


memory- and attention-based predictors derived

from the self-attention patterns of the Transformer-

based GPT-2 language model (Radford et al., 2019)

on two naturalistic datasets, in the presence of a

strong GPT-2 surprisal baseline. First, normalized

attention entropy expands upon Ryu and Lewis’s

(2021) attention entropy by re-normalizing the at-

tention weights and controlling for the number of

tokens in the previous context. Additionally, three

distance-based predictors that quantify the shift in

attention patterns across consecutive timesteps are

presented, based on the idea that the reallocation

of attentional focus entails processing difficulty.

Moreover, motivated by work on interpreting

large language models that question the connec-

tion between attention weights and model predic-

tions (e.g. Jain and Wallace, 2019), the norm-based

analysis of the transformed vectors (Kobayashi

et al., 2020, 2021) is newly applied to GPT-2 in

this work to inform alternative formulations of

attention weights. For example, it has been ob-

served that while large language models tend to

place high attention weights on special tokens

(e.g. <|endoftext|> of GPT-2), these tokens con-

tribute very little to final model predictions as their

‘value’ vectors have near-zero norms (Kobayashi

et al., 2020). Attention weight formulations that

incorporate the norms of the transformed vectors

should therefore alleviate the over-representation of

such special tokens and represent the contribution

of each token more accurately.

Results from regression analyses using these pre-

dictors show significant and substantial effects in

predicting self-paced reading times and eye-gaze

durations during naturalistic reading, even in the

presence of a robust surprisal predictor. Addition-

ally, alternative formulations of attention weights

that incorporate the norms of the transformed vec-

tors are shown to further improve the predictive

power of these predictors.

2 Background

This section provides a mathematical definition of

the self-attention mechanism underlying the GPT-2

language model and describes alternative norm-

based formulations of attention weights.

2.1 Masked Self-Attention of GPT-2

Language Models

GPT-2 language models (Radford et al., 2019) use

a variant of a multi-layer Transformer decoder pro-

posed in Vaswani et al. (2017). Each decoder layer

consists of a masked self-attention block and a feed-

forward neural network:

xl+1,i = FF(LNout(ol,i+xl,i))+(ol,i+xl,i), (1)

where xl,i ∈ R
d is the ith input representation at

layer l, FF is a two-layer feedforward neural net-

work, LNout is a vector-wise layer normalization

operation, and ol,i is the output representation from

the multi-head self-attention mechanism, in which

H multiple heads simultaneously mix representa-

tions from the previous context. This output ol,i
can be decomposed into the sum of representations

resulting from each attention head h:

ol,i =
H
∑

h=1

Vh

[

X′
l,i

1⊤

]

al,h,i, (2)

where X′
l,i

def
= [x′

l,1, ...,x
′
l,i] ∈ R

d×i is the se-

quence of layer-normalized input representations

leading up to x′
l,i from the previous context, and

x′
l,i

def
= LNin(xl,i) is the layer-normalized ver-

sion of xl,i. Vh represents the head-specific value-

output transformation,1 and al,h,i ∈ R
i is the vec-

tor of attention weights:

al,h,i = SOFTMAX

(

(

Kh

[

X′
l,i

1⊤

]

)⊤
Qh

[

x′
l,i

1

]

√
dh

)

,

(3)

where Qh and Kh represent the head-specific

query and key transformations respectively, and

dh = d/H is the dimension of each attention head.

LNα is a vector-wise layer normalization op-

eration (Ba et al., 2016) that first standardizes

the vector and subsequently conducts element-

wise transformations using learnable parameters

cα,bα ∈ R
d:

LNα(y) =
y −m(y)

s(y)
⊙ cα + bα, (4)

where α ∈ {in, out}, m(y) and s(y) denote the

elementwise mean and standard deviation respec-

tively, and ⊙ denotes a Hadamard product.

