossing circle to some number of twist regions. Also let L0

be the link where we remove, in pairs, all but one or two crossings from twist regions
with a crossing circle in L, and K0 the knot obtained from L0 by removing the crossing
circles. Our first goal is to prove the following, which assures that the altered knot K0

continues to be weakly generalized alternating and has the same properties as K.

Proposition 4.1 If K is a weakly generalized alternating knot with diagram �.K/ on a
projection surface F in a 3–manifold Y , with e.�.K/; F /�4 and r.�.K/; F />4, then
K0 is a weakly generalized alternating knot on the surface F in Y with e.�.K0/; F / � 4

and r.�.K0/; F / > 4.

Proposition 4.1 allows us to often replace K with the simpler knot K0. The proof of
the proposition requires a few lemmas, which we will prove next.

Lemma 4.2 �.K0/ is reduced alternating on F .

Proof There are four conditions we need to show about �.K0/ for it to be reduced
alternating. First, as �.K/ is alternating on F , we must also have �.K0/ alternating
on F — we removed crossings in pairs and so could not have introduced any non-
alternating into our diagram. Next, we show that �.K0/ is weakly prime, as stated in
Definition 2.1. If it isn’t, then we can find a disk D � F such that @D intersects �.K0/

exactly twice and �.K0/ \ D is not a single embedded arc. We can isotope D to be
disjoint from crossing circles. When we put crossings back into �.K0/, we won’t add
any crossings to D — we only add crossings at crossing circles. But then we have a
disk D whose boundary intersects �.K/ exactly twice with �.K/ \ D not a single
embedded arc. As �.K/ is reduced alternating, this is a contradiction.
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Finally, we must show �.K0/ \ F ¤ ∅, and that there is at least one crossing on F .
However, this follows from construction — �.K0/ still lives on F , so the first condi-
tion is satisfied. For the second condition, as we never remove all crossings from a
twist region, if �.K0/ doesn’t have a crossing on F , neither will �.K/, once again a
contradiction. So then �.K0/ must be reduced alternating on F .

Lemma 4.3 The projection �.K0/ is checkerboard colorable.

Proof As �.K/ is weakly generalized alternating, we know that �.K/ must be
checkerboard colorable. We can use this coloring to obtain a coloring of �.K0/.
Because we remove all but one or two crossings from a region, we can obtain �.K0/

from �.K/ by removing bigons from the same twist region. These bigons must have
the same color, so removing them will not change the checkerboard colorability of the
diagram. Using this coloring will then give us a coloring of �.K0/.

Lemma 4.4 If e.�.K/; F / � 4, then e.�.K0/; F / � 4.

Proof Suppose not. Then we can find an essential curve ` in F that crosses our
knot diagram, �.K0/, a minimal number of times — zero, one, two, or three times.
By isotopy, we can assume ` intersects �.K0/ transversely away from crossings.
First, we show that the number of intersections can’t be odd. Because �.K0/ is
checkerboard colorable, we can look at the colored regions ` crosses through. Every
time ` crosses �.K0/, it must switch colored regions: either from red to blue or from blue
to red. If ` intersects �.K0/ an odd number of times, we would then have a curve that
started in one color and ended in the other color. As it is a closed curve and our diagram
is checkerboard colorable, this is impossible, so e.�.K0/; F / must be zero or two.

If e.�.K0/; F / D 0, then ` is disjoint from �.K0/. This means, in particular, that
we can isotope ` to be disjoint from any twist region without changing the number
of intersections. Each twist region in �.K0/ has at least one crossing; if ` enters
the twist region through one side, it must exit through the same side in order to not
intersect �.K0/. But then, as �.K/ differs from �.K0/ only in twist regions, when
we put the twists back in our diagram, we will have an essential curve that does not
intersect �.K/, contradicting the fact that e.�.K/; F / D 4.

If e.�.K0/; F / D 2, then ` must intersect �.K0/ exactly twice. First, suppose ` doesn’t
intersect a twist region. Then, as before, when we go back to �.K/, we will have an
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essential curve intersecting it twice, a contradiction. So then ` must intersect �.K0/

in a twist region. By the definition of e.�.K0/; F /, we assume that ` intersects �.K0/

transversely away from crossings. As such, in order for ` to intersect a twist region,
it must intersect the twist region exactly twice, so we will focus on just this region.
There are two options for how ` intersects the strands in this region: either ` intersects
the same strand twice, or ` intersects both strands once. First, suppose it is the former.
Then the arc of ` intersected with the bigon of the twist region bounds a disk with the
strand ` intersects. Using this disk, we can isotope ` away from the twist region, giving
us an essential curve that intersects �.K0/ zero times, a contradiction.

On the other hand, if ` intersects both strands of the twist region, we may isotope `

away from any crossing disks. Once we do this, when we put crossings back in to
get �.K/, we will have an essential arc ` intersecting �.K/ exactly twice (as ` does
not cross any crossing disks). This is a contradiction.

We are now ready to give the proof of Proposition 4.1.

Proof All but the last part follows directly from the previous lemmas. Thus, all that
we need to show is that r.�.K0/; F / > 4. As any curve that bounds a compression disk
must be essential, we can say, by Lemma 4.4, that we at least have r.�.K0/; F / � 4. So
suppose we can find some 
 � F such that 
 bounds a compression disk and intersects
�.K0/ exactly four times. When we put the crossings back to get �.K/, we must
have 
 intersecting �.K/ more than 4 times, and so 
 must be between a twist region.
However, if 
 doesn’t intersect the knot strands associated to the twist region, then we
have a region with zero crossings, contradicting our construction of K0. So at least two
of the intersections of 
 with �.K0/ are part of the same twist region. But then, no
matter how they intersect, we can then homotope 
 to be outside of the twist region
without introducing any more intersections (but possibly reducing them), as follows.
Because we are working on a twist region, there must be a disk on F such that the
boundary passes through each of the crossings of our twist region. We can then use
part of that disk to homotope away from the compression disk, as shown in Figure 4.

But then, by putting crossings back in, we must have 
 intersect �.K/ four times or
fewer, a contradiction to r.�.K/; F / > 4.

Now we specify the knots K0 to which we will apply Proposition 4.1. The construction
of K0 is the same as this in Section 3 of [30]:
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Figure 4: Two possible configurations to have r.�.K0/; F / � 4. On the left,
the blue disk can be used to homotope the knot away from the compression
disk, reducing the number of intersections. On the right, homotoping along
the blue disk will cause the compression disk to not intersect a twist region.

� First recall the links L, L2 and K2 and the surfaces B2 and R2 constructed
from the weakly generalized alternating projection �.K/ in Section 2.1.

� Denote by LB the link obtained by adding in the crossing circle to twist regions
of �.K/ with Ntw � 121, but only when the crossing circle intersects the blue
region.

� Obtain LB;2 by removing pairs of crossings encircled by each crossing circle
of LB , leaving either one or two crossings.

� Obtain the knot KB;2 by removing crossing circles from LB;2.

� The surface B2 embedded in the complement of L2 can also be embedded in
the complement of LB;2. The red surface R2 in S3 n LB;2 is homeomorphic to
the red checkerboard surface of K, and to the red checkerboard surface of KB;2.

We will generalize the approach of [30] to prove that B2 and R2 are essential. As we
will discuss in the remaining sections, many of the arguments in [30] require little to no
modifications to work in the general case. This is because several of these arguments
take place in only a small portion of either our ambient manifold Y or our projection
surface F , or come mostly from definitions.

We will finish up this section by using Proposition 4.1 to prove two simple, but important,
facts about KB;2, as we now know some nice properties stay under augmentation.

Lemma 4.5 Label the regions of the complement of the diagram �.KB;2/ blue or red ,
depending on whether they meet the blue or red surface.

(1) The blue regions on opposite sides of a crossing of LB;2 cannot agree.
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(2) The red regions on opposite sides of a crossing of LB;2 cannot agree.

(3) The two blue regions that meet a single crossing circle of LB;2 cannot agree.

Proof For the most part, the argument follows that of the proof of [30, Lemma 3.2].
To start, we assume that blue regions on opposite sides of a crossing do agree. Then we
can create a simple closed curve on our surface F by drawing an arc in the blue region
from one side of the crossing to the other, then drawing an arc across the red region
near this crossing. Now we have a simple closed curve that intersects �.KB;2/ exactly
twice. If this curve bounds a disk in F , then we contradict the fact that �.KB;2/ is
weakly prime. If it doesn’t bound a disk, then it is an essential curve intersecting our
diagram exactly twice, contradicting e.�.KB;2/; F / � 4. A similar proof works to
prove the second statement by switching the blue and red regions.

Now, to show the third statement, assume that two blue regions meeting a single
crossing circle do agree. Then we can draw an arc entirely in the blue region from one
side of the crossing circle to the other. We then finish it into a simple closed curve
by attaching the arc of intersection of the crossing disk. As above, we have a curve
intersecting our diagram exactly twice, contradicting either �.KB;2/ being weakly
prime or having edge representativity at least 4.

Remark Lemma 3.9 of [30] has a fourth part, stating that if distinct blue regions
meeting a single crossing circle meet at the same crossing of KB;2, then that crossing is
associated with the crossing circle. This part does not carry through to the generalization
of weakly generalized alternating knots. To prove part four the authors in [30] rely on
their Lemma 3.1, which states that, in the case of usual alternating knots, K2 and KB;2

are prime. In our case K2 or KB;2 may not be prime. While this case can give us a
simple closed curve that goes through both the crossing circle and the crossing, because
it intersects our knot exactly four times, this curve could very well be an essential
curve, and thus tell us nothing about how the crossing relates to the crossing circle.

With KB;2 defined in our general context, we need to introduce a new definition to
generalize a diagram being blue twist-reduced. As we already have a notion of weakly
twist-reduced, we will model our definition off of this.

Definition 4.6 A diagram of a link is weakly blue twist-reduced if every disk D in F

with @D meeting �.L/ in exactly two crossings, with sides on the blue checkerboard
surface, either bounds a string of red bigons, or there is a disk D0 in F meeting the
diagram at the same crossings that bounds a string of red bigons.
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Next, we will generalize Lemma 3.4 of [30], using this adapted definition instead of
the usual blue twist-reduced definition.

Lemma 4.7 The projection �.KB;2/ is weakly blue twist-reduced.

