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ARTICLE INFO ABSTRACT

Edited by Menghua Wang Reef halos are rings of bare sand that surround coral reef patches. Halo formation is likely to be the indirectly
result of interactions between relatively healthy predator and herbivore populations. To reduce the risk of
predation, herbivores preferentially graze close to the safety of the reef, potentially affecting the presence and
size of the halo. Reef halos are readily visible in remotely sensed imagery, and monitoring their presence and
changes in size may therefore offer clues as to how predator and herbivore populations are faring. However,
manually identifying and measuring halos is slow and limits the spatial and temporal scope of studies. There are
currently no existing tools to automatically identify single reef halos and measure their size to speed up their
identification and improve our ability to quantify their variability over space and time. Here we present a set of
convolutional neural networks aimed at identifying and measuring reef halos from very high-resolution satellite
imagery (i.e., ~0.6 m spatial resolution). We show that deep learning algorithms can successfully detect and
measure reef halos with a high degree of accuracy (F1 = 0.824), thereby enabling faster, more accurate spatio-
temporal monitoring of halo size. This tool will aid in the global study of reef halos, and potentially coral reef
ecosystem monitoring, by facilitating our discovery of the ecological dynamics underlying reef halo presence and
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variability.

1. Introduction

Ecological systems are often characterized by conspicuous patterns
resulting from complex interactions between biotic and abiotic variables
(Tarnita et al., 2017). In recent decades, the development of remote
sensing technologies and aerial surveys has allowed scientists to high-
light and describe an increasing number of these patterns in several
different ecosystem types, such as species vegetation patterns in semi-
arid ecosystems (Barbier et al., 2006) and desert fairy circles (Juer-
gens, 2013). One striking example of such regular spatial patterns are
reef halos (also known as grazing halos). Reef halos consist of ring-like
patterns of bare sand that occur around coral patch reefs (i.e., reefs
spatially separated from other reefs by expanses of sand or other sub-
strates) in a variety of primary producer habitats (e.g., benthic macro-
algae; seagrass, etc.) and their presence is readily visible from satellite
images (Madin et al., 2011).

Reef halos (hereafter halos) were first reported in the 1960s in the
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Caribbean Sea (Ogden et al., 1973; Randall, 1965), and they were later
observed in several geographic areas, such as Australia’s Great Barrier
Reef, the Atlantic Ocean, and the Red Sea (Madin et al., 2011). Many
hypotheses for halo patterns have been proposed, such as nutrient
availability (Alevizon, 2002), bioturbation (Bilodeau et al., 2021), and
foraging behavior through indirect fear effects (Madin et al., 2019b).
However, predation risk is a widely attributed explanation for the cre-
ation and maintenance of halos. It is believed that predators control not
only the abundance of herbivores, but also their foraging behavior,
which is driven in part by a perception of risk. In the case of reef halos,
predation risk constrains the foraging activity of grazing species near a
central shelter, so that overall herbivory declines with increasing dis-
tance from patch reefs, in turn creating a sand ring pattern that is a
spatially-explicit indicator of herbivory intensity (DiFiore et al., 2019;
Madin et al., 2011). However, this pattern is expected to change when
reef communities are overfished. For example, overfishing of top pred-
ators is thought to reduce the overall predation risk imposed on
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herbivores and may, in turn, lead to a lack of halo formation (Madin
et al., 2019a) or may expand the width of halos (but see Madin et al.,
2019a). Alternatively, if fishing is concentrated on herbivores, halos
may not be expected to form at all. If one or more of these expectations
are true, halos may present a unique opportunity to quickly and inex-
pensively monitor fish community structure for a given geographical
area.

Halos can therefore be considered highly visible seascape-scale
footprints of herbivory, ecological interactions, and ecosystem pro-
cesses which, because of their large spatial scale, can be observed and
measured from satellite imagery. Madin et al. (2019a) measured halos
using freely available satellite images and compared fished versus un-
fished (fully protected) coral reefs over thousands of km of coastline
in Australia. Meanwhile, DiFiore et al. (2019) and Madin et al. (2019b)
linked herbivore behavior with halo patterns at local scales by merging
satellite imagery observations with in-situ and remote camera-based fish
surveys, respectively. Combining field studies with remote sensing ob-
servations has proven highly useful in understanding halo occurrence
and formation. Moreover, developing freely available remote sensing
tools to monitor ecological processes over large scales is an important
step in improving the management and conservation of coral reef eco-
systems (Hedley et al., 2016), and reef halos may represent an emerging
opportunity to monitor reef ecosystems’ function at large scales,
including in otherwise inaccessible areas. There are currently no tools to
automatically detect and measure halos from satellite images. The
process of manually annotating halos from satellite imagery is also slow
and limits the scale over which such monitoring could be applied (Madin
et al., 2019a, 2019b, 2011).

