
Decomposable Non-Smooth Convex Optimization
with Nearly-Linear Gradient Oracle Complexity∗

Sally Dong
Computer Science & Engineering

University of Washington
Seattle, WA 98195
sallyqd@uw.edu

Haotian Jiang
Computer Science & Engineering

University of Washington
Seattle, WA 98195
jhtdavid@uw.edu

Yin Tat Lee
Computer Science & Engineering

University of Washington
Seattle, WA 98195
yintat@uw.edu

Swati Padmanabhan
Electrical & Computer Engineering

University of Washington
Seattle, WA 98195
pswati@uw.edu

Guanghao Ye
Department of Mathematics

Massachusetts Institute of Technology
Cambridge, MA 02142

ghye@mit.edu

Abstract

Many fundamental problems in machine learning can be formulated by the convex
program

min
θ∈Rd

n∑
i=1

fi(θ),

where each fi is a convex, Lipschitz function supported on a subset of di coor-
dinates of θ. One common approach to this problem, exemplified by stochastic
gradient descent, involves sampling one fi term at every iteration to make progress.
This approach crucially relies on a notion of uniformity across the fi’s, formally
captured by their condition number. In this work, we give an algorithm that
minimizes the above convex formulation to ϵ-accuracy in Õ(

∑n
i=1 di log(1/ϵ))

gradient computations, with no assumptions on the condition number. The previous
best algorithm independent of the condition number is the standard cutting plane
method, which requires O(nd log(1/ϵ)) gradient computations. As a corollary,
we improve upon the evaluation oracle complexity for decomposable submodular
minimization by [Axiotis, Karczmarz, Mukherjee, Sankowski and Vladu, ICML
2021]. Our main technical contribution is an adaptive procedure to select an fi
term at every iteration via a novel combination of cutting-plane and interior-point
methods.

∗Authors ordered alphabetically.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

1 Introduction

Many fundamental problems in machine learning are abstractly captured by the convex optimization
formulation

minimizeθ∈Rd

∑n
i=1 fi(θ), (1.1)

where each fi is a convex, Lipschitz function. For example, in empirical risk minimization, each fi
measures the loss incurred by the i-th data point from the training set. In generalized linear models,
each fi represents a link function applied to a linear predictor evaluated at the i-th data point.

The ubiquity of (1.1) in the setting with smooth fi’s has spurred the development of well-known
variants of stochastic gradient methods [44, 7, 55, 6] such as [46, 49, 25, 35, 15, 36, 3, 22, 47]; almost
universally, these algorithms leverage the “sum structure” of (1.1) by sampling, in each iteration, one
fi with which to make progress. These theoretical developments have in turn powered tremendous
empirical success in machine learning through widely used software packages such as libSVM [13].

In many practical applications, (1.1) appears with non-smooth fi’s, as well as the additional structure
that each fi depends only on a subset of the problem parameters θ. One notable example is decom-
posable submodular function minimization2 (SFM), which has proven to be expressive in diverse
contexts such as determinantal point processes [30], MAP inference in computer vision [29, 53, 17],
hypergraph cuts [52], and covering functions [50]. Another application is found in generalized linear
models when the data is high dimensional and sparse. In this setting, fi depends on a restricted subset
of the parameters θ that correspond to the features of the data point with non-zero value. Last but
not least, the case with each fi depending on a small subset of the parameters is also called sparse
separable optimization and has applications in sparse SVM and matrix completion [42].

In this work, we initiate a systematic study of algorithms for (1.1) without the smoothness assumption3.
Motivated by the aforementioned applications, we introduce the additional structure that each fi
depends on a subset of the coordinates of θ. As is standard in the black-box model for studying
first-order convex optimization methods, we allow sub-gradient oracle access to each fi.
Problem 1. Let f1, f2, . . . , fn : Rd 7→ R be convex, L-Lipschitz, and possibly non-smooth
functions, where each fi depends on di coordinates of θ, and is accessible via a (sub-)gradient
oracle. Define m :=

∑n
i=1 di to be the “total effective dimension” of the problem. Let

θ⋆ := argminθ∈Rd

∑n
i=1 fi(θ) be a minimizer of (1.1), and let θ(0) be an initial point such that

∥θ(0) − θ⋆∥2 ≤ R. We want to compute a vector θ ∈ Rd satisfying
n∑

i=1

fi(θ) ≤ ϵLR+
n∑

i=1

fi(θ
⋆). (1.2)

Prior works. We focus on the weakly-polynomial regime and therefore restrict ourselves to
algorithms with polylog(1/ϵ) gradient oracle complexities. Table 1 summarizes the performance
of all well-known algorithms applied to Problem 1. Note that the variants of gradient descent
each require bounded condition number. The results of [39, 2] and cutting plane methods are all
complemented by matching lower bounds [54, 40]. Additionally, the work on non-smooth ERM
crucially requires the objective function to be a sum of a smooth ERM part and a non-smooth
regularizer. There are many important problems for which the objective function cannot be split in
this way, so for these problems, the techniques developed for non-smooth ERM do not apply. In
comparison, our work can be understood as dealing with a more general ERM problem with fewer
structural assumptions.

Even with smooth fi’s, first-order methods perform poorly when the condition number is large, or
when there is a long chain of variable dependencies. These instances commonly arise in applications;
an example from signal processing is

minimizex

{
(x1 − 1)2 +

n−1∑
i=2

(xi − xi+1)
2 + x2

n

}
, (1.3)

2In decomposable submodular minimization, each fi corresponds to the Lovász extension of the individual
submodular function and is therefore generally non-smooth.

3A function f is said to be β-smooth if f(y) ≤ f(x) + ⟨∇f(x), y − x⟩ + β/2∥y − x∥22 for all x, y and
α-strongly-convex if f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ α/2∥y − x∥22 for all x, y. The condition number of f
is defined to be κ = β/α.

2

Authors Algorithm Type Gradient Queries Non-smooth OK?