1As
[

Wb
]

[

x

1

]

= Wx+ b, the bias vectors are omitted

from the equations. Additionally, for the simplicity of notation,
the ‘output’ affine transform, which applies to the concate-
nated ‘value-transformed’ vectors from all attention heads in a
typical implementation, is subsumed into Vh. The bias vector
of the ‘output’ transform is assumed to be distributed equally
across heads.
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Figure 2: Computations performed within the self-

attention block of one head of the GPT-2 language

model at a given timestep (i = 5). While the masked

self-attention mechanism aggregates representations

from the previous context in a typical implementation,

the linear nature of the subsequent computations al-

lows this aggregation to be deferred to after the residual

connection and layer normalization, thereby allowing

updated representations to inform alternative formula-

tions of attention weights (i.e. ATTN-N, ATTNRL-N).

2.2 Weight- and Norm-Based Analysis of

Previous Context

Previous work that has studied the inner mecha-

nism of Transformer models has focused on ana-

lyzing the relative contribution of each token to its

final prediction. As a measure that quantifies the

‘strength’ of contribution, attention weights from

the self-attention mechanism have been most com-

monly used. Similarly to recent work in cognitive

modeling (e.g. Ryu and Lewis, 2021), this work

also evaluates predictors calculated from attention

weights (ATTN-W).

aW,l,h,i = al,h,i (5)

While analysis using attention weights is com-

mon, the assumption that attention weights alone

reflect the contribution of each token disregards

the magnitudes of the transformed input vectors,

as pointed out by Kobayashi et al. (2020). As an

alternative, they proposed a norm-based analysis of

the self-attention mechanism, which quantifies the

contribution of each token as the norm of the trans-

formed vector multiplied by the attention weight.

In this work, in order to quantify the relative con-

tribution of each token in the previous context,

the norms of the transformed vectors are normal-

ized across the sequence, resulting in ‘norm-aware’

weights that are comparable to attention weights

(ATTN-N).

aN,l,h,i =
((

Vh

[

X
′
l,i

1
⊤

]

⊙Vh

[

X
′
l,i

1
⊤

])

⊤

1

)1
2

⊙ al,h,i

1⊤

(((

Vh

[

X
′
l,i

1
⊤

]

⊙Vh

[

X
′
l,i

1
⊤

])

⊤

1

)1
2

⊙ al,h,i

)

(6)

More recently, Kobayashi et al. (2021) showed

that the residual connection and the layer normal-

ization operation (RESLN; RL) that follow the

self-attention mechanism can also be conducted

before aggregating representations over token po-

sitions. Motivated by this observation, the vector

norms that take into consideration these subsequent

operations are also examined in this work. Simi-

larly to ATTN-N, the norms are normalized across

the sequence to yield weights that are comparable

(ATTNRL-N):

aRL-N,l,h,i =

((g(Vh

[

X
′
l,i

1
⊤

]

)⊙ g(Vh

[

X
′
l,i

1
⊤

]

))⊤1)
1
2 ⊙ al,h,i

1⊤(((g(Vh

[

X
′
l,i

1
⊤

]

)⊙ g(Vh

[

X
′
l,i

1
⊤

]

))⊤1)
1
2 ⊙al,h,i)

,

(7)

where g(·) incorporates the residual connection

(+xl,i) and layer normalization (LNout) of Eq. 1.

Following the assumption that the residual con-

nection serves to ‘preserve’ the representation at

position i (Kobayashi et al., 2021) and that it is

distributed equally across heads, xl,i is added to

the representation at position i of each head after

dividing it by the number of heads:

g(Y)
def
=

i
∑

j=1

















Yδj+
xl,i

Hal,h,i[i]
−m(Yδj+

xl,i

Hal,h,i[i]
)

s(ol,i+xl,i)
⊙cout+

bout

H
if i=j

Yδj−m(Yδj)

s(ol,i+xl,i)
⊙cout+

bout

H
if i 6=j






δ
⊤

j ,

(8)

where δj is a Kronecker delta vector consisting of a

one at element j and zeros elsewhere, and cout and

bout refer to the learnable parameters of LNout.

