
Interpretable and Effective Reinforcement Learning

for Attacking against Graph-based Rumor Detection

Yuefei Lyu∗, Xiaoyu Yang∗, Jiaxin Liu†, Sihong Xie†, Philip Yu‡ and Xi Zhang∗§

∗Key Laboratory of Trustworthy Distributed Computing and Service (BUPT)

Ministry of Education, Beijing University of Posts and Telecommunications, Beijing, China
†Lehigh University, Bethlehem, USA

‡University of Illinois at Chicago, Chicago, USA

lvyuefei@bupt.edu.cn, littlehaes@bupt.cn, jilb17@lehigh.edu, sxie@cse.lehigh.edu, psyu@uic.edu, zhangx@bupt.edu.cn
§Corresponding Author

AbstractÐSocial networks are frequently polluted by rumors,
which can be detected by advanced models such as graph neural
networks. However, the models are vulnerable to attacks, and
discovering and understanding the vulnerabilities is critical to
robust rumor detection. To discover subtle vulnerabilities, we
design a attacking algorithm based on reinforcement learning
to camouflage rumors against black-box detectors. We address
exponentially large state spaces, high-order graph dependencies,
and ranking dependencies, which are unique to the problem
setting but fundamentally challenging for the state-of-the-art
end-to-end approaches. We design domain-specific features that
have causal effect on the reward, so that even a linear policy
can arrive at powerful attacks with additional interpretability.
To speed up policy optimization, we devise: (i) a credit as-
signment method that proportionally decomposes delayed and
aggregated rewards to atomic attacking actions for enhance
feature-reward associations; (ii) a time-dependent control variate
to reduce prediction variance due to large state-action spaces
and long attack horizon, based on reward variance analysis and
a Bayesian analysis of the prediction distribution. On two real
world datasets of rumor detection tasks, we demonstrate: (i) the
effectiveness of the learned attacking policy on a wide spectrum
of target models compared to both rule-based and end-to-end
attacking approaches; (ii) the usefulness of the proposed credit
assignment strategy and variance reduction components; (iii) the
interpretability of the attacking policy.

Index TermsÐgraph adversarial attack, reinforcement learn-
ing, graph convolutional network, rumor detection

I. INTRODUCTION

Social networks, such as Twitter and Weibo, help propa-

gate useful information. However, they are also exploited to

spread misinformation, such as rumors, to manipulate opinions

in a large scale. Detecting misinformation is important to

trustworthy social networks. Graph Convolutional Networks

(GCN) [1] can aggregate neighborhood information to deliver

high detection accuracy [2]±[5]. However, GCN is fragile

to graph adversarial attacks. For example, [6] showed that

GCN are vulnerable to edges or features flipping that degrade

node classification accuracy. Focusing on rumor detection, [2]

restricts rumor producers to controlled accounts to camouflage

rumors to be less suspicious through re-posting, following and

commenting, to deceive a GCN detector.

To re-design more robust GCN-based rumor detectors, it

is critical to discover and understand the vulnerabilities using

an attacking model to simulate camouflage actions of various

level of sophistication under realistic constraints. However,

existing attacking models, especially those based on deep neu-

ral networks and reinforcement learning, are too complicated

to help humans understand how attacks are generated and

what detector vulnerabilities are exploited. We argue that the

simplicity of the attacking models should be as important as

their effectiveness to be useful to the detector designers.

Threat model. To capture how rumors can be spread, we

use a heterogeneous graph consisting of nodes representing

user accounts, messages, and comments, and edges repre-

senting posting, re-posting, and commenting activities. An

attacker produces adversarial samples by controlling some

accounts to post messages and follow other accounts [7]. These

operations can be represented as adding edges to the graph.

For each message node vi, a trained GCN f outputs f(vi) as

the ranking of vi based on its suspiciousness, and messages

with high ranking will be removed as rumors. During a time

period, only a few high influence messages can receive the

most attention [8]. A high influence rumor is more useful for

spreading misinformation, worth to be camouflaged, as it has

zero influence once detected. Inspired by the ranking metric

Normalized Discounted Cumulative Gain (NDCG), we assume

that an attacker aims to minimize the objective function:

J =
1

Z

n
∑

i=1

wi

log(f(vi) + 1)
1[f(vi) > κ], (1)

where Z normalizes the sum to [0, 1] and n is the number

of target rumors (not including other rumors that are not

controlled by this attacker). wi is the influence or weight of

the i-th target rumor vi estimated in various ways [9]. The

indicator function 1[f(vi) > κ] truncates the contribution of

target rumors whose suspiciousness ranking is greater than κ.

Prior graph adversarial attacks assumed the target detectors

are white-box [10]±[12] so that gradient-based attacks can be

crafted. In contrast, we assume that the architecture or model

parameters of f is unknown and only allow attackers having

access to and manipulate part of the nodes in a social network.

Challenges. Reinforcement learning (RL) has been adopted

to learn from a sequence of attack actions and the black-

box detector’s output as rewards. Prior RL-based attacks [6]

Fig. 1: The state, action and reward in RL step t. The state and action
vectors describe the current graph Gt and the edge (vi, vj) to add
for camouflaging, respectively. It produces the reward rt according
to the suspiciousness ranking of target rumors A, B and C according
to (1). Sensitive state-action reward mapping: two similar actions
(v2, vB) and (v2, vE) under the same state in the dashed box are
structurally symmetric but lead to different rewards after more attack
steps. We obverse two dependencies: i) Graph dependencies. When
connecting G1 and G2 with (v2, vB), vA in G1 becomes less
suspicious and vB and vC in G2 become more suspicious due to
information propagation. The more remote vD and vE is not affected.
The up/down arrows in the right of classification probability means
probability increasing/decreasing. ii) Ranking dependencies occur
due to relative suspiciousness ranking of target rumors. Pulling a
target rumor down the suspicious list might push another target rumor
up into the top of the list. Assuming the top-1 message is detected as
the rumor, top: after an attack, rumor A escapes the detection while
rumor C is detected. Bottom: after a better attack, rumors A and C
both escape the detection.

train neural networks as policies in an end-to-end manner.

