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Abstract

Byte-addressable non-volatile memory (NVM) allows pro-

grams to directly access storage using memory interface with-

out going through the expensive conventional storage stack.

However, direct access to NVM makes the NVM data vulnera-

ble to software bugs and hardware errors. This issue is critical

because, unlike DRAM, corrupted data can persist forever,

even after the system restart. Albeit the plethora of research on

NVM programs and systems, there is little focus on protecting

NVM data from software bugs and hardware errors.

In this paper, we propose TENET, a new NVM program-

ming framework, which guarantees memory safety and fault

tolerance to protect NVM data against software bugs and hard-

ware errors. TENET provides the popular persistent transac-

tional memory (PTM) programming model. TENET leverages

the concurrency guarantees (i.e., ACID properties) of PTM

to provide performant and cost-efficient memory safety and

fault tolerance. Our evaluations show that TENET offers an

enhanced protection scope at a modest performance overhead

and storage cost as compared to other PTMs with partial or

no memory safety and fault tolerance support.

1 Introduction

Byte-addressable non-volatile memory (NVM) opens a new

paradigm in designing storage stack. NVM provides byte-

addressability and low-access latency like DRAM and it of-

fers data persistence like storage. A program can directly map

(mmap) an NVM region to its address space and access it using

load/store instructions without storage stack overhead (re-

ferred to as direct persistence). Several works leverage NVM

in the core storage stack, including file systems [34,51,88,89,

96], key-value stores [52, 55, 57, 61, 65, 66, 86], and persistent

transactional memory (PTM) [47, 56, 77, 87]. Although the

first commercial NVM product, Intel Optane DCPMM, was

discontinued recently [13],industry continues to explore vari-

ous forms of direct persistence [42]. In particular, the emerg-

ing Compute Express Link (CXL) [12,31] opens new opportu-

nities for byte-level persistence based on NAND flash [16,21],

NRAM [39], battery-backed DRAM [41,78], and PRAM [22].

Also, many software-based solutions [53, 67, 91], which ex-

ploit direct persistence (DRAM along with in-rack battery),

are being widely deployed in data centers [1, 11, 18, 45, 50].

However, the direct persistence of NVM opens several chal-

lenges in protecting data from software bugs (e.g., ªmemory

scribblesº) and media errors. NVM data can be permanently

corrupted due to a single memory scribble, which roots from

a spatial safety violation (e.g., buffer overflow) or a temporal

safety violation (e.g., use-after-free) in a program. Previous

studies [26, 32, 35, 36, 59, 69–71, 73, 79, 81, 83, 84, 92, 95]

have shown that such memory safety violations are prevalent

in programs (e.g., 70% of CVEs [5, 17, 25]). Since NVM is

mapped to the same address space as DRAM, memory safety

violations in NVM and DRAM can corrupt NVM data. Be-

sides these software bugs, dense NVMs have a higher random

raw bit error rate (RBER) than DRAMs, with RBER closer to

NAND flash [85,93]. Hence, NVM (e.g., Intel Optane) adopts

stronger ECC for error correction. Unfortunately, certain hard-

ware errors can still escape the error correction, leading to

Uncorrectable Media Errors (UME) in NVM [4, 7].

PTMs [47, 56, 77, 87] are one of the most popular NVM

programming models because of their ability to exploit direct

persistence. A few recent PTM systems, such as SafePM [27]

and Pangolin [94], attempt to provide NVM data protection

by extending libpmemobj [47]. A desirable PTM system that

offers NVM data protection should (1) offer extensive data

protection: protect against both NVM media errors and soft-

ware memory safety violations in both DRAM and NVM, and

(2) incur lower performance overhead and storage costs.

Unfortunately, existing works fail to meet the above criteria.

SafePM [27] provides NVM memory safety by instrument-

ing every NVM access. It does not protect against media

errors and memory safety violations in DRAM. The mem-

ory instrumentation and the associated metadata incur high

performance overhead and storage cost. Pangolin offers data

protection with checksum and parity while libpmemobj pro-

vides fault tolerance by simply replicating the NVM data to

a backup NVM region. However, both systems are still vul-

nerable to memory safety violations, incur high NVM storage

cost, and suffer from high performance overhead. As further

explained in §2.2, in summary, prior approaches compromise

the protection coverage [27, 44, 94] while also incurring high

storage cost and high performance overhead [27, 47, 94].

This paper proposes TENET, a principled PTM-based

approach that offers an enhanced memory safety and fault

tolerance guarantees at a significantly lower performance

overhead and storage costs than prior works. Leveraging

off-the-shelf hardware features and the concurrency prop-

erties of PTM, TENET reduces performance overhead and

storage costs without compromising its protection coverage.

