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Abstract— This work shows the existence of opti-
mal control laws for persistent monitoring of mobile
targets in a one-dimensional mission space and derives
explicit solutions. The underlying performance metric
consists of minimizing the total uncertainty accumu-
lated over a finite mission time. We first demon-
strate that the corresponding optimal control problem
can be reduced to a finite-dimensional optimization
problem, and then establish existence of an optimal
solution. Motivated by this result, we construct a
parametric reformulation for which an event-based
gradient descent method is utilized with the goal of
deriving locally optimal solutions. We additionally
provide a more practical parameterization that has
attractive properties such as simplicity, flexibility,
and robustness. Both parameterizations are validated
through simulation.

I. Introduction
In persistent monitoring problems, a team of au-

tonomous agents is tasked to monitor a given envi-
ronment. The problem is closely related to coverage
control [1], the key difference being that the environment
is assumed to change dynamically, so that all points of
interest must be revisited persistently. The problem has
received a lot of attention over the last decade due to
its broad applicability across a range of applications,
including environmental monitoring [2], data harvest-
ing [3], and particle tracking [4]. Persistent monitoring
problems are notoriously difficult to solve because of
highly non-convex and non-smooth costs and dynamics
along with the computational complexity due to the
problem’s combinatorial nature.

In this paper we consider the persistent monitoring
problem applied to a finite number of targets in a
one-dimensional connected mission space, similar to the
formulations in [5], [6]. One-dimensional mission spaces
are common in applications that involve rivers, roads in
a transportation network, or power lines, to name a few.
Unlike previous work, however, in addition to an internal
state describing a measure of uncertainty, we allow the
targets themselves to be mobile in the mission space. The
control objective considered is the minimization of the
overall uncertainty over a finite mission time. The uncer-
tainty dynamics considered in this work can be viewed
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as a flow model with constant input flow, whereas the
output flow depends on the target-agent distance. This
model is commonly used in the literature [5], [7], though
other dynamics have been discussed as well. For example,
in [8], the authors consider internal states with arbitrary
linear time-invariant dynamics, with a control applied
only when an agent is monitoring the target. In other
applications, such as environmental monitoring tasks, the
internal state is modeled as a Gaussian random field [9].
Similarly, the literature contains various performance
metrics, e.g., that of maximizing the number of observed
events [2], minimizing the inter-observation time [10], or
minimizing estimation errors [9].

The persistent monitoring problem is often split into
a higher and lower level. The higher level consists of
path planning and scheduling target visiting sequences.
Lan and Schwager proposed the use of rapidly-exploring
random cycles in order to find an optimal periodic trajec-
tory [9]. Other formulations abstract the mission space to
a graph, where each node represents a region of interest
and the edges capture the travel times [10], [11]. The
graph-based formulation was further generalized in [12],
in which targets were grouped into clusters and only a
single target within each cluster must be visited. Due to
the combinatorial nature of the scheduling task, the use
of mixed-integer optimization is natural [13], and its sim-
ilarity to the Traveling Salesman Problem has motivated
solving the higher level scheduler with such methods [14].
On the lower level, the problem consists of optimizing
the agents’ motion control, either along a given path, or
in order to realize a given schedule. For example, in [5]
and [15], the authors optimize agent velocities along a
given path, while in [16] a configuration-based solution
is sought such that each point on a given path is revisited
with a constant frequency.

The contribution of this paper consists of advances
in the one-dimensional persistent monitoring problem of
mobile targets. In particular, we prove that the con-
sidered infinite-dimensional Optimal Control Problem
(OCP) can be reduced to an optimization problem of
finite dimension, and that the OCP always admits a
solution. Though similar results can be found for static
targets, we provide novel (to the best of the authors’
knowledge) results for mobile targets. Additionally, we
provide two parametric reformulations and utilize the
Infinitesimal Perturbation Analysis (IPA) method [17]
in order to compute gradients and solve the parametric
optimization problem locally.

