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A B S T R A C T   

Reef halos are rings of bare sand that surround coral reef patches. Halo formation is likely to be the indirectly 
result of interactions between relatively healthy predator and herbivore populations. To reduce the risk of 
predation, herbivores preferentially graze close to the safety of the reef, potentially affecting the presence and 
size of the halo. Reef halos are readily visible in remotely sensed imagery, and monitoring their presence and 
changes in size may therefore offer clues as to how predator and herbivore populations are faring. However, 
manually identifying and measuring halos is slow and limits the spatial and temporal scope of studies. There are 
currently no existing tools to automatically identify single reef halos and measure their size to speed up their 
identification and improve our ability to quantify their variability over space and time. Here we present a set of 
convolutional neural networks aimed at identifying and measuring reef halos from very high-resolution satellite 
imagery (i.e., ~0.6 m spatial resolution). We show that deep learning algorithms can successfully detect and 
measure reef halos with a high degree of accuracy (F1 = 0.824), thereby enabling faster, more accurate spatio- 
temporal monitoring of halo size. This tool will aid in the global study of reef halos, and potentially coral reef 
ecosystem monitoring, by facilitating our discovery of the ecological dynamics underlying reef halo presence and 
variability.   

1. Introduction 

Ecological systems are often characterized by conspicuous patterns 
resulting from complex interactions between biotic and abiotic variables 
(Tarnita et al., 2017). In recent decades, the development of remote 
sensing technologies and aerial surveys has allowed scientists to high-
light and describe an increasing number of these patterns in several 
different ecosystem types, such as species vegetation patterns in semi- 
arid ecosystems (Barbier et al., 2006) and desert fairy circles (Juer-
gens, 2013). One striking example of such regular spatial patterns are 
reef halos (also known as grazing halos). Reef halos consist of ring-like 
patterns of bare sand that occur around coral patch reefs (i.e., reefs 
spatially separated from other reefs by expanses of sand or other sub-
strates) in a variety of primary producer habitats (e.g., benthic macro-
algae; seagrass, etc.) and their presence is readily visible from satellite 
images (Madin et al., 2011). 

Reef halos (hereafter halos) were first reported in the 1960s in the 

Caribbean Sea (Ogden et al., 1973; Randall, 1965), and they were later 
observed in several geographic areas, such as Australia’s Great Barrier 
Reef, the Atlantic Ocean, and the Red Sea (Madin et al., 2011). Many 
hypotheses for halo patterns have been proposed, such as nutrient 
availability (Alevizon, 2002), bioturbation (Bilodeau et al., 2021), and 
foraging behavior through indirect fear effects (Madin et al., 2019b). 
However, predation risk is a widely attributed explanation for the cre-
ation and maintenance of halos. It is believed that predators control not 
only the abundance of herbivores, but also their foraging behavior, 
which is driven in part by a perception of risk. In the case of reef halos, 
predation risk constrains the foraging activity of grazing species near a 
central shelter, so that overall herbivory declines with increasing dis-
tance from patch reefs, in turn creating a sand ring pattern that is a 
spatially-explicit indicator of herbivory intensity (DiFiore et al., 2019; 
Madin et al., 2011). However, this pattern is expected to change when 
reef communities are overfished. For example, overfishing of top pred-
ators is thought to reduce the overall predation risk imposed on 
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herbivores and may, in turn, lead to a lack of halo formation (Madin 
et al., 2019a) or may expand the width of halos (but see Madin et al., 
2019a). Alternatively, if fishing is concentrated on herbivores, halos 
may not be expected to form at all. If one or more of these expectations 
are true, halos may present a unique opportunity to quickly and inex-
pensively monitor fish community structure for a given geographical 
area. 

Halos can therefore be considered highly visible seascape-scale 
footprints of herbivory, ecological interactions, and ecosystem pro-
cesses which, because of their large spatial scale, can be observed and 
measured from satellite imagery. Madin et al. (2019a) measured halos 
using freely available satellite images and compared fished versus un- 
fished (fully protected) coral reefs over thousands of km of coastline 
in Australia. Meanwhile, DiFiore et al. (2019) and Madin et al. (2019b) 
linked herbivore behavior with halo patterns at local scales by merging 
satellite imagery observations with in-situ and remote camera-based fish 
surveys, respectively. Combining field studies with remote sensing ob-
servations has proven highly useful in understanding halo occurrence 
and formation. Moreover, developing freely available remote sensing 
tools to monitor ecological processes over large scales is an important 
step in improving the management and conservation of coral reef eco-
systems (Hedley et al., 2016), and reef halos may represent an emerging 
opportunity to monitor reef ecosystems’ function at large scales, 
including in otherwise inaccessible areas. There are currently no tools to 
automatically detect and measure halos from satellite images. The 
process of manually annotating halos from satellite imagery is also slow 
and limits the scale over which such monitoring could be applied (Madin 
et al., 2019a, 2019b, 2011). 