In recent years, deep learning and computer vision techniques have
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been increasingly used in ecological studies (Christin et al., 2019). In
particular, due to the increasing availability of high-resolution remotely
sensed imagery, convolutional neural networks (CNNs; Albawi et al.,
2017) have become a powerful tool for remote sensing studies
(Gonzalez-Rivero et al., 2020; Lei et al., 2020) and large-scale ecosystem
analysis (Brodrick et al., 2019). For example, in the context of coral reef
ecosystem monitoring and conservation, CNNs outperformed previous
texture-based models (e.g., support vector machines, random forests) by
providing more accurate results in remote sensing classification (Wan
and Ma, 2020), object detection (Song et al., 2019), and semantic seg-
mentation (King et al., 2018).

Here we present a deep learning method consisting of a mask region-
based convolutional neural network (Mask R-CNN; He et al., 2018) and a
U-Net model (Isensee et al., 2018) that are able to identify and measure
reef halos from high-resolution (sub-meter pixel size) satellite imagery.
We selected different geographical areas where halo occurrence has
been reported, and, through the use of Planet SkySat images, we trained
and tested a deep learning framework that can detect halo presence
globally and measure their size. Our goal was to develop a tool to enable
faster, automated, halo detection and measurement from satellite im-
agery to pave the way for developing a low-cost, globally-applicable
coral reef conservation tool.

2. Materials and methods
2.1. Study areas and dataset

Our study area included 20 areas of interest (AOI) from 6 countries
(Fig. 1). Geographical areas were selected based on the occurrence of
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Fig. 1. A) Overview of the study regions. Number of unique AOIs per country: Australia =1, Bahamas = 6, Belize = 7, Egypt = 3, Saudi Arabia = 2, USA (Florida) =
1. Detailed information for each AOI is reported in Table 1, section 2.3. B) Example of SkySat satellite image containing halos from the Bahamas. C) Zoomed example
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halos known from previous studies (Downie et al., 2013; Madin et al.,
2019a; Ogden et al., 1973; Randall, 1965) and by exploring areas with a
potential occurrence of halos using Google Earth Pro. Four-band (Blue:
450-515 nm, Green: 515-595 nm, Red: 605-695 nm, NIR: 740-900 nm)
SkySat satellite images were acquired through Planet Inc. (Planet Team,
2017) Planet Explorer Catalogue. Obtained as a SkySat Collect product,
each image was roughly 20 km x 5.9 km, with a spatial resolution
ranging between 0.5 m and 0.8 m. All surface reflectance products are
orthorectified using fine digital elevation maps (30-90 m posting) and
ground control points. Planet conducts atmospheric correction with the
6SV2.1 radiative transfer model which accounts for atmospheric ab-
sorption and scattering (Vermote et al., 2006), with aerosol optical
depth, water, vapor and ozone inputs from MODIS near-real-time data
(MODO09CMA and MOD09CMG). All calculations were done in R (R Core
Team, 2022).
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2.2. Deep learning model workflow overview

Our ultimate goal was to develop a tool that could identify reef halos
from multispectral satellite images and automate their measurement. To
achieve this goal, we developed and merged two different types of CNNs,
a Mask R-CNN and U-Net model (described in detail below).

First, we labeled all non-overlapping halos present in the AOIs
(Fig. 2, step 1), resulting in 4127 manually annotated halos. Merged
objects were excluded from the training process since, where two reefs
share some portion of a halo, it is extremely difficult to discriminate
which sand area belongs to one or the other patch reef, thereby leading
to an inaccurate estimate of its halo’s size. Comparisons of halo sizes
among locations was one of the goals of this study, thus excluding
merged halos was necessary to generate accurate conclusions. Halos
were labeled using ArcGIS software (version 2.9.1), allowing the geo-
referenced information for all objects to be retained. To avoid biases

Reef halos
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Fig. 2. Graphical summary of the deep learning model development. 1) Remote sensing data acquisition: halos have been manually labeled in ArcGIS Pro and then
divided into training and test sets. 2) Mask R-CNN model development for reef halos identification. 3) U-Net model development for computing “reef” and “halo”
areas (A, and Ay, respectively). 4) Prediction on test set samples and computation of performance metrics.