3 Entropy- and Distance-Based

Predictors From Attention Patterns

Given the different formulations of self-attention

weights, entropy-based predictors that quantify the
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diffuseness of self-attention and distance-based pre-

dictors that capture the incremental change in atten-

tion patterns across timesteps can be defined. The

first predictor defined in this work is normalized

attention entropy (NAE):

NAEπ,l,h,i =

a
⊤

π,l,h,i[1:i−1]

log2(i− 1)1⊤aπ,l,h,i[1:i−1]

(log2
aπ,l,h,i[1:i−1]

1⊤aπ,l,h,i[1:i−1]

), (9)

where π ∈ {W,N,RL-N}. This is similar to the at-

tention entropy proposed by Ryu and Lewis (2021)

as a measure of interference in cue-based recall

attributable to uncertainty about the target, with

two notable differences. First, NAE controls for

the number of tokens in the previous context by

normalizing the entropy by the maximum entropy

that can be achieved at timestep i. Furthermore,

NAE also uses weights over x′
l,1, ..., x′

l,i−1 that

have been re-normalized to sum to 1, thereby ad-

hering closer to the definition of entropy, in which

the mass of interest sums to 1.2

In addition to NAE, distance-based predictors

are defined for capturing effortful change in at-

tention patterns across timesteps. However, as it

currently remains theoretically unclear how this

distance should be defined, this exploratory work

sought to provide empirical results for different

distance functions. The first is ∆NAE, which quan-

tifies the change in diffuseness across timesteps:

∆NAEπ,l,h,i = |NAEπ,l,h,i−NAEπ,l,h,i−1| (10)

As with NAE, this predictor is insensitive to how

the attention weights are reallocated between to-

kens in the previous context to the extent that the

overall diffuseness remains unchanged.

The second distance-based predictor is Manhat-

tan distance (MD).3

MDπ,l,h,i = ||aπ,l,h,i − aπ,l,h,i−1||1 (11)

MD directly measures the magnitude of change

in attention weights over all tokens at timestep i.
MD is less sensitive to the linear distance between

tokens and therefore makes it consistent with the

predictions of McElree et al. (2003), who found

that processing speed was not influenced by the

2Preliminary analyses showed that regression models with
attention entropy proper without these adjustments failed to
converge coherently.

3For the purpose of calculating this predictor, the ith ele-
ment of aπ,l,h,i−1 is assumed to be 0.

amount of intervening linguistic material in the

formation of a dependency.

Finally, the Earth Mover’s Distance (EMD; Rub-

ner et al., 2000) is applied to quantify the shift in at-

tention weights. EMD is derived from a solution to

the Monge-Kantorovich problem (Rachev, 1985),

which aims to minimize the amount of “work” nec-

essary to transform one histogram into another.

Formally, let P = {(p1, wp1), ..., (pm, wpm)} be

the first histogram with m bins, where pr repre-

sents the bin and wpr represents the weight of the

bin; Q = {(q1, wq1), ..., (qn, wqn)} the second his-

togram with n bins; and D = [drs] the distance

matrix where drs is the ground distance between

bins pr and qs. The problem is to find an optimal

flow F = [frs], where frs represents the flow be-

tween pr and qs, that minimizes the overall work.

WORK(P,Q,F) =
m
∑

r=1

n
∑

s=1

drsfrs (12)

Once the optimal flow is found, the EMD is

defined as the work normalized by the total flow.4

EMD(P,Q) =

∑m
r=1

∑n
s=1 drsfrs

∑m
r=1

∑n
s=1 frs

(13)

To quantify the minimum amount of work neces-

sary to ‘transform’ the attention weights, the EMD

between attention weights at consecutive timesteps

is calculated using EMD(aπ,l,h,i−1, aπ,l,h,i). The

ground distance is defined as drs =
|r−s|
i−1 in order

to control for the number of tokens in the previous

context. EMD can be interpreted as being consis-

tent with Dependency Locality Theory (Gibson,

2000) in that reallocating attention weights to to-

kens further away in the context incurs more cost

than reallocating weights to closer tokens.

Code for calculating all of the predictors from

GPT-2 under the different attention weight formu-

lations is publicly available at https://github.

com/byungdoh/attn_dist.

4 Experiment 1: Evaluation of Predictors

on Human Reading Times

In order to evaluate the contribution of the entropy-

and distance-based predictors, regression models

containing commonly used baseline predictors, sur-

prisal predictors, and one predictor of interest were

4The optimal flow can be found using the transportation
simplex method. Additionally, due to the constraint that the
total flow is equal to min(

∑m

r=1 wpr ,
∑n

s=1 wqs ), the total
flow is always equal to 1 in the context of attention weights.
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fitted to self-paced reading times and eye-gaze du-

rations collected during naturalistic language pro-

cessing. In this work, we adopt a statistical proce-

dure that directly models temporal diffusion (i.e. a

lingering reponse to stimuli) by estimating con-

tinuous impulse response functions and controls

for overfitting by assessing the external validity of

these predictors through a non-parametric test on

held-out data.