In recent years, deep learning and computer vision techniques have 

been increasingly used in ecological studies (Christin et al., 2019). In 
particular, due to the increasing availability of high-resolution remotely 
sensed imagery, convolutional neural networks (CNNs; Albawi et al., 
2017) have become a powerful tool for remote sensing studies 
(González-Rivero et al., 2020; Lei et al., 2020) and large-scale ecosystem 
analysis (Brodrick et al., 2019). For example, in the context of coral reef 
ecosystem monitoring and conservation, CNNs outperformed previous 
texture-based models (e.g., support vector machines, random forests) by 
providing more accurate results in remote sensing classification (Wan 
and Ma, 2020), object detection (Song et al., 2019), and semantic seg-
mentation (King et al., 2018). 

Here we present a deep learning method consisting of a mask region- 
based convolutional neural network (Mask R-CNN; He et al., 2018) and a 
U-Net model (Isensee et al., 2018) that are able to identify and measure 
reef halos from high-resolution (sub-meter pixel size) satellite imagery. 
We selected different geographical areas where halo occurrence has 
been reported, and, through the use of Planet SkySat images, we trained 
and tested a deep learning framework that can detect halo presence 
globally and measure their size. Our goal was to develop a tool to enable 
faster, automated, halo detection and measurement from satellite im-
agery to pave the way for developing a low-cost, globally-applicable 
coral reef conservation tool. 

2. Materials and methods 

2.1. Study areas and dataset 

Our study area included 20 areas of interest (AOI) from 6 countries 
(Fig. 1). Geographical areas were selected based on the occurrence of 

Fig. 1. A) Overview of the study regions. Number of unique AOIs per country: Australia =1, Bahamas = 6, Belize = 7, Egypt = 3, Saudi Arabia = 2, USA (Florida) =
1. Detailed information for each AOI is reported in Table 1, section 2.3. B) Example of SkySat satellite image containing halos from the Bahamas. C) Zoomed example 
(a subset of (B)) of halos. 
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halos known from previous studies (Downie et al., 2013; Madin et al., 
2019a; Ogden et al., 1973; Randall, 1965) and by exploring areas with a 
potential occurrence of halos using Google Earth Pro. Four-band (Blue: 
450–515 nm, Green: 515–595 nm, Red: 605–695 nm, NIR: 740–900 nm) 
SkySat satellite images were acquired through Planet Inc. (Planet Team, 
2017) Planet Explorer Catalogue. Obtained as a SkySat Collect product, 
each image was roughly 20 km × 5.9 km, with a spatial resolution 
ranging between 0.5 m and 0.8 m. All surface reflectance products are 
orthorectified using fine digital elevation maps (30-90 m posting) and 
ground control points. Planet conducts atmospheric correction with the 
6SV2.1 radiative transfer model which accounts for atmospheric ab-
sorption and scattering (Vermote et al., 2006), with aerosol optical 
depth, water, vapor and ozone inputs from MODIS near-real-time data 
(MOD09CMA and MOD09CMG). All calculations were done in R (R Core 
Team, 2022). 

2.2. Deep learning model workflow overview 

Our ultimate goal was to develop a tool that could identify reef halos 
from multispectral satellite images and automate their measurement. To 
achieve this goal, we developed and merged two different types of CNNs, 
a Mask R-CNN and U-Net model (described in detail below). 

First, we labeled all non-overlapping halos present in the AOIs 
(Fig. 2, step 1), resulting in 4127 manually annotated halos. Merged 
objects were excluded from the training process since, where two reefs 
share some portion of a halo, it is extremely difficult to discriminate 
which sand area belongs to one or the other patch reef, thereby leading 
to an inaccurate estimate of its halo’s size. Comparisons of halo sizes 
among locations was one of the goals of this study, thus excluding 
merged halos was necessary to generate accurate conclusions. Halos 
were labeled using ArcGIS software (version 2.9.1), allowing the geo- 
referenced information for all objects to be retained. To avoid biases 

Fig. 2. Graphical summary of the deep learning model development. 1) Remote sensing data acquisition: halos have been manually labeled in ArcGIS Pro and then 
divided into training and test sets. 2) Mask R-CNN model development for reef halos identification. 3) U-Net model development for computing “reef” and “halo” 
areas (Ar and Ah respectively). 4) Prediction on test set samples and computation of performance metrics. 
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due to a single user’s perception of halos size, five users were trained in 
the same labeling procedure – zooming into each halo at a 1:600 scale 
and tracing light contours with a mouse – and labeled the same areas of 
interest (AOIs). Results were compared, demonstrating an 84% area 
overlap between users’ halo area annotations, and a Wilcoxon test 
showed non-significant differences in halo size among the five users (p- 
value = 0.73). We also assessed the depth of halo areas; Table S1 reports 
the mean values of halo depths across different geographic regions. 

