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ABSTRACT

The Arrow-Debreu extension of the classic Hylland-Zeckhauser
scheme [27] for a one-sided matching market — called ADHZ in
this paper — has natural applications but has instances which do
not admit equilibria. By introducing approximation, we define the
e-approximate ADHZ model, and we give the following results.

(1) Existence of equilibrium under linear utility functions. We
prove that the equilibrium satisfies Pareto optimality, approx-
imate envy-freeness, and approximate weak core stability.

(2) A combinatorial polynomial time algorithm for an e- approx-
imate ADHZ equilibrium for the case of dichotomous, and
more generally bi-valued, utilities.

(3) An instance of ADHZ, with dichotomous utilities and a
strongly connected demand graph, which does not admit an
equilibrium.

(4) A rational convex program for HZ under dichotomous utili-
ties; a combinatorial polynomial time algorithm for this case
was given in [35].

The e-approximate ADHZ model fills a void in the space of

general mechanisms for one-sided matching markets; see details in
the paper.
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1 INTRODUCTION

In this paper, we define an Arrow-Debreu extension of the classic
Hylland-Zeckhauser (HZ) mechanism [27] for one-sided matching
markets. This fills a void in the space of general! mechanisms
for one-sided matching markets. Such mechanisms are classified
according to two criteria: whether they use cardinal or ordinal
utility functions, and whether they are in the Fisher or Arrow-
Debreu? setting. The other three possibilities are covered as follows:
(cardinal, Fisher) by the Hylland-Zeckhauser scheme [27]; (ordinal,

! As opposed to mechanisms for specific one-sided matching markets.
2This is also called the Walrasian or exchange setting.
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Fisher) by Probabilistic Serial [7] and Random Priority [31]; and
(ordinal, Arrow-Debreu) by Top Trading Cycles [33]. Details about
these mechanisms are given in Section 1.1.

The two ways of expressing utilities of goods — ordinal and
cardinal — have their own pros and cons and neither dominates the
other. On the one hand, the former is easier to elicit from agents
and on the other, the latter is far more expressive, enabling an agent
to not only report if she prefers good A to good B but also by how
much. [1] exploits this greater expressivity of cardinal utilities to
give mechanisms for school choice which are superior to ordinal-
utility-based mechanisms.

The following example illustrates the advantage of cardinal vs
ordinal utilities. The instance has three types of goods, T, T», T3, and
these goods are present in the proportion of (1%, 97%, 2%). Based
on their utility functions, the agents are partitioned into two sets
A1 and Az, where A; constitute 1% of the agents and Ay, 99%. The
utility functions of agents in A; and Aj for the three types of goods
are (1, €, 0) and (1, 1—¢, 0), respectively, for a small number € > 0.
The main point is that whereas agents in A marginally prefer T
to Ty, those in A; overwhelmingly prefer T to Tp.

Clearly, the ordinal utilities of all agents in A; U Aj are the same.
Therefore, a mechanism based on such utilities will not be able to
make a distinction between the two types of agents. On the other
hand, the HZ mechanism, which uses cardinal utilities, will fix the
price of goods in T3 to be zero and those in Ty and T appropriately
so that by-and-large the bundles of A; and A3 consist of goods from
T; and Ty, respectively.

The Arrow-Debreu setting of one-sided matching markets has
several natural applications beyond the Fisher setting, e.g., allo-
cating students to rooms in a dorm for the next academic year,
assuming their current room is their initial endowment. Similarly,
school choice, when a student’s initial endowment is a seat in a
school which they already have. The issue of obtaining such an
extension of the HZ mechanism, called ADHZ in this paper, was
studied by Hylland and Zeckhauser. However, this culminated in
an example which inherently does not admit an equilibrium [27].

One recourse to this was given by Echenique, Miralles and Zhang
[17] via their notion of an a-slack Walrasian equilibrium: This is
a hybrid between the Fisher and Arrow-Debreu settings. Agents
have initial endowments of goods and for a fixed @ € (0, 1], the
budget of each agent, for given prices of goods, is @ + (1 — ) - m,
where m is the value for her initial endowment; the agent spends
this budget to obtain an optimal bundle of goods. Via a non-trivial
proof, using the Kakutani Fixed Point Theorem, they proved that
an a-slack equilibrium always exists.
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In this paper, we show that we can remain with a pure Arrow-
Debreu setting provided we relax the notion of equilibrium to an
approximate equilibrium, a notion that has become common-place
in the study of equilibria within computer science. We call this the
e-approximate ADHZ model. For this model, we give the following
results.

We prove the existence of an equilibrium for arbitrary cardinal
utility functions, using the fact from [17] that an a-slack equilibrium
always exists for a > 0.

We prove that the equilibrium in our e-approximate ADHZ
model is Pareto optimal, approximately envy free, and approxi-
mately weak core stable. In contrast, the allocation found by an HZ
equilibrium is Pareto optimal and envy-free [27].

For an Arrow-Debreu market under linear utilities, Gale [20]
defined a demand graph: a directed graph on agents with an edge
(i, j) if agent i likes a good that agent j has in her initial endow-
ment. He proved that a sufficiency condition for the existence of
equilibrium is that this graph be strongly connected. The following
question arises naturally: Is this a sufficiency condition for equilib-
rium existence in ADHZ as well? We provide a negative answer to
this question. We give an instance of ADHZ whose demand graph
is not only strongly connected but also has dichotomous utilities,
and yet it does not admit an equilibrium.