The neural RL policies are not interpretable [13]. Furthermore,

the attack performance depends heavily on whether the graph

representation can capture long-term reward, and the typical

GCN is limited in expressiveness [14]±[16] and has difficulties

in learning a representation of global inter-node influence and

ranking that contribute to aggregated reward of camouflaging.

For example, in Fig. 1, the dependencies among the messages

on the graph and their relative suspiciousness ranking positions

in objective (1) are exploitable vulnerabilities that are hard for

the end-to-end approaches to learn from delayed feedbacks.

Lastly, RL policies for manipulating graphs is highly sample

inefficient: structural similar actions under the same state can

lead to significantly different returns as shown in Fig. 1.

With the large action spaces derived from graphs and long

horizon, there are exponentially many possible future trajec-

tories, each of which can lead very different rewards. Thus,

the current state-action representation can hardly predict the

final reward [17], [18], and the common state/action dependent

reward baseline [19]±[22] work with poor effects to reduce the

prediction variance.

Proposed solution. We propose AdRumor-RL to generate

interpretable and effective evasion attacks to camouflage high

influence rumors from a GCN rumor detector. We formulate an

episodic Markov Decision Process (MDP) and a hierarchical

RL algorithm to attack the detector. An action adds an edge

in two sub-steps: the agent first selects two graphs (possibly

identical) and then two nodes from the selected graphs to

connect. A return (cumulative rewards) at the end of an episode

represents how well the sequence of added edges reduces the

objective (1). We have two inventions:

First, to learn a strong and interpretable attacking policy, we

use domain knowledge about rumor spread to design inherent

but hard-to-learn features to train a linear policy for more

interpretability and data efficiency. In particular, we include

two kinds of features that capture the dependencies due to

the graphs and the ranking-based objective. As shown in

Fig. 1, the graph makes rumors depend on each other so

that linking v2 and vB can make the connected target rumor

vC more detectable and thus reduce attack effectiveness. The

relative suspiciousness ranking of rumors creates another type

of dependencies: as shown in the top of Fig. 1, the ranking

drop of target rumor A leads to the ranking rising of target

rumor C, making camouflaging less effective. Both types of

dependencies are hard for a data-driven learning agent to

capture and we design features to capture such dependencies

to train powerful and yet interpretable linear policies.

Second, we propose a time-dependent credit assignment and

reward baseline to address the large variance in delayed reward

due to the large action space/horizon and sensitive graph state-

action representation. We decompose the returns achieved by a

sequence of edges manipulations and proportionally assign the

due effects to individual actions to speed up learning. The step-

wise rewards exhibit a dependency on the time steps, providing

a time-dependent baseline to reduce the high variance of the

reward. Intuitively, it ªclustersº the rewards based on the time

steps and find the cluster means achieve to a smaller prediction

variance, based on a reward variance analysis and a Bayesian

analysis of prediction distribution.

II. RELATED WORK

Rumor Detection with GCNs. Many rumor detection meth-

ods make use of GCNs to mine social relationship networks.

CGAT [2] constructs a user-tweet-comment graph and pro-

poses a graph adversarial learning framework, which help

GCN better learn malicious rumor camouflage behaviors.

FANG [3] enhances the node representation ability of Graph-

SAGE [23] based on user-news-source graphs. GCNs are also

used to detect rumors with message propagation trees [4]

and potential user interaction graphs [24], and here we attack

against GCN detector with heterogeneous social networks.

Adversarial Attack on GCNs. Adversarial attack can be

categorized based on poisoning [25] and evasion attacks [12];

untargeted [11] and targeted attacks [6]; white-box and black-

box attacks [6], [7]. We realize evasion attacks against a black-

box pre-trained rumor detector, targeting at a set of rumors.

Reward baseline of reinforcement learning. The reward

baseline (control variate) can reduce variance of Monte Carlo

estimation effectively [26], [27]. The basic method is to use the

constant baseline, such as the difference between the reward

and the average reward [28], [29]. A common method is to use

state-value functions as state-dependent control variates [19],

[20]. Recently, some action-dependent [21], [22] and input-

based [30] methods are proposed. In this work, we propose a

time-dependent control variate as reward baseline.

III. PRELIMINARIES AND PROBLEM DEFINITION

A. Rumor Detection on Social Networks

We construct an undirected heterogeneous graph G=(V, E).
The node set is V = {v | v ∈ M∪ U ∪ C}, where M, U and

C are the sets of messages, users, and comments, respectively.

The edge set is E = {(vi, vj) | vi ∈ V, vj ∈ V}. There is

a relation mapping function ψ : E → L and L = {l1, l2, l3}
is the set of three particular relation types: user-message l1,

message-comment l2, and user-user l3. l1 indicates a user posts

or re-posts a message, l2 means that a comment is appended

to a message, and l3 means that a user is connected to the

author of a message when the user re-posts the message,

or when two users re-post the same message. There are

many communities, which correspond to a set of connected

components {G1, G2, ..., Gm} in G, where each connected

component Gi = (Vi, Ei) is called a subgraph in the sequel.

We attack against the GCN-based rumor detectors f that

is a trained model, such as GCN [1], GAT [31], Graph-

SAGE [23] and RGCN [32]. The model output probabilities

are used to rank the messages, with ranking position f(vi) ∈
{1, 2, . . . ,M}, where M is the number of messages.