4.1 Response Data

The first experiment described in this paper used

the Natural Stories Corpus (Futrell et al., 2021),

which contains self-paced reading times from 181

subjects that read 10 naturalistic stories consisting

of 10,245 words. The data were filtered to exclude

observations for sentence-initial and sentence-final

words, observations from subjects who answered

fewer than four comprehension questions correctly,

and observations with durations shorter than 100

ms or longer than 3000 ms. This resulted in a

total of 770,102 observations, which were subse-

quently partitioned into a fit partition of 384,905

observations, an exploratory partition of 192,772

observations, and a held-out partition of 192,425

observations.5 The partitioning allows model selec-

tion (e.g. making decisions about baseline predic-

tors and random effects structure) to be conducted

on the exploratory partition and a single hypothe-

sis test to be conducted on the held-out partition,

thus obviating the need for multiple trials correc-

tion. All observations were log-transformed prior

to regression modeling.

Additionally, the set of go-past durations from

the Dundee Corpus (Kennedy et al., 2003) also pro-

vided the response variable for regression modeling.

The Dundee Corpus contains eye-gaze durations

from 10 subjects that read 67 newspaper editori-

als consisting of 51,501 words. The data were

filtered to remove unfixated words, words follow-

ing saccades longer than four words, and words at

sentence-, screen-, document-, and line-starts and

ends. This resulted in a total of 195,507 observa-

tions, which were subsequently partitioned into a

fit partition of 98,115 observations, an exploratory

partition of 48,598 observations, and a held-out

partition of 48,794 observations. All observations

were log-transformed before model fitting.

5For both datasets, the fit partition, exploratory partition,
and held-out partition contain data points whose summed
subject and sentence number have modulo four equal to zero
or one, two, and three respectively.

4.2 Predictors

For each dataset, a set of baseline predictors that

capture basic, low-level cognitive processing were

included in all regression models.

• Self-paced reading times (Futrell et al., 2021):

word length measured in characters, index of

word position within each sentence;

• Eye-gaze durations (Kennedy et al., 2003): word

length measured in characters, index of word

position within each sentence, saccade length,

whether or not the previous word was fixated.

In addition to the baseline predictors, two surprisal

predictors were also included in all regression mod-

els evaluated in this experiment. The first is un-

igram surprisal as a measure of word frequency,

which was calculated using the KenLM toolkit

(Heafield et al., 2013) with parameters estimated on

the English Gigaword Corpus (Parker et al., 2009).

The second is surprisal from GPT-2 Small (Radford

et al., 2019), which is trained on ∼8B tokens of the

WebText dataset. Surprisal from the smallest GPT-

2 model was chosen because it has been shown to

be the most predictive of self-paced reading times

and eye-gaze durations among surprisal from all

variants of GPT-2 (Oh et al., 2022).

Finally, the entropy- and distance-based pre-

dictors defined in Section 3 were calculated

from the attention patterns (i.e. aπ,l,h,i where

π ∈ {W,N,RL-N}) of heads on the topmost

layer of GPT-2 Small. Contrary to previous stud-

ies that analyzed the attention patterns of all layers,

this work focuses on analyzing those of the topmost

layer out of the concern that the attention patterns

of lower layers are less interpretable to the extent

that they perform intermediate computations for

the upper layers. Since the topmost layer generates

the representation that is used for model prediction,

the attention patterns from this layer are assumed

to reflect the contribution of each previous token

most directly. Subsequently, the by-head predictors

were aggregated across heads to calculate by-word

predictors. This assumes that each attention head

contributes equally to model prediction, and is also

consistent with the formulation of multi-head self-

attention in Eq. 2.