Proof Suppose a disk D in F with @D meets only the blue regions, and intersects
�.KB;2/ in exactly two places. We can isotope @D away from any crossing disk so
that when we add back in crossings to get �.K/, the boundary @D remains disjoint
from the red surface. Because �.K/ is weakly twist-reduced, either D bounds a string
of bigons, or there is another disk D0 in F � D, with @D0 meeting the diagram in the
same two crossings, that bounds a string of bigons. If it is the latter, then note that @D0

also only meets the blue region. In either case, these bigons must all be red bigons.
Without loss of generality, suppose D contains the red bigons.

Because �.K/ is weakly twist-reduced, all of the red bigons must come from the same
twist region. When we remove some bigons to get back to �.KB;2/, we either don’t
touch any of the bigons inside D, in which case we are done, or we remove all but one
or two crossings from the region. If this is the case, then we have to have removed all
but two crossings — D intersects two distinct crossings, so there must be at least two
distinct crossings left in the region. But then D contains a single red bigon.

5 Colored graphs and twisted surfaces

In this section, we will prove a series of technical lemmas that we will need for the
proof of Theorem 2.7. The lemmas aim to analyze how certain disks might intersect our
twisted surfaces. The combinatorics of these intersections will be encoded by certain
colored planar graphs. Before we can begin our analysis, we need to establish some
notation and terminology.

5.1 Blue and red graphs

Recall that we need to prove that the immersed blue and red surfaces SB;2 and SR;2

are �1–injective and boundary �1–injective in Y n K.

Working with both SB;2 and SR;2 simultaneously will be difficult. Instead, we will
take advantage of the fact that the construction of one surface doesn’t involve the other.
That is, we could have constructed, say, SB;2, the blue twisted surface, without ever
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having mentioned the red surface. The only part that would change is where we put the
crossing circles — in order to not disturb the red surface, a crossing circle can only be
added to a highly twisted region if it will intersect the blue surface. Thus in our proofs,
we will often be working with SB;2 and R, where R is the usual red checkerboard
surface for �.K/.

Recall the map f W SB;2 ! Y n K from the statement of Theorem 2.7. If f is not
�1–injective, then we have a disk � W D ! Y nK such that �j@D D f ı l , where l is an
essential loop on SB;2.

Definition 5.1 Let �B D ��1.f .SB;2//, the preimage of f .SB;2/ under �.

By working with �B , we can study the intersection of SB;2 with the disk �.D/. By
Lemma 2.1 of [30], which also applies in our situation without changes:

� �B consists of a graph and a collection of simple closed curves.

� The vertices of the graph are points mapped to crossing circles of K.

� Each interior vertex of the graph has valence a multiple of 2nj , where 2nj is the
number of crossings removed from the twist region of �.K/ that corresponds to
the twist region associated to the relevant crossing circle. Each boundary vertex
has valence nj C 1.

While the arguments in [30] are given for Y D S3 and F D S2, as long as our Y has no
boundary components, many of the proofs require no modification. This is because, in
many cases, the proofs are “local”, and only reference a small neighborhood of where
we are working. In this paper, instead of reproving everything, we will instead focus on
the cases where the same proof doesn’t work, requiring us to do something different,
often either a completely different proof, or showing that the cases that occur when
Y ¤ S3 or F ¤ S2 cannot happen.

To continue, recall the links LB , LB;2, and KB;2 that we introduced in Section 4 before
the statement of Lemma 4.5. We now have three surfaces to consider — B2 and SB;2

in Y n LB;2 and Y n K, respectively; R2, the red checkerboard surface for KB;2; and
the crossing disks bounded by the crossing circles of LB;2, which we color green. This
also gives us three graphs to look at.

Definition 5.2 First, �B is the same as defined above. Next, if we remove the vertices
of �B (which map to crossing circles) from the disk D, we get an embedding of the
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Figure 5: Left: a possible configuration for �BRG . Right: how �BRG would
look when imposed on the diagram. The labeled blue edges in the graph map
to the corresponding labeled arcs in the diagram.

punctured disk �0 W D0 ! Y n LB;2. Let �BRG denote the pullback of the union of all
three surfaces via �0. Finally, by ignoring the edges and vertices of �BRG coming from
the green surface, we get �BR. Note that �B � �BR � �BRG .

We will be looking for what are called trivial bigons, defined as follows in [30]:

Definition 5.3 An edge of �BRG is trivial if it is a blue arc disjoint from the red edges
with endpoints on distinct vertices of �B corresponding to the same crossing circle
in LB .

An important lemma relating to trivial arcs is the following:

Lemma 5.4 [30, Lemma 4.11] If all but one of the edges of a region in �B are trivial ,
then the remaining edge is also trivial

In particular, this means if one edge of a blue bigon is trivial, then the other one must
be as well. This will allow us to divide families of adjacent bigons into two cases,
trivial and nontrivial. Then, as shown in Lemma 2.6 of [30], �B must have more than
1

18
Ntw � 1 adjacent nontrivial bigons. So, if we can show that there must be fewer

than 5 �
121
18

� 1 adjacent nontrivial bigons, then we get a contradiction. As our only
assumption was that SB;2 was not essential, we will have that our twisted surface must
be essential.

Lemma 5.5 [30, Lemma 2.6] The graph �B must have more than 1
18

Rtw �1 adjacent
nontrivial bigons , where Rtw is the minimum number of crossings removed from a
twist region.
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Proof The proof of Lemma 2.6 in [30] does not actually rely on either our knot
or twisted surface, but is based purely on facts about the graph itself, and involves
restricting to subdisks and subgraphs and removing trivial bigon families until we can
get our result. As such, the proof and the lemma will continue to work in our setting.

To continue, recall that we must prove that f W SB;2 ! Y nint.N.K// in the statement of
Theorem 2.7 is boundary �1–injective: if not, then we can get a disk �0 WD0 !Y nint.K/,
where @D0 is a concatenation of two arcs, one mapped into @N.K/ and the other essential
in SB;2 [30, Lemma 2.2].

Definition 5.6 Define � 0
B

to be the pullback of f .SB;2// via �0. That is,

� 0
B D �0�1.f .SB;2//:

Once again the properties of � 0
B

remain the same if we replace S3 n K from [30] with
Y n K. That is, the interior vertices of � 0

B
have valence 2nj , while exterior vertices

have valence nj C 1 (if they come from a crossing circle) or 1 (if the vertex maps
to @N.K/). In particular, the following lemma from [30] also works in our setting.

Lemma 5.7 [30, Lemma 2.7] The graph � 0
B

must have more than 1
18

Rtw �1 adjacent
nontrivial bigons or more than 1

18
Rtw � 1 adjacent triangles , where one edge of each

triangle lies on �0�1.@N.K//.

Remark There are a couple of important things to note about the last two lemmas.
First, while Rtw is not necessarily equal to Ntw, we do know that Rtw � 2

˙
1
2
Ntw

�
� 2.

With Ntw � 121, we get Rtw � 120, so there must be more than 5 adjacent nontrivial
bigons in �B . Second, our choice of Ntw � 121 is not optimal for these lemmas. In fact,
the proof that SB;2 is essential only needs Ntw � 91, so we have at least five adjacent
bigons, or five adjacent triangles (we will prove this in the next section). The choice
of 121 comes from a modification that will get us our final proof, Theorem 3.4.

5.2 Bigons in �BRG

Here we will study the structure and combinatorial properties of the graphs �B , �BR

and �BRG defined in the previous subsection. From the last subsection we know that
these graphs have a certain number of adjacent nontrivial (blue) bigons, we will be
looking at how the disk must intersect other surfaces near the blue surface. Our goal
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here is to study the possible configurations of these bigons and successively rule out
several of them. By the end of this section, we will be left with only one outcome —
the family of bigons must intersect the red surface at least twice.

Recall that �B is the pullback of SB;2 via a certain map � W D ! Y n K, that �BRG

is the pullback of SB;2 as well as the red surface R2 and the green surface via a map
� W D0 ! Y n LB;2, and that �BR is obtained by deleting the green edges of �BRG .
Below we summarize some basic facts about these graphs that we will be using:

� As outside of the twisted parts, the twist surfaces are embedded, the edges of �B

(where the disk meets the blue surface) can only meet each other at the twisted
components (where the crossing circles of LB;2 intersected our blue surface).
As such, the vertices of �B are exactly the points that map to crossing circles
of LB;2. This means that, if two blue edges are adjacent to each other on a
vertex, it must be that they are on opposite sides of the crossing circle (as they
must meet on the twisted part).

� In addition to what we have for �B , we also know that red edges can’t intersect
red edges, nor can green edges intersect green edges (as both red and green
surfaces are embedded).

� Red edges can meet green edges (at the crossing disk). Likewise, green edges
can meet blue edges at vertices of �B (where the crossing disk meets SB;2),
and red edges can meet blue edges at crossings of the diagram. In addition, as
D0 crosses the projection surface when it meets a blue or red edge, regions of
D0 n �BR are mapped above or below the projection surface, switching from one
to the other when they meet one of these edges.

� Using a complexity-minimizing argument, where complexity is measured by the
number of vertices in each graph, we get that there are no green edges, disjoint
from blue, with both endpoints on red, and no green edges, disjoint from red,
with both endpoints on a blue edge and one endpoint not a vertex. In addition,
green edges cannot have both of their endpoints on the same blue vertex. In all
three of these cases, we can use the arcs in question, in addition to the crossing
disk, to find a homotopy that reduces how many (nonblue) vertices are in our
graphs. So as long as we assume our disk’s image, �.D0/, and the induced
graphs are minimal, these cannot happen.

As before, the lemmas are generalizations of the case when F D S2 and Y D S3. Most
of the generalizations are relatively minor, with only a few complications brought in by
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the fact that we aren’t working on a sphere anymore. For completeness sake, we will
also talk about the proofs that still hold, although in much broader and looser terms.
For the complete picture, refer to [30].

The configuration — a blue–red bigon — needs a separate proof. We deal with this as
follows:

Lemma 5.8 The graph �BR has no bigons with one blue side and one red , whether or
not the bigon meets the green surface.