S. Franceschini et al.

due to a single user’s perception of halos size, five users were trained in
the same labeling procedure — zooming into each halo at a 1:600 scale
and tracing light contours with a mouse — and labeled the same areas of
interest (AOIs). Results were compared, demonstrating an 84% area
overlap between users’ halo area annotations, and a Wilcoxon test
showed non-significant differences in halo size among the five users (p-
value = 0.73). We also assessed the depth of halo areas; Table S1 reports
the mean values of halo depths across different geographic regions.

The dataset generated from the imagery annotation was divided into
training and test sets (~70% and ~ 30%, respectively). The training set
was used for model implementation and optimization, while the test set
was used for comparing model-predicted vs. manually-annotated halos.
In addition, we selected independent areas (i.e., AOIs where no halos
were used for the training process) for the test set (Table 1; section 2.3)
to better estimate the model generalization properties (Franceschini
et al., 2018).

The second step of this work was to train the Mask R-CNN model
(Fig. 2, step 2) using the training data set, thereby automatizing the
identification of reef halos from the test set of satellite images and
extracting the shape of the reef halos from the imagery background (i.e.,
extracting both the patch reef and its surrounding halo). The Mask R-
CNN was trained with 3322 reef halos from 13 AOIs, while the
remaining 805 halos from seven AOIs were kept to evaluate the model’s
performance (Table 1). After object extraction, we automated halo
measurement using a U-Net pixel classification model (Fig. 2, step 3)
which discriminated the halo (sand ring) from the interior reef patch. A
total of 6428 annotations from the training set were used for model
training. Annotations consisted of pixel areas manually classified by
users, divided into “patch reef” and “halo” classes, respectively. Lastly,
we compared the CNN’s predictions and measurements to the observed
values from the manually-generated test set (Fig. 2, step 4).

Satellite images were processed in one batch rather than individually
by location. This approach can be more efficient in terms of processing
time and computational resources, as the model can perform the
necessary computations for multiple images simultaneously. Addition-
ally, the model can learn from a larger and more diverse dataset,
potentially improving its accuracy and ability to generalize to new data.
Several metrics were taken into account in order to validate model ac-
curacy on independent observations (described below, section 2.5).

Both the Mask R-CNN and U-Net models were developed using
Tensorflow (ver. 2.5.1) (Abadi et al., 2016), Keras (ver. 2.4.3), and
PyTorch (ver. 1.8.2) libraries in Python 3.9 and ArcGIS 2.9.1. The

Table 1
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machine running the deep learning model had an Intel® Core™ i9-
9900K CPU @3.60 GHz processor with 128 GB of installed RAM and a
PNY NVIDIA Quadro A6000 GPU.

2.3. Mask R-CNN model for halo segmentation

To identify the edges of the reef halos, we applied the computer
vision technique of instance segmentation (Watanabe and Wolf, 2019).
This method consists of a set of supervised learning algorithms that
assign a label for each pixel by considering other nearby objects and the
background, thereby identifying the object’s boundaries. The Mask R-
CNN segmentation model (He et al., 2018) is one of the most advanced
instance segmentation techniques available to date and predicts a
segmented region in parallel with bounding box recognition (Ren et al.,
2015). The Mask R-CNN architecture consists of two different networks:
the backbone and the region proposal network. These networks run once
per image to give a set of region proposals containing the object. Spe-
cifically, our Mask R-CNN computes three outputs for each predicted
object: (i) a class label, (ii) a bounding box that delimits the object, and
(iii) a mask that distinguishes pixels belonging to the object from those
to the background. For a more detailed description of the Mask R-CNN
model structure see He et al. (2018). The rationale behind the use of an
instance segmentation model like the Mask R-CNN is that the deep
learning algorithm can not only recognize the color pattern of halos from
multispectral informatation, but it can also determine the shape of the
object based on the surrounding pattern and the background. In this
case, the model only recognized a halo when it had the characteristic
ring shape around a reef which was then surrounded by algae/seagrass
beyond the outer edge of the halo.

