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Abstract— Rumor spreaders are increasingly utilizing multime-5
dia content to attract the attention and trust of news consumers.6
Though quite a few rumor detection models have exploited the7
multi-modal data, they seldom consider the inconsistent seman-8
tics between images and texts, and rarely spot the inconsistency9
among the post contents and background knowledge. In addition,10
they commonly assume the completeness of multiple modalities11
and thus are incapable of handling handle missing modalities12
in real-life scenarios. Motivated by the intuition that rumors in13
social media are more likely to have inconsistent semantics, a novel14
Knowledge-guided Dual-consistency Network is proposed to detect15
rumors with multimedia contents. It uses two consistency detection16
subnetworks to capture the inconsistency at the cross-modal level17
and the content-knowledge level simultaneously. It also enables ro-18
bust multi-modal representation learning under different missing19
visual modality conditions, using a special token to discriminate20
between posts with visual modality and posts without visual modal-21
ity. Extensive experiments on three public real-world multimedia22
datasets demonstrate that our framework can outperform the state-23
of-the-art baselines under both complete and incomplete modality24
conditions.25

Index Terms—Multi-modal learning, rumor detection, social26
media analysis.27

I. INTRODUCTION28

THE rapid growth of social media has revolutionized the29

way people acquire news. Unfortunately, social media30

has fostered various false information, including misrepre-31

sented or even forged multimedia content, to mislead readers.32
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The widespread rumors may cause significant adverse effects. 33

For example, some offenders use rumors to manipulate public 34

opinion, damage the credibility of the government, and even 35

interfere with the general election [1]. Therefore, it is urgent to 36

automatically detect and regulate rumors to promote trust in the 37

social media ecosystem. 38

Traditional rumor detection methods mainly rely on textual 39

data to extract distinctive features [2], [3], [4], [5]. With the 40

advancement of multimedia technology, visual contents have 41

become an important part of rumors to attract and mislead the 42

consumers due to more credible storytelling and rapid diffu- 43

sion [6], [7]. To this end, the rumor detection methods are 44

undergoing a transition from a uni-modal to a multi-modal 45

paradigm. 46

Detecting multimedia rumor posts is a double-edged sword. 47

On the one hand, it is more challenging to learn effective feature 48

representations from heterogeneous multi-modal data. On the 49

other hand, it also provides a great opportunity to identify 50

inconsistent cues among multi-modal data. Xue et al. [8] show 51

that to catch the eyes of the public, rumors tend to use theatrical, 52

comical, and attractive images that are irrelevant to the post 53

content. In general, it is often difficult to find pertinent and 54

non-manipulated images to match fictional events. And thus 55

posts with mismatched textual and visual information are very 56

likely to be fake [9]. Fig. 1(a) shows a real-world multimedia 57

rumor from Twitter, where there is a fire somewhere in the image 58

that has nothing to do with the textual content “two gunmen have 59

been killed”. Thus, it is essential to identify such cross-modal 60

inconsistency for multimedia rumor identification. Additionally, 61

one major drawback of these multi-modal methods is that they 62

assume the availability of paired data modalities in both training 63

and testing data. However, in many real-world scenarios, not 64

all modalities are available. For example, a large number of 65

posts on Twitter or Weibo have only textual contents, without 66

the visual modality. Compared with discarding any data points 67

with missing modality in previous studies [9], [10], [11], [12], 68

including these data points may lead to more representativeness 69

of the training data and thus better generalizability to the test 70

data, which is one major issue we aim to solve. 71

In addition to using visual information, rumor detection can 72

also benefit from the introduction of knowledge graphs (KG), 73

which can provide faithful background knowledge to verify 74

the semantic integrity of post contents. Previous works [13], 75
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Fig. 1. Two real-world examples of fake multi-modal tweets.

[14] commonly used KG to complement the post contents by76

various data fusion methods. However, they ignore the content-77

knowledge inconsistency information. For example, in Fig. 1(b),78

it would be a great help to judge the truthfulness of the post, given79

the background knowledge that sharks are unlikely to appear80

in a subway. Intuitively, if we are able to spot the uncommon81

co-occurring entities in the multi-modal post contents, such as82

the entity pair “shark” and “subway” in Fig. 1(b) ,1 it would83

facilitate the detection of counterintuitive rumors.84

Although a few recent multi-modal rumor detection methods85

have captured the image-text dissimilarity as an indicative fea-86

ture, they fail to consider the content-knowledge inconsistency87

at the same time. The two types of consistency information can88

complement each other, so that even if one is unreliable (for89

example, no text-image dissimilarity is detected in Fig. 1(b)),90

the other can help. Also, the two types of information can have91

some complex interactions that can be learned by a deep network92

to discover more efficient detection signals. Thus, it would be93

beneficial to exploit both types of information for better rumor94

detection.95

Along this line, in this work, we aim to exploit both cross-96

modal inconsistency and content-knowledge inconsistency for97

multimedia rumor detection, without requiring full modalities.98

The problem is non-trivial due to the following challenges. First,99

since text, image, and KG data have different formats and struc-100

tures, how to integrate them into a unified framework to detect101

rumors is an open question. Second, there is no straightforward102

way to measure and capture the aforementioned inconsistency.103

Third, an effective detector is expected to robustly adapt to104

1Note that entity inconsistency is not necessarily cross-modal as shown in
this example.

different visual modality missing patterns: modality missing in 105

training data, testing data, or both. 106

To address the above challenges, we propose a novel 107

Knowledge-guided Dual-Consistency Network (KDCN) that can 108

capture the inconsistent information at the cross-modal level 109

and the content-knowledge level simultaneously. To validate our 110

motivation that inconsistency matters for rumor detection, we 111

analyze the rumor datasets and observe that the above two types 112

of inconsistency information present a statistically significant 113

distinction between rumor and non-rumor posts (see details 114

in Section IV-C). Following this observation, our framework 115

mainly consists of two sub-neural networks: one is to extract 116

cross-modal differences between images and texts, and the other 117

is to identify the abnormal co-occurrence of pairs of entities 118

in the post contents by measuring their KG representation 119

distances. The two sub-neural networks are tightly coupled to 120

make the two sources of inconsistency information complement 121

each other, which can improve the robustness of the detection 122

of rumors, even if one source is unavailable or unreliable. 123

Moreover, to enable our framework to tackle the incomplete 124

modalities, we utilize pseudo images as a complement with a 125

special token to indicate it is not real. It is simple and can make 126

our framework unaltered to process the incomplete modality 127

data with the same procedure as modality-complete data, and 128

meanwhile provide stable performance under different cases of 129

missing visual modality. 130

To summarize, the contributions of our paper are three-fold: 131! We propose a novel knowledge-guided dual-consistency 132