The remainder of this paper is structured as follows.
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Sec. II introduces the problem in detail and establishes
the OCP (4). In Sec. III, we show how the problem can
be reduced to a finite-dimensional optimization problem.
Two parametric formulations are provided and compared
in Sec. IV. By applying the IPA calculus, we describe
how perturbations of the parameters affect the cost
function in Sec. V. We compare the parameterizations
in numerical experiments in Sec. VI. Sec. VII concludes
the paper and outlines ideas for future work.

II. Problem Formulation
Our problem formulation builds upon the foundation

of [6], [7], extending it to include mobile targets. Let S =
R be the work space in which we consider the persistent
monitoring problem over a finite time interval [0, T ].
We introduce a set of mobile agents A = {1, 2, . . . , N},
and denote the position of agent j ∈ A by sj(t) ∈ S.
We assume that the agents follow first-order dynamics
ṡj(t) = uj(t), where each uj belongs to the admissible
control set U = {[0, T ] → [−1, 1]}, and the initial
position sj(0) ∈ S is given. In addition to the agents,
there is a set of mobile targets T = {1, 2, . . . ,M} with
M > N , and we denote by ϑi(t) and ϑ̇i(t) the position
and velocity of i ∈ T , which are assumed to be known.
The monitoring function of agent j for target i is given
by

pij(ϑi(t), sj(t)) = max
{

0, 1− |ϑi(t)− sj(t)|
rj

}
, (1)

where rj > 0 is the sensing range of agent j. The joint
monitoring function of target i from all agents is then

P (ϑi(t), s(t)) = 1−
∏
j∈A

(1− pij(ϑi(t), sj(t))) . (2)

The question remains of what is being monitored. We
associate each target with an internal state Ri(t) ≥ 0
describing a measure of uncertainty. This state is as-
sumed to grow with a constant rate of Ai > 0 when
not monitored, and to change with a dynamic rate of
Ai − BiP (ϑi(t), s(t)) for a given Bi > Ai otherwise.
To ensure that the uncertainty remains nonnegative, we
limit the uncertainty reduction for targets in the set
Z(t) = {i ∈ T | Ri(t) = 0 and Ai < BiP (ϑi(t), s(t))}.
Thus, the uncertainty dynamics Ṙi(t) are captured by

fRi(t) =
{

0, i ∈ Z(t),
Ai −BiP (ϑi(t), s(t)), i /∈ Z(t).

(3)

The goal of the persistent monitoring problem is to
minimize the overall uncertainty, i.e., we seek a control
policy which solves the OCP

minimize
u ∈ UN

J(u) = 1
T

∫ T

0

∑
i∈T

Ri(t)dt (4a)

subject to ṡ(t) = u(t), Ṙ(t) = fR(t). (4b)

Note that the function (3) depends on time only
through s(t), R(t), and ϑ(t). However, to keep notation
simple, we neglect the explicit dependence on the states.

Remark 1: The choice of the monitoring function is
not restricted to (1). Any monitoring function can be
chosen, as long as it a) has compact support, and b) is
monotonically increasing with the distance between its
arguments. Similarly, the results in this paper directly ex-
tend to other joint monitoring functions, as long as they
are monotonically increasing with each of the individual
monitoring functions, e.g., maxj∈A pij(ϑi(t), sj(t)).

III. Optimal Control Characterization
As in previous work [6], a standard Hamiltonian anal-

ysis can be applied to (4) to reveal that the optimal
control can be expressed in a parametric form. To better
understand the structure of the problem, however, here
we show the existence of such a parametric reformulation
directly. In order to prove the main result in Thm. 1
below, we first show that any control law can be adapted
to one of the form given in (5) without increasing the
cost. Applying this result repeatedly shows that any
control can be replaced by one which can be partitioned
into a finite number of intervals during which the control
is either a) constant and maximal, or b) equal to the
velocity of a target. From this we conclude that there
exists a compact parameter space, with which we can
ultimately show the existence of a parametrically repre-
sented optimal control. These theoretical results rely on
the following assumptions for the motions of the targets.