In this study, we used the Residual Network 34 (ResNet34) backbone
network for our Mask R-CNN (He et al., 2016; Wu et al., 2019).
ResNet34 consists of a 34-layered network that has been pre-trained
with millions of labeled, high-resolution images belonging to the
ImageNet global dataset (Deng et al., 2009). In recent years, ResNet34
has outperformed previous models in a variety of tasks, providing ac-
curate predictions for both object detection (Dai et al., 2016) and se-
mantic image segmentation (Chen et al., 2018). In order to improve the
ability of the model to learn and recognize reef halo objects, the weights
of the backbone network were unfrozen during the training process. This
step allowed the network to modify the weights during the backward
pass of training, thereby improving the model’s ability to predict a new
class of objects (i.e., coral reef halos) (LeCun et al., 2015). The model’s

List of selected AOIs and number of observed halos for each area. Country codes: AUS = Australia, BHS = Bahamas, BLZ = Belize, EGY = Egypt, SAU = Saudi Arabia,
USA = United States of America (Florida). Mean latitude and longitude are expressed in decimal degrees. Each AOI was assigned to the training or the test set,

respectively.

AOI Image ID Mean LAT Mean LON Date (yyyy-mm-dd) Area (km?) No. halos obs. Subset
AUS01 20201107_025354_ssc9_u0001 23.46287 151.91099 2020-11-07 43.1 10 Test
BHS01 20190510_152255_ssc4_u0003 22.86968 —75.96340 2019-05-10 101.2 373 Training
BHS02 20190625_182659_ssc7_u0001 23.71767 —77.48061 2019-06-25 91.4 136 Training
BHS03 20190309_183114_ssc11_u0001 23.91426 —77.51960 2019-03-09 94.4 275 Training
BHS04 20190531_182931_ssc6_u0001 25.03904 —76.83888 2019-05-31 83.9 355 Training
BHS05 20200919_182915_ssc7_u0002 24.78926 —76.84203 2020-09-19 19.1 84 Test
BHS06 20190626_182402_ssc8_u0003 24.97612 —77.48089 2020-06-26 15.2 52 Test
BLZ01 20201129.191646_ssc8_u0001 16.84286 —87.82219 2020-11-29 63.8 211 Training
BLZ02 20201022_191415_ssc6_u0001 17.01935 —88.03578 2020-10-22 96.3 392 Training
BLZ03 20201022_191415_ssc6_u0002 16.77202 —87.84856 2020-10-22 97.9 371 Test
BLZ04 20200626_192104_ssc6_u0001 17.20029 —87.54292 2020-06-26 43.2 274 Training
BLZ05 20200626_192104_ssc6_u0002 17.44689 —87.52561 2020-06-26 36.4 164 Training
BLZ06 20200627_190037_ssc7_u0001 17.34428 —87.47563 2020-06-27 53.7 291 Training
BLZ07 20200627_191435_ssc8_u0001 17.50868 —87.67782 2020-06-27 93.8 801 Training
EGYO1 20190413_081243_ssc13d3_0004 27.74041 34.20744 2019-04-13 8.2 29 Training
EGYO02 20190413_081243_ssc13d3_0005 27.74803 34.19379 2019-04-13 10.2 22 Test
EGY03 20190413_081243_ssc13d3_0006 27.73911 34.19365 2019-04-13 7.4 4 Training
SAUO1 20200202_110140_ssc7_u0001 28.03414 35.03130 2020-02-02 7.8 17 Training
SAUO02 20210627_034355_ssc19_u0001 25.49153 36.75708 2021-06-27 25.1 13 Test
USAO01 20210127_154738_ssc12_u0001 17.24515 —87.54992 2020-10-27 62.5 253 Test
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learning rate was optimized using PyTorch function torch.optim and set
to 0.0013, with batch size set to 64, the maximum number of iterations
set to 10,000, and with early stopping when validation set error stopped
decreasing to avoid overfitting (Franceschini et al., 2019).

A SoftMax function was used in the final layer of the network (Gao
and Pavel, 2018). Thus, the final output of the neural network was
converted into a normalized probability distribution (0-1), representing
the probability that an object belonged to the class reef halo. In some
cases, optimization of the threshold value is needed in order to
discriminate if an object belongs to a class or not (Lei et al., 2020). In this
study, the threshold value for reef halos detection was optimized ac-
cording to the performance metrics computed on the test set (section
2.5).