network to simultaneously capture the cross-modal incon- 133

sistency and content-knowledge inconsistency. It is de- 134

signed to detect rumors with multi-modal contents, but can 135

also adapt to cases where the visual modality is missing. 136
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! To the best of our knowledge, we are the first to reveal that137

rumor posts tend to contain entities that are farther away on138

KG than non-rumors. This observation can serve as a useful139

signal to distinguish between rumors and non-rumors.140 ! Extensive experiments on three real-world datasets show141

that our framework can better detect rumors than the142

state-of-the-art baselines. It is also advantageous in pro-143

viding stable and robust performance under different visual144

modality missing patterns, even under very severe missing145

scenarios.146

II. RELATED WORK147

A. Rumor Detection148

Rumor detection models rely on various features extracted149

from multi-modal social media data, including post texts, social150

context, the attached images, and the related knowledge graphs.151

Thus, we review existing work from the following four cate-152

gories: textual and social contextual-based methods, multime-153

dia methods, fact-checking with KG, and knowledge-enhanced154

methods.155

1) Textual and Social Contextual Rumor Detection: Most156

rumor detection models rely on textual features. Traditional157

machine learning-based models are based on features extracted158

from textual posts in a feature engineering manner [2], [15]. Re-159

cent studies propose deep learning models to capture high-level160

textual semantics, outperforming traditional machine learning-161

based models. A recurrent neural network (RNN) based model162

is proposed to capture the variation of contextual information of163

relevant posts over time [4]. [16] proposes a user-attention-164

based convolutional neural network (CNN) model with an165

adversarial cross-lingual learning framework to capture both166

the language-specific and language-independent features. [5]167

proposes a convolutional approach for misinformation identi-168

fication based on CNN to extract key textual features. [17]169

proposes multi-channel networks to model news pieces from170

semantic, emotional, and stylistic views.171

Social context features represent the user engagements on172

social media such as retweeting and commenting behaviors. So-173

cial context features can provide important clues to differentiate174

rumors from non-rumors. [18] develops a sentence-comment175

co-attention sub-network to exploit both news contents and176

user comments to jointly capture important sentences and user177

comments as explanations to support the detection result. [19]178

proposes a quantum-probability-based signed attention network179

utilizing post contents and related comments to detect false180

information. Both of these two studies utilize retweeting and181

commenting content. [20] proposes a repost-based early rumor182

detection model by regarding all reposts of a post as a sequence.183

[21] proposes a graph-kernel based hybrid SVM classifier to184

capture the high-order propagation patterns. This study uses185

network structures as social context features. However, social186

context features are usually unavailable at the early stage of187

news dissemination.188

2) Multimedia Rumor Detection: Several recent models be-189

gin to explore the role of visual information. [22] proposes a190

recurrent neural network to extract and fuse multi-modal and191

social context features with an attention mechanism. EANN [10] 192

learns post representations by leveraging both the textual and 193

visual information, using an adversarial method to remove event- 194

specific features to benefit newly arrived events. [11] proposes a 195

multi-modal variational autoencoder for rumor detection to learn 196

shared features from both modalities. The encoder encodes the 197

information from text and image into a latent vector, while the 198

decoder reconstructs the original image and text. [12] designs 199

a multi-modal multi-task learning framework by introducing 200

the stance task. However, these studies do not consider con- 201

sistencies between multi-modal information as our work does. 202

While SAFE [9] and MCNN [8] have considered the relevance 203

between textual and visual information, we distance our work 204

from theirs in that we capture the cross-modal inconsistency 205

differently, and also model the inconsistency between content 206

and external knowledge. In addition, these studies don’t touch 207

the modality missing issue, which is common for real-world 208

multi-modal rumor detection. COSMOS [23] focuses on a new 209

task of predicting whether the image has been used out of context 210

by taking as input an image and two corresponding captions 211

from two different news sources. If the two captions refer to the 212

same object in the image, but are semantically different, then it 213

indicates out-of-context use of image. It has a different problem 214

setting from this work. 215

3) Fact-Checking With KG: Some studies [24], [25], [26], 216

[27] extract structured triples (head, relation, tail) from the post 217

contents, and fact-check them with the faithful triples in KG. A 218

limitation of such approaches is that KG is typically incomplete 219

or imprecise to cover the complex relations in the form of 220

triple being extracted from the post. Consider an extracted triple 221

(Anthony Weiner, cooperate with, FBI) has two entities with 222

the “cooperate with” relation, where both entities are available 223

in KG, but the relation is not [26]. For such cases, structured 224

triple methods fail to make reliable predictions. By contrast, our 225

method is still applicable. 226

4) Knowledge-Enhanced Detection: A few studies use ex- 227

ternal knowledge to supplement post contents to obtain better 228

representations for rumor detection. A knowledge-guided article 229

embedding is learned for healthcare misinformation detection 230

by incorporating medical knowledge graph and propagating the 231

node embeddings through knowledge paths [28]. The multi- 232

modal knowledge-aware representation and event-invariant fea- 233

tures are learned together to form the event representation in 234

[13], which is fed into a deep neural network for rumor detection. 235

A knowledge-driven multi-modal graph convolutional network 236

(KMGCN) [14] is proposed to model the global structure among 237

texts, images, and knowledge concepts to obtain comprehensive 238

semantic representations. [29] proposes an entity-enhanced 239

multi-modal fusion framework, which models correlations of 240

entity inconsistency, mutual enhancement, and text complemen- 241

tation to detect multi-modal rumors. [30] proposes a graph 242

neural model, which compares the news to the knowledge base 243

(KB) through entities for fake news detection. However, these 244

methods don’t consider the content-knowledge inconsistency. 245

Moreover, KMGCN is transductive, requiring the inferred nodes 246

to be present at training time, and is time-consuming due to graph 247

construction and learning. 248
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B. Multi-Modal Learning With Missing Modality249