B. Influence Calculation

We calculate user influence using PageRank on Guser con-

taining user nodes and user-user relations

wj = PageRank(Guser, vj), vj ∈ U , (2)

and the influence of the message vi ∈ M is calculated as

wi = max
u∈N 1

i

PageRank(Guser, u) +
| N 1

i | −1

z1
+

| N 2
i |

z2
, (3)

where N 1
i and N 2

i are the user and comment neighbors of

vi. z1 and z2 indicate the normalization factors. Multiple re-

posting and comments, and linking with high influence users

make the message influential.

C. Reinforcement Learning

An MDP consists of a state space S , an action space

A, a reward function r(St, At), a state transition probability

distribution Pr(St+1|St, At). Since we focus on finite horizon,

a discounting factor is not needed. In our application, at any

time t, a state St is the graph Gt and an action At is a pair of

nodes (vi, vj) or a pair of subgraphs. The goal of the attacker

is to train an attacking policy πθ(A|S) that connects nodes in

T steps to minimize (1). Since f(vi) is a black-box, (1) cannot

be minimized via gradient-based approaches. The trajectory is

denoted by (S0, A0, S1, . . . , AT−1, ST). From samples of T -

step trajectories by interacting with the environment, RL uses

the reduction in the objective as a reward to learn a policy π
that maximizes the reduction

∆NDCG = J(0)− J(T) (4)

where J(T) is the NDCG value (1) at the end of step T
and J(0) is the NDCG value before attack. We will learn

the action-value function Qπ(St, At) so that

Q∗(s, a) = max
π

E[RT |St = s,At = a], (5)

where RT is the random variable representing the reduction in

(1) at the end of the T steps, starting from the t-th step with

state s and action a. If t < T , RT is a delayed reward. For

interpretability, we let the Q function be linear: Q(s, a|θ) =
x(s, a)⊤θ, with x(s, a) being a vector representing (s, a) pair.

We sample triples (s, a, r) to train Q by solving

min
θ

∑

(s,a,r)∼D

(Q(s, a|θ)− r)2. (6)

The loss function is similar to that in DQN [33], but we use the

Monte Carlo estimation of the reward rather than bootstrapping

with a Q function. Following the LinUCB algorithm [34], in

the end of each episode e, we update the policy with state-

action vectors and rewards of T steps as

Ae = Ae−1 +
∑T

t=1
xtx

⊤
t

be = be−1 +
∑T

t=1
rtxt

θe = Ae
−1

be,

(7)

with initial values A0 = Id and b0 = 0d∗1, where d is the

feature dimension. At each step t of episode e, the policy πθ
chooses the action at from action space A(t) at time t as

at = argmax
a∈A(t)

x(st, a)
⊤
θe−1 + α

√

x(st, a)⊤A
−1
e−1x(st, a),

(8)

where α is a hyper-parameter to control the exploitation and

exploration trade-off.

IV. METHOD

A. The Attack Framework

The attacker can only have access to controllable node

and add edges of specified type. The controllable node set

V ′ ⊂ V contains controllable users and their messages. The

modifiable edge set is E ′ = {(vi, vj) | vi ∈ V ′ ∩ U , vj ∈
V ′ ∩ M, (vi, vj) /∈ E}, which allows to connect controllable

users with controllable messages. The target rumor set O is

the set of all rumors in controllable node set V ′.

Due to the multi-communities characteristic of social net-

works, we design a hierarchical contextual bandit to decom-

pose the action to the subgraph and node levels. The decom-

position reduces the action spaces to speed up reinforcement

learning. The AdRumor-RL algorithm is shown in Fig. 2.

On the subgraph level, we focus on the subgraphs {Gi =
(Vi, Ei)} and extract their features with feature extraction

method Φg . The feature vector of Gi is denoted by Φg(Gi) =
h
g
i = [hgi,1, h

g
i,2, ..., h

g
i,d], d is the subgraph feature dimension.

Two subgraphs are combined as an action, with the action

space A1 = {(Gi, Gj) | O ∩ Vi ̸= ∅,V ′ ∩ Vj ̸= ∅}, which

means subgraph Gi and Gj must contain target rumors and

Fig. 2: AdRumor-RL. Following the orange arrows, there are 9
phases. It first extracts and concatenates subgraph features. and then
the subgraph-level policy selects the best subgraph pair using (8).
Phases 5-7 select and connect a pair of nodes from the selected
subgraphs. The selected edge is added and the reward of the attack is
calculated based on (14), which is used to update parameters with (7)
after T steps attack. The grey arrows indicates the feature extraction
process.

controllable nodes respectively, to attack the target rumor using

a controllable node. Features of Gi and Gj are concatenated

to x
g

(i,j) = h
g
i ⊕ h

g
j = [hgi,1, ..., h

g
i,d, h

g
j,1, ..., h

g
j,d] based on

which the subgraph-level policy πθg selects the best subgraph

pair as shown in (8).

On the node level, for each node in the selected subgraph

pair (Gi, Gj), we extract node features h
n with Φn. Any two

nodes from the two selected subgraphs are paired to construct

an action space A2 = {(vp, vq) | vp ∈ Vi, vq ∈ Vj , (vp, vq) ∈
E ′}. Similar to the subgraph level, the node-level policy πθn

evaluates all node pairs with concatenated features x
n
(p,q) and

decides the edge to be added for attack. After T edges are

added in an episode, we calculate the reward with (14) and

update θ
g and θ

n with (7).

B. Interpretable Attacking Feature

There is a trade-off between feature design, interpretability,

and sample efficiency. With features learned end-to-end, there

is less design effort but poor interpretability and sample

efficiency (more data needed to learn the feature representation

beyond the attacking policy). On the other hand, with hand-

crafted features, simpler model can be used to enhance inter-

pretability and allow less samples to learn a powerful policy.