Assumption 1: For all t ∈ [0, T ], i, i1 6= i2 ∈ T , we
assume that (i) target velocities are no larger than the
maximal speed of the agents, i.e., their absolute velocities
are bounded by one, and (ii) agents never sense two
targets at the same time, i.e., there exists ∆min > 0 such
that |ϑi1(t)− ϑi2(t)| ≥ 2 maxj∈A{rj}+ ∆min.

The first assumption is fundamental, whereas the
second one is of a technical nature, without which it
becomes increasingly difficult to characterize the optimal
control. However, in Sec. VI we show that the considered
parameterizations are adaptable to simultaneous sensing
scenarios. Similarly, if a target’s velocity exceeds the
target control bounds, then the given parameterization
with bounded controls provides a heuristic for the more
general case. Our first lemma provides a characterization
of the optimal control over a fixed interval.

Before we begin, let us denote by ‘sgn’ the sign func-
tion that maps all negative real numbers to −1, zero to
zero, and all positive real numbers to +1. The proofs for
all lemmas and theorems that follow are are provided
in [18].

Lemma 1: Let (u, s) be any feasible control-trajectory
pair. Consider an interval (t1, t2) over which the agent
j ∈ A only ever senses one target i ∈ T . Then, there
exist ť, t̂ ∈ [t1, t2] such that the modified control law

u′j(t) =


uj(t), if t /∈ (t1, t2),
sgn (ϑi(t1)− sj(t1)) , if t ∈ (t1, ť),
ϑ̇i(t), if t ∈ (ť, t̂),
sgn (sj(t2)− ϑi(t2)) , if t ∈ (t̂, t2),

(5)
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satisfies J(u′) ≤ J(u).
Proof sketch: We construct (5) such that s′j coincides

with that of sj everywhere outside of (t1, t2), and is at
least as close to target i as sj during (t1, t2).

This lemma allows us to decompose an existing control
into sequential phases (or modes) in which only one
target is visited. We utilize this control modification for
each individual interval to obtain a parameterized control
law. For the next lemma we introduce the ceiling function
d·e, which maps each real number to the smallest integer
greater than or equal to the number itself.

Lemma 2: Let (u, s) be any feasible control-trajectory
pair. Then there exists an alternative control law u′,
which satisfies J(u′) ≤ J(u) and is fully described by
n = 5NdT/∆mine parameters.

Proof sketch: We repeatedly apply Lemma 1.
From this property, we can immediately conclude that

if the OCP (4) admits a solution, then there exists a
control described by a finite number of parameters. In
order to show later that such a solution always exists, we
now prove that the resulting parameter space is compact.

Lemma 3: There exists a finite-dimensional and com-
pact parameter space Y with functions

T : UN → Y and H : Y → UN , (6)

such that J(H(T (u))) ≤ J(u). In addition, the function
H can be chosen to be continuous.

Proof sketch: The first part is a corollary of Lemma 2.
For the second part we prove sequential continuity.

The fact that the parameter space is compact leads
to the existence of converging subsequences, which we
utilize in the next theorem.

Theorem 1: Consider the OCP (4). Under Assump-
tion 1 there exists an optimal control u∗ ∈ UN and an
optimal parameterization π∗ ∈ Y such that H(π∗) = u∗.

Proof sketch: The key is that the parameter space is
compact, such that every sequence admits a convergent
subsequence. Mapping an adequate sequence via H and
taking the limit yields the result.