Modalities can be partially missing in multi-modal learning250

tasks. For example, due to lighting or occlusion issues, faces can251

not always be detected for the emotion recognition task [31],252

resulting in modality missing. One solution to this problem is253

data augmentation, where missing modality cases are simulated254

by randomly ablating the inputs [32]. Another common solution255

is using generative methods. Given the available modalities, the256

missing modalities are predicted directly [33], [34], [35], [36].257

Some studies learn joint multi-modal representations from these258

modalities [31], [37], [38], [39], [40].259

Note that most of the existing methods are designed for the260

scenario that full modalities do exist but cannot be accessed261

due to various constraints. However, for the rumor detection262

task, the visual modality is missing mostly since there don’t263

exist any corresponding images at all. Therefore, the previous264

approaches such as generative methods may incur unnecessary265

computational cost and bring large noises. To the best of our266

knowledge, how to tackle the incompleteness of images for267

multi-modal rumor detection has not been covered by existing268

studies. Moreover, due to the large number of posts on social269

media, a lightweight way is expected to provide superior and270

robust performance for different missing cases.271

III. METHODOLOGY272

A. Problem Definition273

Following previous studies [9], [10], [11], the rumor detection274

task can be defined as a binary classification problem with275

the two classes of rumor or non-rumor. In this paper, without276

loss of generality, we consider a multi-modal rumor dataset277

involving the visual and textual modalities, where some sam-278

ples may lack the visual modality. Formally, let D = {Df ,Dt}279

denote the overall modal-incomplete dataset, and all posts in280

D can be divided into two subsets Df and Dt according to281

the presence or absence of the visual modal data, respectively.282

Df = {Ti, Ii, yi}i denotes the modal-complete subset, whereTi283

represents the textual data and Ii represents the visual data of the284

ith sample. yi is the corresponding class label. Dt = {Tj , yj}j285

denotes the text-only subset, where the visual data is missing.286

Our goal is to leverage both modal-complete and text-only287

subsets for model training. The proposed model needs to adapt to288

different visual-modality missing conditions, that is, the visual289

data can be missing in the training data, testing data, or both.290

B. Overview291

As shown in Fig. 2, our framework mainly consists of four292

components : (1) a preprocessig component to obtain entities and293

their representations; (2) a cross-modal consistency subnetwork294

for capturing the inconsistency between image and text for each295

post. This subnetwork also has to deal with the visual modality296

missing issue; (3) a content-knowledge consistency subnetwork297

for capturing the inconsistency between the content and KG298

through entity distances; (4) a classification layer that aggregates299

various features and produces classification labels.300

The data flow is as follows. Given a social post from dataset 301

D, this post can have both textual and visual modalities, or have 302

textual modality only. We first extract entities from texts (and 303

images, if the visual modality is also available) and obtain the 304

entity representations. The collection of entity representations is 305

fed into the content-knowledge consistency subnetwork to get 306

the knowledge-level inconsistency features. Meanwhile, for a 307

specific post, a special token [CMT] is introduced as an indicator 308

to determine whether this post belongs to the modal-complete 309

subset Df or the text-only subset Dt. If the post belongs to 310

the text-only subset, since it lacks visual data, we supplement 311

the post with a pseudo image to make it compatible with the 312

cross-modal consistency subnetwork. Then the image and text 313

data, as well as the token are fed into the cross-modal consis- 314

tency subnetwork to produce cross-modal inconsistency features 315

and modal-shared features. After going through the above two 316

consistency subnetworks, the obtained features are fused and 317

fed into the classification layer to produce final labels. In the 318

following sections, we will describe each component in detail. 319

C. Multi-Modal Post Preprocessing 320

For the posts in the modal-complete subsetDf , we essentially 321

follow the procedure in [14] to extract entities from texts and 322

images. For the text content, we use the entity linking solution 323

TAGME2 [41] and Shuyantech3 [42] to extract and link the am- 324

biguous entity mentions in the text to the corresponding entities 325

in KG for English and Chinese texts, respectively. For the visual 326

content, we utilize the off-the-shelf pre-trained YOLOv34 [43] to 327

extract semantic objects as visual words. The labels of detected 328

objects, such as person and dog, are treated as entity mentions. 329

These mentions are linked to entities in KG. 330

Then, the entity in the text modality is linked to entities in 331

KG. In this paper, we take Freebase5 as the reference KG. The 332

reasons why we choose Freebase as the knowledge source are 333

two-fold: (1) Freebase has a much larger scale set of entities than 334

Probase and Yago, which would facilitate the rumor detection 335

task. (2) There are off-the-shelf pre-trained entity embeddings 336

that can be used directly by our model. We then obtain the 337

pre-trained entity representations from the publicly available 338

OpenKE6, which are trained with TransE [44] on Freebase. 339

The entity representation embedding dimension is 50. Thus, 340

our model accepts quadruple inputs {Text, Image, Entity set, 341

Pretrained KG}. How to process the data instances without the 342

visual modality would be illustrated in Section III-D2. 343

D. Cross-Modal Consistency Subnetwork 344

The cross-modal consistency subnetwork is designed to cap- 345

ture the inconsistency between images and texts and deal with 346

the visual modality missing issue. It consists of two separate 347

encoders for texts and images, a decomposition layer to obtain 348

2TAGME is available at https://tagme.d4science.org/tagme/
3Shuyantech is available at http://shuyantech.com/entitylinking
4YOLOv3 pre-trained model is provided in https://pjreddie.com/darknet/

yolo/#demo
5Freebase data dumps is available at https://developers.google.com/freebase/
6OpenKE is available at http://openke.thunlp.org

https://tagme.d4science.org/tagme/
http://shuyantech.com/entitylinking
https://pjreddie.com/darknet/yolo/%23demo
https://pjreddie.com/darknet/yolo/%23demo
https://developers.google.com/freebase/
http://openke.thunlp.org
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Fig. 2. The framework of the proposed knowledge-guided dual-consistency network. It consists of four components: (1) bottom: the data preprocessing component.
For the text-only post, a pseudo image (represented by a white square) is used to fill the position of the missing visual data, and a token [CMT] = 0 is used to
represent a text-only post (represented by a pink hexagon). For a post from the modal-complete dataset, a token [CMT] = 1 is used to represent a post with an
image. This component extracts and links the entity mentions from multimedia contents to the corresponding entities in KG. A post entity set is represented by
a yellow square. Then the entities are represented with pre-trained embeddings; (2) middle left: the cross-modal consistency subnetwork. It encodes the image
and text, and the CMT token is concatenated to the image representation. Then, it projects them into modal-shared and modal-unique spaces, and learns the
cross-modal inconsistency features. (3) middle right: the content-knowledge consistency subnetwork. For a post entity set, an entity pair representation EP is formed
by concatenating any two entities from the set. In the figure, this operation is represented as Pair Concat. The Manhattan distances are calculated between any
two entities from the set, and we get the top-k entity pairs with the largest Manhattan distances and their corresponding distances. This operation is represented as
M. This component uses the modal-shared content as query Q and the entity pair representations EP as the value and key, and a distance-aware signed attention
mechanism that adopts both “+Softmax” and “-Softmax” operations to capture multi-aspect correlations to obtain content-knowledge inconsistency features as in
(8) and (9); (4) top: the rumor classification layer to combine the cross-modal inconsistency features, modal-shared features and content-knowledge inconsistency
features. Concat denotes the concatenation operation, and FC represents the fully-connected layer.