Proof If there is a bigon with only one red side and one blue side, then it must be
mapped completely above or completely below the projection surface. Without loss of
generality, we may assume it is mapped above. Then the union of the two sides of our
bigon will form a simple closed curve 
 meeting �.KB;2/ exactly twice with a crossing
on either side. If this curve bounds a disk, we contradict �.KB;2/ being weakly prime.
Because we are not working on the sphere, though, we are not guaranteed this. Instead,
we must use the fact that the edge representativity (see Definition 2.2) of �.KB;2/ is at
least four. If 
 does not bound a disk, then we have an essential curve intersecting our
knot transversely exactly twice, a contradiction of Lemma 4.4. So then 
 must bound
a disk with a crossing on either side, and so we get our desired contradiction.

Putting our observations above together, we get two important results. First, our disk D

only meets the blue surface in “interesting” places — that is, near or through the crossing
disks. Second, there are no monogons in �B: any that existed couldn’t meet either the
red or green surfaces, as mentioned above, and so would have to connect two opposite
sides of the crossing circle. However, by Lemma 4.5(3), this can’t happen. While the
latter is not used immediately, we will use it later on, and so state it as a lemma:

Lemma 5.9 [30, Lemma 4.7] The graph �B has no monogons.

As we want to work eventually with nontrivial bigons, it’s important that we understand
how trivial arcs and bigons work. As stated along with the definition, if one edge of a
bigon is trivial so is the other, giving us our trivial bigon families. In addition to this,
we also find that trivial arcs have some restrictions to them — they must have at least
one endpoint on the boundary of our disk, but cannot be a subset of the boundary. With
that, we will set this aside to start looking at nontrivial bigons.
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Lemma 5.10 In the graph �BRG , there are no nontrivial bigons with two blue sides ,
disjoint from red and green edges.

Proof The proof is essentially the same as that of Lemma 4.12 in [30]: suppose
we had such a nontrivial bigon. Because the bigon is nontrivial, the two vertices
must correspond to separate crossing circles. When we put back in the crossings to
get �.K/, we get a simple closed curve 
 from the bigon. The blue edges of the bigon
remain disjoint from any crossings, and connect across where the crossing disks met
the projection surface. In particular, 
 intersects �.K/ in exactly two crossings. We
want to show that 
 bounds a disk in our projection surface F — this will allow us to
appeal to �.K/ being twist-reduced and will give us a contradiction. So suppose 


doesn’t bound a disk in F . Then the curve must be essential.

If 
 bounds a compression disk, and r.�.K/; F / > 4, then, after a small isotopy to
take 
 away from crossings, we get a curve bounding a compression disk that intersects
our diagram only four times, a contradiction. So now we need to see what happens if

 doesn’t bound a compression disk.

As 
 bounds a bigon disjoint from red and green edges, it must bound a disk in a region
in the preimage of the blue surface in our disk. By our assumptions, 
 can’t bound a
disk in F , nor can it bound a compressing disk for F . Therefore, the region it bounds
must pass through our projection surface. But as our bigon is disjoint from red, this
cannot happen (regions of the disk can only pass through the projection surface at blue
or red edges, neither of which can be in our bigon). So then we get a contradiction
of 
 not bounding a compression disk.

Putting it all together, we see that we have a simple closed curve 
 which must bound
a disk on F . But then, as 
 meets �.K/ in exactly two crossings and bounds a disk,
because �.K/ is weakly twist-reduced, we must have both of the crossings correspond
to the same twist region, a contradiction of the bigon being nontrivial.

So blue bigons must have some other colored edge intersecting them. A bigon inter-
sected by another edge gives us two triangles, so it is natural to consider how adjacent
triangles might act. As red cannot intersect red and green cannot intersect green, we
find ourselves with four possible adjacent triangles, constructed as follows:

(1) blue–red bigon intersected by green (this can’t happen, as there are no blue–red
bigons);
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Figure 6: Top: the four different types of adjacent triangles coming from a
bigon. Bottom: how the bigons might look in the diagram. Note that, in the
red–green bigon case, the two red edges in the diagram are, in fact, the same
edge, and must “wrap around” the diagram to create the bigon.

(2) red–green bigon intersected by blue (we prove this can’t happen in Lemma 5.11
below);

(3) blue bigon intersected by green (this can’t happen, as we can’t have a blue–blue–
green triangle by minimality, by [30, Lemma 4.16]);

(4) blue bigon intersected by red.

Lemma 5.11 In �BRG , there are no pairs of red–green–blue triangles adjacent across
a blue edge. More generally , no pair of green edges can be added to �BR in such a way
that the result is a pair of triangles adjacent across a blue edge.

Proof We will prove the second statement. If such an edge could be added, we can
find the innermost pair of triangular regions, so there are no additional red or blue
edges in the triangles. Then one of these triangles must be mapped above the projection
plane, and the other below. As there is only one place where red meets blue, there
is only one crossing in the image of this diagram, so both red edges must meet this
crossing, and meet no other crossing in our diagram.

Looking at the green edges, we see that both meet the same blue edge at the same
point. This means that these green edges are related to the same crossing circle. As our
two red edges meet these green edges, our red edges must both run back to the same
crossing circle. So, we can create a simple closed curve with crossings on either side by
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following along the red edges, jumping from one to the next at either the crossing or the
crossing circle. This curve intersects our knot exactly twice, so by the representativity
and edge representativity of our knot it must bound a disk. However, this contradicts
weak primality, so this cannot happen.

The other two triangles we need to care about are blue–blue–green triangles (the third
case listed above), and blue–blue–red triangles (the fourth case). In fact, with no
change in proof from [30, Lemma 4.12], there cannot be any blue–blue–green triangles
in �BRG . The reason we can do this here is because we don’t have to worry about any
of the curves we create from the blue and green edges not bounding a disk on F —
otherwise we would have a curve intersecting our knot only twice and not bounding a
disk. We will focus, then, on blue–blue–red triangles.

5.3 Blue–blue–red triangles

Our ultimate goal is to show that there can only be so many adjacent blue bigons
in �B , contradicting Lemma 5.5, which says we need at least five. As a red edge must
intersect any family of nontrivial blue bigons, we can look at blue–blue–red triangles
constructed from the bigons and the red edge intersecting them.

One of the ways we will go about generalizing the results of [30] is by using a sort of
“local” property — most of the proofs take place in a small subsection of the diagram,
and so we don’t necessarily need to know what’s happening beyond that for a given
proof. To take advantage of this for generalized surfaces, however, we will need to
show that the subsections we care about are similar enough to subsections on a sphere.
Namely, we will need to show that these small parts don’t wrap around the surface,
and instead lie on a disk. Once we have this, most of the proofs follow naturally.

First up, one of the more common cases we will need to deal with is where we have
a triangle with two blue edges and a red edge. The proof that such triangles induce
a disk on F is split into two parts below, depending on how the red edge might pass
through the crossing circle of the vertex. One important thing to note that will come up
several times is that we don’t actually need our triangle, or any of our future shapes, to
bound a disk. In fact, looking at the case when the red edge passes through the crossing
circle, this would be impossible. Instead, we just want it to lie within a disk, and hence
induce a disk on F .
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Figure 7: Left: a blue–blue–red triangle as viewed on the graph �BR . Right:
the same triangle as viewed on the knot diagram, �.KB;2/.

Before we begin, we introduce one piece of terminology. We say that a group of
edges in a graph on F induces a disk if there is a disk on F with boundary containing
those edges.

Lemma 5.12 A blue–blue–red triangle in �BR which , in the image on F , has none of
its edges passing through the crossing circle of the blue vertex induces a disk on the
projection surface F .

Proof First, note that the triangle gives us a simple closed curve on F , as seen in
Figure 7. Let 
 be the curve that follows our triangle along the edges, and joins the
blue edges across the crossing disk associated to the vertex where the blue edges meet.
By Lemma 4.18 in [30], the triangle meets two distinct crossings, and so then 
 must
also meet two distinct crossings. We want to show that 
 bounds a disk on F . If it
doesn’t, there are two possibilities we will consider.

In the first, 
 could bound a compression disk. If it does, then note when we put
crossings back in, that 
 intersects our knot in exactly four places: once across each
of the crossings, and twice across the crossing disk of the vertex. But then we have
a curve bounding a compression disk meeting our knot four times, contradicting the
assumption that r.�.K/; F / > 4.

If 
 is essential and doesn’t bound a compression disk, we can look at the triangular
region 
 bounds in the disk. Because 
 bounds neither a compression disk nor a disk
on F , the triangular region must pass through the projection surface. But then our
region must have a red or blue edge in it, as it can only pass through the projection
surface through an edge of �BR. Then we don’t have a blue–blue–red triangle.

Algebraic & Geometric Topology, Volume 22 (2022)



Cusp volumes of alternating knots on surfaces 2505

Lemma 5.13 A blue–blue–red triangle in �BR with the image of the red edge passing
through the crossing circle of the vertex induces a disk on the projection surface F .

Proof As above, we know that the triangle has to meet two distinct crossings. But
now, as our red edge must cross through the green edge, we are not guaranteed a single
simple closed curve. Instead, we shall construct two separate disks, and then glue them
together. Call our blue edges b and c and our red edge j . Let 
1 be the curve that
follows b, then j until we get to the crossing circle, and then the green edge back to b.
Likewise, let 
2 be the curve that follows c, then j until we get to the crossing circle,
and then jumps back to c along the green edge.

First, each of these curves must intersect our diagram exactly twice — once at the
crossings, and another time through the crossing disk. This allows us to immediately
say that both 
1 and 
2 bound disks, as e.�.K/; F / � 4. Next, note that 
1 intersects 
2

at exactly one point — where red meets green. This is because a red edge cannot intersect
itself, and blue edges can only meet at vertices. But, as blue edges adjacent to the same
vertex, they must map to different sides of the twist region, and so are disjoint. Thus
the only point where 
1 and 
2 can meet is the one they share — where the crossing
circle meets the red edge.

Now, we can finally construct our entire disk. Let D be the union of the disk bounded
by 
1, the disk bounded by 
2, and a small neighborhood of the intersection of the
crossing circle and red edge. As 
1 doesn’t interfere with 
2 outside of this neighbor-
hood, we do in fact have a disk as opposed to an annulus.

We can use these disks to construct even larger disks, with some caveats — we need to
be careful that when we glue disks together, we aren’t creating an annulus.

Lemma 5.14 Families of blue–blue–red triangles , adjacent along blue edges , bound
a disk.

