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Abstract

Byte-addressable non-volatile memory (NVM) allows pro-
grams to directly access storage using memory interface with-
out going through the expensive conventional storage stack.
However, direct access to NVM makes the NVM data vulnera-
ble to software bugs and hardware errors. This issue is critical
because, unlike DRAM, corrupted data can persist forever,
even after the system restart. Albeit the plethora of research on
NVM programs and systems, there is little focus on protecting
NVM data from software bugs and hardware errors.

In this paper, we propose TENET, a new NVM program-
ming framework, which guarantees memory safety and fault
tolerance to protect NVM data against software bugs and hard-
ware errors. TENET provides the popular persistent transac-
tional memory (PTM) programming model. TENET leverages
the concurrency guarantees (i.e., ACID properties) of PTM
to provide performant and cost-efficient memory safety and
fault tolerance. Our evaluations show that TENET offers an
enhanced protection scope at a modest performance overhead
and storage cost as compared to other PTMs with partial or
no memory safety and fault tolerance support.

1 Introduction

Byte-addressable non-volatile memory (NVM) opens a new
paradigm in designing storage stack. NVM provides byte-
addressability and low-access latency like DRAM and it of-
fers data persistence like storage. A program can directly map
(mmap) an NVM region to its address space and access it using
load/store instructions without storage stack overhead (re-
ferred to as direct persistence). Several works leverage NVM
in the core storage stack, including file systems [34,51,88, 89,
96], key-value stores [52,55,57,61,65,66,86], and persistent
transactional memory (PTM) [47,56,77,87]. Although the
first commercial NVM product, Intel Optane DCPMM, was
discontinued recently [13],industry continues to explore vari-
ous forms of direct persistence [42]. In particular, the emerg-
ing Compute Express Link (CXL) [12,31] opens new opportu-
nities for byte-level persistence based on NAND flash [16,21],
NRAM [39], battery-backed DRAM [41,78], and PRAM [22].
Also, many software-based solutions [53,67,91], which ex-
ploit direct persistence (DRAM along with in-rack battery),
are being widely deployed in data centers [1, 11, 18,45,50].
However, the direct persistence of NVM opens several chal-
lenges in protecting data from software bugs (e.g., “memory
scribbles”) and media errors. NVM data can be permanently
corrupted due to a single memory scribble, which roots from
a spatial safety violation (e.g., buffer overflow) or a temporal
safety violation (e.g., use-after-free) in a program. Previous
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studies [26, 32, 35, 36,59, 69-71, 73,79, 81, 83, 84, 92, 95]
have shown that such memory safety violations are prevalent
in programs (e.g., 70% of CVEs [5, 17,25]). Since NVM is
mapped to the same address space as DRAM, memory safety
violations in NVM and DRAM can corrupt NVM data. Be-
sides these software bugs, dense NVMs have a higher random
raw bit error rate (RBER) than DRAMSs, with RBER closer to
NAND flash [85,93]. Hence, NVM (e.g., Intel Optane) adopts
stronger ECC for error correction. Unfortunately, certain hard-
ware errors can still escape the error correction, leading to
Uncorrectable Media Errors (UME) in NVM [4,7].

PTMs [47,56,77,87] are one of the most popular NVM
programming models because of their ability to exploit direct
persistence. A few recent PTM systems, such as SafePM [27]
and Pangolin [94], attempt to provide NVM data protection
by extending libpmemobj [47]. A desirable PTM system that
offers NVM data protection should (1) offer extensive data
protection: protect against both NVM media errors and soft-
ware memory safety violations in both DRAM and NVM, and
(2) incur lower performance overhead and storage costs.

Unfortunately, existing works fail to meet the above criteria.
SafePM [27] provides NVM memory safety by instrument-
ing every NVM access. It does not protect against media
errors and memory safety violations in DRAM. The mem-
ory instrumentation and the associated metadata incur high
performance overhead and storage cost. Pangolin offers data
protection with checksum and parity while 1ibpmemobj pro-
vides fault tolerance by simply replicating the NVM data to
a backup NVM region. However, both systems are still vul-
nerable to memory safety violations, incur high NVM storage
cost, and suffer from high performance overhead. As further
explained in §2.2, in summary, prior approaches compromise
the protection coverage [27,44,94] while also incurring high
storage cost and high performance overhead [27,47,94].

This paper proposes TENET, a principled PTM-based
approach that offers an enhanced memory safety and fault
tolerance guarantees at a significantly lower performance
overhead and storage costs than prior works. Leveraging
off-the-shelf hardware features and the concurrency prop-
erties of PTM, TENET reduces performance overhead and
storage costs without compromising its protection coverage.
We realize TENET’s memory-safe design principles using
the state-of-the-art and highly scalable PTM framework,
TimeStone [56] that does not provide NVM data protection.
In particular, key techniques of TENET are as follows:
¢ Hardware-enforced memory domain separation. Instead

of instrumenting every memory access to check for mem-

ory safety violations, TENET exploits an existing hardware
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feature: Intel Memory Protection Keys (MPK) [49, 74],
to separate the address space into NVM domains and a
DRAM domain. Only the trustworthy TENET library can
write to the NVM domains. Thus, outside the TENET li-
brary, TENET offloads NVM data protection against mem-
ory scribbles to hardware. This enables data protection for
most memory access with almost zero overhead.

* On-first-read and on-commit memory safety enforce-
ment. Enforcing memory safety at every NVM access in
the TENET library incurs high overhead. Instead, leveraging
PTM semantics, TENET enforces the temporal safety vio-
lation only at the first reference of an NVM object and the
spatial safety violation only at the commit of a persistent
transaction. This, in tandem with the memory domain sepa-
ration technique, prevents the corrupted data from reaching
NVM with very low runtime overhead.

* Asynchronous hybrid NVM-SSD replication. Protecting
against NVM media errors fundamentally requires creating
redundancy. TENET asynchronously replicates the NVM
data to SSD off the critical path to tolerate any number of
NVM media errors. It thus offers low storage cost fault
tolerance without hindering performance.

* We design TENET using the above approaches, which to the
best of our knowledge is the first high-performance PTM
with memory safety and fault tolerance guarantees.

* We evaluate two different versions of TENET— (1) memory
safety only (TENET-MS) and (2) memory safety and fault
tolerance (TENET) with key data structures and real-world
workloads. Our results indicate that TENET offers enhanced
protection at a modest performance overhead and storage
cost as compared to state-of-the-art systems.

2 Background and Motivation

This section first introduces NVM media errors (§2.1) and
memory safety violation in NVM programs (§2.2), followed
by discussing the prior PTM works that address the media
errors and memory safety violations (§2.3).

2.1 NVM Media Errors

Figure 1 shows the classification of potential errors in NVM.
These errors can be classified into hardware errors and soft-
ware errors. Hardware errors can be further classified into me-
dia errors (MEs) and silent data corruptions (SDCs). Media
errors are caused by faults in the NVM media such as exceed-
ing the write endurance, power spikes, soft media faults etc
that directly corrupt data in the NVM media [85,93]. SDCs
are caused by faults that occur outside NVM media, which in-
directly causes data corruption. Examples of SDCs are buggy
NVM firmware, faults in CPUs, memory controllers, or other
hardware components [28, 54]. Handling SDCs is a separate
research area and it is out of scope of this paper.

Hardware media error (ME) correction. Commercially
available NVMs implement error-correction code (ECC) in
hardware to detect and correct media errors. For example,
Intel Optane DCPMM uses hardware parity to detect any-bit

Non-Volatile Memory (NVM) Error
Hardware Error

- Media Error (ME)

Correctable Media Error (CME)

Uncorrectable Media Error (UME)

- Silent Data Corruption (SDC)

Software Error

I Memory Safety Violation

Spatial Safety Violation

Temporal Safety Violation

I- Crash Consistency Violation

- Logic Bugs

Figure 1: Classification of errors in NVM. TENET handles UME,
Spatial and Temporal Safety Violation bugs (red). TENET relies on
the hardware ECC to fix CME and the underlying PTM to handle
Crash Consistency Violations such as atomicity and persistence or-
dering (blue). Silent Data Corruption in the hardware (e.g., CPU
faults) and logical bugs in the application are out of scope (grey).

errors, and it can correct up to two 2-bit errors [10]. The NVM
hardware transparently fixes such correctable media errors
(CMEs). However, uncorrectable media errors (UMEs) will
be reported for software intervention as detailed below.

