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Abstract. Reinforcement learning is a successful explore-and-exploit
approach, where a controller tries to learn how to navigate an unknown
environment. The principle approach is for an intelligent agent to learn
how to maximise expected rewards. But what happens if the objective
refers to non-terminating systems? We can obviously not wait until an
infinite amount of time has passed, assess the success, and update. But
what can we do? This talk will tell.

1 Learning from Rewards

Model free reinforcement learning (RL) [16,19] refers to a class of algorithms,
where an intelligent agent (sometimes many, but we stick with basic case)
receives rewards. Such rewards serve as feedback; they can be received after ter-
mination, after a fixed period of time, or after every action. Reaping high rewards
reinforces a given behaviour of the agent (hence the name), while behaviour that
leads to low rewards is avoided.

What makes RL algorithms popular is their flexibility and generality. They
can work without being provided with a model of the environment dynamics
and can handle probabilistic environment behaviour – that is, Markov decision
processes (MDP) are their natural domain.

The goal of an agent in its interaction with its environment is to learn an opti-
mal strategy, which describes how she chooses actions in a way that maximises
the expected value of the overall reward, usually the total or discounted sum of
individual rewards or a single reward at the end of a finite run. Discounted and
average rewards are typical of infinite horizon problems.
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The strategy of an agent describes what she does in each situation. Average,
total, and discounted rewards usually lead to memoryless strategies, but strate-
gies can take the history (i.e., the previous interaction with the environment)
into account.

2 Learning with ω-Regular Objectives

Standard approaches to RL face natural difficulties when considering ω-regular
properties [13,17] that, for example, occur when specifications in linear time
temporal logic (LTL) [12] are used.

This is because the reward for an overall run of a system is binary (does/does
not satisfy the specification), and its binary value cannot be determined after a
finite prefix.

So, how can we learn in this case?
We suggest a layered approach, which consists of the following:

1. Translate the property into a formal acceptor, like a Büchi [2] or parity
automaton, such that maximising the likelihood of winning on the syntactic
product with the MDP is good enough for maximising the chance of satisfying
the property [3,7,18].

2. Translate the formal acceptor into a reachability objective, such that max-
imising the chance of reaching a goal state leads to maximising the chance of
acceptance [4].

3. Wrap this reward structure into a standard RL approach [16].

2.1 Good-for-MDP Automata

Finding the right type of automata has two major ingredients:

1. a limited level of nondeterminism, such that the resulting automaton is good
for MDPs (see below) and

2. a simple acceptance mechanism.

The first ingredient is a technical requirement. Formally(-sh), an automaton
is good-for-MDPs if, for all finite MDPs, its syntactic product MDP (which
is the syntactic product of the finite MDP with the automaton) has the same
likelihood to satisfy the acceptance condition as an optimal control of the MDP
has to satisfy the objective [4].

In this syntactic product, the agent has more to do: she has to resolve the
nondeterminism of the automaton as well as the choices of the original MDP.

Broadly speaking, this limits the type of nondeterminism the automaton
can use: normally, an automaton can use unlimited look-ahead to resolve its
nondeterministic choices, but this automaton has to take into account where the
randomness of the MDP can take it. Moreover, it needs to react to almost all
cases perfectly.

This is reminiscent of good-for-games automata [10], but they need to be
able to deal with all (not merely almost all) interactions with their environment.
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The relaxation to almost all allows for more automata. Indeed, one of the main
differences between good-for-games and good-for-MDPs automata is that non-
deterministic Büchi automata can always be used for the latter, while the former
requires more complex acceptance mechanisms.

This brings us back to the second ingredient: a simple acceptance mechanism.
This is a practical requirement rather than a technical necessity. It is due to the
much higher cost of the further translation of complex acceptance mechanisms
[8].

Standard translations to limit deterministic automata [7,18] produce nonde-
terministic Büchi automata that are good-for-MDPs [6], but it is equally simple
to produce other good-for-MDP automata with attractive alternative properties,
like never offering more than two choices [6].

After learning, the automaton states (and structure) turn into a finite state
memory.

2.2 From GFM Büchi Automata to Reachability and RL

A parameterised translation from good-for-MDPs automata to rewards proves
to be quite simple: for a given parameter λ ∈]0, 1[, whenever one passes an
accepting state (or transition), go to an accepting sink with probability λ, and
continue with a probability of 1 − λ.

It is easy to see that the chance of reaching the accepting sink is at least the
chance of satisfying the Büchi objective. But it also holds that, when λ goes to
0, the chance of reaching the accepting sink converges to the chance of satisfying
the Büchi objective, and that optimal strategies for the reachability goal are
stable, and optimal for the Büchi objective, for all sufficiently small values of λ.

This reachability objective can then be handled with standard RL techniques.
We have used Q-learning, which would normally wrap the reachability objective
into a discounted payoff objective to guarantee contraction.

3 Related Work

Reinforcement learning for ω-regular objectives has first been applied using
deterministic Rabin automata [11,14]. While there are small examples where
this method does not produce optimal results [4], they have paved the way for
further exploration.

The translation through reachability [4] has been complemented by an inte-
grated approach to discounted payoff that uses different discount factors for
accepting and non-accepting transitions [1]. This can be mimicked by replacing
the reduction to reachability by replacing the transition to an accepting sink
by obtaining a reward while discounting the rest of the game with a factor of
1 − λ, while not discounting otherwise. Wrapping this approach into another
discount scheme for RL (in order to guarantee contraction) leads to the same
set of different discount factors [5].
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Suitable limit deterministic automata have been replaced by good-for-MDP
automata [6]. While current approaches to obtain them from general nondeter-
ministic Büchi automata hinge on breakpoint constructions, it is also possible
(but expensive: PSPACE hard and in EXPTIME) to check whether or not an
nondeterministic Büchi automaton is already good-for-MDPs [15].

The learning approach extends to Markov games [8], which need good-for-
games automata [10], and thus parity objectives. While using games as such
does not seem to be problematic, handling more powerful acceptance conditions
comes at a cost, broadly speaking by using the small parameter λ in different
powers.

Being able to handle games also paves the way for using alternating automata
(so long as they are good-for-MDPs) for ordinary MDPs, which has proven to
allow for efficient translations from deterministic Streett to alternating Büchi
automata that are good-for-MDPs, while their translation to nondeterministic
Büchi automata (GFM or not) is expensive [9].
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