We design interpretable features to capture mechanism of

rumor detection. With a linear model θ⊤x, each element of θ

represents the importance of the corresponding feature for pre-

dicting future attacking rewards. The feature importance helps

the detector designers to understand the attacking policies and

detector vulnerabilities. In particular, these features describe

the social network on the subgraph and node level, and include

structural, social, influence, attack potential and camouflaging

features. Structural features describe characteristics of graph

and node, such as the number of nodes and edges, degree

etc. Social features describe node type (rumor, non-rumor,

user and comment) and ratios for different types of nodes.

Influence features summarize user and message influence

calculated in (2) and (3). We detail the attack potential and

camouflaging features that respectively describe graph and

ranking dependencies, as exemplified in Fig. 1.

Ranking dependencies means that two rumors’ ranking

positions are related as they appear in the same ranking list.

The drop in ranking of one message can lead to the rise in

ranking of other messages. For example, at the top of Fig. 1,

attacking the target rumor A can lower its ranking, but also

rises the ranking of another target rumor C. An effective attack

must not rise the ranking of other targets when pushing down a

target rumor. Therefore, the non-target messages are expected

to exchange ranking positions with the target rumors to

camouflage the targets (such as message D in Fig. 1), because

they don’t affect the attack objective function in (1). These

non-target messages to help camouflage rumors are named

camouflaging messages. We use the classification probability

of the camouflaging messages in the selected subgraph or

around the selected node to capture ranking dependencies. It

is more likely for a camouflaging message to exchange with a

target rumor if their probabilities are similar. The feature can

help attackers identify whether a camouflaging message has

a chance to exchange ranking positions with target rumors to

help camouflage them, named camouflaging feature.

Graph dependencies occur due to information propagations

along the links in a graph. For example, when connecting the

edge (v2, vB) in Fig. 1, vA propagates the suspiciousness to

vB , which makes vA less suspicious and vB more suspicious.

vA increases the attack performance and vB does the opposite.

In addition, when vB is attacked directly, vC is also made to be

suspicious indirectly. Therefore, we design the attack potential

features to measure the effects when a target rumor is attacked.

i) Suspiciousness. We query the classification probability of

target rumors in the selected subgraph or around the selected

node before attack. Attacking suspicious rumors could change

the NDCG more due to small f(vi) in (1). ii) Attack degree.

We record the number of previous added edges within the

subgraph and node neighbor. The object that has been attacked

repeatedly will have less potential for changing the objective.

iii) The condition of nearby target rumors. It concerns the

number of targets within the selected node k-hop insides and

their averaged distance to the selected node. It might have

greater effects when attacking the target connected to more

other targets in a shorter distance. Furthermore, camouflaging

messages also play a role in graph dependencies because

connecting the camouflaging messages with low probability

to the target rumor could make the target less suspicious.

C. Credit Assignment

To learn to minimize the objective function in (1), prior

work [35]±[37] shows that it is important to assign a proper

reward as the feedback signal to individual action or state-

action tuple that deserves the reward. Otherwise, the policy

will be trained to visit undesirable states or state-action tuples

more frequently since the policy is unable to distinguish high

and low-valued actions. However, as shown at the top of Fig.

3, similar state-action vectors can lead to different rewards. It

Fig. 3: The motivation of credit assignment and baseline design.
Top: The scatter plots of 2-D state-action vector processed by tSNE
in Weibo(T = 80) and Pheme(T = 60) datasets. Scatters are colored
according to the assigned credit ∆NDCG(t) as (9) associated with
each state-action pair. Observe that vector representation of state-
action cannot predict the credit well. Bottom: The average step-wise
rewards at each step t as (13) and the mean of average rewards
of each trajectory (Eτ∼πθ

[1
T

∑

t rt]). The former decreases as more
edges are added. Vertical lines denote standard deviations. The time-
dependent baseline can better predict step-wise rewards and leads to
more variance reduction.

means that the prior state-dependent or state-action-dependent

assigned rewards are not indicative of step action effects.

Thus, we propose a time-dependent credit assignment

method. For a trajectory (S0, A0, S1, . . . , AT−1, ST), we de-

fine the following step-wise NDCG change:

∆NDCG(t) = J(t− 1)− J(t), t = 1, 2, ...T. (9)

We assign ∆NDCG(t) to each step t as

rt = r(St−1, At−1) = o(∆NDCG(t)), t = 1, 2, ...T, (10)

where o is Min-Max normalization function and the maximum

and minimum value can be estimated by rule-based method

described in section V-C.

Compared with representing states of multiple graphs, the

time has a simple representation, and the assigned credits are

highly correlated with the time steps. At the bottom of Fig. 3,

we observe a significant difference in the step-wise rewards,

especially between early and late steps. Alternatively, if we as-

sign the delayed return RT as a single reward to each (St, At)
of a trajectory for updating the policy as in (7), the values of

late/early attacking steps are overestimated/underestimated, so

that the agent won’t learn to take high-value actions early on

to maximize the overall return.

D. Variance Reduction in Rewards

Reward baseline. We estimate the optimal θ with Monte

Carlo techniques and update the policy in (7), and this es-

timation tends to have a high variance [26], [27]. To reduce

the variance, a common practice is to subtract a baseline, or

control variate, that highly correlates with the rewards [21],

[22], [27], [28]. The reward at step t becomes

r̃t = rt − b(St−1, At−1), (11)

where b(St−1, At−1) is the baseline that can depend on

St−1 [20], At−1 [22], or some external input process [30].

With baselines to reduce policy optimization variance, the

policy converges to the excellent level quickly, and then

predicts the Q value x
⊤
θ more accurately to choose an

effective action in (8). In other words, the baseline could help

reduce the prediction variance. A simple baseline can be the

average reward from a trajectory that is a constant:

b =
1

T

T
∑

t=1

rt. (12)

The above constant baseline is not too much correlated with

rt and thus too coarse to control the variance, as shown in the

bottom of Fig. 3. As for state-dependent or action-dependent

baselines, they learn a function of state or action vector to

correlate with rt better. However, it is difficult to distinguish

the rewards of similar state-action vectors in graph data with

the long horizon as shown in the top of Fig. 3, and the

mapping from state or action vector to the reward is sensitive,

which makes such baselines estimation accompanied by risks

of learning failure.