To calculate surprisal as well as the entropy- and

distance-based predictors, each story of the Natu-

ral Stories Corpus and each article of the Dundee

Corpus was tokenized according GPT-2’s byte-pair

encoding (BPE; Sennrich et al., 2016) tokenizer

9328





Additionally, the NAE and ∆NAE predictors

showed different trends across the two corpora,

where NAE contributed to stronger model fit than

∆NAE on the Natural Stories Corpus, while the op-

posite trend was observed on the Dundee Corpus.

In contrast to various surprisal predictors that have

shown a very similar trend in terms of predictive

power across these two corpora (Oh et al., 2022),

these two predictors may shed light on the sub-

tle differences between self-paced reading times

and eye-gaze durations. Finally, incorporating vec-

tor norms into attention weights (i.e. ATTN-N and

ATTNRL-N) generally seems to improve the pre-

dictive power of these predictors, which provides

support for the informativeness of input vectors

in analyzing attention patterns (Kobayashi et al.,

2020, 2021).

Table 1 presents the effect sizes of ATTN-

N+NAE and ATTNRL-N+MD on the held-out

partition of the Natural Stories Corpus and the

Dundee Corpus, which were derived by calculat-

ing how much increase in reading times the re-

gression model would predict at average predictor

value given an increase of one standard deviation.

On both datasets, ATTNRL-N+MD appears to be

a strong predictor of reading times, which con-

tributed to significantly lower held-out errors. The

entropy-based ATTN-N+NAE predictor showed

contrasting results across the two corpora, showing

a large effect size on the Natural Stories Corpus but

not on the Dundee Corpus. This is consistent with

the differential results between NAE and ∆NAE

on the exploratory partition of the two corpora

and may hint at differences between self-paced

reading times and eye-gaze durations. In terms

of magnitude, the two predictors showed large ef-

fect sizes on the Natural Stories Corpus, which

were more than twice that of GPT-2 surprisal. On

the Dundee Corpus, however, the effect size of

ATTNRL-N+MD was much smaller compared to

that of GPT-2 surprisal.

5 Experiment 2: Do NAE and MD

Independently Explain Reading Times?

The previous experiment revealed that on the Natu-

ral Stories Corpus, the select entropy- and distance-

based predictors from the attention patterns of GPT-

2 contributed to significantly higher regression

9The estimated IRF for ATTN-N+NAE showed a sign
error, likely due to poor convergence. Therefore, we treated
the effect of this predictor to be statistically non-significant.

Corpus Predictor Effect Size (p-value)

Natural

Stories

ATTN-N+NAE 6.87 ms (p < 0.001)

GPT2SURP 2.56 ms

ATTNRL-N+MD 6.59 ms (p < 0.001)

GPT2SURP 2.82 ms

Dundee
ATTN-N+NAE N/A9 (n.s.)

GPT2SURP 4.22 ms

ATTNRL-N+MD 1.05 ms (p < 0.001)

GPT2SURP 3.81 ms

Table 1: The per standard deviation effect sizes of the

predictors on the held-out partition of the Natural Sto-

ries Corpus and the Dundee Corpus. Statistical signifi-

cance was determined by a paired permutation test of

the difference in by-item squared error between the base-

line regression model and the respective full regression

model containing the predictor of interest. The effect

sizes of GPT-2 surprisal from the same regression mod-

els are presented for comparison.

model fit. Although they showed similarly large

effect sizes on the held-out partition, the two pre-

dictors may independently explain reading times,

as they are defined to quantify different aspects of

attention patterns. The second experiment exam-

ines this possibility following similar procedures

as the previous experiment.

5.1 Procedures

In order to determine whether the effect of one pre-

dictor subsumes that of the other, a CDR model

including both ATTN-N+NAE and ATTNRL-

N+MD was first fit to self-paced reading times

of the fit partition of the Natural Stories Corpus.

The CDR model followed the same specifications,

random effects structure, and baseline predictors as

described in Experiment 1. Subsequently, the fit of

this regression model on the held-out partition was

compared to those of the two regression models

that contain only one of the two predictors from the

previous experiment. More specifically, the ∆LL

as a result of including the predictor(s) of interest

were calculated for each regression model, and sta-

tistical significance testing was conducted using a

paired permutation test of the difference in by-item

squared error between the new ‘ATTN-N+NAE

& ATTNRL-N+MD’ regression model and the re-

spective ‘ATTN-N+NAE’ and ‘ATTNRL-N+MD’

regression models, which allowed the contribution

of each predictor to be analyzed.
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Limitations

The connection between attention patterns of

Transformer-based language models and human

sentence processing drawn in this work is based

on a model trained on English text and data from

human subjects that are native speakers of English.