the corresponding modal-unique features and modal-shared fea-349

tures, and a fusion layer to produce cross-modal inconsistency350

features.351

1) Text and Image Encoding: We map texts and images into352

feature representations. Specifically, for the text information,353

we use the initial word embeddings pre-trained by BERT, and354

utilize the bi-directional long short-term memory (Bi-LSTM)355

network to encode each textual sequence into a vector fol-356

lowing the procedure in [45]. In particular, it maps the word357

embedding wj into its hidden state hj∈ Rd0 , where wj∈ Rdw358

denotes the pre-trained embedding of the jth word from a359

word sequence with length M . We concatenate
←−
h0 and

−→
hM to360

obtain the hidden state of the textual content h ∈ R2d0 . After361

that, we encode the textual representation into a d-dimensional362

vector HT ,363

HT = ReLU(wT ∗ h+ bT ), (1)

where wT ∈ Rd×2do and bT ∈ Rd×1 are learnable weights and364

bias parameters.365

Similarly, we encode an image into a d-dimensional vector366

ĤI with a pre-trained CNN,367

ĤI = ReLU(ŵI ∗ (CNN(Image) + b̂I), (2)

where ŵI ∈ Rd×dI and b̂I ∈ Rd×1 are learnable parameters, dI 368

is the dimension of the pre-trained CNN image vector. However, 369

here we assume the visual data is available. How to make it 370

compatible with those posts where the visual modality data is 371

missing would be introduced in the following part. 372

2) Pseudo Image for Visual Modality Missing: Till now, we 373

have assumed full modality data are available for multi-modal 374

data preprocessing and encoding. We then discuss how to pro- 375

cess the data instances where the visual modality data is missing. 376

As stated in Section II-B, one common solution to address 377

the missing modality issue is to use generative methods. But 378

they are designed for the scenario that full modalities do exist 379

but cannot be accessed due to various constraints. However, for 380

the rumor detection task, it is common that the visual modality 381

does not exist in the source post, and thus it is not necessary to 382

generate the images at all. Moreover, generating images based on 383

the available textual modality would incur heavy computational 384

costs in handling the large number of posts on the social network. 385

To address this issue, we propose a novel approach that uses a 386

pseudo image with a special token to supplement these data in- 387

stances. By taking this approach, we can address the problem of 388

the incompleteness of modalities in terms of flexibility (missing 389

modalities in training, testing, or both) without alternating the 390
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framework architecture. It is also advantageous in efficiency as391

no extra training or generative overhead is required. Moreover,392

different from traditional methods that discard the data instances393

with missing modality, it can take full advantage of the training394

data and can thus better generalize to the test data.395

Specifically, for each post in the text-only subset Dt =396

{Tj , yj}j , the text modality is processed in the same way as the397

modal-complete post described in Section III-D1. To address398

the visual data missing issue, we propose to fill the position399

of the visual data with a pseudo image. Concretely, we use a400

white image (RGB(255, 255, 255) as the pseudo visual data. To401

distinguish it from the real image, a special Complete-Modality402

Token ([CMT]) is introduced. [CMT]={0,1}, where 0 indicates403

that the post is from the text-only subset, and 1 indicates coming404

from the modal-complete subset.405

After that, our model accepts quintuple inputs: {Text, Image,406

Entity set, Pretrained KG, [CMT] = 1} for the modal-complete407

subset Df and {Text, pseudo Image, Entity set, Pretrained KG,408

[CMT]=0} for the text-only subset Dt.409

Then we improve the image encoding method in (2) to make it410

accommodate both real and pseudo images. Specifically, we put411

the corresponding complete-modality token [CMT] after every412

image representation. They are concatenated and mapped into a413

low d -dimension space:414

HI = ReLU(wI ∗ [CNN(Image); [CMT]] + bI), (3)

wherewI ∈ Rd×(dI+1) andbI ∈ Rd×1 are learnable parameters.415

The effect of [CMT] will be verified in the experimental section.416

Please note that besides the above [CMT] token method, we417

have also tried to generate images based on generative adversar-418

ial networks as well as use randomly generated images to serve419

as the missing images. The performance of these comparison420

methods is reported in Section IV-F.421

3) Multi-Modal Decomposition: Enlightened by the idea422

of projecting the multi-modal representations into different423

spaces [46], we break down the raw visual and textual rep-424

resentations into the modal-unique space and modal-shared425

space. While a cross-modal shared layer is proposed to extract426

modal-invariant shared features, an image-specific layer and a427

text-specific layer are used to extract the corresponding modal-428

unique features:429

Is = W sharedHI ∈ Rds

Iu = P IHI ∈ Rdu

T s = W sharedHT ∈ Rds

Tu = P THT ∈ Rdu (4)

where HI and HT are the encoded visual and textual fea-430

tures obtained in the last subsection, W shared ∈ Rds×d and431

{P I ,P T } ∈ Rdu×d are projection matrices for the modal-432

shared space and modal-unique space, respectively. Is and Iu433

are the decomposed modal-shared and modal-unique image434

features, respectively, while T s and Tu are the decomposed435

modal-shared and modal-unique text features, respectively.436

To ensure that the decomposed modal-shared space is unre-437

lated with the modal-unique spaces, the orthogonal constrain is438

introduced as: 439

W shared(P I)
T = 0

W shared(P T )
T = 0 (5)

which can be converted into the following orthogonal loss, 440

Lo = ||W shared(P I)
T ||2F + ||W shared(P T )

T ||2F , (6)

where || · ||2F denotes the Forbenius norm. We verify that the 441

orthogonal loss is useful for improving detection performance 442

in the ablation study in Section IV-G. 443

After obtaining two modal-unique features and two modal- 444

shared features in (4), we combine them as the cross-modal in- 445

consistency representation funique and the overall modal-shared 446

representation fshare, that is 447

funique = [Tu;Tu − Iu; Iu]

fshare = [T s;T s ' Is; Is], (7)

where ' denotes the element-wise multiplication operation, 448

funique∈ R3du is used to measure the inconsistency information 449

between modalities, and fshare ∈ R3ds is used to represent the 450

shared information between modalities. Similar ideas to obtain 451

the cross-modal contrast features can also be found in [46]. 452

But unlike it which only focuses on the opposition between 453

different modalities, we also retain the modal-shared content 454

to preserve the comprehensive multi-modal semantics. Then 455

both funique and fshare would serve as part of the input for 456

the final classification layer as (10) in Section III-F. In this way, 457

when the final classification objective is optimized, the image 458

feature and text feature would be enforced to be projected into 459

the same semantic space, and their cross-modal contrast would 460

be assessed in this space by measuring the difference Tu− Iu. In 461

addition, the modal-shared content would also be fused with the 462

knowledge information in the content-knowledge consistency 463

subnetwork, which would be described in Section III-E2. 464

E. Content-Knowledge Consistency Subnetwork 465

Here we introduce how to capture the content-knowledge 466

inconsistency features. 467

1) Entity Pair Sorting: After preprocessing in Section III-C, 468

the obtained entity representation is denoted as el ∈ Rde . We 469

measure their Manhattan distance for each pair of entity rep- 470

resentations within a post and retain the top-k (k = 5) entity 471

pairs with the largest distances and their corresponding distance 472

values. Note that for those posts where the number of entities 473

is less than 4, the number of entity pairs can’t reach 5 (C2
4 = 6, 474

C2
3 = 3). To address this issue, we make a supplement with 475

pseudo entities whose representations are random vectors. We 476

concatenate the pairwise entity representations to get the entity 477

pair representation EP i ∈ R2de (i ∈ [1, k]). Also we get the 478

entity pair distance disi ∈ R (i ∈ [1, k]) 479

2) Content-Knowledge Fusion With Distance-Ware Signed 480

Attention: To incorporate KG with post contents, we propose to 481

fuse the top-k largest-distance entity pairs with the modal-shared 482

contents with the attention mechanism. We propose a novel 483

approach that uses the modal-shared content as query Q and 484
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the entity pair representations EP as the value and key, and485