A time-dependent control variate. To address these difficul-

ties, we propose the following time-dependent baseline

V π(t) = Eτ∼πθ
[rt], (13)

which is the expectation of rewards rt collected at step t
across each trajectory τ when executing the policy πθ . It

is an unbiased estimation with simple time representation

and avoids complex learning. Fig. 3 (bottom) plots V π(t).
Compared with the constant baseline b in (12), the time-

dependent baseline V π(t) can predict rt more accurately over

time. As a result, we use V π(t) as a control variate to reduce

the prediction variance, leading to the following reward:

r̃t = rt − V π(t). (14)

r̃t is used to replace rt to update policy in (7).

Reward sample variance analysis. V π(t) is defined for each

t across trajectories, rather than depending on rewards from

other steps in the same trajectory. The implicit assumption

is that the rewards from different time steps are conditional

independent. Thus, we could analyze the reward variance

with sample independence. The time-dependent baseline could

be seen as ªclusteringº the rewards according to the time

t. It reduces the differences among reward clusters through

subtracting the cluster center to shift the clusters to the close

positions, and then reduces the reward variance.

Theorem 1. Given the sample matrix R = {re,t} ∈ R
E×T ,

where re,t indicates the element in the e-th row and the t-th
column, and bt = Ee[re,t] =

1
E

∑

e re,t is the mean of the t-th

column of R. The variance of random variate is denoted by

Var(·). Then, Var(re,t) ≥ Var(re,t − bt).

Proof.

Var(re,t)− Var(re,t − bt)

=
1

ET

∑

e

∑

t

(

re,t −
1

ET

∑

e

∑

t
re,t

)

2

−
1

ET

∑

e

∑

t

(

re,t − bt −
1

ET

∑

e

∑

t
(re,t − bt)

)

2

=
1

T

∑

t

(

bt −
1

T

∑

t
bt

)

2

≥ 0.

Thus, Var(re,t) ≥ Var(re,t − bt).

We collect rt over each trajectory and step to form a matrix,

each row and column of which corresponds to a trajectory and

a step respectively. Then, V π(t) is the mean of the t-th column

of this matrix. As b is a constant, Var(rt − b) = Var(rt).
According to Theorem 1, we have Var(rt − b) = Var(rt) ≥
Var(rt − V π(t)).
Reduced variance in the predicted rewards. The linear

function x
⊤
θ is used to predict the future return of state-

action pair (s, a) by following the policy parameterized by

θ. The target variate is r̃ = x
⊤
θ + ϵ and ϵ is the noise on

the data. Assuming that ϵ is zero-mean Gaussian noise with

the precision (inverse variance) β, we show that the reduced

variance in the rewards can be transferred to reduced variance

in future predictions. Using Bayesian ridge regression, accord-

ing to (3.57) and (3.58) of [38], the predictive distribution

p(r|x, r,S, β) at a new input x has variance

η2(x) =
1

β
+ x

⊤
Sx (15)

where S is the variance of the posterior distribution of N
observed data. The posterior distribution becomes narrower

when new data are observed so the second term goes to zero as

N → ∞ [39]. A lower 1/β therefore leads to a smaller linear

regression variance. Using maximum likelihood estimation, we

can estimate the β as in (3.21) of [38]:

1

βML

=
1

N

N
∑

n=1

(r̃n − θ
⊤
x)

2
= Var(r̃t) (16)

since E[r̃t] = θ
⊤
x. A reduced Var(r̃t) directly leads to a

reduced variance in the predicted reward in (15).

V. EXPERIMENTS

A. Datasets

We conduct experiments on two real-world datasets: Weibo

[40] and Pheme [41]. They contain rumors and non-rumors, as

well as user, re-posting and comment information. We split the

datasets for rumor detector training and testing using a ratio of

7:3. RL is to learn from experience so we perform attacks and

focus on results in training set. We randomly select 20% of the

authors and their messages in the training set as controllable

nodes. There are 213 and 180 target rumors in Weibo and

Pheme respectively. Table I shows the dataset statistics.

TABLE I: Dataset statistics. Subgraphs are connected compo-

nents. Rep&Com means Re-post and Comment.

Weibo Pheme Weibo Pheme

Nodes 10280 11950 Rumors 1538 1972
Edges 16412 14737 Non-rumors 1849 3830
Subgraphs 2392 2450 Authors 2440 2837
Relations 3 3 Rep&Com 4453 3311

TABLE II: The detection accuracy(ACC) and precision(PRE)

of GCN, GAT, GraphSAGE, RGCN, CGAT and RGCN-G.

Weibo Pheme

Train ACC PRE ACC PRE

GCN 97.05 96.57 79.56 65.26
GAT 98.10 98.59 83.77 70.61
GraphSAGE 100.00 100.00 98.99 97.11
RGCN 98.02 99.52 84.91 71.39
CGAT 74.30 71.10 77.39 76.23
RGCN-G 97.85 98.33 79.12 79.36

Test ACC PRE ACC PRE

GCN 71.58 68.60 67.32 51.56
GAT 69.22 65.05 67.49 51.75
GraphSAGE 70.70 68.98 71.17 59.49
RGCN 72.07 74.72 69.33 54.32
CGAT 68.73 62.50 66.80 50.89
RGCN-G 66.47 57.85 70.53 60.21

B. Detector Effectiveness

To verify the effectiveness and generality of the proposed at-

tack algorithm, we attack a wide spectrum of graph neural net-

work models, including GCN [1], GAT [31], GraphSAGE [23],

CGAT [2], RGCN [32] and RGCN-G. CGAT learns a robust

GCN-based rumor detector with adversarial learning and we

use its graph channel as target model. RGCN-G is the RGCN

model with only graph structure for eliminating interference

of text contents and simulating the zero-text situations. The

target models represents message node embedding with a text

embedding layer except RGCN-G. The hidden dimension of

embedding and hidden layer is 64 and the learning rate is

0.01. The detection performance of target models in training

and testing sets of two datasets are shown in Table II.