IV. Parametric Reformulation
The above analysis shows that the optimal control

problem can be reduced to a much simpler parametric
optimization problem. In what follows, we will introduce
two different parameterizations. The first one provides a
generalization of (5), and we refer to it as the optimal
parameterization, since it contains an optimal control as
established in Thm. 1. Its drawback is that it requires
knowledge of the target velocities, which are difficult
to estimate in practice. From a practical viewpoint, the
policy (5) can be read as stay as close to the target as
possible, which motivates the alternative practical param-
eterization. Though it loses optimality to some degree,
it only requires positional feedback of the targets, and
has additional advantages, such as a natural robustness
towards noise, and simplicity of initialization; details are
discussed later on. We now introduce both forms for a
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Fig. 1. Comparison of the optimal (top) and practical (bottom)
parameterizations. The variables below the intervals indicate their
length and type, according to the parameterization. Dashed vertical
lines represent foreseeable mode changes due to proceeding to the
next interval, whereas dotted vertical lines depict observable mode
changes due to sufficient reduction of the tracking error.

fixed agent j, while omitting the index for notational
simplicity. For guidance, we refer the reader to Fig. 1,
which illustrates both formulations.
Optimal Parameterization. Let us first define the set
of convex combinations C = {α ∈ [0, 1]M |

∑M
i=1 αi = 1}.

Next, we introduce parameters that can be divided into
switching points ψ1, . . . , ψL ∈ S, tracking combinations
α1, . . . , αL ∈ C and tracking durations φ1, . . . , φL ∈
[0, T ], where L is some fixed integer. From this parame-
terization we obtain a control

u(t) =
{

sgn(ψ` − s(t̄`−1)), for t ∈ [t̄`−1, ť`),
α>` ϑ̇(t), for t ∈ [ť`, t̄`),

(7)

where ť` = t̄`−1+|ψ`−s(t̄`−1)| and t̄` = ť`+φ`, initialized
with t̄0 = 0.

There are two reasons why we propose the target
tracking to be encoded in the form of convex combina-
tions. First and foremost, the feasible set of the para-
metric description becomes convex. The only difficulty to
overcome in an optimization scheme is that of the cost
function’s nonconvexity and nonsmoothness. Secondly,
the resulting control law has some adaptability towards
simultaneous sensing scenarios, as discussed in Sec. VI.
Note that if Assumption 1 is satisfied, then the optimal
control established in Thm. 1 is contained in the param-
eterization by choosing convex combinations that only
select a single target at a time.
Practical Parameterization. As opposed to defining
switching points in the mission space and then match-
ing a convex combination of target velocities, we now
propose a control law by directly tracking a convex
combination of target positions.

The parameterization is thus reduced to tracking du-
rations φ1, . . . , φL ∈ [0, T ] and tracking combinations
α1, . . . , αL ∈ C. The switching times are simply given
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by t̄` = t̄`−1 + φ`, which is again initialized with t̄0 = 0.
For t ∈ [t̄`−1, t̄`) we then obtain a control

u(t) = min
(
1,max

(
−1, fPI

` (t)
))
, (8)

via the PI-controller

fPI
` (t) = Kpe`(t) +Ki

∫ max(t,t̃`)

t̃`

e`(σ)dσ, (9)

with tracking error e`(t) = α>` ϑ(t)− s(t), and respective
proportional and integral feedback gains Kp > 0 and
Ki > 0. Since the integral part is useful for driving a
small proportional error to zero, we activate this part
once the tracking error becomes small enough. Thus, the
starting time of the integrator part can be written as

t̃` = inf{t ≥ t̄`−1 | |Kpe`(t)| ≤ εtol}, (10)

for some desired switching tolerance εtol ∈ (0, 1). The
motivation behind this strategy is that the beginning
of a new tracking interval typically leads to a large
proportional feedback gain due to the switched tracking
combination α`. In order to prevent integrator windup
and consequent control saturation during the PI tracking
phase, under this strategy we first track via the P-
controller, switching to a PI-controller once the tracking
error becomes small enough. Note that this is a fairly sim-
ple anti-windup scheme, with the main goal of keeping
the control law continuous and thereby the IPA analysis
as tractable as possible; in practice more standard anti-
windup algorithms may be preferred.
Comparison of the parameterizations. The practical
parameterization clearly loses optimality, the degree of
which depends on the position sampling rate and the
chosen feedback gains. On the other hand, the practical
implementation gives rise to attractive properties. One
is the ease of initialization. Assume that we want to
initialize the system with a given visiting schedule of
targets. Then, all we have to do is decide how long we
want to track each of the targets. Trying to initialize
the optimal parameterization for mobile targets becomes
tedious and complex; it requires estimates of where to
intercept the targets and where agents will end up after
each tracking phase. Such information is rarely available
in practice. Additionally, the practical implementation is
naturally more robust to perturbations due to its closed
loop design.