We realize TENET’s memory-safe design principles using

the state-of-the-art and highly scalable PTM framework,

TimeStone [56] that does not provide NVM data protection.

In particular, key techniques of TENET are as follows:

• Hardware-enforced memory domain separation. Instead

of instrumenting every memory access to check for mem-

ory safety violations, TENET exploits an existing hardware
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feature: Intel Memory Protection Keys (MPK) [49, 74],

to separate the address space into NVM domains and a

DRAM domain. Only the trustworthy TENET library can

write to the NVM domains. Thus, outside the TENET li-

brary, TENET offloads NVM data protection against mem-

ory scribbles to hardware. This enables data protection for

most memory access with almost zero overhead.

• On-first-read and on-commit memory safety enforce-

ment. Enforcing memory safety at every NVM access in

the TENET library incurs high overhead. Instead, leveraging

PTM semantics, TENET enforces the temporal safety vio-

lation only at the first reference of an NVM object and the

spatial safety violation only at the commit of a persistent

transaction. This, in tandem with the memory domain sepa-

ration technique, prevents the corrupted data from reaching

NVM with very low runtime overhead.

• Asynchronous hybrid NVM-SSD replication. Protecting

against NVM media errors fundamentally requires creating

redundancy. TENET asynchronously replicates the NVM

data to SSD off the critical path to tolerate any number of

NVM media errors. It thus offers low storage cost fault

tolerance without hindering performance.

• We design TENET using the above approaches, which to the

best of our knowledge is the first high-performance PTM

with memory safety and fault tolerance guarantees.

• We evaluate two different versions of TENET– (1) memory

safety only (TENET-MS) and (2) memory safety and fault

tolerance (TENET) with key data structures and real-world

workloads. Our results indicate that TENET offers enhanced

protection at a modest performance overhead and storage

cost as compared to state-of-the-art systems.

2 Background and Motivation

This section first introduces NVM media errors (§2.1) and

memory safety violation in NVM programs (§2.2), followed

by discussing the prior PTM works that address the media

errors and memory safety violations (§2.3).

2.1 NVM Media Errors

Figure 1 shows the classification of potential errors in NVM.

These errors can be classified into hardware errors and soft-

ware errors. Hardware errors can be further classified into me-

dia errors (MEs) and silent data corruptions (SDCs). Media

errors are caused by faults in the NVM media such as exceed-

ing the write endurance, power spikes, soft media faults etc

that directly corrupt data in the NVM media [85, 93]. SDCs

are caused by faults that occur outside NVM media, which in-

directly causes data corruption. Examples of SDCs are buggy

NVM firmware, faults in CPUs, memory controllers, or other

hardware components [28, 54]. Handling SDCs is a separate

research area and it is out of scope of this paper.

Hardware media error (ME) correction. Commercially

available NVMs implement error-correction code (ECC) in

hardware to detect and correct media errors. For example,

Intel Optane DCPMM uses hardware parity to detect any-bit

Non-Volatile Memory (NVM) Error
   ├ Hardware Error
   │    ├ Media Error (ME)
   │    │     ├ Correctable Media Error (CME)
   │    │     └ Uncorrectable Media Error (UME)
   │    └ Silent Data Corruption (SDC)
   └ Software Error
          ├ Memory Safety Violation
          │     ├ Spatial Safety Violation
          │     └ Temporal Safety Violation
          ├ Crash Consistency Violation
          └ Logic Bugs

Figure 1: Classification of errors in NVM. TENET handles UME,

Spatial and Temporal Safety Violation bugs (red). TENET relies on

the hardware ECC to fix CME and the underlying PTM to handle

Crash Consistency Violations such as atomicity and persistence or-

dering (blue). Silent Data Corruption in the hardware (e.g., CPU

faults) and logical bugs in the application are out of scope (grey).

errors, and it can correct up to two 2-bit errors [10]. The NVM

hardware transparently fixes such correctable media errors

(CMEs). However, uncorrectable media errors (UMEs) will

be reported for software intervention as detailed below.

Reporting uncorrectable media error (UME) to software.

The OS receives the reports of UMEs; and it can pass it to the

application. Specifically, when a CPU accesses an NVM page

affected by UMEs, the NVM hardware sends a poison bit

along with the relevant data to the CPU. Upon encountering

the poison bit, the CPU raises a memory check exception

(MCEs) for the OS to handle. Currently, Linux handles the

MCE by adding the corrupted page to the bad block list and

sends a SIGBUS signal to the application [4, 9]. Then the OS

leaves the responsibility to the application for fixing UMEs

during the recovery phase [7]. We note that, although the

NVM is byte-addressable, UMEs are reported to the software

at the page granularity due to the blast radius effect [3].