C. The Performance of Attack

We measure the attack performance with ∆NDCG in (4)

and no truncation in ranking (κ = 0 in (1)). The larger

∆NDCG corresponds to the better attack performance. We

compare our method to the following four rule-based attacking

strategies and two state-of-the-art black-box attack methods:

• Random and Random+. It connects edges between users

and messages randomly, denoted by Random. Inspired by

[2], we propose two variants GU-R and BU-N, denoted

by Random+. GU-R connects edges between good users

and target rumors randomly and BU-N connects edges

between bad users (who post target rumors) and non-rumors

TABLE III: The attack performance results in the metric ∆NDCG(×10−2). The horizon T of Weibo and Pheme is 80 and

60 respectively. Boldfaced font and ∗ mean the best performance and the runner-up among all methods respectively.

Threat Model GCN GAT GraphSAGE RGCN CGAT RGCN-G

Dataset Weibo Pheme Weibo Pheme Weibo Pheme Weibo Pheme Weibo Pheme Weibo Pheme

Original 62.43 40.71 63.23 39.46 64.25 44.54 56.03 40.01 64.96 38.67 58.70 45.14

Ramdom -0.21 0.00 3.24 0.09 1.27 0.52 0.95 0.67 0.80 -0.34 1.45 1.08
Random+ 1.20 0.36 4.53 0.25 3.45 1.49 ∗2.11 1.63 1.35 -0.07 2.73 3.88
Degree 1.86 0.35 4.84 0.31 1.07 0.94 1.41 2.42 1.71 0.06 1.86 4.84
Influence 2.01 0.45 5.60 0.11 6.78 1.86 1.61 2.30 ∗2.05 0.04 2.20 7.32
DCG ∗2.13 ∗0.64 ∗5.87 ∗0.45 ∗7.58 ∗3.05 2.07 ∗2.72 1.45 ∗0.68 ∗4.04 ∗7.38
GC-RWCS 0.00 0.29 4.92 0.27 2.98 0.81 1.46 1.87 2.00 0.26 1.90 2.63
RL-S2V 0.18 0.26 2.92 0.04 2.92 1.50 0.56 1.66 1.23 -0.18 2.34 3.28
AdRumor-RL 8.95 2.45 10.13 1.34 9.49 3.36 4.83 4.52 11.68 0.72 5.48 10.79

randomly. The main idea is that adding edges as above helps

the attacker camouflage rumors.

• Degree. It selects the target rumor with the highest degree.

There are also two variants GU-R and BU-N. The former

connects the selected rumor with a random good user,

and the latter connects the author of the selected rumor

with a random non-rumor. Nodes with high degrees usually

have high influence. It aims to attack high influence rumor

because the target rumor with large influence value wi would

sharply change the NDCG value in (1).

• Influence. It selects the target rumor with the highest

influence value defined in (3). GU-R and BU-N are also

two variants and work similarly with Degree.

• DCG. It calculates rumor DCG value wi/ log(f(vi)+1) of

target rumor vi and selects the rumor with the highest DCG

value. GU-R and BU-N are variants. DCG is closely related

to the objective function in (1) and is a strong baseline.

• GC-RWCS [6]. It proposes a black-box node selection

strategy with a greedy procedure to calculate the node

importance score. We use it to select candidate target rumors

and apply GU-R and BU-N variants.

• RL-S2V [7]. It is a RL-based graph adversarial attack

method. It represents the nodes with deep graph models and

makes use of two DQN to choose two nodes respectively

within 2-hops of the target node, and then flips the edge

between two nodes. To compare with our method, we

modify the targeted attack to untargeted attack. we select

the top-T rumor with the higher DCG value as the target

node for RL-S2V, and then conduct T -times attack.

There are 1000 episodes in total with α=1.0. We average the

results of the last 100 episodes. Results are shown in Table III

and we show the better one for the variants GU-R and BU-N.

We find that, i) AdRumor-RL has the best performance in all

situations, even for CGAT that is robust. ii) Some rule-based

methods, especially DCG, are strong baselines as they are

superior to classical graph attacking models. We also attempt

different number of modified edges (horizon T) in Fig. 4.

AdRumor-RL is effective with different length of horizon.

Fig. 4: Attack performance with different horizon on RGCN-

G. Rule indicates the best performing rule-based method.

D. Effectiveness of Feature Design

Superior to deep features. We verify that our designed

features are better than end-to-end feature extraction with deep

graph models. We replace our designed feature extraction

method Φ with another graph neural network model of the

same type as the detector in phrases 2 and 5 of Fig. 2. In

details, we use a graph neural network model similar with the

detector, which outputs 64-dim node embedding in the last

convolution layer, followed by a linear classification layer. It

is pre-trained using labeled messages and is fixed during RL.

The last convolution layer outputs node embedding as node

features and averages node embeddings as graph features. The

curve Deepfeature in Fig. 5 shows the results and it is far less

effective than other methods with designed features.

Feature ablation experiments. We show the effectiveness of

different type of features as shown in Fig. 6.

Graph and ranking dependencies. We take the camouflaging

features as an example to show its role on two dependencies.

Camouflaging messages help lower the ranking of target

rumors or exchange with target rumors in ranking, which

corresponds to graph and ranking dependencies respectively.

We show the effects with two metrics: i) Target rumor ranking

drops (TDrop): the total drop in ranking positions of target

rumors in the selected subgraphs of each step. ii) Camouflage

message rises (CRise): the total risen ranking positions of

camouflaging messages in the selected subgraphs of each

step and these camouflaging messages must reduce the target

rumor rises. TDrop and CRise reflect the role of camouflaging

Fig. 5: Comparison experiments on RGCN and RGCN-G. Curves are smoothed and shadows show the standard variances.