Reporting uncorrectable media error (UME) to software.
The OS receives the reports of UMESs; and it can pass it to the
application. Specifically, when a CPU accesses an NVM page
affected by UMEs, the NVM hardware sends a poison bit
along with the relevant data to the CPU. Upon encountering
the poison bit, the CPU raises a memory check exception
(MCEs) for the OS to handle. Currently, Linux handles the
MCE by adding the corrupted page to the bad block list and
sends a SIGBUS signal to the application [4,9]. Then the OS
leaves the responsibility to the application for fixing UMEs
during the recovery phase [7]. We note that, although the
NVM is byte-addressable, UMEs are reported to the software
at the page granularity due to the blast radius effect [3].

2.2 Memory Safety in NVM Programs

We categorize software “scribbles”, which corrupt NVM data,
as spatial and temporal memory safety violations (Figure 1).
Spatial safety violations happen when memory is accessed
beyond its allocated range. Buffer overflows and array out-
of-bound accesses are classical examples. Temporal safety
violations happen due to dangling pointers; i.e., when access-
ing an already freed (use-after-free) or accessing a reallocated
address range (use-after-realloc). These memory safety bugs
are even more dangerous in NVM than DRAM because the
NVM data will be corrupted forever and a simple system
restart would not fix these issues. Note that memory safety
bugs on either DRAM or NVM region of an application can
cause NVM data corruption since the NVM region is mapped
directly to application’s address space.

2.3 Prior NVM Data Protection Approaches

Memory safety in NVM programs. Prior works — Pan-
golin [94], SafePM [27], and Corundum [44] — include mech-
anisms to protect NVM data from memory safety violations.
Pangolin extends 1ibpmemobj [47] and uses per-object check-
sum to detect spatial safety violations. SafePM adds Address-
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Figure 2: Performance of TimeStone against other PTMs. None of
the PTMs are memory safe or fault tolerant against UME.

Sanitizer [80] to 1ibpmemobj transaction to detect spatial and
temporal safety violations on NVM data. Corundum is a Rust-
based NVM programming library and leverages Rust’s type
system to statically enforce spatial and temporal memory
safety. However, they have some critical limitations. First,
none of these approaches prevent NVM data corruption due
to memory safety violations on “DRAM data”. Suppose that
the buggy code inside a transaction causes a buffer overflow
on DRAM data; such spatial safety violations on DRAM
can scribble arbitrary memory location, including NVM data.
Moreover, none of them guarantee to protect NVM data from
temporal safety violations. Pangolin does not check tempo-
ral safety violations. Meanwhile, SafePM does not detect
use-after-realloc bugs. Even with Corundum, the developers
still have the responsibility to guarantee type and memory
safety for the "unsafe" Rust code, both can result in spatial
and temporal safety violations.

Both Pangolin and SafePM suffer from high performance
overhead and introduce additional performance bottlenecks.
Pangolin calculates and verifies checksums on the critical
path, imposing high performance overhead. Furthermore, it
verifies checksum only for write transactions (i.e., read trans-
actions are unprotected). SafePM instruments every NVM
access to check for memory safety violation, which is costly.
SafePM further introduces extra UNDO logging overhead
over the already existing expensive logging in the 1ibpmemobj
to guarantee crash consistency for its memory safe metadata.

Fault tolerance against UME. To protect against UME,
libpmemobj supports replicating data on NVM. However, it
replicates data on the write critical path, leading to high perfor-
mance overhead. Furthermore, storing the replicated data on
NVM wastes the precious NVM space, doubling (2x) storage
cost. Pangolin uses parity for fault tolerance; however, parity
calculation on the critical path causes high performance over-
head and it unnecessarily serializes the transactions which
affects the write scalability. Further, Pangolin can recover up
to one page within a parity region; a data loss will happen if
UME occurs on more than a page. SafePM and Corundum do
not provide any fault tolerance against UME.

2.4 Prior PTMs for NVM

Libpmemobj [47] has been the de-facto PTM. However, it
suffers from high performance overhead and poor scalabil-

. . Writer (local-ts=85)
Operational Log (OLog) @  Master Object > update(A, AY)

8 s Node A
...|update(A,A?) [update(A,A°) commit-ts=10 4--§~\\
(4 BN
H
Node A® Node A® node A®
**[ commit-ts=80 | commit-ts=60 | commit-ts=90
| N

Transient Version Log (TLog)

Checkpoint Log (CLog)

log reclamation
> writeback

NVM - —> Zﬁ;si:lon - Program
Figure 3: An illustrative example of updating Node A to its 9th
version (A%) in TimeStone.

ity. Thus, several new PTMs focus on addressing its limita-
tions [30,40,62,68,75-77,87]. Figure 2 shows that none of the
existing PTMs, except TimeStone [56], scale beyond 8 cores
even for a read-intensive workload. Further, TimeStone per-
forms up to 8x better than the existing PTMs. Based on this
observation, we chose TimeStone [24,56] as the transaction
abstraction for TENET. Moreover, designing memory safety
and fault tolerance techniques for such a high performance
PTM is challenging as even a small bottleneck can compro-
mise its original scalability and performance. We introduce
the relevant design aspects of TimeStone below.

Multi-version concurrency control. TimeStone follows
multi-version concurrency control (MVCC). With MVCC,
TimeStone supports non-blocking reads and concurrent dis-
joint writes, achieving high concurrency. For each object cre-
ated by the application (e.g., B-tree node), TimeStone allo-
cates a master object on NVM (see Figure 3). On updating
a master object, TimeStone creates a new version (@) on
DRAM, chaining multiple version objects from new to old
object’s age. TimeStone dereferences the right version object
during the dereference phase with the help of timestamps.
Each version object gets assigned a timestamp when it is
committed (commit-ts). Also, each transaction gets a times-
tamp (local-ts), which denotes the transactions’ start time.
TimeStone traverses the version chain and chooses the most
recent version of an object based on these timestamps (i.e.,
commit-ts<=local-ts). This guarantees a consistent snap-
shot of NVM data for all transactions at any given time.

Operational log based immediate durability. TimeStone
uses a DRAM-NVM hybrid logging technique, named TOC
logging for efficient crash consistency. The TOC logging
consists of Transient Version Log (TLog) on DRAM, Oper-
ational log (OLog) and Checkpoint log (CLog) on NVM, as
illustrated in Figure 3. TimeStone creates a new version on
TLog (@), and logs the performed operation to the OLog (@)
for immediate durability. An operational log entry is typically
much smaller than the conventional undo/redo logging, which
duplicates the data, thus making crash consistency efficient.

Asynchronous log reclamation and replay based recovery.
As more versions are created, TLog eventually becomes full,
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triggering log reclamation. When TLog is reclaimed, the latest
version of an object on TLog (A? over A%) is checkpointed to
the CLog (@). Similarly, when CLog becomes full, the latest
checkpoint (A7 over A%) is written back to the master object
(@). To recover from a crash, TimeStone first applies the
checkpoints in CLog to the respective master objects and re-
verts them to a consistent snapshot. Then the OLog is executed
to recreate all the updates that are lost on TLog.

3 Overview of TENET

3.1 Threat Model and Assumptions

TENET aims to protect against spatial and temporal mem-
ory safety violations in buggy application code. Furthermore,
TENET considers the possibility of a memory safety violation
on DRAM data corrupting NVM. TENET also aims to guar-
antee fault tolerance for NVM data against the uncorrectable
media errors (UMEs). PTMs in general and TimeStone in
particular cannot guarantee ACID properties for the applica-
tion code that is outside the transaction or when the PTMs’
APIs are misapplied. This applies to TENET as well, i.e., it
cannot guarantee memory safety and fault-tolerance for the
code outside the transaction. TENET is not designed to handle
SDC that occur outside the NVM media. Protection against
the adversarial attacks (e.g., control-flow attacks) is out-of-
scope. However, the protection techniques and mechanisms
against SDC and control-flow attacks can be orthogonally
deployed to TENET. In TENET, application code is distrusted
while TENET library code and OS kernel are considered as a
trusted computing base (TCB).