The dataset generated from the imagery annotation was divided into 
training and test sets (~70% and ~ 30%, respectively). The training set 
was used for model implementation and optimization, while the test set 
was used for comparing model-predicted vs. manually-annotated halos. 
In addition, we selected independent areas (i.e., AOIs where no halos 
were used for the training process) for the test set (Table 1; section 2.3) 
to better estimate the model generalization properties (Franceschini 
et al., 2018). 

The second step of this work was to train the Mask R-CNN model 
(Fig. 2, step 2) using the training data set, thereby automatizing the 
identification of reef halos from the test set of satellite images and 
extracting the shape of the reef halos from the imagery background (i.e., 
extracting both the patch reef and its surrounding halo). The Mask R- 
CNN was trained with 3322 reef halos from 13 AOIs, while the 
remaining 805 halos from seven AOIs were kept to evaluate the model’s 
performance (Table 1). After object extraction, we automated halo 
measurement using a U-Net pixel classification model (Fig. 2, step 3) 
which discriminated the halo (sand ring) from the interior reef patch. A 
total of 6428 annotations from the training set were used for model 
training. Annotations consisted of pixel areas manually classified by 
users, divided into “patch reef” and “halo” classes, respectively. Lastly, 
we compared the CNN’s predictions and measurements to the observed 
values from the manually-generated test set (Fig. 2, step 4). 

Satellite images were processed in one batch rather than individually 
by location. This approach can be more efficient in terms of processing 
time and computational resources, as the model can perform the 
necessary computations for multiple images simultaneously. Addition-
ally, the model can learn from a larger and more diverse dataset, 
potentially improving its accuracy and ability to generalize to new data. 
Several metrics were taken into account in order to validate model ac-
curacy on independent observations (described below, section 2.5). 

Both the Mask R-CNN and U-Net models were developed using 
Tensorflow (ver. 2.5.1) (Abadi et al., 2016), Keras (ver. 2.4.3), and 
PyTorch (ver. 1.8.2) libraries in Python 3.9 and ArcGIS 2.9.1. The 

machine running the deep learning model had an Intel® Core™ i9- 
9900K CPU @3.60 GHz processor with 128 GB of installed RAM and a 
PNY NVIDIA Quadro A6000 GPU. 

2.3. Mask R-CNN model for halo segmentation 

To identify the edges of the reef halos, we applied the computer 
vision technique of instance segmentation (Watanabe and Wolf, 2019). 
This method consists of a set of supervised learning algorithms that 
assign a label for each pixel by considering other nearby objects and the 
background, thereby identifying the object’s boundaries. The Mask R- 
CNN segmentation model (He et al., 2018) is one of the most advanced 
instance segmentation techniques available to date and predicts a 
segmented region in parallel with bounding box recognition (Ren et al., 
2015). The Mask R-CNN architecture consists of two different networks: 
the backbone and the region proposal network. These networks run once 
per image to give a set of region proposals containing the object. Spe-
cifically, our Mask R-CNN computes three outputs for each predicted 
object: (i) a class label, (ii) a bounding box that delimits the object, and 
(iii) a mask that distinguishes pixels belonging to the object from those 
to the background. For a more detailed description of the Mask R-CNN 
model structure see He et al. (2018). The rationale behind the use of an 
instance segmentation model like the Mask R-CNN is that the deep 
learning algorithm can not only recognize the color pattern of halos from 
multispectral informatation, but it can also determine the shape of the 
object based on the surrounding pattern and the background. In this 
case, the model only recognized a halo when it had the characteristic 
ring shape around a reef which was then surrounded by algae/seagrass 
beyond the outer edge of the halo. 