Proof If we have a single blue–blue–red triangle, we are done by above. So we will
suppose we have a group of them, and consider what happens when we want to add one
more. As blue edges can only intersect at vertices, and red edges can never intersect,
we only have to worry about two triangles — the one we are adding and the triangle
that shares an edge with it. There are three cases we have to worry about, as shown in
Figure 8. First, both triangles have their red edges not passing through the crossing
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Figure 8: The three possible ways two blue–blue–red triangles can have their
images glued together.

circle. Then both triangles bound a disk, and share a single continuous segment — their
common blue edge and the green edge — so we are done.

Second, one of the triangles doesn’t pass through the crossing circle, but the other
does. In this case, for the triangle that does pass through the crossing circle, we get
two separate disks, say D1 and D2. The other triangle gives us a third disk, D3. We
will union these all together in the right order to get what we want. First, note that D1

and D3 agree only on a portion of the green edge, so gluing them together will still
give us a disk. Then the boundary of D2 only agrees with the boundary of this new
disk in one continuous segment — the remainder of the green edge and the common
blue edge. So we can add D2 in and get our whole disk.

Finally, we could have both red edges pass through the crossing disk. Only one red
region can pass through the a crossing disk, by definition. So for both red edges to
pass through the crossing disk, they must be in the same region. But then at least
one crossing, the one that meets both red edges, has opposite (red) sides agreeing,
contradicting Lemma 4.5. So this case cannot happen.

Lemma 5.15 A blue rectangle in �BR with two vertices that correspond to the same
crossing disk and a red diagonal has both crossings associated to the crossing circle of
the vertices of the rectangle.

Proof Our image has to look like the one in Figure 9 — the red edge tells us we
need at least two crossings. In either case, look at the two curves a–i–f and b–i–e.
Each of these curves intersects our knot transversely exactly twice. This means, then,
as both the representativity and the edge representativity (defined in Definition 2.2)
are at least four, each of these curves must bound a disk. Now, though, we have two
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Figure 9: Left: a blue rectangle with a red diagonal in the graph �BR . Right:
a blue rectangle as viewed on the diagram, where both vertices represent the
same crossing circle.

disks who agree at only one segment of the boundary. As such, we can glue the disks
together without risking an annulus, and thus giving us another disk, this one with
boundary a–f–e–b.

To make sure we are on the right track, it is important to look at why we are studying
these blue–blue–red triangles. We know that we have to have so many adjacent nontrivial
blue bigons. As it turns out, given these blue bigons, we will eventually show that a
red edge must pass through these bigons. If only one red edge passes through, we get
two collections of blue–blue–red triangles, with the families adjacent across the red
edges, so it’s important to see what happens here.

Before we begin studying these in earnest, there is an additional lemma that we will
need here. In summary, Lemma 4.17 from [30] tells us that, if we have three adjacent
blue–blue–red triangles that are adjacent at the vertex of the blue edges, two properties
must hold. First, no green edge can intersect an interior blue edge (so, in Figure 10,
edges b or c). Second, if a green edge meets the interior red edge (so edge j ), the
green edge must run to the common vertex of the triangles. As we have families of
blue–blue–red triangles bounding a disk by Lemma 5.14, the exact same proof as
in [30] works. With this in mind, we can move on to looking at our triangles.

Lemma 5.16 The graph �BR cannot contain two pairs of three adjacent blue–blue–red
triangles adjacent across the red edges.

Proof Suppose it did. Then we look at such a group of triangles, as pictured in
Figure 10, left. First, we need to show that the two vertices of the triangle group can’t
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Figure 10: Left: two pairs of three adjacent blue–blue–red triangles. Center
and right: the two possibilities if the vertices map to the same crossing circle,
one with two crossings and one with three.

agree (that is, can’t be related to the same crossing circle). If the vertices do agree,
then the blue edges a, f , and c must be in the same region, and the blue edges e, b,
and g must be in the same region.

From there, we want to show that the endpoints at each of the edges are all associated
with the crossing circle of the vertices. First, look at the a–e crossing and the b–f
crossing. As a–e–f–b forms a blue rectangle with two vertices and a red edge down
the diagonal, by Lemma 5.15, the image lies in a disk with boundary blue–blue–green.
We can assume the boundary is a–e-green. But then, by definition, the crossing at a–e

must be associated with the crossing disk. Then, by two applications of Lemma 5.15
(one with a–e–f–b and one with b–f–c–g), we get that the crossings of b–f and of
c–g must be associated to the crossing circle as well.

As we are working with LB;2, this does not automatically give us a contradiction —
the diagram can still work if we have only two distinct crossings, such as in Figure 10.
However, suppose there are only two distinct crossings for our triangle. Then we can get
several curves that bound disks in F that intersect our diagram exactly twice, c [ i [f ,
e[i [b, f [a[j , and b[j [g, as follows. To get the last curve, look at the rectangle
b–f–c–g. Its disk must contain the j edge, so take the subdisk bounded by b [ j [ g.
Then, for the curve f [ a [ j , note that a must be parallel to c, so use the subdisk
bounded by f [ j [ c, and replace c by a. In similar fashion, but working with the
rectangle a–e–f–b and the edge i , we can get the other two curves. But then, as �.KB;2/

is weakly prime (see Definition 2.1), we get that there are only two crossings on F .

We now have two possible options. First, �.KB;2/ can’t be a single component knot,
as any attempt to connect two crossings will result in either the unknot (which can’t
happen, as e.�.KB;2/; F / � 4) or a nonalternating knot on F . On the other hand, if
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�.KB;2/ is a link, by following the link around the outside, we can find a curve that
completely encompasses the link. As e.�.KB;2/; F / � 4, this curve must bound a disk
on F . But then we can find an essential curve that does not intersect our knot diagram
at all, a contradiction. So there cannot be only two crossings for �.KB;2/ on F , and
so the two vertices of our group of blue–blue–red triangles cannot agree.

Now we want to see how the red edges might intersect the crossing disks. First, the red
edge j cannot intersect either crossing disk by Lemma 4.17 from [30], as if it did, we
would have to have a green edge intersecting either b or c, contradicting Lemma 4.17
of [30]. Now, looking at i , we’ll see that it can only intersect one of our crossing disks.
Otherwise, if the crossing disk corresponding to e, f , and g intersects i , then we must
have a green edge running from i to a. This means that f and a are in the same region.
On the other hand, if the crossing disk corresponding to a, b, and c intersects i , we
have a green edge running from i to e, telling us that b and e are in the same region.
Then we can create two curves, one from a, b, and green, and the other from e, f , and
green. Each intersects our knot transversely at the a–e crossing, but also intersects our
knot at the green edge corresponding to their respective crossing circles. But then we
have a single crossing associated to two distinct crossing circles, which cannot happen.
So then i can only intersect, at most, one of the crossing disks. Assume, then, it doesn’t
intersect the crossing disk associated to a, b, and c.

Next, we need to look at the crossings at the endpoints of a and e, which we’ll call x, and
at the endpoints of c and g, which we’ll call y. We know that x must be distinct from
the crossing at the endpoints of b and f , and y must be distinct from this third crossing
as well. So we now want to show that x and y are distinct from each other. If they are
not, then look at the curve i [j . This will give us a closed curve meeting both crossing
disks, a contradiction to the crossing disk at a, b, and c not meeting either i or j .

We want to show that this can’t happen by showing the twist region associated to the
shown crossing circle has three crossings — namely, the three drawn crossings. Note
that edges g and e must lie in the same blue region, as they share a vertex (the crossing
circle of e, f , and g) and are mapped to the same side of that vertex, but also g is
bounded by b [j [c[ the green edge of the crossing disk, while e lies outside of it, so
we should figure out how they meet. As g and c are at opposite sides of a crossing, by
Lemma 4.5, g and e are not in the same region as c, so they can’t cross over c. Because
j is red, neither g nor e can meet it in the graph. So the only remaining options are
that one of g or e meets the blue edge b or the crossing circle associated to a, b, and c.
In either case, this will give us that g and e are in the same region as b.
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Figure 11: Left: focusing on the crossing circle of a, b, and c, our diagram
must look something like this. Center: once we know that y is related to the
crossing circle, we can draw in some extra information about our knot. Right:
the dotted lines are disk-bounding curves that will allow us to show x and z

are also related to the crossing circle.

Now we will show that the crossings x (at a–e), y (at c–g), and z (at h–f ) are all
associated to the same crossing circle. As we have already shown that each of these
crossings are distinct, we will get our desired contradiction. First, we show that y

is associated with the crossing circle of a, b, and c. To do this, we create a curve

 starting at y, following along c, using the crossing disk’s green edge to get to b,
and then switching over from b to g to get back to y. Because g is bounded by
b [ j [ c [ the green edge, we can take 
 to lie inside the disk on F bound by the
triangle b [ j [ c so that 
 too bounds a disk on F . But now, when we put crossings
back in to get K, we have a disk on F whose boundary intersects our knot at exactly
two crossings, and so both must be related to the same crossing circle — namely, the
crossing circle of a, b, and c. So then y is associated to this crossing circle.

In order to work with the crossings x and z, we will need to know a bit more about f —
namely, that it is in the same region as a and c. Clearly, if f crosses a or c, then they
must be in the same region as f . Suppose it doesn’t, then note that the edge f is
bounded by a [ c [ j [ i . As f is blue, it can’t cross the red edges i or j . Likewise,
neither e nor g can cross i or j . So, in order for these three blue edges to form the
triangles in our graph, the crossing disk of e, f , and g must enclose either i or j . By
the same reason the crossing disk of a, b, and c can’t meet j , the crossing disk of e, f ,
and g can’t meet j either. So then the crossing disk must intersect i . But then, as shown
in Lemma 4.17 of [30], we must have the green edge of the crossing circle intersect a.
Now, with the green edge how it is, f must be in the same region as a and c.

Our last step is to show that x, y, and z connect to form bigons, and thus are three
distinct crossings in �.KB;2/ associated to the same crossing circle, a contradiction.
To do this, note that we can form four closed curves intersecting our knot exactly twice:
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i [
1
2
b [

1
2
e, i [

1
2
f [

1
2
a, j [

1
2
g [

1
2
b, and j [

1
2
c [

1
2
f , as seen in Figure 11, right.

As we are assuming that e.�.KB;2/; F / � 4, each of these curves must bound a disk.
But then, because �.KB;2/ is a weakly prime diagram, and because there are crossings
outside of these disks, the intersection of each disk and �.KB;2/ must be a single
embedded arc. Drawing the result, we then see that these three crossings form bigons,
and so must be associated to the same crossing circle. As we are working with KB;2,
and at most two crossings can be associated with a crossing circle, we’re done.