For the case of dichotomous utilities, we give a combinatorial
polynomial-time algorithm for computing an equilibrium for our
e-approximate ADHZ model. This result also extends to the case
of bi-valued utilities, i.e., each agent’s utility for individual goods
comes from a set of cardinality two, though the sets may be different
for different agents. These utilities are well-studied (see, e.g., [5, 8,
16, 21, 35]), mainly due to their significance in practical applications.
For example, it might be simpler for agents to answer whether their
desire for a good is “high” or “low” with numerical values. We
note that the polynomial-time algorithm of [14, 15] for Arrow-
Debreu markets under linear utilities, as well as the recent strongly
polynomial-time algorithm for the same problem [22] are quite
complicated, in particular because they resort to the use of balanced
flows, which uses the Iz norm. In contrast, we managed to avoid
the use of I; norm and hence we obtain a simple algorithm.

A corollary of the last result is that the equilibrium of the dichoto-
mous utilities case of the e-approximate ADHZ model involves only
rational numbers. In contrast we give an instance of ADHZ whose
unique equilibrium has irrational prices and allocations. This in-
stance is obtained by appropriately modifying an instance for the
HZ model, given in [35], whose (unique) equilibrium has irrational
prices and allocations. This led us to ask if there is a rational convex
program (RCP) that captures the equilibrium in this setting.

An RCP, defined in [34], is a nonlinear convex program all of
whose parameters are rational numbers and which always admits
a rational solution in which the denominators are polynomially
bounded. The quintessential such program is the Eisenberg-Gale
convex program [19] for a linear Fisher market. The significance of
finding such a program for a problem is that it directly implies ex-
istence of a polynomial time algorithm for the underlying problem,
since using the ellipsoid algorithm and Diophantine approximation
[23, 28], an RCP can be solved exactly in polynomial time. As a re-
sult, it gives practitioners a direct way to compute a solution using
general-purpose convex programming solvers. Although we were
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not able to answer this question, we did find an RCP for HZ equi-
librium under dichotomous utilities. A combinatorial polynomial
time algorithm for this case was given in [35].

1.1 Related Results

Matching markets have found many applications in various multi-
agent settings, e.g., see the recent works [3, 4, 13].

We start by stating the properties of mechanisms for one-sided
matching markets listed in the Introduction. Random Priority [31]
is strategyproof though not efficient or envy-free; Probabilistic
Serial [7] is efficient and envy-free but not strategyproof; and Top
Trading Cycles [33] is efficient, strategyproof and core-stable.

Recently, [35] undertook a comprehensive study of the compu-
tational complexity of the HZ scheme. They gave a combinatorial
polynomial time algorithm for dichotomous utilities and an example
which has only irrational equilibria; as a consequence, this problem
is not in PPAD. They showed that the problem of computing an
exact HZ equilibrium is in the class FIXP and the problem of com-
puting an approximate equilibrium is in PPAD. Very recently, [10]
showed that computing an approximate HZ equilibrium is PPAD-
hard. In order to deal with the computational intractability of HZ,
a Nash-bargaining-based mechanism was proposed in [26].

The study of the dichotomous case of matching markets was
initiated by Bogomolnaia and Moulin [8]. They studied a two-sided
matching market and they called it an “important special case of
the bilateral matching problem.” Using the Gallai-Edmonds decom-
position of a bipartite graph, they gave a mechanism that is Pareto
optimal and group strategyproof. They also gave a number of ap-
plications of their setting, some of which are natural applications
of one-sided markets as well, e.g., housemates distributing rooms,
having different features, in a house. As in the HZ scheme, their
mechanism also outputs a doubly-stochastic matrix whose entries
represent probability shares of allocations. However, they give an-
other interesting interpretation of this matrix. They say, “Time
sharing is the simplest way to deal fairly with indivisibilities of
matching markets: think of a set of workers sharing their time
among a set of employers.” Roth, Sénmez and Unver [32] extended
these results to general graph matching under dichotomous utilities;
this setting is applicable to the kidney exchange marketplace.

An interesting recent paper [2] defines the notion of a random
partial improvement mechanism for a one-sided matching market.
This mechanism truthfully elicits the cardinal preferences of the
agents and outputs a distribution over matchings that approximates
every agent’s utility in the Nash bargaining solution.

Several researchers have proposed Hylland-Zeckhauser-type
mechanisms for a number of applications, for instance [9, 25, 29, 30].
The basic scheme has also been generalized in several different
directions, including two-sided matching markets, adding quanti-
tative constraints, and to the setting in which agents have initial
endowments of goods instead of money, see [17, 18].

2 THE HYLLAND-ZECKHAUSER MECHANISM

The Hylland-Zeckhauser (HZ) mechanism can be viewed as a mar-
riage between a fractional perfect matching and a linear Fisher
market, which consists of a set A of agents and a set G of goods.
Each agent i comes to the market with a budget b; and has utilities
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ujj > 0 for each good j. In the case of linear utilities, agent i’s
utility from allocation (x;j) jeG is X j uijxij. By fixing the units for
each good, we may assume without loss of generality that there is
a unit of each good in the market.