Therefore, the connection made in this work may

not generalize to other languages. Additionally, al-

though the alternative formulations of self-attention

weights resulted in stronger predictors of process-

ing difficulty, they are more computationally ex-

pensive to calculate as they rely on an explicit de-

composition of the matrix multiplication operation,

which are highly optimized in most packages.

Ethics Statement

Experiments presented in this work used datasets

from previously published research (Futrell et al.,

2021; Kennedy et al., 2003), in which the proce-

dures for data collection and validation are out-

lined. As this work focuses studying the possible

connection between attention patterns of large lan-

guage models and human sentence processing, its

potential negative impacts on society seem to be

minimal.

References

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hin-
ton. 2016. Layer normalization. arXiv preprint.

Janez Demšar. 2006. Statistical comparisons of clas-
sifiers over multiple data sets. Journal of Machine
Learning Research, 7(1):1–30.

Timothy Dozat. 2016. Incorporating Nesterov momen-
tum into Adam. In ICLR Workshop Track.

Richard Futrell, Edward Gibson, Harry J. Tily, Idan
Blank, Anastasia Vishnevetsky, Steven Piantadosi,
and Evelina Fedorenko. 2021. The Natural Stories
corpus: A reading-time corpus of English texts con-
taining rare syntactic constructions. Language Re-
sources and Evaluation, 55:63–77.

Edward Gibson. 2000. The Dependency Locality The-
ory: A distance-based theory of linguistic complexity.
In Image, language, brain: Papers from the first mind
articulation project symposium, pages 95–126, Cam-
bridge, MA. MIT Press.

Adam Goodkind and Klinton Bicknell. 2018. Predic-
tive power of word surprisal for reading times is a
linear function of language model quality. In Pro-
ceedings of the 8th Workshop on Cognitive Modeling
and Computational Linguistics, pages 10–18.

John Hale. 2001. A probabilistic Earley parser as a psy-
cholinguistic model. In Proceedings of the Second
Meeting of the North American Chapter of the Asso-
ciation for Computational Linguistics on Language
Technologies, pages 1–8.

Kenneth Heafield, Ivan Pouzyrevsky, Jonathan H. Clark,
and Philipp Koehn. 2013. Scalable modified Kneser-
Ney language model estimation. In Proceedings of
the 51st Annual Meeting of the Association for Com-
putational Linguistics, pages 690–696.

Sarthak Jain and Byron C. Wallace. 2019. Attention
is not explanation. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 3543–3556.

Alan Kennedy, Robin Hill, and Joël Pynte. 2003. The
Dundee Corpus. In Proceedings of the 12th Euro-
pean Conference on Eye Movement.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceedings
of the 3rd International Conference on Learning Rep-
resentations.

Goro Kobayashi, Tatsuki Kuribayashi, Sho Yokoi, and
Kentaro Inui. 2020. Attention is not only a weight:
Analyzing transformers with vector norms. In Pro-
ceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing, pages 7057–
7075.

Goro Kobayashi, Tatsuki Kuribayashi, Sho Yokoi, and
Kentaro Inui. 2021. Incorporating residual and nor-
malization layers into analysis of masked language
models. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 4547–4568.

Roger Levy. 2008. Expectation-based syntactic compre-
hension. Cognition, 106(3):1126–1177.

Roger Levy, Evalina Fedorenko, and Edward Gibson.
2013. The syntactic complexity of Russian rela-
tive clauses. Journal of Memory and Language,
69(4):461–495.

Richard L. Lewis, Shravan Vasishth, and Julie A. Van
Dyke. 2006. Computational principles of working
memory in sentence comprehension. Trends in Cog-
nitive Science, 10(10):447–454.

Brian McElree, Stephani Foraker, and Lisbeth Dyer.
2003. Memory structures that subserve sentence
comprehension. Journal of Memory and Language,
48(1):67–91.

Danny Merkx and Stefan L. Frank. 2021. Human sen-
tence processing: Recurrence or attention? In Pro-
ceedings of the Workshop on Cognitive Modeling and
Computational Linguistics, pages 12–22.