In this study, we used the Residual Network 34 (ResNet34) backbone 
network for our Mask R-CNN (He et al., 2016; Wu et al., 2019). 
ResNet34 consists of a 34-layered network that has been pre-trained 
with millions of labeled, high-resolution images belonging to the 
ImageNet global dataset (Deng et al., 2009). In recent years, ResNet34 
has outperformed previous models in a variety of tasks, providing ac-
curate predictions for both object detection (Dai et al., 2016) and se-
mantic image segmentation (Chen et al., 2018). In order to improve the 
ability of the model to learn and recognize reef halo objects, the weights 
of the backbone network were unfrozen during the training process. This 
step allowed the network to modify the weights during the backward 
pass of training, thereby improving the model’s ability to predict a new 
class of objects (i.e., coral reef halos) (LeCun et al., 2015). The model’s 

Table 1 
List of selected AOIs and number of observed halos for each area. Country codes: AUS = Australia, BHS = Bahamas, BLZ = Belize, EGY = Egypt, SAU = Saudi Arabia, 
USA = United States of America (Florida). Mean latitude and longitude are expressed in decimal degrees. Each AOI was assigned to the training or the test set, 
respectively.  

AOI Image ID Mean LAT Mean LON Date (yyyy-mm-dd) Area (km2) No. halos obs. Subset 

AUS01 20201107_025354_ssc9_u0001 23.46287 151.91099 2020-11-07 43.1 10 Test 
BHS01 20190510_152255_ssc4_u0003 22.86968 −75.96340 2019-05-10 101.2 373 Training 
BHS02 20190625_182659_ssc7_u0001 23.71767 −77.48061 2019-06-25 91.4 136 Training 
BHS03 20190309_183114_ssc11_u0001 23.91426 −77.51960 2019-03-09 94.4 275 Training 
BHS04 20190531_182931_ssc6_u0001 25.03904 −76.83888 2019-05-31 83.9 355 Training 
BHS05 20200919_182915_ssc7_u0002 24.78926 −76.84203 2020-09-19 19.1 84 Test 
BHS06 20190626_182402_ssc8_u0003 24.97612 −77.48089 2020-06-26 15.2 52 Test 
BLZ01 20201129_191646_ssc8_u0001 16.84286 −87.82219 2020-11-29 63.8 211 Training 
BLZ02 20201022_191415_ssc6_u0001 17.01935 −88.03578 2020-10-22 96.3 392 Training 
BLZ03 20201022_191415_ssc6_u0002 16.77202 −87.84856 2020-10-22 97.9 371 Test 
BLZ04 20200626_192104_ssc6_u0001 17.20029 −87.54292 2020-06-26 43.2 274 Training 
BLZ05 20200626_192104_ssc6_u0002 17.44689 −87.52561 2020-06-26 36.4 164 Training 
BLZ06 20200627_190037_ssc7_u0001 17.34428 −87.47563 2020-06-27 53.7 291 Training 
BLZ07 20200627_191435_ssc8_u0001 17.50868 −87.67782 2020-06-27 93.8 801 Training 
EGY01 20190413_081243_ssc13d3_0004 27.74041 34.20744 2019-04-13 8.2 29 Training 
EGY02 20190413_081243_ssc13d3_0005 27.74803 34.19379 2019-04-13 10.2 22 Test 
EGY03 20190413_081243_ssc13d3_0006 27.73911 34.19365 2019-04-13 7.4 4 Training 
SAU01 20200202_110140_ssc7_u0001 28.03414 35.03130 2020-02-02 7.8 17 Training 
SAU02 20210627_034355_ssc19_u0001 25.49153 36.75708 2021-06-27 25.1 13 Test 
USA01 20210127_154738_ssc12_u0001 17.24515 −87.54992 2020-10-27 62.5 253 Test  
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learning rate was optimized using PyTorch function torch.optim and set 
to 0.0013, with batch size set to 64, the maximum number of iterations 
set to 10,000, and with early stopping when validation set error stopped 
decreasing to avoid overfitting (Franceschini et al., 2019). 

A SoftMax function was used in the final layer of the network (Gao 
and Pavel, 2018). Thus, the final output of the neural network was 
converted into a normalized probability distribution (0–1), representing 
the probability that an object belonged to the class reef halo. In some 
cases, optimization of the threshold value is needed in order to 
discriminate if an object belongs to a class or not (Lei et al., 2020). In this 
study, the threshold value for reef halos detection was optimized ac-
cording to the performance metrics computed on the test set (section 
2.5). 

2.4. U-net model for halo measurement 

A U-Net convolutional network was performed on the Mask R-CNN 
extracted objects to automatically measure the identified halos. U-Net is 
a neural network designed primarily for image segmentation and pixel 
classification (Ronneberger et al., 2015). U-Net architecture consists of 
two paths. The first one, the contracting path, acts as a regular CNN 
(Albawi et al., 2017) with repeated application of convolutional layers 
and max pooling operations for downsampling (Kattenborn et al., 2021). 
The second path is an expansion path, which consists of up-convolutions 
and concatenations with features from the contracting path. This 
expansion allows the network to learn localized classification informa-
tion and contextualize each pixel’s classification according to its sur-
rounding area (Siddique et al., 2021). 