2.4. U-net model for halo measurement

A U-Net convolutional network was performed on the Mask R-CNN
extracted objects to automatically measure the identified halos. U-Net is
a neural network designed primarily for image segmentation and pixel
classification (Ronneberger et al., 2015). U-Net architecture consists of
two paths. The first one, the contracting path, acts as a regular CNN
(Albawi et al., 2017) with repeated application of convolutional layers
and max pooling operations for downsampling (Kattenborn et al., 2021).
The second path is an expansion path, which consists of up-convolutions
and concatenations with features from the contracting path. This
expansion allows the network to learn localized classification informa-
tion and contextualize each pixel’s classification according to its sur-
rounding area (Siddique et al., 2021).

We applied the U-Net model to classify and predict the area of two
classes: patch reef and halos. The model’s learning rate was set to
0.0015, and batch size was set to 64. It was important to keep both
output classes since, as both DiFiore et al. (2019) and Madin et al.
(2019a) showed, patch reef geometry is a key determinant of halo size
and thus should be taken into account when quantifying variation in
halo size. The final output of the model was pixel assignments to either
the patch reef or halo class.

It is important to point out that for the purpose of this final step of the
model development, we considered “patch reef” as any object within the
halo sand ring. In fact, the central core of the halo can sometimes be the
result of a mixture of substances, like reef associated with seagrass or
macroalgae (Madin et al., 2011; Ogden et al., 1973). This did not affect
the definition of halo in sensu latu and allowed an optimization of the
final prediction of the model, which was to differentiate the central
patch from the halo ring pattern and to measure their areas. For con-
venience, in the following sections, we will refer to the core of the halo
as “reef” and we acknoweldge that it could be the result of different
substances, such as the presence of primary producers, dead coral/
rubble, or rocks.

2.5. Performance metrics

Mask R-CNN model performance was evaluated by computing pre-
cision, recall, and an Fl-metric on the test data set. These metrics are
commonly used for evaluating object detection and instance segmen-
tation model performance (Goodwin et al., 2022; Guirado et al., 2021).
The threshold value for predicting halo occurrence from test set images
set was optimized according to these parameters:

True Positives

Precision = 1
True Positives + False Positive W

True Positives
Recall = — - 2
True Positives + False Negative

Precision x Recall
Fl=2X—————— 3
x Precision + Recall 3
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An inherent trade-off exists between the number of false positives
and false negatives, and the F1 metric represents the most effective
method for selecting the optimal threshold (Zhao et al., 2018). For both
Mask R-CNN and U-Net model, we selected the dice coefficient (DICE;
Dice, 1945) as our criteria to evaluate the pixel overlap between the
prediction and the manually labeled region:

2|ANB|

DICE =
Al + 18|

@

Where A is the predicted region and B is the ground truth. DICE is
analogous theh the Fl-measure for estimating pixel overlap. The F1-
metric and DICE values, therefore, represent the best compromise be-
tween the precision and recall measures of a classifier. Their scores can
range from O to 1, with 1 representing a model that perfectly classifies
each observation into the correct class and 0 representing a model that is
unable to classify any observation into the correct class.

3. Results
3.1. Mask R-CNN model

Table 2 shows the precision, recall and Fl-measure values of the
Mask R-CNN model for each AOI and each threshold value.

As expected, model precision was inversely related to the threshold
(Fig. 3). When the model is more conservative in assigning the “halo”

Table 2
Performance metrics of Mask R-CNN model according to each AOI and threshold
value.

AOI Precision Recall F1 Threshold Mean

AUSO01 1.000 0.400 0.571 0.8 Precision = 0.979
BHS05 0.868 0.392 0.540 0.8 Recall = 0.550
BHS06 1.000 0.076 0.142 0.8 F1 = 0.661
BLZ03 1.000 0.956 0.978 0.8

EGY02 1.000 0.590 0.742 0.8

SAUO02 1.000 0.615 0.761 0.8

USAO01 0.985 0.818 0.894 0.8

AUS01 0.857 0.600 0.705 0.7 Precision = 0.957
BHS05 0.920 0.690 0.789 0.7 Recall = 0.711
BHS06 1.000 0.269 0.424 0.7 F1 =0.794
BLZ03 1.000 0.970 0.984 0.7

EGY02 0.944 0.772 0.850 0.7

SAUO02 1.000 0.769 0.869 0.7

USA01 0.978 0.905 0.940 0.7

AUS01 0.642 0.900 0.750 0.6 Precision = 0.871
BHS05 0.919 0.797 0.853 0.6 Recall = 0.860
BHS06 0.944 0.653 0.772 0.6 F1 = 0.857
BLZ03 0.976 0.986 0.981 0.6