V. Optimizing the System Parameters
The parametric controllers introduced in the preceding

section define a hybrid system for each agent. We denote
the feasible set of parameters as Θ, the precise form
of which depends on the chosen parameterization. The
OCP (4) is now reduced to the parametric optimization
problem

minimize
θ∈Θ

J(θ),

which we solve offline. In order to perform a gradient
descent method we need the gradient of J with respect

to θ; we find this using IPA [17]. It was shown in [6], [7]
that the derivative of the cost function with respect to
the parameters is given by

∂J(θ)
∂θ

= 1
T

K∑
k=1

M∑
i=1

∫ τk(θ)

τk−1(θ)

∂Ri(σ)
∂θ

dσ,

where τ0, τ1, . . . , τK describe the event times when mode
switches occur in the hybrid system, and K denotes
the total number of events (note τ0 = 0 and τK =
T ). In order to calculate the gradients of Ri we must
consider the various mode changes. We omit the explicit
calculation here and refer to the extended version [18].
Finding a feasible search direction. With all gradi-
ents determined via IPA, we are almost ready to perform
a gradient descent method. However, in order for the
tracking combination constraint to remain satisfied, the
step direction with respect to the tracking constraints,
denoted by pα, must be chosen appropriately, i.e., its
components must add up to zero for each tracking period
` and agent j. We do so by computing a feasible step
direction via the least squares problem

minimize
pα

‖∂J
∂α
− pα‖22 (11a)

subject to 0 ≤ α`ij + pα`ij
≤ 1 ∀`, i, j, (11b)

M∑
m=1

pα`mj
= 0 ∀`, j, (11c)

where pα`ij
is the ith component of the step direction for

agent j in the lth tracking period. The global solution
of this convex optimization problem yields the feasible
direction closest to the gradient of J . For the remaining
parameters, we directly use the IPA gradients. In order to
achieve cost function descent at each iterate, we choose
a step length via the Armijo backtracking technique [19].
Challenges in finding good local solutions. Though
we are now able to optimize the system parameters over
a convex set, and gradients are available for suitable
initializations, the problem remains difficult to solve due
to the local nature of the gradient descent procedure. For
the one-dimensional persistent monitoring problem for
static targets, it was demonstrated that finding the global
solution of a problem with fixed target visiting sequence
is tractable [6]. Fig. 2 demonstrates that this changes
drastically in the mobile target case. The cost, even with
respect to a single parameter, can be highly nonconvex.
Moreover, the cost function is in parts extremely steep,
whereas for other segments it is very flat. This combi-
nation presents a challenge for gradient descent methods
and highlights the need to select appropriate step sizes in
order to avoid stagnation and remain in the contraction
area of a desirable solution.

Another difficulty, which is typical for event-based
algorithms, is the potential lack of event excitation [20].
This occurs in the persistent monitoring problem if the
agents change their modes while not sensing targets. In
such cases the IPA gradients fail to estimate the true cost
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Fig. 2. Depiction of the highly nonconvex cost (top) together
with respective local (purple) and global (green) solutions (bottom)
when fixing all but one parameter. Note that the sensing range (red)
is shown around the targets as opposed to around the agents.

gradient resulting in a failure of the optimization scheme.
Though beyond the scope of this paper, the methods
discussed in [20] could help overcome this problem.