We applied the U-Net model to classify and predict the area of two 
classes: patch reef and halos. The model’s learning rate was set to 
0.0015, and batch size was set to 64. It was important to keep both 
output classes since, as both DiFiore et al. (2019) and Madin et al. 
(2019a) showed, patch reef geometry is a key determinant of halo size 
and thus should be taken into account when quantifying variation in 
halo size. The final output of the model was pixel assignments to either 
the patch reef or halo class. 

It is important to point out that for the purpose of this final step of the 
model development, we considered “patch reef” as any object within the 
halo sand ring. In fact, the central core of the halo can sometimes be the 
result of a mixture of substances, like reef associated with seagrass or 
macroalgae (Madin et al., 2011; Ogden et al., 1973). This did not affect 
the definition of halo in sensu latu and allowed an optimization of the 
final prediction of the model, which was to differentiate the central 
patch from the halo ring pattern and to measure their areas. For con-
venience, in the following sections, we will refer to the core of the halo 
as “reef” and we acknoweldge that it could be the result of different 
substances, such as the presence of primary producers, dead coral/ 
rubble, or rocks. 

2.5. Performance metrics 

Mask R-CNN model performance was evaluated by computing pre-
cision, recall, and an F1-metric on the test data set. These metrics are 
commonly used for evaluating object detection and instance segmen-
tation model performance (Goodwin et al., 2022; Guirado et al., 2021). 
The threshold value for predicting halo occurrence from test set images 
set was optimized according to these parameters: 

Precision =
True Positives

True Positives+ False Positive (1)  

Recall = True Positives
True Positives+ False Negative (2)  

F1 = 2×Precision× Recall
Precision+ Recall (3) 

An inherent trade-off exists between the number of false positives 
and false negatives, and the F1 metric represents the most effective 
method for selecting the optimal threshold (Zhao et al., 2018). For both 
Mask R-CNN and U-Net model, we selected the dice coefficient (DICE; 
Dice, 1945) as our criteria to evaluate the pixel overlap between the 
prediction and the manually labeled region: 

DICE = 2 | A ∩ B |
|A| + |B| (4) 

Where A is the predicted region and B is the ground truth. DICE is 
analogous theh the F1-measure for estimating pixel overlap. The F1- 
metric and DICE values, therefore, represent the best compromise be-
tween the precision and recall measures of a classifier. Their scores can 
range from 0 to 1, with 1 representing a model that perfectly classifies 
each observation into the correct class and 0 representing a model that is 
unable to classify any observation into the correct class. 

3. Results 

3.1. Mask R-CNN model 

Table 2 shows the precision, recall and F1-measure values of the 
Mask R-CNN model for each AOI and each threshold value. 

As expected, model precision was inversely related to the threshold 
(Fig. 3). When the model is more conservative in assigning the “halo” 

Table 2 
Performance metrics of Mask R-CNN model according to each AOI and threshold 
value.  

AOI Precision Recall F1 Threshold Mean 

AUS01 1.000 0.400 0.571 0.8 Precision = 0.979 
Recall = 0.550 
F1 = 0.661 

BHS05 0.868 0.392 0.540 0.8 
BHS06 1.000 0.076 0.142 0.8 
BLZ03 1.000 0.956 0.978 0.8 
EGY02 1.000 0.590 0.742 0.8 
SAU02 1.000 0.615 0.761 0.8 
USA01 0.985 0.818 0.894 0.8 
AUS01 0.857 0.600 0.705 0.7 Precision = 0.957 

Recall = 0.711 
F1 = 0.794 

BHS05 0.920 0.690 0.789 0.7 
BHS06 1.000 0.269 0.424 0.7 
BLZ03 1.000 0.970 0.984 0.7 
EGY02 0.944 0.772 0.850 0.7 
SAU02 1.000 0.769 0.869 0.7 
USA01 0.978 0.905 0.940 0.7 
AUS01 0.642 0.900 0.750 0.6 Precision = 0.871 

Recall = 0.860 
F1 = 0.857 

BHS05 0.919 0.797 0.853 0.6 
BHS06 0.944 0.653 0.772 0.6 
BLZ03 0.976 0.986 0.981 0.6 
EGY02 0.857 0.818 0.837 0.6 
SAU02 0.800 0.923 0.857 0.6 
USA01 0.959 0.940 0.950 0.6 
AUS01 0.555 1.000 0.714 0.5 Precision ¼ 0.831 