Definition 1. A Fisher equilibrium is a pair (x, p) consisting of
an allocation (x;j)iea,jec and prices (pj)jec with the following
properties.

(1) Each agent i spends at most their budget, i.e., ZjeG pjxij <
b;.

(2) Each agent i gets an optimal bundle, i.e., utility maximizing
bundle at prices p. Formally:

D uijxiy =max{ > uijy; |y €RS, Y piy; < by
jeG jeG jeG

(3) The market clears, i.e., each good with positive price is fully
allocated to the agents.

The set of equilibria of a linear Fisher market corresponds to the
set of optimal solutions of the Eisenberg-Gale convex program [19],
which is a rational convex program (RCP) and in fact it motivated
the definition of this concept [34].

Fisher equilibria satisfy various nice properties, including equal-
type envy-freeness and Pareto optimality.

Definition 2 (Envy-freeness and Pareto optimality). An alloca-
tion is envy-free if for any two agents i,i’ € A, agent i weakly
prefers their allocation than those that i’ gets, i.e., 3’ jec uijxij >
2 jeG uijxij- It is equal-type envy-free if the above holds for any
two agents with identical budgets.

An allocation x weakly dominates another allocation x” if no
agent prefers x’ to x. It strongly dominates x” if it weakly dominates
it and some agent prefers x to x”. An allocation x is Pareto efficient
or Pareto optimal if there is no other allocation x” which strongly
dominates it.

Definition 3. A one-sided matching market consists of a set A
of agents and a set G of goods. Each agent has preferences over
goods, expressed either using cardinal or ordinal utility functions.
An allocation is a perfect matching of agents to goods. The goal of
the market is to find an allocation so that the underlying mechanism
has some desirable game-theoretic properties.

The HZ mechanism uses cardinal utility functions, in which each
good is rendered divisible by viewing it as one unit of probability
shares. An HZ equilibrium is defined as follows.

Definition 4. A Hylland-Zeckhauser (HZ) equilibrium is a pair
(x, p) consisting of an allocation (xij)ica,jec and prices (pj)jeG
with the following properties.

(1) x is a fractional perfect matching, ie., ¥ jcg xij = 1 forall i

and };c4 xi; = 1 forall j.

(2) Each agent i spends at most their budget, i.e., 3 jeg pjxij <
b; (usually b; = 1).

(3) Each agent i gets an optimal bundle, which is defined to
be a cheapest utility maximizing bundle, i.e., 3. ;cq uijxij =
max {3 uijy; | X9 =1 T;pjyj < bitand ¥ jec pjxij =
min {Y; pjy; | 2y = LY, uijy; > 3 uijxij}.
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Like Fisher equilibria, HZ equilibria are Pareto optimal and envy-
free (assuming unit budgets).> The allocation x found by the HZ
mechanism is a fractional perfect matching or a doubly-stochastic
matrix. In order to get an integral perfect matching from x, a lot-
tery can be carried out using the Theorem of Birkhoff [6] and von
Neumann [36]. It states that any doubly-stochastic matrix can be
written as a convex combination of integral perfect matchings;
moreover, this decomposition can be found efficiently. Picking a
perfect matching according to the discrete probability distribution
determined by this convex combination yields the resulting alloca-
tion in the HZ mechanism.

3 THE ¢-APPROXIMATE ADHZ MODEL

In this paper we are interested in an exchange version of the HZ
mechanism. Before defining it, we introduce the Arrow-Debreu
(exchange) market under linear utility functions, which consists of
a set A of agents and a set G of goods. Each agent i comes to the
market with an endowment e;j > 0 of each good j and also has a
utility u;; > 0. Each good j must be fully owned by the agents, i.e.,
Yicaeij=1forall j € G.

Definition 5. An Arrow-Debreu (AD) equilibrium for a given AD
market is a pair (x, p) consisting of an allocation (x;j)ica, jec and
prices (pj) jec with the following properties.

(1) Each agent spends at most the budget earned from the en-

dowment, i.e., Zj pjxij < b = Zj pjeij-.

(2) Each agent i gets an optimal bundle, ie., ¥ jec uijxij =

max {¥ e uijyj |y € Rgo, Yjec Pjyj < bi}.

(3) The market clears, i.e., each good with positive price is fully

allocated to the agents.

The AD model generalizes Fisher model in the sense that any
Fisher market can be easily transformed into an AD market by
giving each agent a fixed proportion of every good. Clearly, AD
equilibria satisfy the condition of individual rationality, defined
below, since every agent could always buy back their endowment.

Definition 6. An allocation in an AD market is individually ra-
tional if for every agent i we have }}; ujjxij > X ; uijeij, ie, no
agent loses utility by participating in the market.

However, individual rationality fundamentally clashes with envy-
freeness. Consider a market consisting of two agents each owning
a distinct good. Assume that both agents prefer the good of agent
2 over the good of agent 1, then in any allocation either agent 1
envies agent 2 or agent 2’s individual rationality is violated. For this
reason we primarily consider a version of equal-type envy-freeness
in exchange markets, which demands envy-freeness only for agents
with the same initial endowment.