3.2 Design Goals

* Protect NVM data from memory safety violations.
TENET should detect all spatial and temporal safety bugs
not only from NVM but also from DRAM. Any memory
safety bugs either in DRAM or NVM code should not cor-
rupt NVM data.

* Protect NVM data against UMEs. TENET should provide
a robust fault tolerance mechanism to recover and restore
NVM data from UMEs transparently.

* Low performance and storage overhead. TENET aims
to be a practical system that offers an enhanced protection
scope and strong fault tolerance at a minimal performance
and storage overhead.

3.3 Design Overview

TENET re-purposes the multi-versioning and transactional
semantics of TimeStone to achieve its design goals. Below we
introduce TENET’s main techniques as illustrated in Figure 4.

(1) Separation of NVM protection domain from DRAM. A
memory safety bug (e.g., out-of-bound write) either in DRAM
or NVM can result in NVM data corruption. Enforcing full
memory safety in every single memory access incurs pro-
hibitive runtime overhead as prior studies show [27,94].

To prevent unauthorized NVM writes without checking ev-
ery single memory access, TENET grants the write permission

to the NVM region only for the TCB i.e., the TENET library
code. In other words, the application code has read-only per-
mission for the NVM, and consequently, it only writes on
DRAM. When the application commits its transaction, writer
thread gets write permission to execute the TENET library
code which propagates the updates on DRAM to the NVM.

TENET completely segregates DRAM and NVM regions so
that all new version and master objects are created on DRAM
(referred to as DRAM Objects). Therefore, TENET application
code does not require write access to NVM, as it writes only to
the DRAM region. If a buggy application code tries to write
to the NVM region, it will receive an exception (SIGSEGV)
from TENET and will be terminated. TENET exploits Intel
Memory Protection Keys (MPK) [49,74] to efficiently switch
NVM permissions for each thread.

(2) On-commit spatial safety enforcement. As applica-
tions can always write to the TLog (i.e., DRAM), it is vul-
nerable to arbitrary memory scribble. A corrupted DRAM
object can be eventually propagated to CLog (@ in Figure 4)
and the master object (@), consequently corrupting the NVM
data. We propose on-commit spatial safety enforcement to pre-
vent corrupted DRAM objects from reaching NVM. TENET
adds eight byte canary values at the start and at the and of a
DRAM object during its creation (). Specifically, TENET
assigns a random value to €@, and the hash of €@ and its lo-
cation (xor(C0,&C1)) to C1. When an application commits
the transaction, TENET inspects the integrity of canary values
of all DRAM objects in that transaction (3) and @). If the
canaries are compromised (i.e., CO != xor(C0,&C1)), then
TENET aborts the transaction and gracefully terminates with-
out propagating the corrupted objects to NVM.

Our on-commit spatial safety enforcement is efficient
with minimal performance overhead. Unlike the prior ap-
proaches [27,69,79,95], our technique avoids reading addi-
tional metadata, and it checks the integrity only once during
the transaction commit. Note that NVM objects do not have
canary values and thus no NVM space overhead.

(3) On-first-dereference temporal safety enforcement.
Even after an NVM (master) object is freed (and then reallo-
cated), a program still can reference it via dangling pointers
which can corrupt the NVM data in unintended ways.

We propose on-first-dereference temporal safety enforce-
ment to efficiently enforce temporal safety of NVM objects
with a minimal runtime overhead. TENET uses a tag-based
approach, which essentially checks if a pointer points to the
right object by comparing tags associated with the pointer and
the pointed object. When TENET creates an NVM (master)
object, it assigns a 2-byte random integer as a tag of the object
(e.g., OxCAFE for Node A in Figure 4). We encode this 2-byte
tag in the upper 16-bit of a pointer, which is unused in the x86
architecture. When the object is freed, its associated tag on
the header set to zero for detecting use-after-free. When the
object is dereferenced first time in a TENET transaction (D),
TENET checks whether the encoded tag in the pointer matches

250 21st USENIX Conference on File and Storage Technologies

USENIX Association



Writer (local-ts=85)
> update(A, A%)

Primary Object Pool

Replica Object Pool

© - Master Object
“A[NodeA

Transient Version Log (TLog)

o,

’l
HC)
4

5 = 5 commit-ts=10 R L CLELEEE LR ' : ,

| Node A® i | tag=OXCAFE > : i

*| 2| commit-ts=80 A N L .

2| tag=OxCAFE pmmmmmeeeoooooo- PO e .

S ! Node A® node A’ | : ! Node A® node A’ |

«««|commit-ts=60 | commit-ts=90 [ -+ ---=====--- } «««|commit-ts=60 | commit-ts=90 | !

tag=0xCAFE | tag=OxCAFE | ' tag=0xCAFE | tag=OxCAFE | !

_______ \ 4 5 i

- ...... > object access : Checkpoint Log (CLog) ! :

NVM = — version chain E L E

. i |-+ [update(A,A®%) |update(A,A?) |- - |update(A,A8) | update(A,A?) | :

- = 9 log reclamation : ' :

i Operational Log (OLog) p ]

Program ----9 replication -...........p..r.a..I.P.a.....g.(......g.)...' e e )
Primary Log Pool Replica Log Pool

Figure 4: Overall architecture of TENET with an example of updating Node A to its 9th version (A%). @ denotes the newly added memory safety
checks and replication to the TimeStone transaction. Note that the application has read/write access to DRAM and read-only permission for
NVM. When accessing Node A, TENET validates its temporal safety by comparing the tags, 8xCAFE (D). If the tags do not match, the transaction
is aborted. Otherwise, the writer proceeds to traverse the Node A’s version chain, makes a copy of the latest version (A%) in its TLog and updates
it to A% (@). Upon commit, Node A° is validated for spatial safety by checking the canary values (3 and @). The transaction is aborted if the
validation fails. Otherwise, the writer commits the transaction by updating its OLog (@) for durability and it also synchronously updates the
replica OLog for fault tolerance (®). When reclaiming the TLog, Node A’ is once again validated for spatial safety before checkpointing it to the
CLog (@) followed by synchronously updating the replica CLog (®). Similarly, when the CLog is full, TENET writes back the latest checkpoint

(Node A%) to the original master object Node A (€)). The updated Node A is then asynchronously replicated to the disk ().

with the tag in the pointed object. If the tags do not match,
it means the pointer points to the already-freed/-reallocated
object (i.e., dangling pointer), which violates temporal safety.
In this case, TENET aborts the transaction immediately.

Our approach is efficient and imposes minimal performance
overhead because it checks the temporal safety of each object
only once in a transaction. Also, accessing the inlined tags is
cache-friendly, which, unlike prior approaches [27,71,79,95],
requires no additional metadata lookup.