a distance-aware signed attention mechanism to learn the most486

relevant parts for fusion. By taking this approach, we can address487

the problem of content-knowledge consistency modeling and488

capture their complex semantic relationships. This is different489

from the traditional usage of query, value and key in the attention490

mechanism as we can also capture the negative correlation491

between query and key. Moreover, unlike the originally signed492

attention in [19], another factor (i.e., the entity distance) is taken493

into consideration to adjust the soft weights to better obtain494

content-knowledge inconsistency features.495

We then illustrate the design of the distance-aware signed496

attention mechanism in detail. In the traditional attention mech-497

anism, if the correlations between query and keys are negative498

(i.e., their compatibility (e.g., dot product) value is negative), we499

would treat it as insignificant. However, such a negative correla-500

tion may represent the opposing semantics that can be beneficial501

to the rumor detection task. Our signed attention mechanism, on502

the contrary, adds a “-Softmax” operation using the opposite503

compatibility values between queries and keys as input to the504

Softmax function to amplify the negative correlations. Thus the505

compatibility values would go through two channels, that is, both506

the traditional Softmax (i.e., “+Softmax”) and the “-Softmax”507

functions, to capture both positive and negative relationships be-508

tween the modal-shared contents and the top-k largest distance509

entity pairs. We thus obtain two attention weights corresponding510

to the two channels, that is,511

Q = Concat(Is,T s)

αi
pos = Softmax

(
Q(EPi)√

2de

)

αi
neg = −Softmax

(
−Q(EPi)√

2de

)
(8)

where the modal-shared feature Q is the concatenation of512

modal-shared features for images and texts. Both αi
pos and αi

neg513

denote the attention weights of the ith entity pair but reflect the514

positive and negative correlations, respectively. A larger αi
pos515

(resp. αi
neg) means that the entity pair is more positively (resp.516

negatively) semantically related to the content.517

Meanwhile, an entity pair with a larger entity distance should518

influence the learning object more significantly. Following this519

intuition, we devise the final attention weight for each of the520

entity pairs by taking both of the factors into consideration and521

employ the weights to calculate the weighted sum of the entity522

pair representations, that is,523

βi
∗ =

disiαi
∗∑k

j=1 dis
j ∗ αj

∗

f∗
kg =

k∑

i=1

βi
∗(EP i)

fkg = Concat
(
fpos
kg ,fneg

kg

)
, (9)

where disi (i ∈ [1, k]) denotes the entity distance for the ith524

entity pair, βi
∗ (∗ ∈ {pos, neg}) is the distance-aware signed525

TABLE I
THE CORRESPONDENCE BETWEEN THE DATASETS AND THE EXPERIMENTS

attention weights, f∗
kg (∗ ∈ {pos, neg}) is the positive/negative 526

entity-pair embedding based on the signed attention weights, an 527

fkg ∈ R4de denotes the final semantic vector that represents the 528

content-knowledge inconsistency features. 529

F. Rumor Classification Layer 530

Lastly, we concatenate the cross-modal inconsistency fea- 531

tures, content-knowledge inconsistency features and the modal- 532

shared features, and feed it into a fully-connected layer with 533

Sigmoid activation function to obtain the predicted probability 534

for instance i, that is, 535

ŷi = σ(wf [funique ⊕ fshare ⊕ fkg] + bf ) (10)

where wf and bf are the weight and bias parameters. We then 536

use cross-entropy loss as the rumor classification loss: 537

Lc = −
∑

i

yilogŷi (11)

where yi is the ground truth label of the ith instance. In addi- 538

tion, we also incorporate the orthogonal loss for multi-modal 539

decomposition in (6). Thus, the final total loss is 540

L = Lc + λLo (12)

where λ is the weight of the orthogonal loss. 541

IV. EXPERIMENTS 542

In this section, we conduct data analysis to validate the mo- 543

tivation that the dual-inconsistency information can be used to 544

distinguish the rumors, and perform extensive experiments to 545

evaluate the effectiveness of our proposal. 546

A. Experimental Overview 547

The experiments that we conduct can be divided into four 548

parts: preliminary analysis, comparison experiments between 549

our model and baselines, ablation studies, as well as robustness 550

to different missing patterns. Since these experiments are con- 551

ducted on either modal-incomplete or modal-complete datasets 552

(or both of them), to make it clearer, we show which datasets 553

correspond to which experiments in Table I. 554

For preliminary analysis, since we need to measure the cross- 555

modal consistency to validate the statistically significant distinc- 556

tion between rumors and non-rumors, we conduct experiments 557

on the modal-complete datasets. For comparison experiments, 558

we perform experiments on both modal-incomplete and modal- 559

complete datasets to validate that our framework can outperform 560

the baselines under both complete and incomplete modality 561

conditions. Ablation studies are conducted on modal-incomplete 562
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TABLE II
THE STATISTICS OF THE THREE ORIGINAL MODAL-INCOMPLETE DATASETS