AD equilibria do not always exist. However, there is a simple
necessary and sufficient condition for their existence based on
strong connectivity of demand graph, due to Gale [20]. An RCP for
this problem was given by Devanur, Garg and Végh [11].
3Pareto optimality for HZ equilibria requires that each agent receives a cheapest utility
maximizing bundle. If this condition is dropped, we get counter-examples to Pareto
optimality: Consider an instance with two agents a; and a3, and two goods ¢; and
g2 with uy; = up1 = upz = 1;uy2 = 0. The prices (2, 0) together with the allocation
X11 = X12 = X21 = X2 = 0.5 are optimal bundles, though not cheapest. The utilities

in this equilibrium are 0.5 for agent a; and 1 for agent a,. However, there is another
HZ equilibrium with prices (1, p), for any p € [0, 1] with utility 1 for both agents.
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We now turn to the extension of the HZ mechanism to exchange
markets. In the ADHZ market, we have a set A of agents and a set G
of goods with |A| = |G| = n. Each agent i comes with an endowment
ejj > 0 of each good j and utilities u;; > 0. The endowment vector
e is a fractional perfect matching.

Definition 7. An ADHZ equilibrium for a given ADHZ market
is a pair (x, p) consisting of an allocation (x;j)ica jeG and prices
(pj)jec with the following properties.

(1) x is a fractional perfect matching, i.e., 3 jeg xij = 1 for all i

and }};e4 xi; = 1 for all j.

(2) Each agent spends at most the budget earned from the en-

dowment, ie., }}; pjxij < bi =} pjeij

(3) Each agent i gets an optimal bundle, Wthh is defined to

be a cheapest utility maximizing bundle, i.e., 3’ jeg uijxij =
max {Y uijy; | Xjyj = 1 Xjpjy; < bifand X jeg pjxij =
min {Zjec pjy) | Zj¥j = 15 Ljec wijyj = Tjec vijXij}-

THEOREM 8. ADHZ equilibria are Pareto optimal, individually
rational, and equal-type envy-free.

Proor. Pareto optimality follows from the fact that any ADHZ
equilibrium is an HZ equilibrium with certain budgets b. Since any
HZ equilibrium is Pareto optimal, we get the same for ADHZ.

Note that the budget of any agent is always enough to buy back
their initial endowment. Since they get an optimal bundle, they
must get something which they value at least as high as their initial
endowment. Thus individual rationality is guaranteed.

If two agents, say 1 and 2, have the same endowment, then
their budget will be the same and so agent 1 will never value the 2’s
bundle higher than their own. Thus ADHZ equilibria are equal-type
envy-free. O

In addition, ADHZ equilibria also satisfy the following notion of
core-stability.

Definition 9. An allocation x in an ADHZ market is weakly core-
stable if for any subsets A’ C A and G’ C G, there does not exist
an allocation x” € RA/XGI such that

x’ allocates at most one unit of goods to every agent in A’,
every good j € G’ is allocated at most to the extent of the

endowments of the agents in A’, i.e. };ca xl] < Diea €ijs

and
every agent in A’ receives strictly better utility in x” than in

X.
THEOREM 10. ADHZ equilibria are weakly core-stable.

ProoF. Let (x, p) be some ADHZ equilibrium. For the sake of
a contradiction, assume that there are A’ C A, G’ € G and x’ €
R‘QIOXGI as excluded by the definition of weak core-stability. Now
consider the total money spent “along allocation x””,
tity 2jear ZjeG’ ijl‘,j'

On the one hand we know that only the endowment of the agents

in A’ is allocated by x”. Thus
Z Z pjeij-

2, 2, i s
ieA’ jeG’

i€A’ jeG’

i.e., the quan-

On the other hand, every agent i receives strictly better utility
from x’ than from x. But since agents buy optimal bundles in (x, p),
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this implies that the bundles in x” must be worth more than their

budget, i.e.,
Dpixl > D pjeii = ) pieis.

JjeG’ jeG jeG’
Summing this inequality over all i € A’ yields a contradiction to
the previous inequality. O

Like in the case of HZ, equilibrium prices in ADHZ are invariant
under the operation of scaling the difference of prices from 1, as
shown in the following lemma.

LEMMA 11. Suppose p be an equilibrium price vector. For anyr > 0,
let p’ be such thatp;. —1=r(pj—1) forall j € G. Thenp’ is also
an equilibrium price vector.

PRroOF. Let x be an equilibrium allocation at prices p. For any
agent i, we have 3 ;e xijpj < Xjec €ijpj- We show that the pair
(x,p’) is also an equilibrium.

Since (x, p) is an equilibrium, for each i € A, we have

Zuijx,-j :max{z Uijyj | y ERSO’ Z Yy; = 1, Z Yjipj < Z €ijpj
jeG

JjeG JjeG JjeG JjeG

Replacing p; by (p; —1)/r+1forall j € G, we get:

Z UjjXjj = max

JjeG

§ uijy; |y € RS, § yi=1,
JjeG JjeG
P;-1 p;-1
(] 1| < “a—
r r

Simplifying the above using 3’ ;g €ij = 1and 3 jcg y; = 1 for all
i €A, we get:

Z uijxij = max

JjeG

DU

JjeG

S

JjeG

D, et

JjeG JjeG JjeG

Duiyi |y RS, Y yi=1 ) y;p) <
JjeG
The above implies that x gives each agent an optimal bundle at
prices p’. This, together with the fact that x is a fractional perfect

matching, shows that (x, p’) is also an equilibrium. O

Unlike HZ, which always admits an equilibrium, ADHZ has in-
stances which do not admit an equilibrium, as observed by Hylland
and Zeckhauser [27]. Below we give a counterexample in which the
demand graph is strongly connected and utilities are dichotomous.