As mentioned earlier, our want to study adjacent families of blue–blue–red triangles
came from a red edge intersecting blue bigons. As this can’t happen, we can’t have
just one red edge intersect our bigons. So, the next case to consider is two or more red
edges intersecting the bigons.

6 Triangles and squares

To review where we are, we know that any nontrivial blue bigon families we have must
be intersected by at least two (parallel) red edges. We can then break these bigons up
into blue–blue–red triangles and red–blue–red–blue rectangles. The triangles come
from the ends of the bigons, and must meet the vertex of the bigon, while the squares
are from the interior, and have a red edge on either end. In this section, we will focus
on adjacent triangles and squares. Our goal now is to show that we can only have so
many of these triangle–square pairs stacked on each other:

Lemma 6.1 There cannot be five adjacent triangle–square pairs in the diagram
�.LB;2/.

Once we have proved this, we can combine it with Lemma 5.5, which tells us we
must have at least five adjacent nontrivial blue bigons, to get a contradiction and show
that SB;2 is essential. To do this, we will first prove that these triangle–square pairs
have to sit inside a disk on F , and hence can’t have any topology to them. Next, we
prove Lemma 3.2(4) of [30] in a few specific cases, showing that if two blue sides of a
crossing meet the same crossing circle, then that crossing must be associated to that
crossing circle. With these, we can then use the proof of [30, Section 5] with minor
modifications to prove Lemma 6.1.

Before we begin, we introduce one last definition. We say that a crossing is associated
to a crossing circle if the crossing is in the twist region the crossing circle encircles.
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Figure 12: Left: a blue–red rectangle disjoint from all other edges. The purple
curve represents our 
 . Center: a blue–red rectangle that might intersect a red
edge, but is disjoint from blue edges. Right: a blue–red rectangle that might
intersect any number of blue or red edges.

There are two primary ways we can show that a crossing is associated to a crossing
circle. First, we can show that a crossing x is part of the same twist region as crossing y,
where we know that y is associated to a crossing circle. We do this in the typical way of
showing two crossings belong to the same twist region, by finding a disk with boundary
only intersecting the diagram at x and y. The second way we can show a crossing
is associated to a crossing circle is by finding a disk with boundary intersecting the
diagram exactly four times: twice transverse to the crossing in question, and twice
where the crossing circle meets the diagram. That is, we find a disk whose boundary
intersects the crossing and follows the crossing circle when it meets the surface F .

As before, where, when working with triangles, we saw that graphs induced disks
on the projection surface, we will want to do something similar when working with
triangle–square pairs, that is, when we glue one edge of a triangle to an edge of a
square.

Lemma 6.2 A blue–red rectangle with interior disjoint from the vertices of �B induces
a disk on the projection surface F . Furthermore , a triangle–square pair , with interior
disjoint from the vertices of �B induces a disk on the projection surface F .

Proof We will prove this by starting with the simplest case, a blue–red rectangle
with interior disjoint from blue and red edges, and expand from there. So assume
our rectangle has interior disjoint from blue and red edges. Then, as we have done
previously, we can form a simple closed curve 
 by taking the boundary of the rectangle,
as below.

As red edges can’t intersect red edges, neither of our two red edges can cross any
additional crossings. Likewise, as blue edges can only meet blue edges at vertices,
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neither of our blue edges can meet additional crossings. So then 
 intersects our knot
exactly four times. As r.�.K/; F / is strictly greater than four, 
 cannot bound a
compression disk of F . On the other hand, if 
 is an essential curve, the disk it bounds
must pass through the projection surface F . But such a disk can only pass through F

at a red or blue edge, which our rectangle is disjoint from. So then 
 must bound a
disk on F .

Next, suppose our rectangle has interior disjoint from blue edges, but not necessarily
from red edges. We first want to show that our red edges must run entirely through
the rectangle, without any crossings in the interior. If any of the red edges meets a
crossing, it must then either meet a blue edge at that crossing or meet no other edges at
that crossing (as red edges can’t meet red edges, and can only meet green at crossing
circles). If it meets a blue edge, as our interior is disjoint from blue edges, that means
the crossing must be on the boundary blue edge, and we are good. If it meets no other
edges, then our crossing is in the interior. This means we can go from one side of the
red edge to the other by going around the crossing, with this path never intersecting
our graph. But then, as the projection of the disk switches from above to below the
projection plane at blue and red edges, we have a single region of our disk that must be
both above and below this plane, which cannot happen. So any crossings our red edge
meets must be on the boundary, and we may continue.

Now we will use induction. We already know how to proceed if we have no red edges.
Now suppose we can get a disk if our rectangle has at most n�1 red edges in the interior.
Label the blue boundary edges e and f , and the red boundary edges i and l . Given a
rectangle with n red edges in the interior, pick one of them and label it ˛. As red edges
cannot intersect red edges, this red edge must be parallel to all of the other red edges,
including those on the boundary. Then we can come up with two smaller blue–red
rectangles, each with fewer than n red edges in the interior, by splitting along ˛. The
boundaries of these rectangles will be 
1 D i [

1
2
e [˛ [

1
2
f and 
2 D ˛ [

1
2
e [ l [

1
2
f .

Each of these curves, by induction, will give us disks on F . To get a disk on F bounded
by i [ e [ l [ f , we can glue our two smaller disks along their common edge ˛, and
we are done with this case.

Finally, we deal with the broad case of a rectangle that is only disjoint from the
vertices of �B . As �B is a connected graph, and blue edges only meet blue edges at
vertices/crossing circles, our blue edges must run all the way from one boundary (red)
edge to the other. As it turns out, this doesn’t actually matter for our proof — we just
need the blue edges to run from one red edge to the next. But if the blue edges didn’t
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run all the way from one end to the other, we could find a region where our disk was
both above and below the projection plane, a contradiction.

Once again, we proceed by induction. If our rectangle has no blue edges in the interior,
we can use what we’ve shown above to find a disk. Now suppose we can get a disk
if our rectangle has at most n � 1 blue edges, and suppose our rectangle has n blue
interior edges. Pick a blue edge and call it ˇ. As blue edges can only meet blue edges
at vertices, ˇ must run parallel to both the boundary edges e and f , as well as the
other interior blue edges. So we can construct two smaller blue–red rectangles with
boundaries 
1 D e [

1
2
l [ˇ [

1
2
i and 
2 D ˇ [

1
2
l [f [

1
2
i , with each rectangle having

fewer than n blue edges. By induction, we can then find disks on F with boundaries 
1

and 
2. To get a disk with boundary e [ i [ f [ l , we can glue the disks for 
1 and 
2

along ˇ, and we are done.

Finally, we will show that a triangle–square pair with no interior �B vertices induces a
disk on F . We can split the triangle–square pair into a blue–blue–red triangle and a
blue–red rectangle whose boundaries share a red edge. The triangle bounds a disk by
Lemma 5.14, while the square bounds a disk by the above. So we can form a disk for
the triangle–square pair by gluing these two disks together along their common red
side.

Now we will examine what three adjacent triangle–square pairs might look like. As
we now know that the triangle–square pairs must all lie on a disc, and thus there is no
genus involved, we don’t have to worry about possibilities beyond the four drawn in
Figure 17 of [30]. Likewise, many of the lemmas proven for F D S2 will also hold
for a general projection surface. We only have to be careful when we are referencing
Lemma 3.2(4) of [30], as this part of the lemma relies on the whole projection surface
as opposed to just a small (local) portion, so now we will prove it for the two cases in
a triangle–square pair.

Before we begin, there is something that must be noted. When these lemmas are applied
in [30], they are applied to families of adjacent bigons. As such, the interior of these
bigons will not have any vertices — otherwise any interior vertex must have a blue
edge extending to either vertex of the bigon, breaking the fact that we have adjacent
bigons. So the condition that the triangle–square pairs are disjoint from vertices holds
for the ones we care about, allowing us to apply the following two lemmas in place of
Lemma 3.2(4) of [30]:

Algebraic & Geometric Topology, Volume 22 (2022)



Cusp volumes of alternating knots on surfaces 2515

w

w

w

x

x
x

y

y

y

z

z

z

Figure 13: Upper left: the graph of the case we are considering. Lower left
and right: the possible diagram configurations of this case. The purple curve
following the crossing disk is 
 , while the pink curve following w is ˛.

Lemma 6.3 Suppose that , in a triangle–square pair with interior disjoint from vertices ,
two blue edges , x and y, meet so that the other endpoint of x is the vertex of the
triangle–square pair , and y is in the same region as the crossing circle associated to
the vertex. Then the crossing corresponding to this endpoint must be associated to the
crossing circle.

Proof First, note that, by Lemma 6.2, our triangle–square pair bounds a disk on F .
Let z be a blue edge adjacent to x that also has an endpoint on the vertex, and w the
red edge from x to z. Then, as x and z must be in distinct blue regions, and x and y

must be in distinct blue regions, we must have that y and z are in the same blue region.

There is a simple closed curve connecting the crossing at the endpoint of x and y, and
the crossing circle. Let 
 be the curve that follows x from the crossing to the crossing
circle, goes through the crossing circle to z, and then jumps from z to y to make it
back to the crossing. We claim that 
 bounds a disk. If 
 is contained entirely within
the disk corresponding to the triangle–square pair, then we are done. Otherwise, at
some point, we would have to leave this disk. By construction, the only time we could
have done this is the jump from z to y. Although z and y are in the same blue region,
we have to leave the triangle–square pair to realize this.

While this could be a problem, we are going to show that we can add to our triangle–
square pair disk, and get a disk that includes all of 
 . Let ˛ be the simple closed curve
that follows the jump from z to y, then the red edge w back to z, and then follows z

back to where ˛ started.

Then ˛ must intersect our knot in exactly two places, and so bounds a disk in F . Further,
˛ is either entirely contained in the disk of the triangle–square pair (as Figure 13, bottom
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left), or can be split into two arcs, one of which is entirely contained within the disk of
the triangle–square pair (as in Figure 13, right). This will allow us to glue the ˛ disk to
the triangle–square pair disk, and still get a disk. This, then, will give us 
 living inside
a disk, and so it must bound a disk. Then we have a disk with boundary intersecting the
crossing and with part of the boundary running along where the crossing disk meets the
surface F . This means that the crossing must be part of the twist region the crossing
circle encloses, and so the crossing is associated to the twist region.