Recall ¼ 0.931 
F1 ¼ 0.870 

BHS05 0.917 0.952 0.935 0.5 
BHS06 0.937 0.865 0.900 0.5 
BLZ03 0.958 1.000 0.978 0.5 
EGY02 0.750 0.818 0.782 0.5 
SAU02 0.750 0.923 0.827 0.5 
USA01 0.945 0.964 0.955 0.5 
AUS01 0.454 1.000 0.625 0.4 Precision = 0.736 

Recall = 0.964 
F1 = 0.824 

BHS05 0.833 0.952 0.888 0.4 
BHS06 0.776 1.000 0.873 0.4 
BLZ03 0.946 1.000 0.972 0.4 
EGY02 0.600 0.818 0.692 0.4 
SAU02 0.619 1.000 0.764 0.4 
USA01 0.925 0.980 0.952 0.4 
AUS01 0.333 1.000 0.500 0.3 Precision = 0.650 

Recall = 0.966 
F1 = 0.761 

BHS05 0.757 0.964 0.848 0.3 
BHS06 0.634 1.000 0.776 0.3 
BLZ03 0.896 1.000 0.945 0.3 
EGY02 0.500 0.818 0.620 0.3 
SAU02 0.541 1.000 0.702 0.3 
USA01 0.889 0.984 0.934 0.3  
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label, the probability of mis-labeling an object as a halo (i.e., false 
positive) decreases. The opposite phenomenon occurs with recall, 
conversely determined by the proportion of false negatives. The optimal 
threshold was then selected according to the mean F1 between all AOIs 
(Fig. 3), and model performance showed a maximum F1 value with a 
threshold of 0.5. While locally-optimal results could be achieved for 
each geographical area by considering each site’s metrics, but such 
models would lack global generalizability, hence all locations were 
pooled. By selecting a 0.5 threshold, our Mask R-CNN model correctly 
identified all the halos for most of the AOI (see recall, Table 2), with a 
range from 80% to 100% of detected objects. 

The median pixel accuracy for the Mask R-CNN model was 79%, with 
a minimum value of 65% for our Bahamas sites and a maximum of 83% 
for our Florida sites. The median DICE value for the Mask R-CNN model 
was 0.731, with a minimum value of 0.698 for our Bahamas sites and a 
maximum of 0.781 for our Belize sites. Table 2 shows the effect of 
confidence thresholding on model performance. Recall values decreased 
for all models with increasing thresholds. In particular, for areas hosting 
a low apparent density of seabed vegetation, the model’s ability to 
correctly identify the shape of the halo resulted in the lowest recall 
values for the higher threshold values (0.7–0.8). In fact, Fig. 4 shows 
how the absence of dense macrophytes in some geographic areas can 
alter the perception of halo edges, making their identification difficult 
even for a human observer. Furthermore, the low number of observed 
halos in AUS01 (Table 1) significantly affected the variance of the per-
formance metrics. The model showed high accuracy (mean F1 = 0.8) in 
Red Sea areas (i.e., EGY02 and SAU02, Table 2), for which the number of 
observed halos in the training set was lower relative to the other AOIs 
(Table 1). 

Most false positive predictions consisted of the identification of 
merged halos (see Fig. 6, section 3.2). Merged halos occur when two or 
more patch reefs share the same sand ring pattern because of their 
proximity (Fig. 4D). From a conceptual point of view, halos were 
correctly identified; however, we considered merged halo identification 
an error because we did not include merged halos in our training dataset 
and because the overlap between halos prevents explicit measurement 
of individual halo size, rendering these estimates inaccurate. No sig-
nificant relationship was observed between the mean depth of the halos 
(S1) and the performance of the Mask R-CNN model across the different 

regions. 

3.2. U-net model and halo measurement 

Reef halos extracted by the Mask-RCNN were used as input for pre-
diction by the pixel classification model. Our U-Net model showed a 
median pixel accuracy values of 82% and 77% for reef and halo classes, 
respectively. The median DICE value was equal to 0.823, with a mini-
mum of 0.789 for the AUS01 AOI and a maximum of 0.851 for the 
USA01 AOI. Fig. 5 and Fig. 6 show the final output of the deep learning 
model in different sample areas of the test set. Mean reflectance spectra 
of the central reef patch and the halos are provided in Fig. S2. 

In particular, Fig. 6 provides further detail on the model’s perfor-
mance in identifying halos when they are isolated versus when they are 
merged. As described above, merged halos were not taken into account 
in this study given the difficulty of estimating halo sizes around indi-
vidual reefs. 

The integration of our method in ArcGIS Pro allowed us to retain the 
geographic information and the size of each object, thereby automating 
the area computation (Fig. 7). “Halo” and “reef” areas were computed 
only for the Mask R-CNN true positive halos. 