ProPOSITION 12. The ADHZ market with dichotomous utilities in
Figure 1 does not admit an equilibrium.

Proor. Assume there is an equilibrium (x, p) in this market.
Further, using Lemma 11, we can assume that the minimum price
is zero at p. This implies that no agent will buy a zero utility good
at a positive price.

Each agent buys a total of one unit of goods and s is the only
agent having positive utility for goods a and b. Therefore, at least
one of these goods is not fully sold to s and must be sold to an agent
deriving zero utility from it. Therefore this good must have zero
price. Without loss of generality, assume p, = 0. Since a has no
budget and ¢ and d are desired only by a, p. = p; = 0, otherwise
¢ and d cannot be sold. For the same reason, p. = 0. Now observe

].

],
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Figure 1: The demand graph of an ADHZ market with di-
chotomous utilities and no equilibrium. Each node repre-
sents an agent as well as the good possessed by this agent
in her initial endowment. An arrow from i to j represents
u;jj = 1; the rest of the edges have utility 0.

that both agents ¢ and d have a utility 1 edge to a good of price zero,
namely e. Therefore, the optimal bundle of both ¢ and d is e. But
then e would have to be matched twice which is a contradiction. O

Even if ADHZ equilibria do exist, computing them is at least as
hard as computing HZ equilibria. This follows from the following
reduction.

ProposITION 13. Consider an HZ market with unit budgets. Define
an ADHZ market by giving every agent as endowment an equal
amount of every good. Then every HZ equilibrium in which the prices
sum up ton is an ADHZ equilibrium and every ADHZ equilibrium
yields an HZ equilibrium by rescaling all prices by n/}. jc pj-

[35] gave an instance of HZ with four agents and four goods
which has one equilibrium in which all agents fully spend their
budgets, and allocations and prices are irrational. Since this ex-
ample satisfies the conditions of Proposition 13, we get that the
modification of the example of [35], as stated in the Proposition, is
an instance for ADHZ having only irrational equilibria.

3.1 Existence and Properties of e-Approximate
ADHZ Equilibria

Since ADHZ equilibria do not always exist, we study the following
approximate equilibrium notion instead.

Definition 14. An e-approximate ADHZ equilibrium is an HZ
equilibrium (x, p) for a budget vector b with

(1-€) > pjeij <bi <e+ ) pje;j forallieA .
jeG jeG
We also require that if two agents have the same endowment, then
their budget should also be the same.

The additive error term in the upper bound is necessary since
otherwise the counterexample from Proposition 12 still works. On
the other hand, the multiplicative lower bound is useful to get
approximate individual rationality. However, one can always find
approximate equilibria in which the sum of prices is bounded by n
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using Lemma 11, so we also get

ijeij -’ <b; < ijeij+e’ for € := ne.
jeG jeG

This implies that we can equivalently define the above notion with
additive error terms on both upper and lower bounds.

In our notion of approximate equilibrium, we do not relax the
fractional perfect matching constraints or the optimum bundle con-
dition. We only allow the budgets of agents to be slightly different
from the money they would normally obtain in an ADHZ market.
Hence the step of randomly rounding the equilibrium allocation to
an integral perfect matching is the same as in the HZ scheme.

THEOREM 15. Any e-approximate ADHZ equilibrium is Pareto
optimal, e-approximately individually rational, equal-type envy-free.

PRrOOF. Pareto optimality follows just as for the non-approximate
ADHZ setting from the fact that an e-approximate ADHZ equilib-
rium is first and foremost an HZ equilibrium. For approximate
individual rationality note that every agent gets a budget of at least
(1 — ) times the cost of their endowment. Hence their utility can
decrease by at most a factor of (1 — €). Equal-type envy-freeness
follows immediately from the condition that agents with the same
endowment have the same budget. O

One can also define a suitably e-approximate notion of weak
core-stability, where instead of demanding that every agent strictly
improves in the seceding coalition, we instead require that every
agent improves by a factor of more than ﬁ

THEOREM 16. Any e-approximate ADHZ equilibrium is e- approx-
imately weak-core stable.

ProOF. Let (x, p) be an e-approximate ADHZ equilibrium for
some budget vector b. Then in order for some other allocation x’

to improve agent i’s utility by a factor of more than =, i must
spend more than lb_—’€ But note that lb_—‘s > Yljec pjeij- From here
the proof is identical to that of Theorem 10. O

While approximate equilibrium notions are more amenable to
computation, they generally do not lend themselves well to exis-
tence proofs. However, our notion of e-approximate ADHZ equilib-
rium is a slight relaxation of the notion of an a-slack equilibrium
introduced in [17].

Definition 17. An a-slack ADHZ equilibrium for a € (0, 1] is an
HZ equilibrium (x, p) for a budget vector b in which b; = o + (1 -
@) Yjec pjeij foralli € A.

THEOREM 18 (THEOREM 2 IN [17]). In any ADHZ market, a-slack
equilibria always exist if a > 0.