Lemma 6.4 Suppose that , in a group of triangle–square pairs with interior disjoint
from vertices , two blue edges , x and y, both have an endpoint at the vertex, and in the
image of the knot , have their other endpoint on opposite sides of the same crossing.
Then that crossing is associated to the crossing circle of the vertex.

Proof As with above, we can use Lemma 6.2 to get a disk that the triangle–square pair
lives on. In particular, both x and y live on the disk, as does the green edge associated
with the crossing circle. Also, as x and y are on opposite sides of a crossing, they must
also be on opposite sides of the crossing circle associated to the vertex. So we will
create a simple closed curve that intersects our knot twice at the crossing circle and
twice at the crossing of x and y by taking 
 to be the curve that follows x from the
crossing to the crossing circle, then the green edge across, then y back down to the
crossing. As x and y live in distinct blue regions, they cannot intersect except at the
crossing, so 
 is simple. And, as 
 lives in a disk, it must also then bound a disk. Then
we have 
 intersecting our diagram twice at the crossing and twice at the crossing circle
and bounding a disk, and so the crossing must be associated to the crossing circle.

We may now prove Lemma 6.1. The proof does not change much from its version
in [30], but we outline the method here.

Proof The proofs of Lemmas 5.1–5.5 of [30] all work as intended, using the above
two lemmas in place of Lemma 3.2(4) of [30]. To summarize, these lemmas tell us
how three adjacent triangle–square pairs must be placed in our diagram. Of particular
note, the last three of these, Lemmas 5.3–5.5, state that, of the four red–blue crossings
of the triangles, three of them must correspond to the vertex of the crossing circle, and
they cannot all be adjacent to each other. That is, either the top two crossings and the
bottom crossing are associated to the vertex, or the bottom two and the top crossing are.

Now, by starting with three adjacent triangle–square pairs, we can start adding additional
triangle–square pairs, and keep track of if the crossings are associated to the vertex
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of the crossing circle or not. Suppose we have three adjacent triangle–square pairs,
and the top two red–blue crossings of the triangles are associated to the vertex, as
is the bottom crossing. To add a fourth triangle–square pair, we must add it to the
bottom, and the crossing we add must also be associated to the vertex. If we try to add
it to the top, then the three top triangle–square pairs would have either three adjacent
crossings all associated to the vertex, or only two crossings associated to the vertex, both
contradicting Lemmas 5.3–5.5 of [30]. Next, when we try to add a fifth triangle–square
pair, we must add it to the bottom again. However, no matter if the added crossing
is associated to the vertex or not, the bottom three pairs will either have only two
associated crossings or three adjacent associated crossings, both contradictions. So
then we can’t have five adjacent triangle–square pairs.

We may use Lemma 6.1 to get:

Proposition 6.5 The graph �B cannot contain five or more adjacent nontrivial bigons.

Proof Suppose �B contains more than five adjacent nontrivial bigons. Then, by
Lemma 5.10, the bigons cannot be disjoint from green and red. If the bigons are
disjoint from red, then they must intersect a green edge. However, as we cannot have
blue–green bigons or blue–blue–green triangles [30, Lemmas 4.4 and 4.16], the green
edge must go from one vertex to another. If the green edge meets only one vertex,
we have a green monogon, which cannot happen (Lemma 4.16 of [30] says we can
remove such monogons), while if it meets two distinct vertices of our bigon, then the
blue edges must be trivial by definition, a contradiction. So the blue bigons must meet
the red surface.

As there are no blue–red bigons (Lemma 5.8), any red edge must run straight through
all five bigons, giving us a collection of blue–blue–red triangles. By Lemma 5.16, we
can’t have three or more adjacent such triangles, so another red edge must run parallel,
giving us adjacent triangles and squares instead. However, by Lemma 6.1, we cannot
have five adjacent triangle–square pairs, so we get a contradiction, and thus �B cannot
have five adjacent nontrivial bigons.

7 Completing the proof of Theorem 2.7

Now we can get that the map f W SB;2 ! Y n K is �1–injective:

Theorem 7.1 Let f W SB;2 ! Y n K be the immersion of SB;2 into Y n K. Then this
immersion is �1–injective provided Ntw � 121.
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Proof If not, then we can get a disk � W D ! Y n K such that �j@D D f ı ` for
some essential loop ` and graph �B D ��1.f .SB;2//, with vertices corresponding
to crossing circles. These vertices have valence 2nj in the interior, or nj C 1 in the
boundary, where 2nj is the number of crossings removed from the twist region when
constructing SB;2. In particular, 2nj � 120. By Lemma 5.5, as the minimum number
of crossings removed is Rtw � 2

˙
1
2
Ntw

�
� 2 � 120, we must then have more than five

adjacent nontrivial bigons. This, however, contradicts Proposition 6.5 above, and so f

must be �1–injective.

Likewise, the proof of boundary �1–injectivity can be proved as in [30]. As before,
instead of reproving every lemma we need, we will instead prove Lemma 3.2(4) of [30]
in the specific case we need, and replace the uses of Lemma 3.2(4) with this new one:

Lemma 7.2 Suppose a triangle with two blue edges and one edge on @N.K/ does not
meet the red edge. Then the two blue edges must be on opposite sides of a crossing ,
and that crossing must be associated to the crossing circle of the vertex.

Proof As the two blue edges of the triangle meet at the same vertex, they must map to
opposite sides of the crossing circle. However, as the third side is the knot strand, and
the triangle does not meet red, the strand must run through a single crossing, proving the
first part. To see that the crossing is associated to the crossing circle, we can construct
a closed curve intersecting the knot exactly four times: take one of the blue edges
from the crossing circle down to the crossing, then follow the other blue edge up to
the crossing circle, and pass over to the start through the green edge. We can view the
interior of this disk as being the interior of our triangle. We know immediately that this
curve cannot bound a compressing disk — r.�.KB;2/; F / > 4. So the other option is
that it is essential. However, if this curve is essential and does not bound a compression
disk, the disk, and thus the interior of the triangle, must pass through the projection
surface. It can only do this where red and blue meet. As the triangle is disjoint from
red, this cannot happen, so the curve must bound a disk on the projection surface. But
then we have a disk whose boundary passes only through the crossing in question and
the crossing circle, so the crossing is related to the crossing circle.

From here, the remaining lemmas follow nicely. To summarize, first, by looking at
how blue–blue–@N.K/ triangles can be placed in the diagram, we get that, if we have
three adjacent triangles in �B , they must meet the red surface. This is the lemma
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that references Lemma 3.2(4) of [30], and so we can use the above lemma in place
of it. Further, by careful examination, [30, Lemma 6.2] tells us that three adjacent
such triangles must meet the red surface at least twice. This, then, gives us blue–red
triangle–square pairs, and we can use Lemma 6.1 to say that we can’t have five adjacent
triangle–square pairs, and thus, can’t have five adjacent blue–blue–@N.K/ triangles.

Now, we can prove boundary �1–injectivity:

Theorem 7.3 Suppose that f W SB;2 ! Y n int.N.K// is the immersion of SB;2

into Y n int.N.K//. Then this immersion is boundary �1–injective provided Ntw � 121.

Proof If not, then we can get a disk � W D ! Y n int.N.K//, such that @D is a
concatenation of two arcs, one mapped into @N.K/, and the other an essential arc
in SB;2 [30, Lemma 2.2]. By Lemma 5.7, as the minimum number of crossings
removed is Rtw � 2

˙
1
2
Ntw

�
�2 � 120, we must have more than five adjacent nontrivial

bigons or five adjacent triangles with an edge on ��1.@N.K//. However, as mentioned
above, by [30, Lemma 6.3], we cannot have five adjacent such triangles. Also, by
Proposition 6.5, we cannot have five adjacent nontrivial bigons. This gives us a
contradiction, so f must be boundary �1–injective.

Putting Theorems 7.1 and 7.3 together, we get:

Theorem 2.7 Let f W SB;2 ! Y nK be the immersion of our blue twisted surface SB;2

into our knot complement Y n K, where Y has no boundary components. Then this
immersion is �1–injective and boundary �1–injective provided that Ntw � 121.

Proof We first prove that f W SB;2 ! Y n K is �1–injective. If not, then, by [30,
Lemma 2.1] (and the remarks at the beginning of section 5 about why this carries over
to our general case), we get a map of a disk � W D ! Y nK with �j@D D f ı` for some
essential loop ` in SB;2, with �B D ��1.f .SB;2// a collection of embedded closed
curves and an embedded graph in D. Each vertex in the interior of D has valence a
nonzero multiple of 2nj > 121, where 2nj is the number of crossings removed, and
each vertex in the exterior has valence nj C 1 > 60. Then, as we are working with a
graph with exactly the same properties as the graph in Section 2 of [30], we can get
that �B has more than 1

18
Ntw � 1 > 5 adjacent nontrivial bigons.

7.1 Properties of twisted surfaces

Now that we have proven that our twisted surfaces are essential surfaces in Y n K, we
can get a bit more out of them as well. Ultimately, we want to show the following:
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Theorem 3.4 Let S be the disjoint union of our twisted surfaces SB;2 tSR;2. Suppose
that two distinct essential arcs in the surface SB;2 have homotopic images in Y nK, but
not SB;2. Then the two arcs are homotopic in SB;2 into the same subsurface associated
with some twist region of K2.

This theorem is proven in a series of lemmas, all but one of which require little to no
alteration in statement and proof. We will go through each of the lemmas, and give a
sketch of why they still hold for our case. Recall that the subsurface associated to a
twist region of K2 is the intersection of a surface with a regular neighborhood of the
twist region.

The first step in our proof of Theorem 3.4 is to get a disk to work on.

Lemma 7.4 Suppose homotopically distinct essential arcs a1 and a2 in SB;2 map
by f W SB;2 ! Y n K to homotopic arcs e1 and e2 in Y n K. Then there is a map
of a disk � W D ! Y n int.N.K// with @D expressed as four arcs , with opposite arcs
mapping by � to e1 and e2, and the other two arcs mapping to @N.K/. Moreover ,
�B D ��1.f .SB;2// forms a graph on D whose edges have endpoints either at vertices
where �.D/ meets a crossing circle , or on ��1.@N.K// on @D. Each vertex has
valence either a multiple of 2n (if in the interior of D), n C 1 (if in the interior of an
arc on @D that maps to SB;2), or 1 (if on an arc that maps to @N.K/), where 2n is the
number of crossings removed from the twist region.