The Australia AOI showed the smallest mean areas for both patch 
reef and halos, respectively (Fig. 7A) (patch reef: mean = 101.2 m2, sd =
55.1; halos: mean = 356.5 m2, sd = 188.5)The Bahamas and Florida 
AOIs tended to have larger average patch reefs and halos (patch reef: 
mean = 625.5 m2, sd = 610.9 for Bahamas AOI; halos: mean = 1411.7 
m2, sd = 888.3 for Florida AOI). For all AOIs, the mean individual halo 
area was greater than the mean patch reef area, which matched what we 
observed during the labeling process. In particular, the Red Sea regions 
are characterized by large halos surrounding relatively small patch 
reefs. 

4. Discussion 

This paper presents a deep learning method to automatically identify 
and measure coral reef halos from multispectral satellite images. Given 
the potential that grazing halos have shown in monitoring the health 
status of reef ecosystems via large-scale ‘footprints’ of ecological in-
teractions (Madin et al., 2019a), it is necessary to automate and optimize 

Fig. 3. Mean values of model precision (green), recall (pink) and F1-metric (blue) computed on test set AOIs. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.) 
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their identification in order to reveal spatial and temporal changes over 
reef systems globally. Manually annotating halos is extremely time- and 
labor-intensive. Our deep learning approach can identify and measure 
roughly 300 halos over an area of 100km2 in ~2 min with very high 
accuracy (F1 = 0.978), whereas the same task requires approximately 

10 h for a human annotator to accomplish. 
The best model was selected by manually setting different threshold 

values and comparing F1 scores. In a global model perspective, the use 
of an ROC curve (Gonçalves et al., 2014) would have led to the similar 
result, but, in this instance, our goal was to compute the performance of 

Fig. 4. Examples of reef halos in different geographic areas. A) AUS01, B) BHS06, C) BLZ03 and D) USA01. The density of macrophytes on the seabed clearly affects 
the perception of halo edges, resulting different levels of accuracy by the Mask R-CNN among geographic areas (Table 2). 

S. Franceschini et al.                                                                                                                                                                                                                           



Remote Sensing of Environment 292 (2023) 113584

8

the model in each geographic region based upon the value of the global 
threshold in order to visually demonstrate how model accuracy varies 
across regions. Accuracy values for halo prediction were higher in the 
Atlantic Ocean (e.g., Belize and Florida). These locations had higher 
numbers of halos than other areas. This result may have been due in part 
to the the relatively high densities of seagrass/algae on the seabed in 
these areas, which increases the contrast of halo boundaries (i.e., the 
sand/macrophyte boundary; Fig. 4C,D) and therefore the ability of the 
model to correctly identify the halos. Nevertheless, even with lower 
values (of what?), our model demonstrated high levels of accuracy in 
detecting halos in geographic areas where seagrass/algae cover was 
more sparse (e.g., Australia; Figs. 4A, 5C). The seagrass/algae density is 
obviously a key factor in determining the continuity and contrast of halo 
contours, altering the perception of the halo boundary even for a human 

observer. Despite this limiting factor, our model correctly predicted the 
presence of halos with a precision of 55% for Australia and 70% for the 
Red Sea. In the future, we plan to increase the training dataset for these 
and other areas to reach the same sample size as we had for the Atlantic 
Ocean. As expected, macrophytes density also affected pixel classifica-
tion, with the lowest DICE value of 0.789 for Australia (Fig. 5C). 
Nevertheless, the model performance in estimating the area of patch reef 
and halo classes was very close to that of a human observer, as the mean 
overlap between observed and predicted area was 0.823 for the deep 
learning model, and it was 0.840 between the halos labeled by different 
users in the quality control phase. 

Fig. 5 shows the final output of the deep learning model in three 
sample locations (i.e., Belize, Bahamas, and Australia). Although the 
benthic characteristics of the seabed appear different as the density and 

Fig. 5. An illustration of the model output in different AOIs. As a satellite image is processed (left side), the Mask R-CNN model model identifies the halos and U-Net 
model classifies pixel according to the “reef” (black) and “halo” (pink) classes (right side). Each panel shows a zoomed-in (subset) area of different test set AOIs: A) 
BLZ02, B) BHS03 and C) AUS01. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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composition of the primary producers varies across the different areas, 
the model distinguishes the unique ring shape of the halo (“pink” color) 
from the background. In particular, Fig. 5 shows that the instance seg-
mentation model can identify the characteristic ring shape around the 
patch reef regardless of the nature of the primary producer, which is 
known to vary across geographical areas. The performance of the model 
is most heavily affected by the density of the primary producers on the 
seabed, which limits the ability of the algorithm to identify halo 
boundaries. One of the qualities that renders the Mask R-CNN an effi-
cient object detector of halos is that it bases its prediction not only on the 
color bands of the object with respect to the background, but also on its 
size and its shape. This enables the model to function in a variety of 
geographical areas where halos may occur in (even rather sparse) 
macroalgae, seagrass or other macrophytes. The primary objective in 

developing this tool was to automate the measurement of halos and 
determine their area relative to their central patch reefs, regardless of 
the primary producer surrounding the shape of the halo, and the fact 
that our model can overcome this limitation renders it broadly useful for 
locations around the world with widely different dominant macrophyts. 