Note that any a-slack equilibrium is automatically also an a-
approximate equilibrium. Thus we get:

THEOREM 19. In any ADHZ market, e-approximate equilibria
always exist if e > 0.
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4 ALGORITHM FOR ¢-APPROXIMATE ADHZ
UNDER DICHOTOMOUS UTILITIES

Before we can tackle the ADHZ setting, let us first give an algorithm
that can compute HZ equilibria with non-uniform budgets. This is
an extension of the algorithm presented in [35]. In the following, fix
some HZ market consisting of n agents and goods with u;; € {0,1}
foralli € Aand j € G.If u;; = 1, we will say that i likes j (and
dislikes otherwise). We assume that every agent likes at least one
good. 4

> S
s //,/v s
O R RRREREES > RREREEEEE = O
\\\\\\\\\\\ ///,é’
N A ‘/’
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Figure 2: Shown is the flow network which corresponds to
finding an equilibrium allocation in price class p. Filled cir-
cles represent agents in A(p) with b; < p, empty circles are
agents in A(p) with b; > p, and diamond vertices are goods
in G(p). The contiguous edges represent all utility 1 edges
and have infinity capacity (utility 0 edges are not part of
the network). Dashed edges to empty circle vertices i have
capacity b; whereas the other dashed edges have capacity p.

LEmMA 20. Let (pj)jec be non-negative prices. For any p > 0, let
G(p) be the goods which are sold at price p and let A(p) be those
agents for which the cheapest price of any liked good is p. Assume
that

o there is a matching in the utility 1 edges on A(0) UG(0) which

covers all agents in A(0) and
o ifp > 0isequal to the price of some good, then the flow network

shown in Figure 2 has a maximum flow of size p|G(p)|.

Then we can find a fractional perfect matching x which makes (x, p)
an HZ equilibrium in polynomial time.

Proor. Allocate every agent in A(0) to some good in G(0) ac-
cording to the matching which exists by assumption. Let p > 0, be
the price of some good. Then we compute the maximum flow f ()
in the flow network from Figure 2 and allocate x;; = fl(Jp ) /p for
alli € A(p) and j € G(p). Lastly, extend x to a fractional perfect
matching by matching the remaining capacity of the agents to the
remaining capacity of goods in G(0).

Clearly, no agent exceeds their budget. To see that this yields
an HZ equilibrium, note that every agent only spends money on

4 Any HZ equilibrium (x, p) for the utilities u;j is also an equilibrium for i;; where
;= a; if u;; = 0and b; if u;; = 1 for for all agents i, goods j, and arbitrary 0 < a; <
b; for every agent. This is because Y je @ijxij = ai + (bi — a;) X jeg WijXij since
x is a fractional perfect matching. Hence utility function # is an affine transformation
of utility function u; the former is called a bi-valued utility function.
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cheapest liked goods and if they do not get allocated entirely to
liked goods, then they additionally spend all of their budget. This
ensures that every agent gets an optimum bundle. O

THEOREM 21. For any rational budget vector b, we can compute
an HZ equilibrium in polynomial time.

ProoOF. We start in the same way is the algorithm in [35]: by
computing a minimum vertex cover in the graph of utility 1 edges,
we partition A = A; U Az and G; U Gy such that

e every agent in Ay can be matched to a distinct liked good in

Go,

. ex?ery agent in A; only has liked goods in Gy, and

o for every S C Gy we have [N~ (S)| > |S| where N™(S)] are
the agents that have a liked good in S.

Setpj = 0forall j € Gz and p; = min;eq, b; for all j € G;. Now
we run a DPSV-like [12] algorithm on A; U G; to raise prices until
certain sets of goods become tight.

For each i € A, let §; be its effective budget at current prices
p, that is the minimum of its actual budget b; and the price of its
cheapest liked good. The algorithm will now raise all prices p at
the same rate until there is a set S C Gy which goes tight in the
sense that 3;cr(s) fi = 2 jes pj where I is the collection of agents
which have a cheapest liked good in S. At this point, we freeze the
prices of the goods in S. If all prices have been frozen we are done.
Otherwise, we continue raising all unfrozen prices of goods in Gj.

It is easy to see that if the prices keep rising, eventually each
agents’ effective budget will be their real budget and so a set must
become tight at some point. We will not go into detail here but it is
possible to find the next set which will go tight in polynomial time
similar as in DPSV. Finally, since we never unfreeze prices, there
will be at most n iterations of the algorithm and hence it runs in
polynomial time overall.

We observe that as in the proof of the DPSV algorithm, for
any S C Gy, we have that Y;cr(s) fi 2 Xjeapj and Yieq, fi =
2.jeG, Pj-Itis then easy to show that this implies that for any price
p above 0, the corresponding flow network from Figure 2 supports
a flow of value p|G(p)| by the max-flow min-cut theorem. Thus we
can apply Lemma 20 to get an equilibrium allocation. O

LEMMA 22. Let b and b’ be two budget vectors with0 < b < b’.
Assume we are given an HZ equilibrium (x, p) for the budgets b. Then
we can compute in polynomial time a new HZ equilibrium (x’, p”)
with p < p’ for the budgets b’.