(4) Off-critical path NVM replication to SSD. TENET
replicates all NVM data; in the case of a UME, corrupted
NVM pages can be restored using the replica. The main chal-
lenge in designing a replication scheme is minimizing the
performance overhead and storage cost. While replication to
another NVM region can be performance efficient, it incurs
2x higher capacity cost. Instead, we propose a hybrid NVM-
SSD replication technique; TENET asynchronously replicates
the master objects to SSD () and synchronously replicates
the transaction logs (CLog and OLog) to NVM (®, ®). Master
objects, are application data structures, which can be large and
also potentially occupy the entire NVM space. Hence, TENET
replicates master objects to the SSD off the critical path to
reduce both storage cost and performance overhead. Although
the replication is asynchronous, TENET guarantees loss-less
NVM data recovery by prudently leveraging the transaction
logs and grace period semantics. Meanwhile, transaction logs
are small and finite, so TENET replicates them to NVM to
reduce performance overhead. Further, TENET is also capable
of recovering from multiple simultaneous UMEs occurring
in one or multiple NVM pages. We explain this design, its

correctness and recovery guarantees in §4.4 and §4.5.
3.4 Putting It All Together For TimeStone

TENET makes the NVM read-only for all except the TENET’s
library code. So the NVM objects in TimeStone do not need
spatial safety checks as they are read-only objects. TENET
enforces temporal safety checks for all NVM objects (us-
ing pointer tags) during the object dereferencing to detect
dangling pointers. On the contrary, DRAM objects are vulner-
able to application scribbles (due to write permission) hence
TENET enforces on-commit spatial safety checks using the
canary bits. DRAM objects do not need separate temporal
safety checks as they are managed internally by TENET; i.e.,
as DRAM objects are accessed via the respective NVM ob-
ject, enforcing temporal safety for NVM objects indirectly
guarantees it for DRAM objects. We discuss the correctness
of these techniques in §4.3. TimeStone can not handle UMEs,
so TENET proposes to replicate master objects and transaction
logs to SSD and NVM respectively; in the event of a UME,
NVM data can be restored using the NVM/SSD backup. In
a nutshell, we optimally apply TENET’s memory safety tech-
niques to the vulnerable parts of TimeStone and organically
redesigned it to guarantee full memory safety. If TENET was
to be used for other PTMs, then its techniques can well be
applied, albeit it may require some engineering effort. We
discuss this further in §6. Refer to Figure 4 for a summary on
lifecycle of a TENET transaction.

4 TENET Design

In this section, we first describe TENET transaction design
(§4.1) followed by the design of memory safety (§4.2-§4.3),
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fault tolerance replication (§4.4), and recovery (§4.5).
4.1 TENET Transaction

Below we explain how TimeStone transaction is redesigned
using TENET to enforce memory safety and fault tolerance.

4.1.1 NVM Object Dereference

Object dereferencing in TimeStone (§2.4) only traverses the
version chain and returns the correct version, whereas in
TENET, object dereferencing is a two-step process.

(1) Temporal safety validation. TENET validates the master
object pointer for temporal safety (§4.3.2) to detect dangling
pointers; transaction aborts if the validation fails (§4.1.4).

(2) Version chain traversal. If the object passes the valida-
tion, then TENET dereferences the correct DRAM object or
directly the master object if the version chain does not exist.

4.1.2 Updating an Object

In TENET, a writer updates a master object by creating a
new DRAM object as done in the TimeStone. However,
TimeStone allows its users (application) to allocate and write
to the NVM when creating new master objects. Thus, a buggy
application can easily corrupt the NVM region. In TENET,
this is restricted to prevent direct NVM writes; so the appli-
cation allocates and writes to a new master object (shadow
master object) on the DRAM and then during the commit
phase TENET library creates a corresponding NVM copy only
if the writes pass the spatial safety violation checks.

4.1.3 Committing a Transaction

In TimeStone, the commit procedure updates the OLog to guar-
antee durability and then makes all the updates atomically
visible. TENET’s commit procedure happens in three phases:

(1) Spatial safety validation. All the new versions and
shadow master objects created in a transaction are validated
for spatial safety violations (§4.3.1). Upon successful valida-
tion, TENET allocates and updates the persistent master object
from the corresponding shadow master object.

(2) Transaction durability and replication. Updating OLog
guarantees durability, and replicating it ensures fault toler-
ance (§4.4.1). Also, TENET adds all the newly created master
objects in (1) to the replica buffer to trigger async disk writes
using background workers (§4.4.2).

(3) Publishing the updates atomically. TENET makes the
updates atomically visible by adding the new versions to
their respective version chain, and this procedure is exactly
the same as TimeStone. Additionally, TENET frees all the
shadow master objects, if any, and exits the critical section.

4.1.4 Aborting a Transaction

Common abort procedure. TENET rolls back any used log
space, lock status, and reclaims all the shadow master objects
and also its NVM counterpart if one exists. This is common
for all three abort cases described below.

Abort due to lock conflict. During the object update (§4.1.2),
if the writer fails to acquire a lock, it aborts the transaction.
This is a benign abort i.e., no memory safety violations, so
TENET performs the common abort procedure and retries the
transaction after the backoff period.

Abort due to memory safety violation. All ongoing trans-
actions are aborted if a transaction aborts due to spatial safety
or temporal safety violation. TENET executes the common
abort procedure and returns an exception.

Abort due to a UME. The OS notifies a UME by sending
a SIGBUS signal. TENET’s signal handler catches the signal,
returns a UME exception to notify the application, and grace-
fully terminates the process. TENET fixes the affected NVM
region during the recovery process (§4.5).

4.2 Unauthorized NVM Write Prevention

TENET already prevents application code from directly writ-
ing to the NVM by using DRAM objects for the updates. How-
ever, a buffer overflow on DRAM can corrupt the NVM data
as NVM is directly mapped to the applications’ address space.
TENET employs Memory Protection Keys (MPK), a hardware
feature available in the Intel systems [33, 34,43, 74, 82] to
detect NVM writes out of TENET library code.

Using MPK to enforce read-only NVM access. With MPK,
a page can be assigned to one of the 16 available protec-
tion domains. The assigned protection domain is encoded
in the page table entry. A thread’s access permission to the
protection domains is controlled at the per-thread level via a
user-accessible register, PKRU. A thread can switch its access
permissions to the protection domains by writing to the PKRU
register, which only costs 20 CPU cycles. In TENET, each
NVM pool is assigned a unique protection key during pool
creation. Only the TCB (i.e., TENET library code) is allowed
to write to the NVM pool. Thus, a thread grants itself read-
write permissions to the corresponding NVM pool during
the library code execution and revokes it before exiting the
library. As a result, if the application writes to NVM (e.g.,
due to buffer overflow), MMU prevents the access and OS
sends a SIGSEGV signal. Thus, any spatial safety violations
due to a buggy write is contained within the DRAM region.

4.3 Enforcing Memory Safety

In this section, we explain the spatial (§4.3.1) and temporal
safety design (§4.3.2). In §4.3.3, we explain the array interface
as an example, and how the interface provides memory safety.

4.3.1 On-commit Spatial Safety Design

TENET enforces spatial safety for all DRAM objects to pre-
vent NVM data corruption due to a buggy DRAM write.

Technique. As illustrated in the Figure 4, all DRAM objects
are assigned two 8-byte canaries at the start CO and at the end
C1. Specifically, €@ is a random value and C1 is the hash of C®
and its location (xor(C®,&C1)). TENET inspects the integrity
of canary bits to detect buffer overflows and underflows.
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On-commit validation. When the application commits its
writes (§4.1.3), TENET inspects canary bits for all the newly
created DRAM objects. A transaction is committed only when
both €O and C1 are intact in all the DRAM objects. Otherwise,
the transaction aborts and discards all the corrupted objects.
An erroneous transaction can corrupt the DRAM objects out-
side of the current transaction i.e., the ones that are part of
other concurrent transactions or the ones that are not part of
any ongoing transactions at all. To detect such cases, TENET
places an 8-byte canary at the start and the end of the trans-
actions’ write set. Note that all the DRAM objects including
the shadow master objects are part of a transactions’ write
set. TENET validates the write set canaries before and after
each step of the commit process (§4.1.3). This ensures that
a transactions’ write set (i.e., DRAM object) has not been
corrupted by an erroneous concurrent transaction, particularly
between the initial validation ((1) in §4.1.3) and the publica-
tion of the updates ((3) in §4.1.3). However, if the write set
canaries are found to be compromised then TENET aborts all
the transactions as explained in §4.1.4.

Correctness. Deferring spatial safety checks until the com-
mit time does not violate the correctness as the other concur-
rent transactions can not observe any uncommitted DRAM
objects. Although a rare case, to avoid reading a DRAM
object that is corrupted (after it commits), TENET performs
spatial safety check before dereferencing a committed DRAM
object. Subsequently, the DRAM objects (@ in Figure 4) and
the shadow master objects are re-validated before and after
copying to the NVM to prevent Time-of-Check-Time-of-Use
(TOCTOU) bugs [6]. If an DRAM object is found to be cor-
rupted post the copy operation then the corresponding NVM
object will be safely reclaimed as part of the transaction abort
procedure. Finally, TENET cannot detect the corruptions that
occur without overwriting the canaries, aka intra-object over-
flows. We discuss this further in §6.3.