EGY02 0.857 0.818 0.837 0.6

SAUO02 0.800 0.923 0.857 0.6

USA01 0.959 0.940 0.950 0.6

AUS01 0.555 1.000 0.714 0.5 Precision = 0.831
BHSO05 0.917 0.952 0.935 0.5 Recall = 0.931
BHS06 0.937 0.865 0.900 0.5 F1 = 0.870
BLZ03 0.958 1.000 0.978 0.5

EGY02 0.750 0.818 0.782 0.5

SAUO02 0.750 0.923 0.827 0.5

USA01 0.945 0.964 0.955 0.5

AUS01 0.454 1.000 0.625 0.4 Precision = 0.736
BHSO05 0.833 0.952 0.888 0.4 Recall = 0.964
BHS06 0.776 1.000 0.873 0.4 F1 =0.824
BLZ03 0.946 1.000 0.972 0.4

EGY02 0.600 0.818 0.692 0.4

SAU02 0.619 1.000 0.764 0.4

USAO01 0.925 0.980 0.952 0.4

AUSO01 0.333 1.000 0.500 0.3 Precision = 0.650
BHS05 0.757 0.964 0.848 0.3 Recall = 0.966
BHS06 0.634 1.000 0.776 0.3 F1 =0.761
BLZ03 0.896 1.000 0.945 0.3

EGY02 0.500 0.818 0.620 0.3

SAUO02 0.541 1.000 0.702 0.3

USAO01 0.889 0.984 0.934 0.3
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Fig. 3. Mean values of model precision (green), recall (pink) and F1-metric (blue) computed on test set AOIs. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)

label, the probability of mis-labeling an object as a halo (i.e., false
positive) decreases. The opposite phenomenon occurs with recall,
conversely determined by the proportion of false negatives. The optimal
threshold was then selected according to the mean F1 between all AOIs
(Fig. 3), and model performance showed a maximum F1 value with a
threshold of 0.5. While locally-optimal results could be achieved for
each geographical area by considering each site’s metrics, but such
models would lack global generalizability, hence all locations were
pooled. By selecting a 0.5 threshold, our Mask R-CNN model correctly
identified all the halos for most of the AOI (see recall, Table 2), with a
range from 80% to 100% of detected objects.

The median pixel accuracy for the Mask R-CNN model was 79%, with
a minimum value of 65% for our Bahamas sites and a maximum of 83%
for our Florida sites. The median DICE value for the Mask R-CNN model
was 0.731, with a minimum value of 0.698 for our Bahamas sites and a
maximum of 0.781 for our Belize sites. Table 2 shows the effect of
confidence thresholding on model performance. Recall values decreased
for all models with increasing thresholds. In particular, for areas hosting
a low apparent density of seabed vegetation, the model’s ability to
correctly identify the shape of the halo resulted in the lowest recall
values for the higher threshold values (0.7-0.8). In fact, Fig. 4 shows
how the absence of dense macrophytes in some geographic areas can
alter the perception of halo edges, making their identification difficult
even for a human observer. Furthermore, the low number of observed
halos in AUSO1 (Table 1) significantly affected the variance of the per-
formance metrics. The model showed high accuracy (mean F1 = 0.8) in
Red Sea areas (i.e., EGY02 and SAU02, Table 2), for which the number of
observed halos in the training set was lower relative to the other AOIs
(Table 1).

Most false positive predictions consisted of the identification of
merged halos (see Fig. 6, section 3.2). Merged halos occur when two or
more patch reefs share the same sand ring pattern because of their
proximity (Fig. 4D). From a conceptual point of view, halos were
correctly identified; however, we considered merged halo identification
an error because we did not include merged halos in our training dataset
and because the overlap between halos prevents explicit measurement
of individual halo size, rendering these estimates inaccurate. No sig-
nificant relationship was observed between the mean depth of the halos
(S1) and the performance of the Mask R-CNN model across the different

regions.

3.2. U-net model and halo measurement

Reef halos extracted by the Mask-RCNN were used as input for pre-
diction by the pixel classification model. Our U-Net model showed a
median pixel accuracy values of 82% and 77% for reef and halo classes,
respectively. The median DICE value was equal to 0.823, with a mini-
mum of 0.789 for the AUSO1 AOI and a maximum of 0.851 for the
USAO1 AOL Fig. 5 and Fig. 6 show the final output of the deep learning
model in different sample areas of the test set. Mean reflectance spectra
of the central reef patch and the halos are provided in Fig. S2.