[12] Gradient Descent (GD) O(nκ log(1/ϵ))
[39] Accelerated (Acc.) GD O(n

√
κ log(1/ϵ))

[46, 49, 25] Stochastic (Stoch.) Variance-Reduced GD O((n+ κ) log(1/ϵ))
[48, 34, 18, 56, 1] Acc. Stoch. Variance-Reduced GD O((n+

√
nκ) log(κ) log(1/ϵ))

[2] Acc. Stoch. Variance-Reduced GD O((n+
√
nκ) log(1/ϵ))

[27, 37, 51, 5, 33, 24] Cutting-Plane Method (CPM) O(nd log(1/ϵ)) ✓
[31, 16] Robust Interior-Point Method (IPM) O(

∑n
i=1 d

3.5
i log(1/ϵ)) ✓

Table 1: Gradient oracle complexities for solving (1.1) to ϵ-additive accuracy. κ denotes the condition
number of

∑
i fi, and κ is a variant of the condition number defined to be the sum of smoothness of

the fi’s divided by the strong convexity of
∑

i fi.

whose variables form an O(n)-length chain of dependencies, and has condition number κ = Θ(n2)
and κ̄ = Θ(n3). Gradient descent algorithms such as [39] and [2] therefore require Ω(n2) gradient
queries, despite the problem’s total effective dimension being only O(n).

On the other hand, cutting-plane methods (CPM) and robust interior-point methods (IPM) both trade
off the dependency on condition number for worse dependencies on the problem dimension.

These significant gaps in the existing body of work motivate the following question:

Can we solve Problem 1 using a nearly-linear (in total effective dimension)
number of sub-gradient oracle queries?

In this paper, we give an affirmative answer to this question.

1.1 Our results

We present an algorithm to solve Problem 1 with gradient oracle complexity nearly-linear in the total
effective dimension. Our main result is the following theorem.

Theorem 1.2 (Main Result). Given Problem 1 and θ(0) such that ∥θ⋆−θ(0)∥2 ≤ R. Assuming all the
fi’s are L-Lipschitz, then there is an algorithm that in time poly(m log(1/ϵ)), using O(m log(m/ϵ))
gradient oracle calls, outputs a vector θ ∈ Rd such that

n∑
i=1

fi(θ) ≤
n∑

i=1

fi(θ
⋆) + ϵ · LR.

Intuitively, the number of gradient queries for each fi should be thought of as Õ(di) in our algorithm,
which nearly matches that of the standard cutting-plane method for minimizing the individual function
fi. The nearly-linear dependence on m overall is obtained by leveraging the additional structure on
the fi’s and stands in stark contrast to the O(nd) query complexity of CPM, which is significantly
worse in the case where each di ≪ d. Furthermore, we improve over the current best gradient descent
algorithms in the case where the fi’s have a large condition number.

Based on the query complexity of the standard cutting-plane method, we have the following lower
bound matching our algorithm’s query complexity up to a logm-factor:

Theorem 1.3. There exist functions f1, . . . , fn : Rd 7→ R for which a total of Ω(m log(1/ϵ))
gradient queries are required to solve Problem 1.

An immediate application of Theorem 1.2 is to decomposable submodular function minimization:

Theorem 1.4 (Decomposable SFM). Let V = {1, 2, . . . , n}, and F : 2V 7→ [−1, 1] be given by
F (S) =

∑n
i=1 Fi(S ∩ Vi), where each Fi : 2

Vi 7→ R is a submodular function on Vi ⊆ V with
|Vi| ≤ k. We can find an ϵ-additive approximate minimizer of F in O(nk2 log(nk/ϵ)) evaluation
oracle calls.

Theorem 1.4 significantly improves over the evaluation oracle complexity of Õ(nk6 log(1/ϵ)) given
in [4] when the dimension k of each function Fi is large. For non-decomposable SFM, i.e. n = 1 and

3

|V1| = k, the current best weakly-polynomial time SFM algorithm4 finds an ϵ-approximate minimizer
in time O(k2 log(k/ϵ)) [33]. Therefore, our result in Theorem 1.4 can be viewed as a generalization
of the evaluation oracle complexity for non-decomposable SFM in [33], and the dependence on k in
Theorem 1.4 might be the best possible. We defer the details of decomposable SFM to Appendix D.

1.1.1 Limitations

Some limitations of our algorithm are as follows: When each fi depends on the entire d-dimensional
vector θ, as opposed to a subset of the coordinates of size di ≪ d, our gradient complexity simply
matches that of CPM. We would like to highlight, though, that our focus is in fact the regime di ≪ d.
When the fi’s are strongly-convex and smooth, our gradient complexity improves over Table 1 only
when κ is large compared to di. Finally, note that we consider only the gradient oracle complexity in
our work; our algorithm’s implementation requires sampling a Hessian matrix and a gradient vector
at every iteration, which incur an additional poly(m, log(1/ϵ)) factor in the overall running time.

1.2 Technical challenges in prior works

We now describe the key technical challenges that barred existing algorithms from solving Problem 1
in the desired nearly-linear gradient complexity.

Gradient descent and variants. As mentioned in Section 1, the family of gradient descent al-
gorithms presented in Table 1 are not applicable to Problem 1 without the smoothness assumption.
When the objective in Problem 1 is smooth but has a large condition number, even the optimal
deterministic algorithm, Accelerated Gradient Descent (AGD) [39] can perform poorly. For example,
when applied to (1.3), AGD updates only one coordinate in each step (thereby requiring n steps),
with each step performing n gradient queries (one on each term in the problem objective), yielding
a total gradient complexity of Ω(n2) [39]. For a similar reason, the fastest randomized algorithm,
Katyusha [2] also incurs a gradient complexity of Ω(n2) [54].

Cutting-plane methods (CPM). Given a convex function f with its set S of minimizers, CPM
minimizes f by maintaining a convex search set E(k) ⊇ S in the kth iteration, and iteratively
shrinking E(k) using the sub-gradients of f . Specifically, this is achieved by noting that for any x(k)

chosen from E(k), if the gradient oracle indicates∇f(x(k)) ̸= 0, (i.e. x(k) /∈ S), then the convexity
of f guarantees S ⊆ H(k) :=

{
y : ⟨∇f(x(k)),y − x(k)⟩ ≤ 0

}
, and hence S ⊆ H(k) ∩ E(k). The

algorithm continues by choosing E(k+1) ⊇ E(k) ∩H(k), and different choices of x(k) and E(k) yield
different rates of shrinkage of E(k) until a point in S is found.