4.3.2 On-first-dereference Temporal Safety Design

TENET enforces temporal safety for all NVM (master) objects
to detect dangling pointer dereference. Accessing an already
free-ed (or reallocated) address can corrupt the NVM data
due to use-after-free (or use-after-realloc) bugs.

Technique. To detect dangling pointers, TENET assigns an
unique 2-byte tag for all the master objects, which is stored
in the object’s header (0xCAFE in Figure 4) at the time of its
creation. A copy of this tag is also encoded in the unused
upper 16-bits of the master objects’ address. On deallocating
the master object, the tag in the objects’ header is set to zero.
On-first-dereference validation. When the application ac-
cesses a master object for the first time in a transaction,
TENET validates the pointer to the master object before
traversing the version chain (§4.1.1). TENET extracts the
tag encoded in the master objects’ pointer and compares it
with the tag stored in the respective master objects’ header.
If they match, then it is a valid pointer. When an application

struct node { NVM | Pointer Array to
int key; | /M_et}dai Master Objects
! |
char val[16]; - i base| ize | &node(0] | &nodelt
} node; Free “P addr| 5% | nodel0] | node(1] |

void foo() {

4
/
ot
tenet_array<node, 2> arr; @- -~ _~” [Fiode[0] | [TRode[@] ] Array Elements
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Figure 5: Memory safety design for arrays. @ and @ are spatial
safety violations due to out-of-bound read (detected by bounds check-
ing) and write (detected using canaries), respectively. @ is temporal
safety violation due to use-after-free (detected using pointer tags).

accesses a master object with a dangling pointer, tag matching
would fail; the tag in the header would either be zero (if the
address is already freed) or different random value (if the
free-ed address is reallocated). In that case, TENET cuts the
version chain access and aborts the transaction.

Correctness. Once a master object is successfully deref-
erenced, it can be safely used without any further temporal
safety checking within the transactions’ lifetime. This is be-
cause TENET (and TimeStone) uses an RCU-style, epoch-
based garbage collection scheme so it never frees an object
(and its versions) with live references from other transactions;
i.e., an object will be free-ed only when all the transaction
that has live references exits. Also, a DRAM object can be
dereferenced only via its NVM object and TENET cuts the
version chain access upon detecting a dangling pointer, which
indirectly guarantees temporal safety for DRAM objects.

4.3.3 Spatial and Temporal Safety for Array Objects

In TimeStone, an array is stored and accessed as a single
pointer. Even if the application just reads/writes to one ar-
ray element, TimeStone dereferences the entire array. Such
a design is highly unsafe. For instance, once the entire array
is dereferenced, a buggy application can read/write out-of-
bounds resulting in an undetected corruption. This is a noto-
riously hard problem even in the DRAM world. To address
this, we redesigned the array interface in TENET. An array
is internally represented as an array of pointers where each
array index stores a pointer to its element. With this design,
TENET dereferences only the array index that the application
intends to read/write. If the application accesses an index that
is out-of-bound, TENET aborts the transaction.

Array interface. @ in Figure 5 presents the TENET’s array
interface. In TENET, each array element is a master object;
and an array consists of pointers to these master objects along
with the base address and size information. This representa-
tion is internal and the application accesses its array in the
traditional C semantics. We do not present the pseudocode
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for our interface due to space limitations. Essentially, TENET
retains the C-style semantics by leveraging C++ operator over-
loading. tenet_array class overloads the necessary operators
to hide the internal representation. For instance, the array ac-
cess operator ([]) is overloaded to perform bounds checking,
then access the master object at the index. Similarly, other
operators (=, +, -, etc) are also appropriately overloaded to
retain the programmability and to make the interface transpar-
ent. However, this representation requires additional memory
to maintain pointers to the array elements. An N element array
requires a space of N*sizeof(N), whereas TENET requires an
additional sizeof(void*)*N space to maintain the pointers.

Memory safety validations. Figure 5 illustrates how TENET
enforces memory safety for arrays (arr with two elements).
The canary-based spatial safety and the tag-based temporal
safety apply to every array element. In addition, TENET per-
forms bounds checking for every array dereference using the
base address and size metadata i.e., index > size (@). In
@, a transaction writes to the val out-of-bounds, TENET de-
tects this violation by inspecting the corrupted canary bits in
the commit phase. In @, transaction dereferences a dangling
pointer (freed in @) and TENET detects it by comparing the
tags (0xCAFE # 0x0000) during the object dereference.

4.4 Enforcing fault tolerance Against UMEs

This section explains the synchronous log replication and the
off-critical path master object replication design to guarantee
fault tolerance against UMEs.

4.4.1 Transaction Log Replication

As illustrated in Figure 4, the primary log pool on the NVM
consists of all the transaction logs (OLog and CLog). TENET
maintains a consistent backup of the primary log pool by
synchronously replicating the logs on the critical path, i.e.,
when an OLog or a CLog in the primary log pool is updated,
the corresponding log in the replica log pool is also updated.
Atomicity for primary and replica log writes is inherently
guaranteed by the transactions’ commit protocol (§4.1.3); i.e.,
TENET commits a transaction only when both the logs are
updated. So, if a crash happens before updating the replica
log, then the transaction is considered to be aborted and the
partially written log entries are discarded during the recovery
phase. Similarly, during log reclamation, the primary log is
reclaimed first and the replica log is reclaimed up to the same
point to maintain consistency. TENET ensures that pages in
the primary and the replica log pool do not overlap by main-
taining two disjoint NVM pools for the primary and replica
log pool. In this way, TENET can recover from multiple UMEs
even if it spans across many pages within a log pool.

Why replicate logs on the critical path? TimeStone buffers
the updates to the master objects in the OLog and CLog to max-
imize the write coalescing. Hence, if the logs in the primary
pool are corrupted, it may cause a significant amount of data
loss during the recovery. As a result, TENET replicates the

primary log pool synchronously to ensure that there is always
a consistent backup. Thus, TENET can simply use the replica
log pool to recover the NVM data without losing any com-
mitted updates. TENET uses NVM to reduce the performance
overhead as the replication is done in the critical path.

4.4.2 Off-critical Path NVM Replication to SSD

TENET makes three critical design choices for a performant
and cost-efficient NVM (master) objects replication: (1) ob-
jects are replicated to SSDs instead of NVM to reduce the
storage cost overhead, (2) replication is performed out of the
critical path to reduce the performance overhead (§4.4.3), and
(3) TENET uses grace period semantics to enforce NVM-SSD
consistency to guarantee loss-less recovery (§4.4.4).

4.4.3 Off-critical Path Writes to SSD

TENET leverages io_uring [8] for accelerating SSD writes.
io_uring is a high-performance asynchronous IO framework.
io_uring maintains two queues, a submission queue (SQ)
where the TENET adds its disk write requests and a comple-
tion queue (CQ) where TENET can poll for the completed
disk writes. Both queues are shared between the kernel and
the user space, which further reduces the context-switching
overhead for request submission and polling.

Technique. TENET maintains a per-writer replica buffer in
the NVM, where writers enqueue the new master objects
that are created in the ongoing transaction and the objects
that are updated with the latest checkpoints from the CLog
(@ in Figure 4). TENET then spawns multiple workers to
visit the per-thread replica buffer and issue the disk writes
using io_uring’s submission queue. The workers then poll for
the request completion in the io_uring’s completion queue
and exit only when all the requests are completed. TENET
creates a separate disk file for each master object pool; during
replication, TENET writes a master object at the disk file offset,
same as the objects’ corresponding NVM file offset. This is
critical to correctly roll back the corrupted page from the disk
to the NVM during the recovery.

4.4.4 Enforcing NVM-SSD Consistency

Although replication is asynchronous, TENET guarantees that
no committed data will be lost upon either a crash or a UME.
TENET accomplishes this by leveraging the OLog, CLog, and
grace period detection.