In particular, Fig. 6 provides further detail on the model’s perfor-
mance in identifying halos when they are isolated versus when they are
merged. As described above, merged halos were not taken into account
in this study given the difficulty of estimating halo sizes around indi-
vidual reefs.

The integration of our method in ArcGIS Pro allowed us to retain the
geographic information and the size of each object, thereby automating
the area computation (Fig. 7). “Halo” and “reef” areas were computed
only for the Mask R-CNN true positive halos.

The Australia AOI showed the smallest mean areas for both patch
reef and halos, respectively (Fig. 7A) (patch reef: mean = 101.2 mz, sd =
55.1; halos: mean = 356.5 m?, sd = 188.5)The Bahamas and Florida
AOIs tended to have larger average patch reefs and halos (patch reef:
mean = 625.5 m?, sd = 610.9 for Bahamas AOIL halos: mean = 1411.7
m?, sd = 888.3 for Florida AOI). For all AOIs, the mean individual halo
area was greater than the mean patch reef area, which matched what we
observed during the labeling process. In particular, the Red Sea regions
are characterized by large halos surrounding relatively small patch
reefs.

4. Discussion

This paper presents a deep learning method to automatically identify
and measure coral reef halos from multispectral satellite images. Given
the potential that grazing halos have shown in monitoring the health
status of reef ecosystems via large-scale ‘footprints’ of ecological in-
teractions (Madin et al., 2019a), it is necessary to automate and optimize
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Fig. 4. Examples of reef halos in different geographic areas. A) AUSO1, B) BHS06, C) BLZ03 and D) USAO1. The density of macrophytes on the seabed clearly affects
the perception of halo edges, resulting different levels of accuracy by the Mask R-CNN among geographic areas (Table 2).

their identification in order to reveal spatial and temporal changes over
reef systems globally. Manually annotating halos is extremely time- and
labor-intensive. Our deep learning approach can identify and measure
roughly 300 halos over an area of 100km? in ~2 min with very high
accuracy (F1 = 0.978), whereas the same task requires approximately

10 h for a human annotator to accomplish.

The best model was selected by manually setting different threshold
values and comparing F1 scores. In a global model perspective, the use
of an ROC curve (Goncalves et al., 2014) would have led to the similar
result, but, in this instance, our goal was to compute the performance of
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Fig. 5. An illustration of the model output in different AOIs. As a satellite image is processed (left side), the Mask R-CNN model model identifies the halos and U-Net
model classifies pixel according to the “reef” (black) and “halo” (pink) classes (right side). Each panel shows a zoomed-in (subset) area of different test set AOIs: A)
BLZ02, B) BHS03 and C) AUSO1. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

the model in each geographic region based upon the value of the global
threshold in order to visually demonstrate how model accuracy varies
across regions. Accuracy values for halo prediction were higher in the
Atlantic Ocean (e.g., Belize and Florida). These locations had higher
numbers of halos than other areas. This result may have been due in part
to the the relatively high densities of seagrass/algae on the seabed in
these areas, which increases the contrast of halo boundaries (i.e., the
sand/macrophyte boundary; Fig. 4C,D) and therefore the ability of the
model to correctly identify the halos. Nevertheless, even with lower
values (of what?), our model demonstrated high levels of accuracy in
detecting halos in geographic areas where seagrass/algae cover was
more sparse (e.g., Australia; Figs. 4A, 5C). The seagrass/algae density is
obviously a key factor in determining the continuity and contrast of halo
contours, altering the perception of the halo boundary even for a human

observer. Despite this limiting factor, our model correctly predicted the
presence of halos with a precision of 55% for Australia and 70% for the
Red Sea. In the future, we plan to increase the training dataset for these
and other areas to reach the same sample size as we had for the Atlantic
Ocean. As expected, macrophytes density also affected pixel classifica-
tion, with the lowest DICE value of 0.789 for Australia (Fig. 5C).
Nevertheless, the model performance in estimating the area of patch reef
and halo classes was very close to that of a human observer, as the mean
overlap between observed and predicted area was 0.823 for the deep
learning model, and it was 0.840 between the halos labeled by different
users in the quality control phase.