Solving Problem 1 via the current fastest CPM [24] takes Õ(d) iterations, each invoking the gradient
oracle on every fi to compute∇f(x(k)) =

∑n
i=1∇fi(x(k)). This results in Õ(nd) gradient queries

overall, which can be quadratic in n when d = Θ(n) even if each fi depends on only di = O(1)
coordinates. Similar to gradient descent and its variants, the poor performance of CPM on Problem 1
may therefore be attributed to their inability to query the right fi required to make progress.

Interior-point methods (IPM). IPM solves the convex program minu∈S⟨c,u⟩ by solving a se-
quence of unconstrained problems minu Ψt(u) := {t · ⟨c,u⟩+ ψS(u)} parametrized by increasing
t, where ψS is a self-concordant barrier function that enforces feasibility by becoming unbounded
as it approaches the boundary of the feasible set S. The algorithm starts at t = 0, for which an
approximate minimizer x⋆

0 of ψS is known, and alternates between increasing t and updating to
an approximate minimizer x⋆

t of the new Ψt via Newton’s method. For a sufficiently large t, the
minimizer x⋆

t also approximately optimizes the original problem minu∈S⟨c,u⟩ with sub-optimality
gap O(ν/t), where ν is the self-concordance parameter of the barrier function used.

To apply IPM to Problem 1, we may first transform (1.1) to min(u,z)∈K
∑

i zi, where K = {(u, z) :
(ui, zi) ∈ Ki, ∀i ∈ [n]} and Ki = {(ui, zi) : fi(ui) ≤ zi} is the feasible set. Using the universal
barrier ψi for each Ki [38], the number of iterations of IPM is Õ(

√∑n
i=1 di), each requiring the

computation of the Hessian and gradient of ψi for all i ∈ [n], leading to a total of Õ(n1.5) sub-
gradient queries to fi’s even when all di = O(1). Even when leveraging the recent framework of

4Here, we focus on the weakly-polynomial regime, where the runtime dependence on ϵ is log(1/ϵ).

4

robust IPM for linear programs [31], the computation of each Hessian (by sampling the corresponding
Ki [23]) yields a total sub-gradient oracle complexity of Õ(

∑n
i=1 d

3.5
i), far from the complexity we

seek.

1.3 Our algorithmic framework

We now give an overview of the techniques developed in this work to overcome the above barriers.
First, by making identical copies of coordinates shared by different fi and using the convex sets Ki to
make the objective function linear, we transform (1.1) into a convex program over structured convex
sets:

minimize ⟨c,x⟩,
subject to xi ∈ Ki ⊆ Rdi+1 ∀i ∈ [n]

Ax = b.
(1.4)

where x is the concatenation of the vectors x1, . . . ,xn, the objective vector c is 1 for the last coordi-
nate of each xi and 0 otherwise, and Ax = b enforces that different copies of the same coordinates
should be the same. Note that the sub-gradient oracle for fi can be transformed equivalently to a
separation oracle Ki. We define K := K1 ×K2 × . . .×Kn.

Main idea: combining CPM and IPM. Recall that CPM maintains a convex set which initially
contains the feasible region and gradually shrinks around the minimizer, while IPM maintains a
point inside the feasible region that moves toward the minimizer. Our novel idea is to combine both
methods and maintain an inner convex set Kin,i as well as an outer convex set Kout,i for each i ∈ [n],
such that Kin,i ⊆ Ki ⊆ Kout,i. We define Kin and Kout analogously to K. When Inequality (3.4) and
Inequality (3.3) are satisfied for all i ∈ [n], we make IPM-style updates without needing to make any
oracle calls. When Inequality (3.3) is violated for some i ∈ [n], we query the separation oracle at the
point x⋆

out,i defined as the centroid of Kout,i (c.f. Proposition 3.2). Based on the oracle’s response, we
iteratively either grow Kin,i (and, thus, Kin) outward or shrink Kout,i (and, thus, Kout) inward, until
ultimately they approximate K around the optimum point.

First benefit: large change in volume. If the point x⋆
out,i violates Inequality (3.3) for some i ∈ [n],

we query the separation oracle to see if x⋆
out,i ∈ Ki or not. If x⋆

out,i ∈ Ki, then it is used to expand
Kin,i, yielding in a large volume increase for Kin,i. On the other hand, if x⋆

out,i /∈ Ki, the fact that
it is the centroid of Kout,i results in a large volume decrease for Kout,i when it is intersected with
a halfspace through x⋆

out,i. Thus, our algorithm witnesses a large change in volume of one of Kin,i
and Kout,i, regardless of the answer from the oracle. Just like in standard CPM, this rapid change in
volume is crucial to achieving the algorithm’s oracle complexity.

Second benefit: making a smart choice about querying fi. Since the algorithm maintains
both an inner and outer set approximating K, by checking if Kin,i and Kout,i differ significantly
(Inequality (3.3) essentially performs this function), we can determine if Ki is poorly approximated,
and if so, improve the inner and outer approximations of the true feasible set. Choosing the right Ki

translates to choosing the right fi to make progress with at an iteration; thus, we address the central
weakness of the gradient descent variants in solving (1.1).

2 Notation and preliminaries

The full version of the preliminaries required to understand all proof details is in Appendix A.

We use lowercase boldface letters to denote (column) vectors and uppercase boldface letters to denote
matrices. We use xi to denote the ith block of coordinates in the vector x (the ordering of these
blocks is not important in our setup).

We use ⟨x,y⟩ to mean the Euclidean inner product x⊤y. A subscript x in the inner product notation
means it is induced by the Hessian of some function (which is locally specified) at x; for example,
⟨u,v⟩x = u⊤∇2

iiψ(x)v with ψ separately specified. We define the local norm of v at x analogously:
∥v∥x =

√
⟨v,∇2ψ(x) · v⟩. We also define the norm ∥v∥x,1 :=

∑n
i=1 ∥v∥xi

.

We use ψ to represent barrier functions and Φ to represent potential functions, with appropriate
subscripts and superscripts to qualify them as needed.

5

Definition 2.1 (Polar of a Set). Given a set S ⊆ Rn, its polar is defined as

S◦ := {y ∈ Rn : ⟨y,x⟩ ≤ 1, ∀x ∈ S} .