Grace period detection in TimeStone. A grace period is
the quiescence period, in which all application threads that
entered the critical section (since the start of detection), fin-
ish, and exit their respective critical section. A background
thread (gp-thread) continuously detects the grace period, and
publishes the detected grace period timestamp. TimeStone
uses the timestamp to safely reclaim/free the obsolete en-
tries/objects in the TLog, CLog, and the OLog. TENET extends
this design to enforce NVM-SSD consistency.

Modified grace period detection in TENET. To detect a
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grace period, the gp-thread not only waits for all the threads
to exit the critical section but also waits for all master objects
that are created/updated by these threads to be written to the
SSD. The key invariant is that when a grace period is detected,
it guarantees that all master objects created/updated in that
window are persisted to the SSD. This means that the TLog,
OLog, and the CLog will not be reclaimed until the disk writes
are guaranteed to be persisted. That is because gp-thread will
not publish the grace period timestamp unless the disk writes
are completed and without it the logs can not be reclaimed.
In a nutshell, all the updates that are not persisted in the SSD
are guaranteed to be either in the OLog (newly created master
objects) or in the CLog (updates to the existing master object).

Guaranteeing consistent loss-less recovery. If a UME oc-
curs before the SSD writes finish, during recovery, TENET
can restore the NVM objects with the stale SSD replica (from
the previous grace period). Then it uses the CLog to update
the existing master objects with the latest checkpoints and
uses OLog to recreate the new master objects that are missing
in the stale replica. Note that TENET maintains a consistent
backup of OLog and CLog at all times (§4.4.1). Also, the OLog
and CLog execution are idempotent i.e., re-executing the same
log entries multiple times does not violate the consistency.
TENET can tolerate multiple UMEs across any number of
pages in a master object pool as it replicates to the SSDs.
Given at least one of the log pools is consistent, TENET can
recover up to the last committed transaction. Note that even
if both the log pools are affected by UMEs, TENET can still
recover the master objects to the state of last grace period.

4.5 Recovery

(1) Recovering from non-UME crashes. This recovery in-
cludes recovering from a system crash or a memory safety
violation. Upon restart, the recovery procedure is of two steps:
(1) CLog replays, where all the entries in the CLog are replayed
to set the master objects to a consistent state. This step is
necessary to bring all the master objects to the latest check-
pointed state. (2) Then all OLog entries are sorted based on
their commit-ts and replayed sequentially in the exact sorted
order. This will bring the master objects to the last committed
state before the crash occurs. Note that, if the crash happens
due to a memory safety violation, a developer should fix the
bug to avoid repetitive non-UME crashes.

(2) Recovering from a UME crash. Upon restart, if TENET
cannot open its NVM pools, it indicates a UME has occurred.
The recovery steps depend on the victim pools’ type.

UME in the master object pool. TENET identifies the cor-
rupted physical offset using the ndctl tool [9] and then ex-
tracts the corresponding logical file offset. TENET brings
the entire page where the corrupted offset belongs from the
replica disk file. Then TENET allocates a new NVM page
using fallocate and updates it using the disk replica. Finally,
it deallocates the corrupted page and removes it from the oper-
ating system’s bad block list. Once NVM is restored, TENET

recovers similar to the non-UME crash as explained in (1),
i.e., CLog replay followed by the OLog replay.

UME in a log pool. TENET does not need to access the
disk to fix the bad page. Instead, it fixes the affected NVM
page by allocating a new empty page. Then TENET uses the
uncorrupted backup log pool to perform CLog and OLog replay.
At the end of the recovery, it frees all the CLogs and OLogs,
and new logs are allocated during the normal execution.

S Implementation

TENET library is implemented in C and C++ which is ~11K
LoC. The core TENET library includes the TimeStone PTM
(~7K LoC), memory safety checks (~1.5K LoC), and the
NVM-SSD replication (~2.5K LoC). We rigorously tested
TENET with a carefully curated set of unit tests, functional
tests, and integration tests along with the offline testing tools
such as the Pmemcheck [48], Address sanitizer [80] to ensure
correctness of our implementation.

6 Discussion

In this section, we discuss the key takeaways in TENET (§6.1)
and the applicability of TENET’s ideas on ARM architecture
(§6.2). We also discuss the limitations and potential future
research directions in §6.3.

6.1 Leveraging the Concurrency Guarantees of PTM

Enforcing low overhead spatial safety. Most PTMs per-
form out-of-place updates to enforce the Isolation property
(ACID) [30,40,56,62,68,87], to support concurrent read and
write [30,40, 56], and to enable write batching [30, 56, 87].
These PTMs have at least two separate domains: one in which
new updates are made and buffered, and another that contains
consistent data (i.e., old updates) to which the new updates are
eventually merged. TENET leverages this property to enforce
a separate protection domain, such a design enables it to use
light-weight techniques such as MPK and canaries to enforce
spatial safety without having to check every access.

PTMs such as the libpmemobj [47] that perform in-place
updates can be modified to perform out-of-place updates as
done in Pangolin [94]. Although Pangolin uses microbuffer-
ing to perform out-of-place updates, it relies on expensive
data checksum to enforce spatial safety i.e., checksum is cal-
culated and verified every time the data is moved to and from
the microbuffers. SafePM [27] relies on compiler instrumen-
tation of loads and stores and hence it needs to perform spatial
and temporal safety checks at every access resulting in a high
performance overhead (§7.3).

Enforcing low overhead temporal safety. Almost all PTMs
support a stronger Consistency (ACID) guarantee such as
linearizability or serializability. Such PTMs usually perform
conflict checks (i.e., read/write set validation) during the com-
mit phase and the transactions are aborted if a read-write
conflict is observed during the validation. In the context of
temporal safety, this means that objects with live references
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in any on-going transaction will not be freed until those trans-
actions finish. Unlike the prior PTM works, TENET leverages
this property to perform temporal safety checks only at the
first dereference and avoids redundant checks during every
pointer deference in a transaction. This is because, once an
object is dereferenced, it can not be freed by concurrent trans-
actions, a inherent guarantee provided by PTM.

6.2 TENET’s Ideas on ARM Architecture

ARM processors support memory domains [2], which is simi-
lar to Intel MPK except that the permission switch happens
in the OS kernel. Moreover, ARM processors have been sup-
porting virtual address (pointer) tagging (upper 12-16 bits) at
the hardware level and it is shipped with the fop byte ignore
(TBI) feature [14,19,23]. Therefore, we believe that TENET’s
ideas can be applied beyond x86 architectures.

6.3 Limitations and Future Work

Protecting against intra-object overflow. Protecting against
intra-object overflow is a hard, open research problem. Even
the state-of-the-art techniques, such as BOGO [95] do not
protect against intra-object overflow. We believe that pro-
tecting against intra-object overflow with reasonable per-
formance overhead would require significant architectural
changes and/or compiler-level instrumentations because of
the fine granularity of protection [46,90]. However, TENET
protects the transactional metadata which are essential for
correct execution and recovery from the intra-object overflow.
We do this by placing an additional intra-object canary be-
tween the metadata section and the application data section in
a DRAM object (not shown in the figures). This restricts the
corruption to only the application data section of an object.

Protecting against the code outside the transaction.
TENET already protects the NVM data from spatial safety vi-
olations due to the code outside the transaction by using MPK.
However, it is possible to corrupt the DRAM objects outside
the transaction and TENET may not detect such corruption,
particularly the ones that do not overwrite the canaries. One
way to protect the DRAM objects is to protect all the TLogs
using the MPK and allow to switch permission only within
the TENET library. However, as TLog is per-thread and there
are only 16 MPKs available, we may need to employ MPK
virtualization [74] to offer a more fine-grained protection.

Impact of shorter tags. In TENET, we use all the upper 16-
bits to store the pointer tag; expansion of address space in the
future will reduce the number of available bits thus making
the tag range shorter. TENET allows to reuse of duplicate tags
across different pointers, but if the bits are too few (e.g., only
4 bits are available), reusing tags may cause false negatives.
In TENET, tag reuse becomes a problem, only if the reallo-
cated pointer is assigned with the same tag (that it had before
last free), which makes TENET ’s temporal safety detection
probabilistic. Reusing tags across different pointers or the
same pointer with non-consecutive reallocations results in a
deterministic detection. As the CPU vendors are extending

hardware support for pointer tagging, we believe that expand-
ing this idea to overcome bit limitations (e.g., similar to x86
segmentation overcoming 64KB address limitation) will be
an interesting future work.