Fig. 5 shows the final output of the deep learning model in three
sample locations (i.e., Belize, Bahamas, and Australia). Although the
benthic characteristics of the seabed appear different as the density and
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Fig. 6. A. Model prediction in the USAO1 area. The model predicts single halos with high accuracy (B) (F1 = 0.955), while it tends to exclude most merged halos (C).

composition of the primary producers varies across the different areas,
the model distinguishes the unique ring shape of the halo (“pink” color)
from the background. In particular, Fig. 5 shows that the instance seg-
mentation model can identify the characteristic ring shape around the
patch reef regardless of the nature of the primary producer, which is
known to vary across geographical areas. The performance of the model
is most heavily affected by the density of the primary producers on the
seabed, which limits the ability of the algorithm to identify halo
boundaries. One of the qualities that renders the Mask R-CNN an effi-
cient object detector of halos is that it bases its prediction not only on the
color bands of the object with respect to the background, but also on its
size and its shape. This enables the model to function in a variety of
geographical areas where halos may occur in (even rather sparse)
macroalgae, seagrass or other macrophytes. The primary objective in
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I

Merged halos

developing this tool was to automate the measurement of halos and
determine their area relative to their central patch reefs, regardless of
the primary producer surrounding the shape of the halo, and the fact
that our model can overcome this limitation renders it broadly useful for
locations around the world with widely different dominant macrophyts.

Our model also tends to exclude very large patch reefs (Fig. 5A,
Belize), as these tend to approach the size of smaller islands (radius >
0.5 km). This is not necessarily a shortcoming of the model since,
although halos can assume a range of sizes (e.g., up to ~90 m width)
(Downie et al., 2013), the literature suggests that most are in the range
of tens of meters in width (Madin et al., 2022).

As mentioned above, we intentionally excluded merged (i.e., over-
lapping) halos from our model development, given the uncertainity
when estimating the reef:halo area ratio for such halos. As a result, the
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over all AOIs.

Mask R-CNN model tends to exclude merged halos (Fig. 6B,C). Although
this represents a limitation in terms of prediction of the number of halos
in a given location, it allows the model to obtain more accurate estimates
of the average size of halos across time and space. Inclusion of merged
halos would have biased the model’s estimates of the ratio of reef to halo
area (Fig. 7), as it was not possible to discern with precision what con-
stitutes an individual reef’s halo. This would have undermined one of
our main objectives of the work, namely to provide the basis for a tool to
monitor the presence and average size of halos over space and time.
As patch reefs increase in size, larger halos are more likely to occur
(Fig. 7B). This result is in agreement with Madin et al.’s (2019a) findings
for the Great Barrier Reef and suggests that the same pattern terns to
hold across geographic regions globally. As the patch reef area:

10

perimeter ratio increases, more herbivores are expected to forage along
a functionally smaller perimeter, resulting in wider halos due to the
increased impact of higher herbivore foraging density (DiFiore et al.,
2019; Madin et al., 2019b). Fig. 2A shows that patch rees and halo sizes
vary greatly by geographical area. Although investigating the relation-
ships between the size of halos and geographic variables was outside the
scope of this work, we did explore the relationship between halo size and
latitude, but we found no clear relationship. Given the wide geograph-
ical range and large climatic differences among our AOISs, it is plausible
to assume that many factors may affect the size of the halos globally,
such as the growth rates of the dominant species of seagrass/algae, the
size structure of the fish and invertebrate community, and the physical
and chemical characteristics of each region (e.g., hydrodynamics and
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nutrient regimes). Each of these factors remain speculative, but they
emphasize how our deep learning model can be used in the future to
untangle the relationships between halo occurrence and size and
ecological, environmental and/or anthropogenic variables.

Our model framework was trained and optimized using high-
resolution images (~0.6 m), thus using satellite images with a lower
resolution as input (i.e. > 2.0 m) could lead to an underestimate of
objects because halo boundaries necessarily become less pronounced at
lower pixel sizes. Future iterations of the model will include other spatial
resolution imagery as inputs to extend and test the model’s applicability
to coarser (and generally less expensive) satellite imagery. Mask R-CNN
models generally require a large amount of training data to learn pattern
characteristics and perform segmentation, yet our deep learning model
started to show a good predictive performance with a minimum number
of ~1000 halos - a possible result of the unique nature of halos relative
to their background. Our model is freely available, and its integration
into ArcGIS as a user-friendly platform provides easy access to other
researchers and organizations working in coral reef conservation. This
tool serves as a point of departure to quickly identify and measure
changes in halos across space and time at a global scale, supporting
future studies to further understand the underlying mechanisms behind
the creation of halos and to potentially increase their use them as in-
dicators of key ecological processes, such as herbivory and predation,
that are crucial factors for the health of coral reef ecosystems.
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