Proof As e1 and e2 are homotopic, we immediately get a disk � W D ! Y n int.N.K//

with the correct edges. We then modify this disk to get the remaining properties.

First, we lift e1 and e2 to the orientable double cover of SB;2 By pushing e1 and e2 in
the transverse direction, and using the fact that @N.K/ is transversely orientable, we
can get the map of � on a neighborhood of @D. Then we can extend � over the rest
of D, making it transverse to all crossing circles and to f .SB;2/.

Now look at �B D ��1.f .SB;2//. As SB;2 is embedded in Y n K except at crossing
circles, �B must consist of embedded closed curves (where SB;2 intersects �.D/ away
from @N.K/ or crossing circles), arcs with endpoints on vertices (where SB;2 intersects
a crossing circle), and arcs with endpoints on @N.K/.

As a vertex of �B in the interior of D comes from where �.D/ intersects a crossing
circle, the valence is equal to the number of crossings removed, by construction of
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the twisted surface SB;2. If we have a vertex on an arc in @D, it maps either to SB;2

or @N.K/. If it maps to SB;2, then a neighborhood of the arc must map to half a
meridian disk of a crossing circle, and so it has valence n C 1, where we removed 2n

crossings from the corresponding twist region in our construction of SB;2. If it maps
to @N.K/, however, because the arc must be transverse to SB;2, the vertex must have
valence 1.

We can also take our disk to be minimal, in the sense that it is a disk that gives us the
fewest number of vertices of �B (the graph coming from how the disk intersects our
blue surface) and �BR (the graph coming from how the disk intersects both our blue
and red surfaces). Next, by examining graphs in a disk that satisfy the properties above,
we get an analogue to Lemma 5.7:

Lemma 7.5 Suppose �B contains at least one blue vertex. Then either �B has more
than 1

24
Rtw � 1 adjacent nontrivial bigons , or more than 1

24
Rtw � 1 adjacent triangles ,

each with one arc on ��1.@N.K//.

The proof of this lemma is a graph-theoretic proof, and so does not rely on the ambient
space Y or the twisted surfaces SB;2 or SR;2.

Proof (sketch) First, suppose we have a graph � on I �I with no monogons and only
valence one vertices on I � @I , with interior vertices having valence at least R, and
vertices on @I � .I �@I/ having valence at least 1

2
RC1. Then � must have more than

1
8
R�1 adjacent bigons or more than 1

8
R�1 adjacent triangles with an edge on I �@I .

Next, we can modify our graph �B coming from Lemma 7.4 by looking at subdisks,
doubling along edges, and collapsing certain bigons and triangles so that we satisfy the
above statement with R D Rtw, the minimal number of crossings removed from a twist
region. When we collapsed bigons or triangles, we made it so at most three bigons
or triangles in �B are associated to a bigon or triangle in this new graph. As such,
we get 1

24
Rtw � 1 adjacent nontrivial bigons in �B , or more than 1

24
Rtw � 1 adjacent

triangles.

Using this, we can prove:

Lemma 7.6 [30, Lemma 7.6] If Ntw � 121, then the graph �B contains no blue
vertices. That is , �.D/ meets no crossing circles.
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Proof As shown in Lemma 5.9, �B has no monogons. If �B has a trivial arc in @D,
then that arc must bound a disk E that is a subset of SB;2. By sliding @D along E, we
can remove such an arc, so we may assume that �B has no trivial arcs in @D. Then, if
there is a blue vertex in �B , we can use Lemma 7.5, and get more than 1

24
.Ntw �1/�1

adjacent nontrivial bigons or adjacent triangles with an arc on ��1.@N.K//. When
Ntw � 121, we get at least five such bigons or triangles. By Proposition 6.5, we cannot
have five such bigons, and [30, Lemma 6.3], we cannot have five adjacent triangles,
and so �B cannot have any blue vertices.

So now we can start looking at how exactly the surfaces SB;2 and R2 (the red surface
arising from K2) intersect our disk. First, with no blue vertices, �B consists only
of blue arcs with endpoints on the north and south edges of the disk, corresponding
to @N.K/. If both of the endpoints are on the same edge, by Theorem 7.3, because
the disk is boundary �1–injective, the blue edge is trivial and we can find a disk that
doesn’t meet that edge. So blue edges must run from north to south. Likewise, the red
edges of �BR are only arcs that go from one distinct edge to another, from Lemma 5.8
(no blue red bigons), and the fact that the red checkerboard surface R2 is essential.

Now we need to show that the red arcs run along opposite edges, either east to west
(e1 to e2), or north to south (@N.K/ to @N.K/):

Lemma 7.7 The graph �BR consists of red and blue arcs with endpoints on opposite
sides of D (north–south or east–west). Further , blue arcs run north to south.

Proof In the case of blue edges, we are done, as we know the arcs run from north to
south as discussed above. For red arcs, if they don’t have endpoints on opposite sides,
then they must form a triangle with one endpoint on either the north or south side, and
the other on the east or west side. This gives us a blue–red–@N.K/ triangle. The blue
and red arcs must meet at a crossing of our arc, so, assuming the triangle region maps
above the projection plane, there are two ways this could happen. Either the red edge
runs from one crossing (where it meets the blue arc) to near another crossing, or runs
from one crossing to @N.K/, with the blue arc on the opposite side of this meeting.

Before we can use primality arguments to show neither of the cases can happen, we
need to show that we can get a disk from this triangle. By joining the blue and red
arcs together at the endpoints that don’t meet, either by sliding along K or connecting
across a crossing, we get a closed curve that intersects our knot diagram twice. As
e.�.K/; F / � 4, this curve cannot be essential, and so must bound a disk on F .

Algebraic & Geometric Topology, Volume 22 (2022)



Cusp volumes of alternating knots on surfaces 2523

Figure 14: Two ways a triangle with one edge on red, one edge on blue, and
one edge on the knot can sit in the diagram.

From here, the remainder of the proof follows as in [30]. If we are in the left case of
Figure 14, connecting the endpoints will give us a blue–red bigon. But then, as in the
proof of Lemma 5.8, we can get a contradiction to primality. On the other hand, if
we are in the other case, because KB;2 is weakly prime, there must be no crossings in
the interior of the closed curve we constructed. As such, both the red and blue arcs
must be homotopic to a portion of @N.K/. We can then use a homotopy to slide our
disk D away from where the blue and red arcs intersect. This will give us one fewer
vertex on D, and so contradicts the minimality of D. In either situation, we get a
contradiction, so the red arcs must run either north–south or east–west.

As red arcs cannot intersect red arcs, we must also have that all red arcs run in the same
direction — either all north–south or all east–west. We consider the first case now:

Lemma 7.8 If the graph �BR cuts D into a subrectangle with two opposite sides
mapped to @N.K/, one side on blue , one side on red , and the interior disjoint from
blue and red , then the blue and red sides of that rectangle are homotopic to the same
crossing arc , and the homotopies can be taken to lie entirely in SB;2 and R2.

Proof First, note that such a rectangle, with interior disjoint from both blue and red,
must be mapped either completely above or below the projection surface. Suppose
it is above. Then there are three cases to consider. First, the blue and red arcs could
straddle over crossings at both ends. Second, one set of endpoints could straddle an
over crossing, while the other set lies on opposite side of a strand. Third, both sets of
endpoints lie on opposite ends of strands.

Note that in all three of these cases, by connecting the red and blue arcs, we get a curve
that intersects our knot exactly twice and so, as before, must bound a disk on F . The

Figure 15: The three ways a red–blue rectangle can sit in our diagram.
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first case, with two over crossings, as in Lemma 5.8 (there are no blue–red bigons),
violates the fact that our diagram is weakly prime. The third case, with two strands,
can be homotoped away as in Lemma 7.7. That leaves us with just our second case. In
this case, both the blue and red arcs are homotopic to the same crossing arc (the over
crossing they straddle), and the homotopies lie entirely in their corresponding surfaces,
either SB;2 or R2.

From here, with no change to the proof except to use e.�.K/; F / � 4 to show the
curves in question bound a disk, by carefully examining how rectangles with two
colored sides (either both blue, both red, or blue and red) and two @N.K/ sides can
give us homotopies, we get the following result:

Lemma 7.9 If the graph �BR consists of disjoint red and blue arcs on D, all running
north to south , then e1 and e2 are each homotopic in the blue surface to arcs in the
same subsurface associated with a twist region of K2.

The e1 and e2 here are the two homotopic arcs in Y n K from Lemma 7.4.

Proof (sketch) Our arcs split our disk into several subrectangles, with east and west
sides colored either red or blue, and the north and south sides on @N.K/. If both colored
sides are blue, the subrectangle must be mapped to a single side of the projection surface,
and the north and south sides must run over crossings (or else we could homotope D

away to remove intersections). This means our subrectangle gives us a simple closed
curve that meets our diagram at two crossings with the subrectangle on only one side
of the projection surface, and thus gives us a disk. Because KB;2 is weakly blue
twist-reduced, this disk bounds a collection of red bigons, and so we can isotope the
blue arcs to lie in the same subsurface. In a similar fashion, having to be a bit more
careful as we don’t know KB;2 is weakly red twist-reduced, we get the same result for
when both sides are red.

If the two sides are colored differently (one red, one blue), then Lemma 7.8 allows us to
homotope the two sides into the same subsurface. Putting it all together, two successive
arcs are homotopic into the same subsurface, in either SB;2 or R2, as appropriate.
Expanding this out, we get that e1 and e2 must be homotopic in the blue surface into
the same subsurface.

For the last lemma, we need an analogue to the polyhedron decomposition of alternating
knots. We will use the chunk decomposition of Howie and Purcell [23]:
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Definition 7.10 A chunk C is a compact, oriented, irreducible 3–manifold with
boundary @C containing an embedded nonempty graph with all vertices having valence
at least 3. The graph separates @C into regions called faces. If the region is disjoint
from the graph, it is called an exterior face; otherwise, it is an interior face.

A truncated chunk is a chunk where a regular neighborhood of each vertex of the edge
graph has been removed. This leaves a boundary face surrounded by boundary edges.