AND THREE MODAL-COMPLETE DATASETS

datasets, since our model is mainly proposed for the real-world563

rumor detection scenario where visual modality is commonly564

missing. For the robustness experiments, we randomly mask565

some portion of the images, which is performed on the modal-566

complete datasets where the portion of images is gradually567

decremented from 100% to 0%.568

B. Dataset569

We conduct experiments on three real-world datasets, i.e.,570

two English datasets: Twitter [47], Pheme [48] and one Chinese571

dataset: Weibo [49]. Twitter and Pheme datasets are both col-572

lected from Twitter, while the Weibo dataset is collected from573

Weibo. The Twitter dataset is available at https://github.com/574

MKLab-ITI/image-verification-corpus. The Pheme dataset575

is available at https://figshare.com/articles/PHEME_dataset_576

of_rumours_and_non-rumours/4010619. The Weibo dataset577

is available at https://www.dropbox.com/s/46r50ctrfa0ur1o/578

rumdect.zip?dl=0 As one primary objective of our proposal is579

to incorporate the post content and external knowledge informa-580

tion, we remove the data instances from which no entities can581

be extracted, as at least two entities are required in our model.582

As the statistics of the resulting datasets are shown in Table II,583

these three original datasets are all modal-incomplete. Note that584

if there are multiple images attached to one post, we randomly585

retain one image and discard the others. For the Twitter dataset,586

one image can be shared by various posts.587

To evaluate the performance of our model on the modal-588

complete dataset as well, we remove all the data instances from589

the original datasets without any images. We thus obtain three590

modal-complete datasets where both text and image are available591

for each post. The statistics of the modal-complete datasets are592

also shown in Table II. It is obvious that these modal-complete593

datasets are subsets of the original modal-incomplete datasets.594

C. Preliminary Analysis of Dual Inconsistency595

We conduct data analysis on the modal-complete datasets596

to validate that the two inconsistency metrics have statistically597

significant distinctions between rumors and non-rumors.598

1) Entity Distance Analysis: We conduct entity distance599

analysis to show that the largest entity distances of a post are600

statistically different for rumors and non-rumors. Specifically,601

we measure the Manhattan distance of each pair of entity rep-602

resentations within a post and retain the top-k (k = 5) largest603

distance values (as described in Section III-E). The average sums604

of the five largest distances for all rumor and non-rumor posts605

are shown in Table III. We can observe that, on average, the sum606

of entity distances for rumors is larger than that for non-rumors.607

TABLE III
THE AVERAGE SUM OF THE FIVE LARGEST ENTITY DISTANCES AND THE

AVERAGE IMAGE-TEXT SIMILARITY ON THREE DATASETS

To statistically verify the observation, we make it a hypothesis 608

and conduct hypothesis testing. For each dataset, two equal-sized 609

collections of rumor and non-rumor tweets are sampled. And 610

two-sample one-tail t-test is conducted on the 100 data instances 611

to validate whether there is a sufficient statistical correlation to 612

support the hypothesis. Let µf be the mean of the five largest 613

entity distances of the rumor collection and µr represent that 614

of non-rumors. The null hypothesis is H0, and the alternative 615

hypothesis is H1. The hypothesis of interest is: 616

H0 : µf − µr ≤ 0

H1 : µf − µr > 0 (13)

The results show that there is statistical evidence on all the 617

datasets. On Pheme, the result, t = 4.090, df = 90, p-value = 618

0.000047 (significance alpha= 5%), rejects the H0 hypothesis. 619

The confidence interval CI is [0.212, 42.112], the effect size is 620

0.826. The conclusions are similar to Twitter and Weibo datasets. 621

2) Image-Text Similarity Analysis: We also conduct the 622

image-text similarity analysis towards rumors and non-rumors. 623

In particular, we first decompose the raw textual and visual 624

representations to obtain image-unique and text-unique em- 625

beddings excluding their shared information (refer to (4) in 626

Section III-D for details) and measure their cosine similarity to 627

get the image-text similarity. The average similarity results are 628

shown in Table III. We can observe that the similarity for rumors 629

is negative on all three datasets, while that for non-rumors is 630

positive, so the similarity for rumors is much smaller than that 631

for non-rumors, in line with our expectations. Moreover, we 632

also perform hypothesis testing and confirm there is statistical 633

evidence on all datasets. 634

The rumor and non-rumor collections are set the same as 635

Section IV-C1. Let θf be the mean of cosine-similarity of the 636

rumor collection and θr represents that of non-rumors. The null 637

hypothesis is Hs
0 , and the alternative hypothesis is Hs

1 . The 638

hypothesis of interest is: 639

Hs
0 : θf − θr ≥ 0

Hs
1 : θf − θr < 0 (14)

The results show that there are statistical evidence on 640

the datasets. On Twitter dataset, the result, t = −3.7925, 641

df = 97, p-value = 0.000129 (significance alpha= 5%), 642

rejects the H0 hypothesis. The confidence interval CI is 643

[−0.425888,−0.002151], the effect size is −0.7662. We also 644

found statistical evidences on Pheme dataset, with t =−7.9051, 645

df = 94, p-value = 2.4769× 10−12 (significance alpha= 646

5%), rejects the H0 hypothesis. The confidence interval CI is 647

[−0.317446,−0.001603], the effect size is −1.5970. On the 648

Weibo dataset, the results are t = −2.8743, df = 93, p-value 649

https://github.com/MKLab-ITI/image-verification-corpus
https://github.com/MKLab-ITI/image-verification-corpus
https://figshare.com/articles/PHEME_dataset_of_rumours_and_non-rumours/4010619
https://figshare.com/articles/PHEME_dataset_of_rumours_and_non-rumours/4010619
https://www.dropbox.com/s/46r50ctrfa0ur1o/rumdect.zip%7B?%7Ddl$=$0
https://www.dropbox.com/s/46r50ctrfa0ur1o/rumdect.zip%7B?%7Ddl$=$0
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Fig. 3. Results of the sensitivity analysis with varying number of entities and entity pairs on Pheme, Weibo and Twitter datasets under the modal-incomplete
condition. The two horizontal lines indicate accuracy and F1 values of the proposed model KDCN.

= 0.0025 (significance alpha= 5%), rejects the H0 hypothesis.650

The confidence interval CI is [−0.001603,−0.317373], the ef-651

fect size is −0.5807. Our analysis shows that on each dataset,652

the rumors own distinct content-knowledge inconsistency and653

cross-modal inconsistency from non-rumors, which can help654

distinguish rumors from non-rumors.655

In the above data analysis as well as the methodology section,656

we consider top-k (k = 5) largest distances between entities,657

rather than averaging distances between all entity pairs, as the658

latter would weaken the contrast between rumors and non-659

rumors. The gap between the average distances of non-rumors660

and rumors would decrease significantly by the increase of k661

in preliminary analysis. When k > 5, the average distances be-662

tween non-rumors and rumors become marginal. This is because663

even for rumors, there are still some consistent entities. For the664

example in Fig. 1, a shark that appears in water is reasonable,665

and a subway station usually has elevators. In addition, since666

some posts have few entities, a larger k may lead to the adoption667

of more pseudo entities in our framework, which may introduce668

larger noises. We later empirically show in Fig. 3 that consider-669

ing top-5 can achieve good performance.670

D. Experimental Setup671

In all experiments, we randomly split the Pheme and Weibo672

datasets into training, validation, and testing sets with a split673

ratio of 6:2:2 without overlapping, and conduct a 5-fold cross-674

validation to obtain the final results. For the Twitter dataset,675

since it has an official data splitting when publishing, we follow676

its splitting ratio (approximately 8:1:1) and don’t apply 5-fold677

cross-validation. All the data splittings have ensured that images678

in the training set and testing set will not be overlapped.679

Our algorithms are implemented on Pytorch framework [50]680

and trained with Adam [51]. In terms of parameter settings,681

the learning rate is {0.0005, 0.00005}, and batch size is {64,682

128}. The weight of the orthogonal loss is λ = 1.5. We adopt683

an early stop strategy and dynamic learning rate reduction for684

model training.685

We use the pre-trained BERT [52] as initial word embeddings686

for text encoding in our model: bert-base-uncased for English,687

and bert-base-chinese for Chinese. For other models that don’t 688

adopt BERT, we use GloVe 7 instead. 689

E. Baselines 690

The baselines are listed as follows: 691! BERT [53] is a pre-trained language model based on 692