Lemma 2.2 ([45]). Let S ⊆ Rn be a closed, compact, convex set, and let y be a point. Then
(conv {S,y})◦ ⊆ S◦ ∩H, whereH is the halfspace defined byH = {z ∈ Rn : ⟨z,y⟩ ≤ 1}.

Theorem 2.3 ([20, 11]). Let f be a log-concave distribution on Rd with centroid cf . Let H ={
u ∈ Rd : ⟨u,v⟩ ≥ q

}
be a halfspace defined by a normal vector v ∈ Rd. Then,

∫
H f(z)dz ≥

1
e − t

+, where t = q−⟨cf ,v⟩√
Ey∼f ⟨v,y−cf ⟩2

is the distance of the centroid to the halfspace scaled by the

standard deviation along the normal vector v and t+ := max{0, t}.

Definition 2.4 (Self-concordance). We call F : Q 7→ R a self-concordant function on a convex set Q
if for any x ∈ Q and any h,

|D3F (x)[h,h,h]| ≤ 2(D2F (x)[h,h])3/2,

where DkF (x)[h1, . . . ,hk] is the k-th derivative of F at x along the directions h1, . . . ,hk. Addi-
tionally, if for any x ∈ Q, we have ∇F (x)⊤(∇2F (x))−1∇F (x) ≤ ν, then F is a ν-self-concordant
barrier.

Finally, we need the following definitions of entropic barrier and universal barrier.

Definition 2.5 ([10, 14]). Given a convex body K ⊆ Rn and some fixed θ ∈ Rn, define the function
f(θ) = log

[∫
x∈K exp⟨x, θ⟩dx

]
. Then the Fenchel conjugate f∗ : int(K)→ R is a self-concordant

barrier termed the entropic barrier. The entropic barrier is n-self-concordant.

Definition 2.6 ([41, 32]). Given a convex body K ⊆ Rn, the universal barrier of K is defined as
ψ : int(K)→ R by

ψ(x) = log vol((K − x)◦).

The universal barrier is n-self-concordant.

3 Our algorithm

We begin by reducing Problem 1 to the following slightly stronger formulation (see Theorem 1.2 for
the detailed reduction):

minimize ⟨c,x⟩,
subject to xi ∈ Ki ⊆ Rdi+1 ∀i ∈ [n]

Ax = b.
(3.1)

where x is a concatenation of vectors xi’s, and the Ki’s are disjoint convex sets. This formulation
decouples the overlapping support of the original fi’s by introducing additional variables tied together
through the linear system Ax = b. Each Ki is constructed by applying a standard epigraph trick to
the function fi.

Note that we do not have a closed-form expression for Ki. Instead, the subgradient oracle for fi
translates to a separation oracle for Ki: on a point zi queried by the oracle, the oracle either asserts
zi ∈ Ki, or returns a separating hyperplane that separates zi from Ki.

At the start of our algorithm, we have the following guarantee:

Lemma 3.1. At the start of our algorithm, we are guaranteed the existence of the following.

1. Explicit convex sets Kin := Kin,1 ×Kin,2 × · · · × Kin,n and Kout := Kout,1 ×Kout,2 × · · · × Kout,n
such that Kin ⊆ K := K1 × · · · × Kn ⊆ Kout,

2. An initial xinitial ∈ Kin such that Axinitial = b.

We show how to construct such a set Kin in Appendix C.1 and how to find such a Kout and xinitial in
Appendix C.2.

6

Algorithm 1 Minimizing Decomposable Convex Function
1: ▷ Solving Problem 3.1
2: Input. ϵ, A, b, c, R, r, m , n, x, Kin, Kout, and Oi for each i ∈ [n].
3: Initialization. t = m logm√

n∥c∥2R
and tend = 8m

ϵ∥c∥2R
, η = 1

100 , and x⋆
out (via Equation (3.2))

4: while true do
5: if ⟨c,x⟩ ≤ ⟨c,x⋆

out⟩+ 4m
t then ▷ Either update t or end the algorithm

6: if t ≥ tend then
7: return argminx:x∈Kin,Ax=b {t⟨c,x⟩+

∑n
i=1 ψin,i(xi)}. ▷ End the algorithm

8: end if
9: t← t ·

[
1 + η

4m

]
▷ Update t

10: Update x⋆
out and jump to Line 4 ▷ x⋆

out computed as as per Equation (3.2)
11: end if
12: for all i ∈ [n] do
13: if ⟨∇ψin,i(xi),x

⋆
out,i − xi⟩+ η∥x⋆

out,i − xi∥xi
≥ 4di then

14: if x⋆
out,i ∈ Ki then ▷ Query Oi

15: Kin,i = conv(Kin,i,x
⋆
out,i) ▷ Update Kin,i

16: else
17: Kout,i = Kout,i ∩Hi, whereHi = Oi(x

⋆
out,i) ▷ Update Kout,i

18: end if
19: Update x⋆

out and jump to Line 4 ▷ x⋆
out computed as per Equation (3.2)

20: end if
21: end for
22: Set δx := η

2 ·
x⋆

out−x
∥x⋆

out−x∥x,1
,where ∥u∥x,1 :=

∑n
i=1 ∥u∥xi .

23: x← x+ δx ▷ Move x towards x⋆
out

24: end while

3.1 Details of our algorithm

In this section, we explain our main algorithm (Algorithm 1).

The inputs to Algorithm 1 are: initial sets Kin and Kout satisfying Kin ⊆ K ⊆ Kout, an initial point
x ∈ Kin satisfying Ax = b, a separation oracle Oi for each Ki, the objective vector c, and scalar
parameters m, n, R, r, and ϵ. All the parameters are set in the proof of Theorem B.10.

Throughout the algorithm, we maintain a central path parameter t for IPM-inspired updates, the
current solution x, and convex sets Kin,i and Kout,i satisfying Kin,i ⊆ Ki ⊆ Kout,i for each i ∈ [n].
To run IPM-style updates, we choose the entropic barrier on Kout and the universal barrier on Kin.