7 Evaluation

We evaluate TENET by answering the following questions,
(1) what are the performance overhead of TENET’s memory
safety and off-critical path disk replication techniques (§7.1)?
(2) How does TENET perform in comparison with the other
state-of-the-art memory safe PTMs (§7.3)? (3) What is the
tail latency of TENET (§7.4)? (4) How does TENET fare in
the bug detection, correction, and recovery stress tests (§7.5)?

Evaluation platform. We use a system with Intel Optane
DC Persistent Memory (DCPMM). It has two sockets with
Intel Xeon Gold 5218 CPU with 16 Physical cores, 256GB of
NVM (2x128GB), 32 GB of DRAM (2x 16GB) per socket,
and 2x 1TB M.2 SSDs (Samsung 970 EVO). We used GCC
11.2.1 with -03 flag to compile benchmarks and ran all our
experiments on Linux kernel 5.16.12 with io_uring support.

Configuration. We preset the size of TLog and OLog to 8
MB and CLog to 32 MB, respectively. We also present the
performance analysis for varying log size in §7.4. We use two
SSDs for NVM replication i.e., one SSD per socket. Through-
out our evaluation, we present two versions of TENET: (1)
TENET-MS - which enforces only memory safety (i.e., no
NVM/SSD replication), and (2) TENET — which enforces both
memory safety and NVM/SSD replication for fault tolerance.
For microbenchmarks, we initially warm up the data struc-
tures with 1 Million (M) keys followed by executing a mix of
lookup, insert, update, and delete operations for 60 seconds
as done in the prior PTM works [30, 40, 56,7577, 87]. For
the real-world evaluation, we use the YCSB benchmark [29]
to evaluate TENET’s B+Tree based key-value store engine for
10M keys, we use 8 bytes integer keys and 100 bytes values
with Zipfian distribution. We present the average performance
of 10 runs, with an average error rate of £1.8%.

7.1 Performance Analysis of TENET

Figure 6 compares the performance of TENET-MS and
TENET against the TimeStone for three different workloads
with varying read/write ratios. Comparing TENET-MS and
TENET with TimeStone will enable us to quantify the over-
heads due to memory safety and fault tolerance techniques.

7.1.1 TENET-MS vs TimeStone

For the read-dominated workloads, TENET-MS performs
mostly on-par (< 5% overhead) or slightly better than the
TimeStone. This is because reads in TENET-MS require only
temporal safety checks and the overhead from spatial safety
checks are negligible due to the lower write ratio. The low
overhead temporal safety checks can be attributed to our in-
place pointer tagging technique wherein it only requires one
shifting operation for extracting the tag from the pointer and
one compare operation for validating the extracted tag.
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Figure 6: Performance comparison of TENET-MS and TENET
against TimeStone for Hash Table (HT), Binary Search Tree (BST),
and Linked List (LL) for 24 threads.
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Figure 7: Performance comparison of TENET-MS and TENET
against TimeStone for the B+tree key-value store with 24 threads.

For write-intensive workload, TENET-MS performs on
par with TimeStone; this shows that our canary based spa-
tial safety checks incur only a minimal overhead. For BST,
TimeStone suffers from high transaction aborts due to lock
conflicts on parent nodes. Unlike the BST, hash table is inher-
ently more concurrent and incurs lower aborts due to less lock
conflicts. Memory safety validation steps in TENET-MS re-
duce the aborts; our further analysis revealed that TimeStone
incurs about 3.5x more aborts than TENET-MS for BST. Con-
sequently, TENET-MS performs on par with TimeStone for
hash table and slightly faster in case of a BST.

7.1.2 TENET vs TimeStone

In addition to memory safety, TENET guarantees fault toler-
ance by performing NVM/SSD replication. For read-mostly
workloads, TENET performs on par with that of TimeStone
and TENET-MS. Due to a lower write ratio, the number of
log writes, and master object writes are less; consequently
replication does not add any significant overhead. However,
the replication overhead becomes evident as the write ratio
increases from 20% to 80% and TENET performs up to 12.6%
and 18% slower than the TENET-MS and TimeStone, respec-
tively. As the master objects are inserted/deleted/updated fre-
quently, the replica writes to SSD also increases. Therefore,
grace period detection is relatively longer in TENET as the
gp-thread has to wait for all the SSD writes to complete. A
longer grace period detection increases traffic in the TLog as
the log reclamation becomes slower. Overall, TENET adds a
modest overhead (< 18%) over TimeStone while enforcing
memory safety and fault tolerance.

7.2 Real-world Workload Evaluation
We built a B+tree-based key-value store using TENET; we

chose B+tree (fanout=64) to test and evaluate our array inter-
face but any other data structures can also be used. Figure 7
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Figure 8: Scalability of TENET-MS and TENET for B+tree

PTM Spatial Safety | Temporal Safety | UME | NVM Cost
Libpmemobj [47] No No Yes High
TimeStone [56] No No No None
SafePM [27] Yes Yes No Moderate
Pangolin [94] Partial No Yes Moderate
TENET-MS Yes Yes No None
TENET Yes Yes Yes Low

Table 1: Comparison of TENET against other PTMs.

compares the performance of TENET-MS and TENET key-
value store against the TimeStone key-value store.

TENET-MS. TENET-MS is 17% slower than the TimeStone
across all YCSB workloads. For data structures (that do not
use an array), such as the hash table, every read to a hash
node requires only one object dereference because each hash
node is a master object. But for a B+tree, reading one leaf
node requires a 2x fanout (2x64) number of dereferences
as each array element (of the key-value array) is a master
object. Although TimeStone incurs the same number of object
dereference, the additional temporal safety checks during the
object dereferencing in TENET-MS causes a 17% slowdown.

TENET. For write-intensive YCSB-A, TENET performs 41%
slower than TimeStone. This is because of lower chances of
write coalescing in the TLog and CLog. As the writes hap-
pen at the array element level, the chances of an array index
being repeatedly written to is less. This is the worst-case
scenario for TimeStone as it relies on maximizing write co-
alescing on DRAM objects to reduce NVM writes. Lower
write-coalescing causes frequent checkpoints (from TLog) on
CLog and frequent checkpoint writebacks (from CLog) to the
NVM object. TimeStone just performs frequent writebacks to
the NVM object; for TENET, increase in the number of write-
backs also increases the SSD writes due to replication. This
trend is corroborated by the performance of TENET for read-
intensive YCSB workloads (B, C, and D), where it exhibits
only a 21% slowdown against TimeStone. This is almost
half of the slowdown experienced for the YCSB-A workload
(41%) as the number of SSD writes are lower in read-intensive
workloads. In a nutshell, TENET guarantees memory safety
for arrays (TENET-MS) with a modest 17% overhead and
providing fault tolerance adds an additional 24% overhead
due to the reduced write coalescing in TimeStone.

7.3 Comparison with Other PTMs

Table 1 compares the protection scopes of PTMs; TENET is
the only PTM to offer full memory safety and cost-efficient
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Figure 9: TENET-MS vs SafePM: performance overhead study with
hash table for read-intensive and write-intensive workloads.

fault tolerance. We have discussed the limitations in the pro-
tection scope of prior works in §2.3. Moreover, TENET incurs
a relatively minimal performance overhead as compared to
SafePM (Figure 9) and Pangolin which incurs up to 60% and
67% overhead over the 1ibpmemobj . To ensure fairness, we
compare SafePM and TENET-MS on basis of performance
overhead incurred over their respective baseline PTM. Note
that SafePM does not guarantee fault tolerance against the
UMEs, so we use only TENET-MS for comparison.