Our model also tends to exclude very large patch reefs (Fig. 5A, 
Belize), as these tend to approach the size of smaller islands (radius >
0.5 km). This is not necessarily a shortcoming of the model since, 
although halos can assume a range of sizes (e.g., up to ~90 m width) 
(Downie et al., 2013), the literature suggests that most are in the range 
of tens of meters in width (Madin et al., 2022). 

As mentioned above, we intentionally excluded merged (i.e., over-
lapping) halos from our model development, given the uncertainity 
when estimating the reef:halo area ratio for such halos. As a result, the 

Fig. 6. A. Model prediction in the USA01 area. The model predicts single halos with high accuracy (B) (F1 = 0.955), while it tends to exclude most merged halos (C).  
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Mask R-CNN model tends to exclude merged halos (Fig. 6B,C). Although 
this represents a limitation in terms of prediction of the number of halos 
in a given location, it allows the model to obtain more accurate estimates 
of the average size of halos across time and space. Inclusion of merged 
halos would have biased the model’s estimates of the ratio of reef to halo 
area (Fig. 7), as it was not possible to discern with precision what con-
stitutes an individual reef’s halo. This would have undermined one of 
our main objectives of the work, namely to provide the basis for a tool to 
monitor the presence and average size of halos over space and time. 

As patch reefs increase in size, larger halos are more likely to occur 
(Fig. 7B). This result is in agreement with Madin et al.’s (2019a) findings 
for the Great Barrier Reef and suggests that the same pattern terns to 
hold across geographic regions globally. As the patch reef area: 

perimeter ratio increases, more herbivores are expected to forage along 
a functionally smaller perimeter, resulting in wider halos due to the 
increased impact of higher herbivore foraging density (DiFiore et al., 
2019; Madin et al., 2019b). Fig. 2A shows that patch rees and halo sizes 
vary greatly by geographical area. Although investigating the relation-
ships between the size of halos and geographic variables was outside the 
scope of this work, we did explore the relationship between halo size and 
latitude, but we found no clear relationship. Given the wide geograph-
ical range and large climatic differences among our AOIs, it is plausible 
to assume that many factors may affect the size of the halos globally, 
such as the growth rates of the dominant species of seagrass/algae, the 
size structure of the fish and invertebrate community, and the physical 
and chemical characteristics of each region (e.g., hydrodynamics and 

Fig. 7. A) Box plots of model-predicted “reef” and “halo” areas for each AOI. B) Scatter plot showing the (log-transformed) relationship between reef and halo areas 
over all AOIs. 

S. Franceschini et al.                                                                                                                                                                                                                           



Remote Sensing of Environment 292 (2023) 113584

11

nutrient regimes). Each of these factors remain speculative, but they 
emphasize how our deep learning model can be used in the future to 
untangle the relationships between halo occurrence and size and 
ecological, environmental and/or anthropogenic variables. 

Our model framework was trained and optimized using high- 
resolution images (~0.6 m), thus using satellite images with a lower 
resolution as input (i.e. > 2.0 m) could lead to an underestimate of 
objects because halo boundaries necessarily become less pronounced at 
lower pixel sizes. Future iterations of the model will include other spatial 
resolution imagery as inputs to extend and test the model’s applicability 
to coarser (and generally less expensive) satellite imagery. Mask R-CNN 
models generally require a large amount of training data to learn pattern 
characteristics and perform segmentation, yet our deep learning model 
started to show a good predictive performance with a minimum number 
of ~1000 halos – a possible result of the unique nature of halos relative 
to their background. Our model is freely available, and its integration 
into ArcGIS as a user-friendly platform provides easy access to other 
researchers and organizations working in coral reef conservation. This 
tool serves as a point of departure to quickly identify and measure 
changes in halos across space and time at a global scale, supporting 
future studies to further understand the underlying mechanisms behind 
the creation of halos and to potentially increase their use them as in-
dicators of key ecological processes, such as herbivory and predation, 
that are crucial factors for the health of coral reef ecosystems. 
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