A chunk decomposition for a 3–manifold M is a decomposition of M into chunks, so
that M is obtained by gluing chunks by homeomorphisms of nonexterior, nonboundary
faces with edges mapping to edges homomorphically.

Howie and Purcell showed that weakly generalized alternating knots admit a chunk
decomposition:

Theorem 7.11 [23, Proposition 3.1] Let Y be a compact , orientable , irreducible 3–
manifold with no boundary components , containing a generalized projection surface F .
Let K be a weakly generalized alternating knot with a diagram �.K/ on F . Then Y nK

can be decomposed into pieces so that :

(1) Pieces are homeomorphic to components of Y n N.F /, except each piece has a
finite set of points removed from @.Y n N.F //, namely the ideal vertices below.

(2) On each copy of F , there is an embedded graph with vertices , edges , and regions
identified with the diagram graph �.K/. All vertices are ideal and 4–valent.

(3) To obtain Y n K, glue pieces as follows. Each region of F n �.L/ is glued to
the corresponding region on the opposite copy of F by a homeomorphism that
is the identity composed with a rotation along the boundary. The rotation takes
an edge of the boundary to the nearest edge in the direction of that boundary
component’s orientation.

(4) Edges correspond to crossing arcs , and are glued in fours. At each ideal vertex,
two opposite edges are glued together.

With this in mind, we can generalize the following lemma, initially proven by Lackenby
in [28]. Before we begin, note that an essential square is a simple closed curve,
intersecting �.K/ exactly four times, thus dividing the curve into four sides, each of
which intersects a different edge of the diagram. As we will be working in �B , and
essential squares are blue–red rectangles, we can use Lemma 6.2 to assume that these
squares must bound a disk in F .
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Lemma 7.12 Let C be a chunk in a chunk decomposition for Y n K, where K is a
weakly generalized alternating knot on F with e.�.K/; F / � 4. Then , if S and T

are essential squares , each bounding a disk on F and isotoped to minimize jS \ T j,
they intersect either zero or two times. If they intersect two times , then the points of
intersection lie in distinct regions of the diagram with the same color.

Proof We can color the faces of our chunk blue or red, depending on how it meets the
checkerboard coloring of F n K. An essential square intersects the knot projection at
four distinct points, and so the square must have two blue edges and two red edges,
each opposite each other. As S and T have been isotoped to have minimal intersection,
there are at most four points of intersection, one at each edge. If there are four points
of intersection, then S and T are isotopic to each other, and can be pushed off to have
no intersection. In addition, they cannot intersect an odd number of times, as both
bound disks on F . If they do, look at how T as a curve intersects S . It must cross
the boundary of S exactly three times. As T bounds a disk on F , however, this is
impossible. So S and T intersect either zero or two times.

Suppose they intersect exactly twice, and one of those intersection points happens on
red, and the other on blue. Because S and T must intersect the knot where blue meets
red, if we look at the arcs of S n T and T n S , they must intersect our knot either
once or three times. Look at the two arcs that intersect the knot once, each, and glue
them together to get a curve intersecting our knot exactly twice. As e.�.K/; F / � 4,
this curve must bound a disk on F . Then, as K is weakly prime, because the curve
intersects the knot exactly twice and bounds a disk, the disk must intersect our knot in a
single arc with no crossings. We can then use this arc to homotope S and T away from
each other, contradicting the fact that our intersection was minimal. So, if S and T

intersect, they must intersect in distinct regions of the same color.

As a consequence to this, we get:

Lemma 7.13 Let C be a chunk in a chunk decomposition for Y n K, where K is
a weakly generalized alternating knot on F with e.�.K/; F / � 4. Let S and T be
essential squares in P , each bounding a disk on F and moved by normal isotopy to
minimize jS \ T j. Suppose S and T pass through the same red face W , and that edges
S \ W and T \ W differ by a single rotation of W . Then exactly one of the following
two conclusions holds:
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(1) Each of S and T cuts off a single ideal vertex in W , and S and T are disjoint.

(2) Neither S nor T cuts off a single vertex in W . The two essential squares intersect
in W and in another face W 0.

Proof First, if S cuts off a single ideal vertex, then so must T , and so they do not
intersect in W . By Lemma 7.12, then, if S and T intersect, it must be in a blue face.
As e.�.K/; F / � 4, W can only meet a given blue face once (otherwise we could
find an essential curve on F intersecting our knot exactly twice). Then, if S and T

do intersect in a blue face (and thus in two blue faces), then S \ W and T \ W must
be parallel to each other. We could then isotope S and T away from each other in the
blue faces so that S and T are disjoint.

If S does not cut off a single vertex, then neither does T . As S \ W and T \ W

differ by a single rotation, they must intersect in W . By Lemma 7.12, then, they must
intersect in two red faces, W and W 0.

We can use this to get our final needed lemma. There is one last definition to introduce:

Definition 7.14 An essential product disk for the blue checkerboard surface B of a
knot K is an essential disk properly embedded in S3 n int.N.B//, with boundary a
rectangle with two opposite sides on N.B/ and two opposite sides on @N.K/.

Then note that the disk of Lemma 7.4 is an essential product disk, so if we can prove
the following lemma for essential product disks in general, it will also apply to the
specific case we are concerned with.

Lemma 7.15 Let e1 and e2 be the boundary arcs on the blue surface in an essential
product disk for the blue checkerboard surface of KB;2. Then there is a subsurface
associated with a twist region of the diagram of K2 and arcs a1 and a2 in that subsurface
such that e1 is homotopic in SB;2 to a1 and e2 is homotopic in SB;2 to a2.

Proof Let E be the essential product disk. If it is disjoint from the red surface, then
the blue edges of E are homotopic to arcs in a subsurface associated to one twist region
of KB;2. This follows from [30, Lemma 7.10]. To summarize, if we have a rectangle
made up of two blue arcs and two edges on @N.K/, and interior disjoint from red or
blue, the rectangle must be mapped to a single side of the projection surface. If the
@N.K/ edges don’t run over a crossing, then we could homotope the rectangle away
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Figure 16: Left: an essential product disk with blue sides e1 and e2 inter-
sected horizontally by red edges. Right: two subrectangles whose shared red
edge meets two separate crossings. Center: two subrectangles whose shared
red edge meets a single crossing. We want to prove that this is what happens
for all adjacent subrectangles.

from the projection surface, and thus �BR would not be minimal, a contradiction. So
then the edges on @N.K/ must run over crossings, and thus we can get a curve that
intersects the diagram at exactly two crossings. Then this curve must bound a series of
red bigons, and so we may isotope the blue arcs into a neighborhood of these bigons,
and are done.

If E does meet the red surface, then, by Lemma 7.7, either the red edges all run north–
south (@N.K/ to @N.K/) or east–west (from blue edge to blue edge). In the former
case, Lemma 7.8 gives us our result. So we may assume we are in the latter case, and
red edges run from blue edge to blue edge, cutting the rectangle into blue–red–blue–red
subrectangles.

By Theorem 7.11, we get a chunk decomposition for our knot, with pieces homeomor-
phic to components of Y n N.F /, except for ideal vertices corresponding to crossings.
Each face of the chunk can be colored either red or blue, depending on what color it
meets on F . As F is a connected surface, Y nN.F / has either one or two components.
Each of our subrectangles that make up E must be contained entirely in a single chunk.
Further, if two rectangles glue to each other along a red edge, the rectangles are either
not in the same chunk, if we have two chunks, or meet two separate red faces that glue
to each other, if there is only one chunk. We proceed based on whether we have only
one chunk or two.

If we only have a single chunk, then look at the first two rectangles in E, the north
most one, E1, that meets @N.K/, and E2, the one below that which glues to the red
edge, r of E1. Looking at the side of E1 that meets @N.K/, it must run through an
ideal vertex of the chunk decomposition, and so we can push it off into the red face
so that it cuts off a single vertex. Consider the other side of E1 now, which glues by
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a clockwise or counterclockwise turn to E2. While the red side of E1 and the red
side of E2 are not on the same face, we can create a new rectangle E2 by copying r

in E2 into the same face of r in E1, after rotating by the corresponding turn, and then
copying the rest of E2 over. By Lemma 7.12, if the two copies of r (for E1 and E2)
intersect, then E1 and E2 must also intersect in the other red face. However, as the
other edge of E1 cuts of an ideal vertex, we can homotope it so it does not intersect the
other edge of E2. This means, then, that E1 and E2 cannot intersect in a red face. By
Lemma 7.13, then, r in both E1 and in E2 must cut off a single vertex, and so r in E2

must also cut off a single vertex. Continuing by induction, each rectangle making up E

must have sides in the red faces cutting off a single vertex.

Now suppose we have two chunks. Once again, we start by looking at E1 and E2, the
first two rectangles of E, which glue by a single turn along a red edge r . The first step
is to get both of these rectangles into the same chunk. Like before, we can homotope
the north end of E1 so that it cuts off a single vertex. As E1 and E2 are in separate
chunks, we can impose E2 into the same chunk as E1 by copying r in E2 into the
chunk containing E1 under a clockwise turn, and continuing for the rest of E2. We
call this new rectangle E2. Now, with both rectangles in the same chunk, we can use
the same argument as in the single chunk case, and get that r in both E1 and E2 must
cut off a single vertex, and, by induction, each red edge of E must cut off a single
ideal vertex.

In either case, each rectangle of E maps to a region of the diagram meeting �.KB;2/

exactly four times, adjacent to two crossings (one for each red edge). As �.KB;2/

is weakly blue twist-reduced by Lemma 4.7, this region must bound a string of red
bigons, and so the boundaries all lie in the same twist region. By applying this to all
the rectangles in E, we get that the two blue edges must lie in a neighborhood of the
same twist region.

Now Theorem 3.4 follows as a consequence of several of the above lemmas.

Proof of Theorem 3.4 Call our two arcs e1 and e2. Then, by Lemma 7.4, we get a
disk � W D ! Y n K and a graph �B . Then, by Lemma 7.6, there are no blue vertices
in our graph. Next, Lemma 7.7 tells us that blue edges must run north to south, while
red edges either run all north to south or all east to west. If they all run north to south,
then Lemma 7.9 tells us e1 and e2 are homotopic into the same subsurface. If the red
edges all run east to west, then Lemma 7.15 gives us the same result.
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