As shown in Figure 9, SafePM performs up to 67% slower
than the libpmemobj across both the workloads. When the
libpmemobj’s performance saturates after 16 threads, SafePM
performs on-par; this is because the high contention overhead
in the libpmemobj amortizes the memory safety overhead
in SafePM. SafePMs’ overheads come from: (1) additional
undo logging to guarantee crash consistency for the memory
safety metadata. Note that this undo logging is in addition
to the ones performed by the 1ibpmemobj transaction, (2) the
memory safety metadata must be accessed for every read and
write which further slows down the performance.

Unlike the SafePM, TENET-MS guarantees memory safety
with a modest 5%-8% performance overhead; because, (1)
it does not require additional crash consistency for memory
safety metadata as the pointer tags are embedded in the ob-
jects, and (2) memory safety checks are performed only once
per transaction (on-commit and on-first-dereference).

7.4 Other Evaluations and Analysis

Scalability analysis. Figure 8 and Figure 9 shows the read
and write scalability of TENET-MS and TENET for hash ta-
ble and B+tree, respectively. Both TENET-MS and TENET
show good read and write scalability for B+tree and hash
table. The performance difference across thread counts are
consistent with what is observed for 24 threads in Figure 6
and Figure 7. For read-intensive workloads, TENET-MS and
TENET show less than 5% performance slowdown for a hash
table and a 17% (TENET-MS) and 24% (TENET) slowdown
for a B+tree. For a write-intensive hash table, TENET-MS
and TENET exhibit a 5% and 18% slowdown respectively,
while for B+tree, TENET-MS and TENET exhibit a 17% and

IDirectly referenced from the paper as Pangolin is not open-sourced.
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Figure 10: Tail latency comparison of TENET-MS and TENET
against TimeStone for B+tree with 24 threads.

449% slowdown. Overall, both TENET-MS and TENET scales
on-par with TimeStone; this shows that the TENET s memory
safety and fault tolerance techniques does not impede the
original scalability of TimeStone.

Storage cost analysis. With TENET, the DRAM space us-
age is bounded by the size of TLog (§MB). TENET stores the
replica logs in the NVM and this is bounded by the size of
OLog and CLog. TENET replicates the application data struc-
ture to the SSD; given the $/GB of SSD ($0.15) and the
NVM ($10) [15,20], TENET saves ~60x on storage cost
when replicating the entire NVM space (512GB) to the SSD
as opposed replicating to the NVM. In addition to the cost
benefits, TENET can recover from multiple UMEs spanning
across multiple pages while Pangolin can recover only from a
single page is corruption.

Tail latency. Figure 10 shows the tail latency of TENET-
MS and TENET compared against the TimeStone. As done in
prior works [55,60], we sample 10% of operations so that the
tail latency calculation does not overshadow the performance.
TENET-MS performs on-par with TimeStone, which shows
the efficacy of our memory safety techniques. However, for
write-intensive YCSB-A, TENET’s tail latency spikes up at the
99th and 99.9th percentile. This is because of the additional
writes incurred while performing replication to the NVM/SSD
for fault tolerance. For read-intensive workload, TENET’s tail
latency is almost on par with TimeStone as lower ratio reduces
the number of SSD writes. TENET-MS shows similar tail
latency to that of the TimeStone across workloads as it does
not perform replication. We believe our fault tolerance design
can be further optimized for tail latency by making log writes
asynchronously, which would be an interesting future work.

Log size sensitivity. To study the impact of log size on the
performance, we present the relative performance of TENET
for varying log sizes using a concurrent hash table with 1 and
24 threads (Figure 11). We show the performance only for
write-intensive workloads as read-intensive workloads are less
sensitive to the log size. The X-axis represents the log size,
and the Y-axis represents the relative performance normalized
to the default log size used in all the previous evaluations.
TENET’s performance increases up to 21% with the increas-
ing log size. As the log size is decreased, the performance
drops to 38%. As the log size increases, the writers spend
less time reclaiming log space and hence better performance.
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Figure 11: Performance sensitivity of TENET for varying log sizes.
Alternatively, for smaller log sizes, the writers spend more
time reclaiming log space. TENET requires all SSD writes in
a grace period window to be persisted before reclaiming the
log space, further increasing the pressure on the writers. So
we observe a larger performance drop (38%) for a smaller log
size and relatively a smaller performance gain (21%) when
the log size is increased. We confirmed that this behavior is
consistent across different thread counts and data structures.

7.5 Error Detection and Correction

Spatial safety test. Our test cases select transactions at ran-
dom to intentionally cause buffer overrun bugs on a B+tree
leaf nodes’ value pointer (p_val) and to access the key array
(in a B+tree node) out-of-bounds. For the buffer overflow bug,
the erroneous transactions execute a memcpy on the p_val for
1KB where the p_val pointer is of size 100 bytes. We also
tested intra-array overflow with a smaller size of 128 bytes.
For out-of-bound access, the erroneous transactions access the
key array at index 96, which is beyond the original fanout (64).
For all test cases, TENET detected spatial safety violations in
the commit phase and aborted the transactions, returning an
exception to the B+tree code. In our 200 random tests, TENET
detected spatial safety violations 100% of the time.

Temporal safety test. We modified the delete function in our
open-chaining hash table benchmark to free the target node
and not update the previous nodes’ next pointer (p_next).
A randomly chosen transaction executes the buggy delete
logic and spawns read transactions to access the dangling
p_next. TENET detected the dangling pointer access during
the object dereferencing phase and returned an exception
to the application. Further, to test the case where a free-ed
address may be reallocated again, we kept allocating a new
hash node until the free-ed NVM address was reallocated. Our
test case then waits for a transaction to access the dangling
p_next (reallocated). We repeated both the temporal safety
tests 200 times, and TENET detected dangling pointer access
and returned an exception to the application.

UME Test. We used the ndctl utility tool (ndctl inject-
error) for injecting a UME at a specified offset [9]. While run-
ning the benchmark, we first injected a UME in the log pool,
particularly on a randomly chosen CLog. TENET’s SIGBUS han-
dler received the OS notification and terminated the program
gracefully. Upon restart, TENET rightly identified the cor-
rupted log pool and successfully recovered using the replica
log pool. We also injected UME in one of the master ob-
ject pools and observed that TENET restored the NVM status
successfully using the SSD replica. Both these tests were

repeated multiple times and TENET successfully recovered
the hash table without losing any data. The recovery time for
TENET and TimeStone are similar, bounded by OLog and CLog
size (not shown due to space constraints). The SSD access is
performed in the background using io_uring and the cost is
relatively small. Our future work will develop techniques to
accelerate recovery.

8 Related Work

DRAM based memory safety techniques. Memory safety
violation in the DRAM has been extensively studied in the
security community [26,32,35,36,59,69-71,73,79,81,83,84,
92,95]. In fact, our work was inspired by this line of research
which essentially conveys that memory safety violations are
the source of all evils. But the downside of these techniques
is that they suffer from high performance overhead (up to
200%). In TENET, we reduce the performance overhead by
leveraging the concurrency properties of the PTM and also
by limiting our scope of protection (e.g., no support for con-
trol flow attacks). Moreover, applying these DRAM based
techniques to NVM is non-trivial as they are not designed
to be crash consistent and adding crash consistency to these
techniques comes with its own set of challenges and may
potentially increase the performance overhead.

NVM bug finding techniques. There are a plethora of
works on detecting crash consistency bugs in the NVM soft-
ware [37,38,58,63,64,72]. These techniques primarily focus
on detecting bugs that violate crash consistency correctness
such as atomicity, linearizability, and persistence ordering
bugs; they neither focus on memory safety nor UMEs.

9 Conclusion

In this paper, we propose TENET. TENET enforces
DRAM/NVM memory domain separation using MPK to pre-
vent NVM writes out of TENET library. Additionally, TENET
uses canary values and in-place pointer tagging to guarantee
on-commit spatial safety and on-first-dereference temporal
safety. Further, TENET proposes off-critical path NVM/SSD
data replication to guarantee a performance and cost-efficient
fault tolerance for the NVM data against the UMEs. Our
evaluations showed the performance efficiency of TENET’s
techniques along with a thorough analysis on scalability, stor-
age cost, and tail latency. Overall, TENET provides enhanced
NVM data protection at a modest performance and storage
cost as compared to the other state-of-the-art PTMs.
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