Proor. We will simply run the same algorithm as in the proof
of Theorem 21, except that this time we start with the prices p.
More precisely, we increase the lowest non-zero price until a set
goes tight or it becomes equal to the next higher price, then repeat
this process until we once again get Yjcr(s) fi = 2jea pj and
2ier(Gy) Bi = Xjec, pj Where Gy is now defined as the set of
goods with positive prices in (x, p). As in the proof of Theorem 21,
this will freeze all prices in polynomial time at which point we can
use a max-flow min-cut argument to construct the new equilibrium
allocation x” in polynomial time. O

Let us now return to the approximate ADHZ setting. Instead of
budgets, fix now some fractional perfect matching of endowments

(eij)iea,jeG-
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THEOREM 23. An e-approximate ADHZ equilibrium for rational
€ € (0,1), can be computed in time polynomial in é andn, i.e. by a
fully polynomial time approximation scheme.

Proor. We will iteratively apply Lemma 22. Start by setting
bl(l) i= £ foralli € Aand computing an HZ equilibrium (x(, p(1)y
according to Theorem 21. Beginning with k := 1, we run the fol-
lowing algorithm.

(1) Let b = £ 4 (1- &) Tjeq p](.k) eijforalli € A.

(2) Compute a new HZ equilibrium (x(¥*1), p(*+1)) for budgets
b(k*1) according to Lemma 22 using the old equilibrium
(x(k),p(k)) as the starting point. Note that since p(k) >
p(k_l) we always have b(k+1) > p(k) and so this is well-

defined.
(3) Setk = k + 1 and go back to step 1.
Note that
(k+1) _ € _€ (k) € _€ (k)
Zbi —2n+(1 Z)ij S2n+(1 2)Zbi
icA jeG i€A
and thus
k k
ij(- ) < Zbl( ) <n
jeG ieA

as otherwise we would get > ;ca bi(kﬂ) < Yiea bl.(k).

%F(K—D' Note

Let K be the first iteration such that p(K) <
that

n n n
i 2nip (2] -o s
nlogiez | 2 log (-
since all non-zero prices are initialized to at least € but are bounded

by n. Then (x), p(K)) is an e-approximate ADHZ equilibrium
with budget vector bK) because for all i € A we have

b =5+ (1-3) ;GPJ(K_” €ij
J

el(1-e¢) ij(.K)eij,e+ ZP;K)eij .

jeG jeG
Lastly, we note that since the number of iterations is bounded by

n n : . . . .
O(¢ log(%Z)) and each iteration runs in polynomial time, the total
runtime is polynomial in % and n as claimed. O

5 AN RCP FOR THE HZ SCHEME UNDER
DICHOTOMOUS UTILITIES
We will assume without loss of generality that each agent i € A

likes some good j € G, i.e. u;; = 1. We will show that program (1)
given below is the required RCP.

max Ziealog X jec uijxij
subject to VjeG: Dieaxij <1 (1)
VieA: 2jecxij <1
VieA jeG: xij =20

Let p;’s and o;’s denote the non-negative dual variables for the
first and second constraints, respectively.
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THEOREM 24. Any HZ equilibrium is an optimal solution to (1),
and every optimal solution of (1) can be trivially extended to an HZ
equilibrium. Furthermore, the latter can be expressed via rational
numbers whose denominators have polynomial, in n, number of bits,
thereby showing that (1) is a rational convex program.

Proor. Let u; := 3} ;e uijxij. Clearly, in any HZ equilibrium,
since each agent i is allocated an optimal bundle of goods, she will
be allocated a non-zero amount of a unit-utility good and hence will
satisfy u; > 0. Furthermore, in an optimal solution x of (1), every
agent must have positive utility, because otherwise the objective
function value will be —co. Therefore, Vi € A: u; > 0.
The KKT conditions of this program are:
(1) VieA:a; > 0.
(2) VjieG:pj=0.
(3) Vie A:If a; > 0 then ij,'j =1.
(4) Vj € G:If p; > 0 then }; x;5 = 1.
(5) VieA jeG: ujj < ui(pj + ;).
(6) Vie A jeG: Xij > 0= ujj = u,-(pj + ;).
To prove the forward direction of the first statement, let (x, p)
be an HZ equilibrium. Since x is a fractional perfect matching on
agents and goods, it satisfies the constraints of (1) and is hence a
feasible solution for it. We are left with proving optimality.
The KKT conditions 2, 3 and 4 are clearly satisfied by (x, p). Next,
consider agent i. If there is a good j such that p; < 1and u;; =1,
then i will be allocated one unit of the cheapest such goods. Assume
the price of the latter is p. Define @; = 1 — p. Clearly u; = 1. Now, it
is easy to check that Conditions 1, 5 and 6 are also holding.
Next assume that every good j such that u;; = 1 has p; > 1
and let p be the cheapest such price. Clearly, i’s optimal bundle
will contain 1/p amount of these goods, giving her total utility 1/p.
Since the equilibrium always has a zero-priced good, that good,
say j, must have u;; = 0. Now, i must be buying such zero-utility
zero-priced goods to get to one unit of goods. We will define o; = 0.
Again, it is easy to check that Conditions 1, 5 and 6 are holding.
Hence we get that (x, p) is an optimal solution to (1).
Next, we prove the reverse direction of the first statement. Let
(x, p) be an optimal solution to (1). Assume that agent i is allocated
good j, i.e. xj; > 0. We consider the following two cases:
(a) ujj = 0. Using Condition 6 and u; > 0, we get that p; = a; =
0.

(b) uij = 1. Using Conditions 5 and 6 and u; > 0, we get that the
price of good j is the cheapest among all goods for which
i’s utility is 1.