deep bidirectional transformers, and we use it to get the 693

representation of the post text for classification. We use 694

BERT with fine-tuning to detect rumors, which is available 695

at https://github.com/huggingface/transformers. 696! Transformer [54] uses the self-attention mechanism and 697

position encoding to extract textual features for sequence 698

to sequence learning. We only use its encoder here. we 699

use the publicly available implementation at https://github. 700

com/jayparks/transformer. 701! TextGCN [55] uses a graph convolution network to clas- 702

sify documents. The whole corpus is modeled as a het- 703

erogeneous graph to learn the word and document embed- 704

dings. The heterogeneous graph contains word nodes and 705

document nodes. The edges are built based on word occur- 706

rence and document word relations. We use the publicly 707

available implementation at https://github.com/chengsen/ 708

PyTorch_TextGCN. 709! EANN [10] uses an event adversarial neural network 710

to extract event-invariant features from images and texts 711

for rumor detection. For modal-incomplete instances, we 712

use white images to supplement. We used the authors’ 713

implementation, which is available at https://github.com/ 714

yaqingwang/EANN-KDD18. 715! SAFE [9] is a similarity-aware fake news detection 716

method. It extracts textual and visual features for news 717

and then further investigates the relationship between the 718

extracted features across modalities. For modal-incomplete 719

instances, we use white images to supplement. We used 720

the authors’ implementation, which is available at https: 721

//github.com/Jindi0/SAFE. 722

7GloVe: Global Vectors for Word Representation: https://nlp.stanford.edu/
projects/glove/

https://github.com/huggingface/transformers
https://github.com/jayparks/transformer
https://github.com/jayparks/transformer
https://github.com/chengsen/PyTorch_TextGCN
https://github.com/chengsen/PyTorch_TextGCN
https://github.com/yaqingwang/EANN-KDD18
https://github.com/yaqingwang/EANN-KDD18
https://github.com/Jindi0/SAFE
https://github.com/Jindi0/SAFE
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
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TABLE IV
COMPARISON OF DIFFERENT MODELS FROM THE PERSPECTIVE

OF MODALITY USED

! CompareNet [30] proposes a graph neural model, which723

compares the news to the knowledge base (KB) through724

entities for fake news detection. We used the authors’725

implementation, which is available at https://github.com/726

BUPT-GAMMA/CompareNet_FakeNewsDetection.727 ! KMGCN [14] is a state-of-the-art rumor detection model728

that uses a graph convolution network to incorporate visual729

information and KG to enhance the semantic represen-730

tation. Since the authors don’t release the code, we im-731

plemented the method. We followed the implementation732

details described in KMGCN except for choosing a differ-733

ent KG. Instead of using Probase and Yago in the original734

KMGCN, we used Freebase as the reference knowledge735

graph and acquired isA relation of the entities, to make a736

fair comparison with our model. The Freebase isA rela-737

tion data dump is available at https://freebase-easy.cs.uni-738

freiburg.de/dump/739 ! KDCN Text-only is our full model but trained using the740

single-modal text data only, replacing all the input im-741

ages with white images. It represents an extremely modal-742

incomplete condition that all the images are missing.743

Table IV compares the baselines and the proposed model744

KDCN from the perspective of the modality data that are used.745

All baseline models and our model can be grouped into four746

categories: models using only text modality, models using both747

text and image data, models using text and knowledge data,748

and models using text, image, and knowledge data. Note that749

since EANN and SAFE require images as input and cannot750

adapt to modal-missing conditions, we also use white images751

as supplementary in modal-incomplete cases, which is the same752

as our model for a fair comparison.753

F. Results and Discussion754

Table V demonstrates the performance of all the compared755

models on three datasets. We can observe that under both modal-756

incomplete and modal-complete conditions, our model KDCN757

generally significantly outperforms all the baselines in all the758

metrics, which confirms that considering the two inconsistencies759

would benefit the rumor detection task.760

Among the three state-of-the-art textual representation mod-761

els, BERT outperforms both Transformer and TextGCN on762

Weibo and Twitter datasets under modal-incomplete conditions.763

While under the modal-complete condition, BERT outperforms764

the other two on all three datasets, demonstrating its supe- 765

rior capability in capturing the textual semantics for rumor 766

detection. 767

We then compare the models involving the visual information 768

with the above text-only models. Although EANN considers 769

both visual and textual information, it performs not as well as 770

BERT and TextGCN under both modal-incomplete and modal- 771

complete conditions. The possible reason is that EANN uses 772

CNN to extract the textual feature, which is not as powerful as 773

Transformer and GCN. SAFE outperforms EANN in most cases, 774

indicating that the text-image dissimilarity captured in SAFE is 775

an effective feature for rumor detection. 776

KMGCN achieves comparable or better performance com- 777

pared to TextGCN and CompareNet under both modal- 778

incomplete and modal-complete conditions. Since all these three 779

models adopt graph convolution networks as the backbone, it 780

indicates that the image and knowledge features can provide 781

complementary information and improve performance. 782

Despite the lack of visual information, KDCN Text-only 783

performs better than textual representation models, and achieves 784

the runner-up performance in most cases, indicating that the 785

content-knowledge inconsistency can enhance the model per- 786

formance. 787

Compared to the baselines, we can attribute our proposal’s 788

superiority to three critical properties: (1) we model two types 789

of inconsistent information, which are suitable to rumor identi- 790

fication; (2) we adopt BERT as the initial text representation to 791

capture textual semantics; (3) we adopt the complete-modality 792

token to make the model applicable for visual modality missing 793

conditions and achieve robust performance. 794

Please note that to address the visual-modality missing issue, 795

we also have tried to generate images based on the correspond- 796

ing text content using generative adversarial networks, and it 797

achieves comparable performance as using the white image 798

with a special [CMT] token. In particular, its performance on 799

the Pheme-incomplete dataset is 0.8438 and 0.8382 in terms 800

of Acc. and F1, respectively. Despite the similar performance as 801

our proposal, using generative adversarial networks would incur 802

heavy computational costs. We also have tried to use randomly 803

generated images as a complement, and the performance on the 804

Pheme-incomplete dataset is 0.8099 in terms of Acc., which is 805

much lower than our proposal. The possible reason is that it 806

introduces noises that are entirely unrelated to the text. 807

G. Performance of the Variations 808

We investigate the effects of our proposed components by 809

defining the following variations: 810! w/o Visual: the variant that removes the visual information. 811! concat. TV: the variant that concatenates the textual and 812

visual representations instead of their cross-modal incon- 813

sistency and modal-shared features. 814! w/o KE: the variant that removes the content-knowledge 815

consistency subnetwork. 816! mean KE: the variant that utilizes the mean pooling of 817

the entity representations instead of the content-knowledge 818

inconsistency features. 819

https://github.com/BUPT-GAMMA/CompareNet_FakeNewsDetection
https://github.com/BUPT-GAMMA/CompareNet_FakeNewsDetection
https://freebase-easy.cs.uni-freiburg.de/dump/
https://freebase-easy.cs.uni-freiburg.de/dump/
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TABLE V
RESULTS OF COMPARISON AMONG DIFFERENT MODELS ON PHEME, WEIBO AND TWITTER DATASETS UNDER MODAL-INCOMPLETE AND MODAL-COMPLETE