AdRumor-RL is our method. DeepFeature extracts deep features. Delay regards the delayed return as reward. Step uses the

mean value of all rewards as the constant baseline. Function uses the state-dependent reward baseline.

(a) Weibo, RGCN, T=80 (b) Pheme, RGCN, T=60 (c) Weibo, RGCN-G, T=80 (d) Pheme, RGCN-G, T=60

Fig. 6: Feature ablation experiments on RGCN and RGCN-G. Elimination of structural, social, influence, attack potential, and

camouflaging features are named -Str, -Soc, -Inf, -Att, and -Cam. Full indicates no elimination.

(a) Weibo, T=80 (b) Pheme, T=60

Fig. 7: The average TDrop and CRise values for all steps in

best 100 episodes on RGCN-G.

messages on graph and ranking dependencies respectively. In

Fig. 7, we can see higher TDrop and CRise with camouflaging

features.

E. Effectiveness of Credit Assignment and Baseline Design

Credit assignment. We use delayed return for comparison.

It calculates ∆NDCG in (4) and normalizes it as each step

reward. The curve Delay in Fig. 5 shows the results.

Reward baseline. To show the effectiveness of the time-

dependent baseline, we compare our work with two common

baselines and results are shown in Fig. 5.

• Step is the common constant baseline [28] as (12). It

averages all history r(St, At) as the baseline.

• Function is the common state-dependent method [19], [20],

which learns the linear state-value function V (x) =Wx+b
to predict the baseline, where x is the subgraph/node pair

features. It updates parameters W and b by minimizing the

mean square error loss with r(St, At) at each episode. Two

functions are used on subgraph and node level, respectively.

Fig. 8: Case study for graph dependencies. Left: The selected

subgraph pair (G1, G2) in Weibo and three edges with their

performance ranking: A-D (rank 1), B-D (rank 2) and A-C

(rank 10). Right: (1) ∆NDCG of targets in G1 (see target

rumors in G1 as targets in (1)). (2)∆NDCG of targets in G2.

(3) The rumor probability of target rumor A and B. (4) The

number of neighbor target rumors for the user C and D.

F. Case Study

We shows that AdRumor-RL captures the graph dependen-

cies with designed features. In Figure 8, we pick the subgraph

pair (G1, G2) of a step that performs well in the experiment

and traverse all node level actions for (G1, G2), and then

display 3 edges and their ∆NDCG ranking. We can see

that AdRumor-RL chooses the best pair A-D. Suspiciousness

drives the agent to choose the target rumor A in G1 instead

of B and it achieves the highest positive effects. The number

of neighbor targets helps the agent choose the user D in G2

instead of C, which reduces the lowest negative effects the

most. These features help balance positive and negative effects

under the situation of graph dependencies.

VI. CONCLUSION

In this paper, we propose AdRumor-RL, an interpretable

and effective hierarchical attack framework against GCN-

based rumor detector. We define a practical attack object with

realistic constraints and use RL to realize black-box attacks.

Interpretable attacking features are designed to capture graph

dependencies and ranking dependencies. We design a credit

assignment method to speed up learning and a time-dependent

baseline to reduce variance. With specific feature design, this

attack framework can be extended to different types of graphs

and more applications in social networks.

ACKNOWLEDGMENT

Xi Zhang, Yuefei Lyu and Xiaoyu Yang are supported by

the Natural Science Foundation of China (No.61976026) and

the 111 Project (B18008). Sihong Xie and Jiaxin Liu are

supported in part by NSF under grants CNS-1931042. Philip

Yu is supported in part by NSF under grant SaTC-1930941.

REFERENCES

[1] T. N. Kipf and M. Welling, ªSemi-supervised classification with graph
convolutional networks,º in ICLR, 2017.

[2] X. Yang, Y. Lyu, T. Tian, Y. Liu, Y. Liu, and X. Zhang, ªRumor detection
on social media with graph structured adversarial learning,º in IJCAI, 7
2020, pp. 1417±1423.

[3] V. Nguyen, K. Sugiyama, P. Nakov, and M. Kan, ªFANG: leveraging
social context for fake news detection using graph representation,º
Commun. ACM, vol. 65, no. 4, pp. 124±132, 2022.

[4] T. Bian, X. Xiao, T. Xu, P. Zhao, W. Huang, Y. Rong, and J. Huang,
ªRumor detection on social media with bi-directional graph convolu-
tional networks,º in AAAI, 2020, pp. 549±556.

[5] Y.-J. Lu and C.-T. Li, ªGCAN: Graph-aware co-attention networks for
explainable fake news detection on social media,º in ACL, 2020, pp.
505±514.

[6] H. Dai, H. Li, T. Tian, X. Huang, L. Wang, J. Zhu, and L. Song,
ªAdversarial attack on graph structured data,º in ICML, ser. Proceedings
of Machine Learning Research, vol. 80, 2018, pp. 1123±1132.

[7] J. Ma, S. Ding, and Q. Mei, ªTowards more practical adversarial attacks
on graph neural networks,º in NeurIPS, vol. 33, 2020, pp. 4756±4766.

[8] N. O. Hodas and K. Lerman, ªHow visibility and divided attention
constrain social contagion,º in SocialCom/PASSAT, 2012, pp. 249±257.

[9] E. Bakshy, J. M. Hofman, W. A. Mason, and D. J. Watts, ªEveryone’s an
influencer: Quantifying influence on twitter,º in WSDM, 2011, p. 65±74.

[10] D. ZÈugner, A. Akbarnejad, and S. GÈunnemann, ªAdversarial attacks on
neural networks for graph data,º in KDD, 2018, p. 2847±2856.