Given the current set Kout, the current t, and the entropic barrier ψout defined on K̂out := Kout ∩
{u : Au = b}, we define the point

x⋆
out := arg min

x∈K̂out

{t⟨c,x⟩+ ψout(x)} . (3.2)

Per the IPM paradigm, for the current value of t, this point serves as a target to “chase” when
optimizing ⟨c,x⟩ over the set K̂out. Although our overall goal in Problem 3.1 is to optimize over
K ∩ {u : Au = b}, we do not know K explicitly and therefore must use its known proxies, Kin or
Kout; we choose Kout because Kout ⊇ K ensures we do not miss a potential optimal point.

Having computed the current target x⋆
out, we move the current solution x towards it by taking a

Newton step, provided certain conditions of feasibility and minimum progress are satisfied. If either
one of these conditions is violated, we update either Kin, Kout, or the parameter t.

Updating x. In order to move x towards x⋆
out, we require two conditions to hold: x⋆

out ∈ Kin and
⟨c,x⟩ ≥ ⟨c,x⋆

out⟩+O(1/t).

The first condition implies x⋆
out ∈ K, which would in turn ensure feasibility of the resulting x after a

Newton step. To formally check this condition, we check if the following inequality is satisfied for
all i ∈ [n] and for a fixed constant η:

⟨∇ψin,i(xi),x
⋆
out,i − xi⟩+ η · ∥x⋆

out,i − xi∥xi
≤ 4di. (3.3)

7

The intuition is that since any point within the domain of a self-concordant barrier satisfies the
inequalities in Theorem A.5 and Theorem A.6, violating Inequality (3.3) implies that x⋆

out,i is far from
Kin,i, and as a result, x⋆

out is not a good candidate to move x towards.

The second condition we impose, one of “sufficient suboptimality”, ensures significant progress in
the objective value can be made when updating x. Formally, we check if

c⊤x⋆
out +

4m

t
≤ c⊤x. (3.4)

If the inequality holds, then there is still “room for progress” to lower the value of ⟨c,x⟩ by updating
x; if the inequality is violated, we update t instead.

Given the two conditions hold, we move x towards x⋆
out in Line 23. The update step is normalized

by the distance between x and x⋆
out measured in the local norm, which enforces x ∈ K (since by the

definition of self-concordance, the unit radius Dikin ball lies inside the domain of the self-concordance
barrier), and also helps bound certain first-order error terms (Inequality (B.14) in Appendix B.3).

The rest of this section details the procedure for when either of these conditions is violated.

Updating the inner and outer convex sets. Suppose Inequality (3.3) is violated for some i ∈ [n].
Then x⋆

out,i /∈ Kin,i, which in turn means x⋆
out might not be in the feasible set K. To reestablish

Inequality (3.3) for i, we can either update Kin,i, or update Kout,i and compute a new x⋆
out,i by

Equation (3.2).

To decide which option to take, we query Oi at the point x⋆
out,i: if the oracle indicates that x⋆

out,i ∈ Ki,
then we incorporate x⋆

out,i into Kin,i by redefining Kin,i = conv(Kin,i,x
⋆
out,i) to be the convex hull of

the current Kin,i and x⋆
out,i (Line 15). If, on the other hand, x⋆

out,i /∈ Ki, the oracle Oi will return a
halfspaceHi satisfyingHi ⊇ Ki. Then we redefineKout,i = Kout,i∩Hi (Line 17). After processing
this update of the sets, the algorithm recomputes x⋆

out and returns to the main loop since updating the
sets does not necessarily imply that the new x⋆

out satisfies x⋆
out ∈ Kin.

This update rule for the sets is exactly where our novelty lies: we do not arbitrarily update sets, rather,
we update one only after checking the very specific condition x⋆

out,i /∈ Kin,i. Since the separation
oracle is called only in this part of the algorithm, performing this check enables us to dramatically
reduce the number of calls we make to the separation oracle, thereby improving our oracle complexity.

Further, this update rule shows that even when we cannot update the current x, we make progress by
using all the information from the oracles. Over the course of the algorithm, we gradually expand Kin
and shrink Kout, until they well-approximate K. To formally quantify the change in volume due to
the above operations, we consider the following alternative view of x⋆

out.
Proposition 3.2 (Section 3 in [10]; Section 3 of [28]). Let θ ∈ Rn, and let pθ be defined as
pθ(x) := exp(⟨θ,x⟩ − f(θ)), where f(θ) := log

[∫
K exp(⟨θ,u⟩)du

]
. Then,

Ex∼pθ
[x] = arg min

x∈int(K)
{f∗(x)− ⟨θ,x⟩} .

By this proposition, x⋆
out defined in Equation (3.2) satisfies

x⋆
out := Ex∼exp{−t⟨c,x⟩−log[

∫
K̂out

exp(−t⟨c,u⟩)du]}[x], (3.5)

that is, x⋆
out is the centroid of some exponential distribution over K̂out. As a result, if x⋆

out,i /∈
Ki, the hyperplane cutting K̂out through x⋆

out will yield a large decrease in volume of K̂out, per
Remark 9. Therefore, the query result in a large change in volume in either Kin or Kout, allowing us
to approximate K with a bounded number of iterations.

Updating t. If Inequality (3.4) is violated, then the current x is “as optimal as one can get” for the
current parameter t. This could mean one of two things:

The first possibility is that we have already reached an approximate optimum, which we verify by
checking whether t ≥ O(1/ϵ) in Line 6: If true, this indicates that we have attained our desired
suboptimality, and the algorithm terminates by returning

xret = arg min
x:x∈Kin,Ax=b

{
t · ⟨c,x⟩+

n∑
i=1

ψin,i(xi)

}
.

8

The point xret is feasible because it is inKin by definition, and the suboptimality ofO(1/tend) = O(ϵ)
ensures it is an approximate optimum for the original problem.

The second possibility is that we need to increase t to set the next “target suboptimality”. The value
of t is increased by a scaling factor of 1 +O(1/m) in Line 9. This scaling factor ensures, like in the
standard IPM framework, that the next optimum is not too far from the current one. Following the
update to t, we recompute x⋆

out by Equation (3.2). Since ⟨c,x⟩ > ⟨c,x⋆
out⟩+O(1/t) is not guaranteed

with the new t and x⋆
out, the algorithm jumps back to the start of the main loop.