CONDITIONS

TABLE VI
RESULTS OF COMPARISON AMONG DIFFERENT VARIANTS ON

MODAL-INCOMPLETE PHEME, WEIBO AND TWITTER DATASETS

! w/o CMT: the variant that removes the complete-modality820

token ([CMT]). Then (2) would be HI = ReLU(wI ∗821

(CNN(Image)) + bI).822 ! w/o Orthog. Loss: the variant that removes the orthogonal823

loss from the final total loss, with only the cross entropy824

loss left.825

The ablation study in Table VI demonstrates that the proposed826

components are indispensable for achieving the best perfor-827

mance. Visual features can improve performance. To further828

show the effectiveness of the inconsistency features, we use the829

same input but alternate aggregating mechanisms, i.e., mean KE830

and concat. TV, instead of the proposed inconsistency mecha-831

nisms. We can observe that the results of both mean KE and832

concat. TV are lower than the proposed model, indicating that833

the inconsistency features are more effective than the aggre-834

gated features for rumor detection. w/o Orthog. Loss also yields835

worse performance than the proposed model, suggesting that the836

constraint on the decomposed modal-unique and modal-share837

spaces is beneficial for the model to learn a better representation838

of multi-modal data. The results of w/o CMT are lower than839

the KDCN model, indicating that the addition of the [CMT]840

token does help the model distinguish between the presence and 841

absence of the visual modality. 842

To verify the effectiveness of the knowledge information, we 843

conduct the sensitivity analysis with a varying number of entities 844

and entity pairs, and design the following variants: 845! rm n KE: the variant that randomly removes n (n ∈ 846

{1, 2, 3}) entities from the post entity set. 847! rm n KE pair: the variant that randomly removes top-n 848

(n ∈ {1, 2, 3}) largest distance entity pairs from the post 849

entity set. 850

As shown in Fig. 3, it can be observed that the accuracy 851

decreases gradually as more entity pairs are removed in the 852

content-knowledge consistency subnetwork. Similar trends can 853

be observed when one or more entities are removed. It veri- 854

fies the crucial impact of the knowledge information for our 855

task. 856

It can be observed that the performance degradation when 857

removing the entities and entity pairs on the Weibo dataset is 858

not as large as on the other two datasets. The possible reason 859

is that the number of extracted Chinese entities is not as large 860

as the other two English datasets due to the limited coverage of 861

KG on Chinese entities. In particular, as shown in Table I, the 862

column of “Entities/Post” shows the average number of entities 863

in one post for these datasets, and we can see that Weibo has 864

the lowest number. In fact, for Weibo-incomplete and Weibo- 865

complete datasets, the average number of entities in one post 866

is nearly 3. Since we measure the Manhattan distance for each 867

pair of entity representations within a post and retain the top- 868

5 entity pairs with the largest distances, for the above cases 869

when the number of entity pairs cannot reach 5 (C2
4 = 6, C2

3 = 870

3), we would make a supplement with pseudo entities whose 871

representations are random vectors. It may introduce noises and 872

cannot achieve better performance. This suggests that we can 873
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Fig. 4. Classification accuracy on Pheme, Weibo and Twitter datasets with different missing patterns. The row (resp. column) of the matrix represents the
percentage of the training (resp. testing) instances that are equipped with the visual data. The darker the blue, the higher the accuracy.

Fig. 5. Two rumor cases detected by our model.

utilize a larger-scale KG and more powerful entity-extracting874

techniques to further improve performance in future work.875

H. Robustness to Different Missing Patterns876

To verify the robustness of our model against the visual877

modality missing issue, we conduct experiments under different878

missing patterns.879

Setting of Different Missing Patterns. We randomly mask880

some portion of the images in the modal-complete datasets881

(Twitter-mc, Pheme-mc and weibo-mc) to produce different882

visual-modality missing datasets. Specifically, we produce the883

following missing patterns: training with 100% Text + η %884

Image and testing with 100% Text + µ% Image. η and µ ∈885

[0,20,40,60,80,100].886

Results of Robustness to Different Missing Patterns. Fig. 4887

shows the results of our approach under the different missing888

patterns. We have two observations. First, the rumor detection889

performance of our model is quite stable under different missing890

patterns. Moreover, despite the lack of visual data, most of these891

results are still better than the baselines with full-modal data as892

shown in Table V. Second, according to Fig. 4, as the η and µ are893

larger, the blue color of the entry generally becomes darker. It894

indicates that our model would perform better when more visual895

data is available.896

I. Case Studies897

We analyze two rumor cases that our model can recognize898

accurately. They are from Twitter and Pheme, respectively. In899

Fig 5(a), the extracted entity set is {Zombie, Tropical cyclone,900

New York City, RT (TV network), ThinkProgress}. The average901

sum of the five largest entity distances is 119.73, larger than 902

the average sum of the rumors on Twitter (i.e., 97.13 shown 903

in Table III), implying the existence of content-knowledge 904

inconsistency. Its image-text similarity value is 0.277, much 905

larger than the average value for rumors (−0.058 in Table III), 906

indicating the image and text are well matched. In Fig. 5(b), it 907

is obvious that the image and text are not well-matched, verified 908

by its low image-text similarity value (only −0.133). The two 909

cases help to confirm that our model can effectively capture the 910

two types of inconsistent information for rumor identification. 911

V. CONCLUSION 912

We propose a knowledge-guided dual-consistency network 913

for multi-modal rumor detection, which involves the cross- 914

modal inconsistency and content-knowledge inconsistency in- 915

formation in one framework. Additionally, our framework can 916

also deal with visual modality issues in real-world detection 917

scenarios. Extensive experiments on three datasets have demon- 918

strated our proposal’s effectiveness in capturing and fusing both 919

types of inconsistent features to achieve the best performance, 920

under both modal-complete and modal-incomplete conditions. 921

Note that the inconsistent features captured by our framework 922

can be easily plugged into other rumor detection frameworks to 923

further improve their performance. In future work, we plan to 924

explore more effective inconsistency features and devise a more 925

explainable and robust model. 926
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