VI. Numerical Experiments

Comparison to existing methods. We first compare
the proposed methods to the related algorithm from [6]
that was designed for static targets. We apply the new
parameterizations to a static target experiment, the
globally optimal cost of which was shown to be J∗ =
25.07 [6]. Fig. 3 shows the results for both the optimal
and practical parameterizations. The solution quality
of the practical (25.54) and the optimal (25.61) are
comparable to the local solution of the previous method
(25.54), which indicates that the generalized methods
remain applicable to static targets as well. The fact
that the practical parameterization slightly outperforms
the optimal one in this specific case is due to local
convergence behaviors, and other initializations may lead
to different results.
Simultaneous sensing scenarios. The theoretical re-
sults in this paper were proven under the assumption
that only one target could be within an agent’s sensing
range at a time. In Fig. 4 we demonstrate the fact that
describing the target tracking via convex combinations
allows the proposed parameterizations to adapt to sce-
narios where this assumption is violated. This allows
agents to place themselves between targets, which is
particularly useful if targets are so close to each other
that they share a deadzone, i.e., an area in which an
agent can be positioned such that the uncertainty of
both targets becomes non-increasing. In such a case, the
uncertainty of both targets can be driven to zero and
kept at that level, which is only possible if the agent

Fig. 3. Results for the same experiment as conducted in [6]. The
top plot shows the comparison of the agent trajectories obtained
from the optimal (green) and practical (purple) parameterizations.
The targets are depicted in red. The second plot shows the evolution
of the target uncertainties, where the line style specifies the target
and the color specifies the used parameterization. The third plot
shows the cost reduction for the IPA iterates.

stays within that deadzone.
Robustness towards noise. As previously discussed
in [6], the IPA analysis provides gradients that are
naturally robust towards errors in the estimation of
the uncertainty growth rate A. This is due to the fact
that A only implicitly affects the switching times of the
uncertainty dynamics without explicitly appearing in the
gradient evaluations.

In this section we want to show that the practical
parameterization is additionally robust towards noisy
measurements. In particular, we assume that each tar-
get’s positional measurement is given by ϑest

i (t) = ϑi(t)+
κ1νi(t) for νi(t) ∼ N (0, 1) and some scaling factor κ1 >
0. We ran 1000 repetitions of a fixed persistent monitor-
ing problem with M = 4, N = 2, T = 50, L = 4, and
randomized initial visiting sequences. We repeated the
same experiment for the optimal parameterization with
noisy target velocity estimates ϑ̇est

i (t) = ϑ̇i(t) + κ2νi(t),
where µi(t) ∼ N (0, 1) and κ2 > 0. Fig. 5 compares the
cost distributions of the initializations to the resulting
trajectories obtained through the respective gradient
descent methods. Both methods are able to reduce the
cost drastically, though the practical parameterization
achieves notably better results. This is due to the fact
that the practical version incorporates tracking error
feedback into its control law. On the other hand, the
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Fig. 4. Simultaneous sensing experiment with two targets (red
solid and dotted) and one agent (blue solid). The sensing range
(blue shaded) is shown on the agent.

Fig. 5. Depiction of the randomized experiment. The cost distri-
bution of the initializations is depicted in orange (optimal) and red
(practical), whereas the optimized cost distributions are shown in
blue (optimal) and green (practical).

optimal version simply tries to copy a target’s motions,
though without validating its proximity.

VII. Conclusion and Future Work
In this paper, we showed the existence of optimal

solutions for the one-dimensional persistent monitor-
ing problem of mobile targets by reducing the infinite-
dimensional OCP (4) to a parametric optimization prob-
lem. We characterized the optimal control, which moti-
vated the design of an event-based optimization scheme.
We then proposed a suboptimal parametric description
of the system that proved to perform robustly in various
numerical experiments.

In future work, we will consider the extension to
more realistic second-order agent dynamics, extending
the problem to the infinite horizon case through the use
of periodic patterns, and the consideration of problem
formulations in two-dimensional settings.
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