4 Our analysis

To analyze the oracle complexity of Algorithm 1, we define the following potential function that
captures the changes in Kin, Kout, t, and x in each iteration:

Φ := t⟨c,x⟩+ log

[∫
K̂out

exp(−t⟨c,u⟩)du
]

︸ ︷︷ ︸
entropic terms

+
∑
i∈[n]

ψin,i(xi)︸ ︷︷ ︸
universal terms

, (4.1)

where log
[∫

K̂out
exp(−t⟨c,u⟩)du

]
is related to the entropic barrier on K̂out (see Appendix B.1) and

ψin is the universal barrier on Kin. We have the following bounds on the change in potential when
Kin,i, Kout,i, t, and x are updated respectively; the formal statements are found in Appendix B.1,
Appendix B.2, and Appendix B.3.
Lemma 4.1. Let c be a fixed vector. Let Φ be the potential given in Equation (4.1), defined as a
function of Kin, Kout, x, and t. Following an update to one of the parameters while keeping the others
fixed, we have the following bounds on the new potential Φ(new):

1. Let Hi be the halfspace generated by the separation oracle Oi queried at x⋆
out,i as shown in

Line 17 of Algorithm 1. Then the new potential Φ(new) defined with respect to K̂out ∩Hi is bounded by

Φ(new) ≤ Φ+ log(1− 1/e).

2. When t is updated to t ·
[
1 + η

4m

]
in Line 9 of Algorithm 1, the new potential Φ(new) defined with

respect to the updated t is bounded by

Φ(new) ≤ Φ+ η + η2.

3. Given a convex set K ⊆ Rd and a point x ∈ K, let ψK := log vol(K − x)◦ be the universal
barrier defined on K with respect to x. For some fixed η ≤ 1/4, let y ∈ K be a point satisfying

⟨∇ψK(x),y − x⟩+ η∥y − x∥x ≥ 4d, (4.2)

and construct the new set conv {K,y}. Then, the value of the universal barrier on the new set with
respect to x satisfies

ψconv(K,y)(x) ≤ ψK(x) + log(1− 1/e+ η).

4. Consider the update step δx = η
2 ·

x⋆
out−x

∥x⋆
out−x∥x,1

as in Line 22. Assume the guarantees in Inequal-
ity (3.3) and Inequality (3.4). Then the new potential Φ(new) defined with respect to the updated x is
bounded by

Φ(new) ≤ Φ− η2

4
.

Proof sketch. We use tools from convex analysis, self-concordance calculus, and Grünbaum’s results
to derive the above potential bounds, as explained below.

1. Consider the update of K̂out to K̂out ∩ Hi, with Hi passing through x⋆
out,i. Recall from

Equation (3.5), x⋆
out is the centroid of K̂out with respect to the (log-concave) distribution

exp
{
−t⟨c,x⟩ − log

[∫
K̂out

exp(−t⟨c,u⟩)du
]}

. Therefore, per Remark 9, the volume of K̂out ∩Hi

is at most 1− 1/e factor of the volume of the original K̂out, which translates to the claimed potential
change.

9

2. The change in Φ by updating t to t · (1 + h) for some h > 0 is

Φ(new) − Φ =

{
log

[∫
K̂out

exp⟨−t(1 + h)c,v⟩dv
]
− log

[∫
K̂out

exp⟨−tc,v⟩dv
]}

+ th · ⟨c,x⟩.

(4.3)
To bound the right-hand side, the key observation is that by duality with respect to the entropic barrier
(Definition 2.5), the function log

[∫
x∈K̂out

exp(⟨x, θ⟩)dx
]

is also self-concordant. This in turn allows
us to bound the difference between the first two terms in the right hand side of Equation (4.3).

3. Lemma 2.2 implies (conv(K,y)− x)
◦
= (K−x)◦∩H, whereH = {z ∈ Rn : ⟨z,y − x⟩ ≤ 1}.

Therefore ψconv(K,y)(x)−ψK(x) may be bounded via the change in volume of a set after intersection
with a halfspace, for which we can again apply Grünbaum’s result (Theorem 2.3). To argue that the
halfspace H cuts the set (K − x)◦ at a point not too far from the centroid of (K − x)◦, we use the
intuition that any y satisfying Equation (4.2) must be far from K, by properties of the self-concordant
function ψK. This means conv(K,y) is much larger than K, giving the desired conclusion by duality.

4. The change in potential due to change in x as per the stated update rule is given by

Φ(new) − Φ = ⟨∇xΦ, δx⟩+
n∑

i=1

[ψin,i(xi + δx,i)− ψin,i(xi)− ⟨∇ψin,i(xi), δx,i⟩] .

The term in the summation on the right-hand side measures the error due to the first-order approxima-
tion of ψin,i around xi, which can be bounded by self-concordance. To bound the remaining linear
term, we use∇xΦ = tc+

∑n
i=1∇ψin,i(xi) and the assumed inequalities.

By adding all the potential changes shown in the above lemma and using the bounds we derived on
lower and upper potentials (c.f. Lemma B.8), we can show (c.f. Lemma B.9) the oracle complexity
of Algorithm 1 to be O

(
m log

(
mR
ϵr

))
. Combined with our results on initialization then yields the

oracle complexity of Problem 3.1 (c.f. Theorem B.10) and that of Problem 1 (c.f. Theorem 1.2). The
full details of this may be found in Appendix B.4.

4.1 A remark on implementability

The gradient and hessian of the entropy barrier are the centroid and covariance of some exponential
distribution over a polytope. In our setting, we need only a constant factor approximation of these
quantities. While sampling from a log-concave distribution in general takes n4.2 time, in our case,
sampling from an exponential distribution over an explicit sparse polytope is faster, taking around
quadratic time in practice because of our assumption that each fi depends only on a few variables.

These results (and runtime complexity) of sampling from an exponential distribution over explicit
polytope have practical motivation as well, for example, in simulating metabolic networks (which can
contain hundreds of thousands of variables) in bioinformatics. As a result, there has been extensive
work developing new software for this task. One such popular package is https://opencobra.
github.io/cobratoolbox/stable/. It can sample from a polytope with tens of thousands of
variables currently in seconds. This package includes ACHR, CHRR, RHMC, all representing three
generations of improvement on the sampler in last 20 years. For example, for one human model
(RECON3) with 12k variables, ACHR probably takes 108 cpu-sec to obtain one sample from that
polytope while CHRR takes 104 cpu-sec and RHMC takes 30 sec.