For each agent i, multiply the equality in Condition 6 by x;; and
sum over all j to get:

Z Xijuij = Ui Z xij(pj + i)
J J
After canceling u; from both sides we obtain

inj(Pj +a)=1= injpj +ai inj-

J J J
Now,ifa; > 0,then }’; x;j = 1andife; = 0,thena; 3 xij = 0 = a;.
Therefore, in both cases a; Y, j Xij = ;. Hence,

injpj =1-aq;.
J

()
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We will view the dual variables p of the optimal solution (x, p)
as prices of goods. The above statement then implies that agent i’s
bundle costs 1 — «a;.

Let S denote the set of agents who get less than one unit of
goods, ie. S = {i € A| ¥jxij < 1}, and let T denote the set
of partially allocated goods, i.e. T := {j € G| X;xj; < 1}. By
Condition 4, pj = 0 for each j € T. Observe that if for i € S and
J € T, u;j = 1, then by allocating a positive amount of good j to i,
the objective function value of program (1) strictly increases, giving
a contradiction. Therefore, u;; = 0.

Since the number of agents equals the number of goods, the
total deficiency of agents in solution x equals the total amount of
unallocated goods. Therefore, we can arbitrarily allocate unallo-
cated goods in T to deficient agents in S so as to obtain a fractional
perfect matching, say x’. Clearly, (x’, p) is still an optimal solution
to (1) and is also an HZ equilibrium.

For the second statement, we will start with this solution (x”, p).
Let G’ C G denote the set of goods with prices bigger than 1, i.e.
G"={j € G|pj > 1} and let A” C A be the set of agents who
have allocations from G’. By Cases (a) and (b), for each i € A’,
there is a j € G’ such that u; 7 = 1; moreover this is the cheapest
good for which i has utility 1. We first show that each agent i € A’
satisfies @; = 0.1f X} ;¢ xij < 1, this follows from KKT Condition 3.
Otherwise, there exists j € G such that x;; > 0 and u;; = 0. The last
statement follow from the fact that }, jXijpj <1, which follows
from (2). Again, by Case (a), a; = 0. Now, by (2), the money spent
by each agent in A’ is exactly 1 dollar on goods in G’.

Consider the connected components of bipartite graph (A’, G’, E),
where the set E = {(i, j) € (A’,G’) | x;j > 0}. Cases (a) and (b) im-
ply that all goods in a connected component C must have the same
price, say pc. Clearly, the sum of prices of all goods in C equals the
total money of agents in C; the latter is simply the number of agents
in C. This implies that pc is rational. Clearly, there is a rational
allocation of 1/pc amount of goods to every agent in C.

Let i € A such that the cheapest good for which i has utility
1 has price 1. If ¢; = 0, by (2), i buys 1 dollar, and hence 1 unit,
of such goods. If @ > 0, by KKT Condition 3, 3 jec xij = 1 and
therefore again i has bought 1 unit of such goods. Now, without
loss of generality, we will assign to i an entire unit of one such
good.

Finally, let G’ C G denote the set of goods with prices in the
interval (0,1),i.e. G” ={j € G| 0 < p; < 1} andlet A”” C Abe
the set of agents who have allocations from G”’. Let i € A”. Since
2jxijpj < 1, by (2) @ > 0. Therefore each agent in A”” buys one
unit of goods from G”’. Hence the allocation of goods from G’ to
A" forms a fractional perfect matching on (G”’, A”’). Therefore,
we can pick any perfect matching consistent with this fractional
perfect matching and allocate goods from G’ integrally to A”.

Hence in all cases, the allocation consists of rational numbers,
completing the proof. O

REMARK 25. The proof of Theorem 24 shows that for the dichoto-
mous case, the dual of (1) yields equilibrium prices. In contrast, for
arbitrary utilities, there is no known mathematical construct, no mat-
ter how inefficient its computation, that yields equilibrium prices. In
a sense, this should not be surprising, since there is a polynomial time
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algorithm for computing an equilibrium for the dichotomous case

[35].

Since the objective function in (1) is strictly concave, the utility
derived by each agent i must be the same in all solutions of (1).
Hence, we get the following corollary which can be seen as a variant
of the well-known Rural Hospital Theorem; see [24] for the latter.

COROLLARY 26. Each agent gets the same utility under all HZ
equilibria with dichotomous utilities.

6 DISCUSSION

In this paper, we defined an e-approximate ADHZ model for one-
sided matching markets with endowments. We showed that e-
approximate ADHZ equilibrium always exists for every € > 0. We
strengthened the non-existence of ADHZ equilibrium for the case
when the demand graph is not strongly connected and agents have
dichotomous utilities. We derived a novel combinatorial polynomial-
time algorithm for computing an e-ADHZ equilibrium under di-
chotomous utilities. Finally, we presented a rational convex program
(RCP) for the HZ model under dichotomous utilities, which also
implies that the problem is polynomial-time solvable.

Since finding an HZ equilibrium is PPAD-complete [10, 35], it
will be interesting to obtain a similar result for the e-approximate
ADHZ model. In Section 1.1 we stated a number of results that
build on the HZ scheme and others that are generalizations of the
HZ scheme. It will be interesting to explore similar extensions of
the e-approximate ADHZ model as well.
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