[11] D. ZÈugner and S. GÈunnemann, ªAdversarial attacks on graph neural
networks via meta learning,º in ICLR, 2019.

[12] H. Wu, C. Wang, Y. Tyshetskiy, A. Docherty, K. Lu, and L. Zhu,
ªAdversarial examples for graph data: Deep insights into attack and
defense,º in IJCAI, 7 2019, pp. 4816±4823.

[13] A. Alharin, T.-N. Doan, and M. Sartipi, ªReinforcement Learning
Interpretation Methods: A Survey,º IEEE Access, vol. 8, pp. 171 058±
171 077, 2020.

[14] V. K. Garg, S. Jegelka, and T. S. Jaakkola, ªGeneralization and repre-
sentational limits of graph neural networks,º in ICML, ser. Proceedings
of Machine Learning Research, vol. 119, 2020, pp. 3419±3430.

[15] J. B. Lee, R. A. Rossi, X. Kong, S. Kim, E. Koh, and A. Rao, ªGraph
convolutional networks with motif-based attention,º in CIKM, 2019, pp.
499±508.

[16] K. Oono and T. Suzuki, ªGraph neural networks exponentially lose
expressive power for node classification,º in ICLR, 2020.

[17] A. K. Agogino and K. Tumer, ªUnifying temporal and structural credit
assignment problems,º in AAMAS, 2004, pp. 980±987.

[18] A. Harutyunyan and et al., ªHindsight credit assignment,º in NeurIPS,
2019, pp. 12 467±12 476.

[19] R. S. Sutton, D. A. McAllester, S. Singh, and Y. Mansour, ªPolicy gra-
dient methods for reinforcement learning with function approximation,º
in NeurIPS, 1999, pp. 1057±1063.

[20] V. R. Konda and J. N. Tsitsiklis, ªActor-critic algorithms,º in NeurIPS,
1999, pp. 1008±1014.

[21] G. Tucker, S. Bhupatiraju, S. Gu, R. E. Turner, Z. Ghahramani, and
S. Levine, ªThe mirage of action-dependent baselines in reinforcement
learning,º in ICML, ser. Proceedings of Machine Learning Research,
vol. 80, 2018, pp. 5022±5031.

[22] C. Wu, A. Rajeswaran, Y. Duan, V. Kumar, A. M. Bayen, S. M. Kakade,
I. Mordatch, and P. Abbeel, ªVariance reduction for policy gradient with
action-dependent factorized baselines,º in ICLR, 2018.

[23] W. L. Hamilton, Z. Ying, and J. Leskovec, ªInductive representation
learning on large graphs,º in NeurIPS, 2017, pp. 1024±1034.

[24] Z. He, C. Li, F. Zhou, and Y. Yang, ªRumor detection on social media
with event augmentations,º in SIGIR, 2021, pp. 2020±2024.

[25] A. Bojchevski and S. GÈunnemann, ªAdversarial attacks on node em-
beddings via graph poisoning,º in ICML, ser. Proceedings of Machine
Learning Research, vol. 97, 2019, pp. 695±704.

[26] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[27] E. Greensmith, P. L. Bartlett, and J. Baxter, ªVariance reduction tech-
niques for gradient estimates in reinforcement learning,º in J. Mach.

Learn. Res., 2004.
[28] L. Weaver and N. Tao, ªThe optimal reward baseline for gradient-based

reinforcement learning,º in UAI, 2001.
[29] P. Marbach and J. N. Tsitsiklis, ªSimulation-based optimization of

markov reward processes,º IEEE Transactions on Automatic Control,
vol. 46, no. 2, pp. 191±209, 2001.

[30] H. Mao, S. B. Venkatakrishnan, M. Schwarzkopf, and M. Alizadeh,
ªVariance Reduction for Reinforcement Learning in Input-Driven Envi-
ronments,º ICLR, 2019.

[31] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, ªGraph attention networks,º stat, vol. 1050, p. 20, 2017.

[32] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. van den Berg, I. Titov,
and M. Welling, ªModeling relational data with graph convolutional
networks,º in The Semantic Web, 2018, pp. 593±607.

[33] V. Mnih and et al., ªHuman-level control through deep reinforcement
learning,º Nature, vol. 518, no. 7540, pp. 529±533, feb 2015.

[34] L. Li, W. Chu, J. Langford, and R. E. Schapire, ªA contextual-bandit
approach to personalized news article recommendation,º in WWW, 2010,
pp. 661±670.

[35] M. Seo, L. F. Vecchietti, S. Lee, and D. Har, ªRewards prediction-
based credit assignment for reinforcement learning with sparse binary
rewards,º IEEE Access, vol. 7, pp. 118 776±118 791, 2019.

[36] J. N. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson,
ªCounterfactual multi-agent policy gradients,º in AAAI, 2018, pp. 2974±
2982.

[37] H. van Seijen, M. Fatemi, R. Laroche, J. Romoff, T. Barnes, and
J. Tsang, ªHybrid reward architecture for reinforcement learning,º in
NeurIPS, 2017, pp. 5392±5402.

[38] C. M. Bishop and N. M. Nasrabadi, Pattern recognition and machine

learning, 2006, vol. 4, no. 4.
[39] C. S. Qazaz, C. K. I. Williams, and C. M. Bishop, An Upper Bound

on the Bayesian Error Bars for Generalized Linear Regression, Boston,
MA, 1997, pp. 295±299.

[40] C. Song, C. Yang, H. Chen, C. Tu, Z. Liu, and M. Sun, ªCed: Credible
early detection of social media rumors,º TKDE, vol. 33, no. 8, pp. 3035±
3047, 2021.

[41] A. Zubiaga, M. Liakata, and R. Procter, ªLearning reporting dynamics
during breaking news for rumour detection in social media,º CoRR, vol.
abs/1610.07363, 2016.