Therefore, even though the focus of our work has been on developing the theory, the preceding
discussion suggests that there could be an implementation of our algorithm which can perform
reasonably well in practice.

Acknowledgements

We thank the anonymous reviewers of NeurIPS 2022 for very helpful comments. Research of YL is
supported by NSF awards CCF-1749609, DMS-1839116, DMS-2023166, CCF-2105772, a Microsoft
Research Faculty Fellowship, a Sloan Research Fellowship, and a Packard Fellowship. The full
version of this paper is available at https://arxiv.org/pdf/2208.03811.pdf.

10

https://opencobra.github.io/cobratoolbox/stable/
https://opencobra.github.io/cobratoolbox/stable/
https://arxiv.org/pdf/2208.03811.pdf

References
[1] Alekh Agarwal and Leon Bottou. A lower bound for the optimization of finite sums. In

International conference on machine learning, pages 78–86. PMLR, 2015.

[2] Zeyuan Allen-Zhu. Katyusha: The first direct acceleration of stochastic gradient methods. The
Journal of Machine Learning Research, 18(1):8194–8244, 2017.

[3] Zeyuan Allen-Zhu and Yang Yuan. Improved svrg for non-strongly-convex or sum-of-non-
convex objectives. In International conference on machine learning, pages 1080–1089. PMLR,
2016.

[4] Kyriakos Axiotis, Adam Karczmarz, Anish Mukherjee, Piotr Sankowski, and Adrian Vladu. De-
composable submodular function minimization via maximum flow. In International Conference
on Machine Learning, pages 446–456. PMLR, 2021.

[5] Dimitris Bertsimas and Santosh Vempala. Solving convex programs by random walks. In
Proceedings of the thiry-fourth annual ACM symposium on Theory of computing (STOC), pages
109–115. ACM, 2002.

[6] Léon Bottou. Stochastic gradient descent tricks. In Neural networks: Tricks of the trade, pages
421–436. Springer, 2012.

[7] Léon Bottou and Yann Cun. Large scale online learning. Advances in neural information
processing systems, 16, 2003.

[8] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex optimization. Cambridge
university press, 2004.

[9] Silouanos Brazitikos, Apostolos Giannopoulos, Petros Valettas, and Beatrice-Helen Vritsiou.
Geometry of isotropic convex bodies, volume 196. American Mathematical Soc., 2014.

[10] Sébastien Bubeck and Ronen Eldan. The entropic barrier: a simple and optimal universal
self-concordant barrier. In Conference on Learning Theory, pages 279–279, 2015.

[11] Sébastien Bubeck, Bo’az Klartag, Yin Tat Lee, Yuanzhi Li, and Mark Sellke. Chasing nested
convex bodies nearly optimally. In Proceedings of the Thirty-First Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, pages 1496–1508, 2020.

[12] Augustin Cauchy et al. Méthode générale pour la résolution des systemes d’équations simul-
tanées. Comp. Rend. Sci. Paris, 25(1847):536–538, 1847.

[13] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011. Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[14] Sinho Chewi. The entropic barrier is n-self-concordant. arXiv preprint arXiv:2112.10947,
2021.

[15] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast incremental gradi-
ent method with support for non-strongly convex composite objectives. Advances in neural
information processing systems, 27, 2014.

[16] Sally Dong, Yin Tat Lee, and Guanghao Ye. A nearly-linear time algorithm for linear programs
with small treewidth: a multiscale representation of robust central path. In Proceedings of the
53rd Annual ACM SIGACT Symposium on Theory of Computing, pages 1784–1797, 2021.

[17] Alexander Fix, Thorsten Joachims, Sung Min Park, and Ramin Zabih. Structured learning of
sum-of-submodular higher order energy functions. In Proceedings of the IEEE International
Conference on Computer Vision, pages 3104–3111, 2013.

[18] Roy Frostig, Rong Ge, Sham Kakade, and Aaron Sidford. Un-regularizing: approximate
proximal point and faster stochastic algorithms for empirical risk minimization. In International
Conference on Machine Learning, pages 2540–2548. PMLR, 2015.

11

http://www.csie.ntu.edu.tw/~cjlin/libsvm

[19] Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric algorithms and combina-
torial optimization. Springer, 1988.

[20] Branko Grünbaum. Partitions of mass-distributions and of convex bodies by hyperplanes.
Pacific Journal of Mathematics, 10(4):1257–1261, 1960.

[21] Osman Güler. On the self-concordance of the universal barrier function. SIAM Journal on
Optimization, 7(2):295–303, 1997.

[22] Elad Hazan and Haipeng Luo. Variance-reduced and projection-free stochastic optimization. In
International Conference on Machine Learning, pages 1263–1271. PMLR, 2016.

[23] He Jia, Aditi Laddha, Yin Tat Lee, and Santosh Vempala. Reducing isotropy and volume to kls:
an o*(n 3 ψ 2) volume algorithm. In Proceedings of the 53rd Annual ACM SIGACT Symposium
on Theory of Computing, pages 961–974, 2021.

[24] Haotian Jiang, Yin Tat Lee, Zhao Song, and Sam Chiu-wai Wong. An improved cutting plane
method for convex optimization, convex-concave games, and its applications. In Proceedings of
the 52nd Annual ACM SIGACT Symposium on Theory of Computing, pages 944–953, 2020.

[25] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. Advances in neural information processing systems, 26, 2013.

[26] Ravi Kannan, László Lovász, and Miklós Simonovits. Isoperimetric problems for convex bodies
and a localization lemma. Discrete & Computational Geometry, 13(3):541–559, 1995.

[27] Leonid G Khachiyan, Sergei Pavlovich Tarasov, and I. I. Erlikh. The method of inscribed
ellipsoids. In Soviet Math. Dokl, volume 37, pages 226–230, 1988.

[28] Boas Klartag. On convex perturbations with a bounded isotropic constant. Geometric &
Functional Analysis GAFA, 16(6):1274–1290, 2006.