9333



Yurii E. Nesterov. 1983. A method for solving the
convex programming problem with convergence rate
O
(

1

k2

)

. Dokl. Akad. Nauk SSSR, 269(3):543–547.

Byung-Doh Oh, Christian Clark, and William Schuler.
2021. Surprisal estimators for human reading times
need character models. In Proceedings of the Joint
Conference of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing, pages 3746–3757.

Byung-Doh Oh, Christian Clark, and William Schuler.
2022. Comparison of structural parsers and neural
language models as surprisal estimators. Frontiers in
Artificial Intelligence, 5(777963).

Robert Parker, David Graff, Junbo Kong, Ke Chen,
and Kazuaki Maeda. 2009. English Gigaword
LDC2009T13.

Svetlozar Todorov Rachev. 1985. The Monge-
Kantorovich mass transference problem and its
stochastic applications. Theory of Probability and its
Applications, 29(4):647–676.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
Technical Report.

Yossi Rubner, Carlo Tomasi, and Leonidas J. Guibas.
2000. The Earth Mover’s Distance as a metric for
image retrieval. International Journal of Computer
Vision, 40:99–121.

Soo Hyun Ryu and Richard L. Lewis. 2021. Accounting
for agreement phenomena in sentence comprehen-
sion with transformer language models: Effects of
similarity-based interference on surprisal and atten-
tion. In Proceedings of the Workshop on Cognitive
Modeling and Computational Linguistics, pages 61–
71.

Soo Hyun Ryu and Richard L. Lewis. 2022. Using
Transformer language model to integrate surprisal,
entropy, and working memory retrieval accounts of
sentence processing. In 35th Annual Conference on
Human Sentence Processing.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics, pages 1715–1725.

Cory Shain and William Schuler. 2021. Continuous-
Time Deconvolutional Regression for Psycholinguis-
tic Modeling. Cognition, 215.

Cory Shain, Marten van Schijndel, and William Schuler.
2018. Deep syntactic annotations for broad-coverage
psycholinguistic modeling. In Workshop on Linguis-
tic and Neuro-Cognitive Resources (LREC 2018).

Nathaniel J. Smith and Roger Levy. 2013. The effect
of word predictability on reading time is logarithmic.
Cognition, 128:302–319.

Marten van Schijndel and Tal Linzen. 2021. Single-
stage prediction models do not explain the magnitude
of syntactic disambiguation difficulty. Cognitive Sci-
ence, 45(6).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30.

Ethan Gotlieb Wilcox, Jon Gauthier, Jennifer Hu, Peng
Qian, and Roger P. Levy. 2020. On the predictive
power of neural language models for human real-
time comprehension behavior. In Proceedings of
the 42nd Annual Meeting of the Cognitive Science
Society, pages 1707–1713.

A CDR Implementation Details

The continuous-time deconvolutional regression

(CDR) models used in this work were fitted using

variational inference to estimate the means and vari-

ances of independent normal posterior distributions

over all model parameters assuming an improper

uniform prior. Convolved predictors used the three-

parameter ShiftedGamma impuse response func-

tion (IRF) kernel:

f(x;α, β, δ) =
βα(x− δ)α−1e−β(x−δ)

Γ(α)
(14)

Posterior means for the IRF parameters were

initialized at α = 0.2, β = 0.5, and δ = −0.2,

which defines a decreasing IRF with a peak cen-

tered at t = 0 that decays to near-zero within about

1 s. Models were fitted using the Adam optimizer

(Kingma and Ba, 2015) with Nesterov momentum

(Nesterov, 1983; Dozat, 2016), a constant learning

rate of 0.001, and minibatches of size 1,024. For

computational efficiency, histories were truncated

at 128 timesteps. Prediction from the network used

an exponential moving average of parameter iter-

ates with a decay rate of 0.999, and the models

were evaluated using maximum a posteriori esti-

mates obtained by setting all IRF parameters to

their posterior means.

For the baseline regression predictors, the ‘index

of word position within each sentence’ predictors

were scaled, and the ‘word length in characters’

and ‘saccade length’ predictors were both centered

and scaled.
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