[29] Pushmeet Kohli, Lubor Ladicky, and Philip H. S. Torr. Robust higher order potentials for
enforcing label consistency. International Journal of Computer Vision, 82(3):302–324, 2009.

[30] Alex Kulesza and Ben Taskar. Structured determinantal point processes. Advances in neural
information processing systems, 23, 2010.

[31] Yin Tat Lee and Santosh S Vempala. Tutorial on the robust interior point method. arXiv preprint
arXiv:2108.04734, 2021.

[32] Yin Tat Lee and Man-Chung Yue. Universal barrier is n-self-concordant. Mathematics of
Operations Research, 46(3):1129–1148, 2021.

[33] Yin Tat Lee, Aaron Sidford, and Sam Chiu-wai Wong. A faster cutting plane method and its
implications for combinatorial and convex optimization. In 56th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 1049–1065, 2015.

[34] Hongzhou Lin, Julien Mairal, and Zaid Harchaoui. A universal catalyst for first-order optimiza-
tion. Advances in neural information processing systems, 28, 2015.

[35] Mehrdad Mahdavi, Lijun Zhang, and Rong Jin. Mixed optimization for smooth functions.
Advances in neural information processing systems, 26, 2013.

[36] Julien Mairal. Incremental majorization-minimization optimization with application to large-
scale machine learning. SIAM Journal on Optimization, 25(2):829–855, 2015.

[37] YE Nesterov and AS Nemirovskii. Self-concordant functions and polynomial time methods
in convex programming. preprint, central economic & mathematical institute, ussr acad. Sci.
Moscow, USSR, 1989.

[38] Yurii Nesterov and Arkadii Nemirovskii. Interior-point polynomial algorithms in convex
programming. SIAM, 1994.

12

[39] Yurii E Nesterov. A method for solving the convex programming problem with convergence
rate O(1/k2). In Dokl. akad. nauk Sssr, volume 269, pages 543–547, 1983.

[40] Yurii E. Nesterov. Introductory Lectures on Convex Optimization - A Basic Course, volume 87
of Applied Optimization. Springer, 2004. doi: 10.1007/978-1-4419-8853-9.

[41] Yurii E. Nesterov and Arkadii Nemirovskii. Interior-point polynomial algorithms in convex
programming, volume 13 of Siam studies in applied mathematics. SIAM, 1994. ISBN
978-0-89871-319-0. doi: 10.1137/1.9781611970791. URL https://doi.org/10.1137/1.
9781611970791.

[42] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild!: A lock-free
approach to parallelizing stochastic gradient descent. Advances in neural information processing
systems, 24, 2011.

[43] James Renegar. A mathematical view of interior-point methods in convex optimization. SIAM,
2001.

[44] Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of
mathematical statistics, pages 400–407, 1951.

[45] R Tyrrell Rockafellar. Convex Analysis, volume 36. Princeton University Press, 1970.

[46] Nicolas Roux, Mark Schmidt, and Francis Bach. A stochastic gradient method with an exponen-
tial convergence rate for finite training sets. Advances in neural information processing systems,
25, 2012.

[47] Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the stochastic
average gradient. Mathematical Programming, 162(1):83–112, 2017.

[48] Shai Shalev-Shwartz and Tong Zhang. Accelerated mini-batch stochastic dual coordinate ascent.
Advances in Neural Information Processing Systems, 26, 2013.

[49] Shai Shalev-Shwartz and Tong Zhang. Stochastic dual coordinate ascent methods for regularized
loss minimization. Journal of Machine Learning Research, 14(2), 2013.

[50] Peter Stobbe and Andreas Krause. Efficient minimization of decomposable submodular func-
tions. Advances in Neural Information Processing Systems, 23, 2010.

[51] Pravin M Vaidya. A new algorithm for minimizing convex functions over convex sets. In 30th
Annual Symposium on Foundations of Computer Science, pages 338–343, 1989.

[52] Nate Veldt, Austin R Benson, and Jon Kleinberg. Minimizing localized ratio cut objectives in
hypergraphs. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 1708–1718, 2020.

[53] Sara Vicente, Vladimir Kolmogorov, and Carsten Rother. Joint optimization of segmentation
and appearance models. In 2009 IEEE 12th international conference on computer vision, pages
755–762. IEEE, 2009.

[54] Blake E Woodworth and Nati Srebro. Tight complexity bounds for optimizing composite
objectives. Advances in neural information processing systems, 29, 2016.

[55] Tong Zhang. Solving large scale linear prediction problems using stochastic gradient descent
algorithms. In Proceedings of the twenty-first international conference on Machine learning,
page 116, 2004.

[56] Yuchen Zhang and Xiao Lin. Stochastic primal-dual coordinate method for regularized empirical
risk minimization. In International Conference on Machine Learning, pages 353–361. PMLR,
2015.

[57] Manru Zong, Yin Tat Lee, and Man-Chung Yue. Short-step methods are not strongly polynomial-
time. arXiv preprint arXiv:2201.02768, 2022.

13

https://doi.org/10.1137/1.9781611970791
https://doi.org/10.1137/1.9781611970791

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Section 1.1.1
(c) Did you discuss any potential negative societal impacts of your work? [N/A] Due to

the theoretical nature of our work, we do not foresee any immediate potential negative
societal impacts of it.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] We state all

our assumptions in Problem 1.
(b) Did you include complete proofs of all theoretical results? [Yes] All our complete

proofs are in the appendix.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [N/A]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [N/A]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [N/A]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

14

	Introduction
	Our results
	Limitations

	Technical challenges in prior works
	Our algorithmic framework

	Notation and preliminaries
	Our algorithm sec]sec:AlgOverview
	Details of our algorithm

	Our analysis
	A remark on implementability

	Preliminaries
	Facts from convex analysis
	Background on interior-point methods
	Facts from convex geometry

	Our analysis
	Potential change for the entropic terms
	Potential change for the universal terms
	Potential change for the update of x
	Total oracle complexity

	Initialization
	Constructing an initial Kin,i
	Initial point reduction

	Decomposable submodular function minimization
	Preliminaries
	Decomposable submodular function minimization proofs