2.2 Memory Safety in NVM Programs

We categorize software ªscribblesº, which corrupt NVM data,

as spatial and temporal memory safety violations (Figure 1).

Spatial safety violations happen when memory is accessed

beyond its allocated range. Buffer overflows and array out-

of-bound accesses are classical examples. Temporal safety

violations happen due to dangling pointers; i.e., when access-

ing an already freed (use-after-free) or accessing a reallocated

address range (use-after-realloc). These memory safety bugs

are even more dangerous in NVM than DRAM because the

NVM data will be corrupted forever and a simple system

restart would not fix these issues. Note that memory safety

bugs on either DRAM or NVM region of an application can

cause NVM data corruption since the NVM region is mapped

directly to application’s address space.

2.3 Prior NVM Data Protection Approaches

Memory safety in NVM programs. Prior works – Pan-

golin [94], SafePM [27], and Corundum [44] – include mech-

anisms to protect NVM data from memory safety violations.

Pangolin extends libpmemobj [47] and uses per-object check-

sum to detect spatial safety violations. SafePM adds Address-
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Figure 2: Performance of TimeStone against other PTMs. None of

the PTMs are memory safe or fault tolerant against UME.

Sanitizer [80] to libpmemobj transaction to detect spatial and

temporal safety violations on NVM data. Corundum is a Rust-

based NVM programming library and leverages Rust’s type

system to statically enforce spatial and temporal memory

safety. However, they have some critical limitations. First,

none of these approaches prevent NVM data corruption due

to memory safety violations on ªDRAM dataº. Suppose that

the buggy code inside a transaction causes a buffer overflow

on DRAM data; such spatial safety violations on DRAM

can scribble arbitrary memory location, including NVM data.

Moreover, none of them guarantee to protect NVM data from

temporal safety violations. Pangolin does not check tempo-

ral safety violations. Meanwhile, SafePM does not detect

use-after-realloc bugs. Even with Corundum, the developers

still have the responsibility to guarantee type and memory

safety for the "unsafe" Rust code, both can result in spatial

and temporal safety violations.

Both Pangolin and SafePM suffer from high performance

overhead and introduce additional performance bottlenecks.

Pangolin calculates and verifies checksums on the critical

path, imposing high performance overhead. Furthermore, it

verifies checksum only for write transactions (i.e., read trans-

actions are unprotected). SafePM instruments every NVM

access to check for memory safety violation, which is costly.

SafePM further introduces extra UNDO logging overhead

over the already existing expensive logging in the libpmemobj

to guarantee crash consistency for its memory safe metadata.

Fault tolerance against UME. To protect against UME,

libpmemobj supports replicating data on NVM. However, it

replicates data on the write critical path, leading to high perfor-

mance overhead. Furthermore, storing the replicated data on

NVM wastes the precious NVM space, doubling (2×) storage

cost. Pangolin uses parity for fault tolerance; however, parity

calculation on the critical path causes high performance over-

head and it unnecessarily serializes the transactions which

affects the write scalability. Further, Pangolin can recover up

to one page within a parity region; a data loss will happen if

UME occurs on more than a page. SafePM and Corundum do

not provide any fault tolerance against UME.

2.4 Prior PTMs for NVM

Libpmemobj [47] has been the de-facto PTM. However, it

suffers from high performance overhead and poor scalabil-

Node A
commit-ts=10

Node A6

commit-ts=60
…

Node A9

commit-ts=90
Node A8

commit-ts=80
…

node A9

commit-ts=90

Master Object

update(A,A8)… update(A,A9)

Operational Log (OLog)

❶

❷

❹

NVM DRAM

Checkpoint Log (CLog)Transient Version Log (TLog)

version 
chain

log reclamation
writeback

Writer (local-ts=85)
> update(A, A9)

Program

❸

Figure 3: An illustrative example of updating Node A to its 9th

version (A9) in TimeStone.

ity. Thus, several new PTMs focus on addressing its limita-

tions [30,40,62,68,75–77,87]. Figure 2 shows that none of the

existing PTMs, except TimeStone [56], scale beyond 8 cores

even for a read-intensive workload. Further, TimeStone per-

forms up to 8× better than the existing PTMs. Based on this

observation, we chose TimeStone [24, 56] as the transaction

abstraction for TENET. Moreover, designing memory safety

and fault tolerance techniques for such a high performance

PTM is challenging as even a small bottleneck can compro-

mise its original scalability and performance. We introduce

the relevant design aspects of TimeStone below.

Multi-version concurrency control. TimeStone follows

multi-version concurrency control (MVCC). With MVCC,

TimeStone supports non-blocking reads and concurrent dis-

joint writes, achieving high concurrency. For each object cre-

ated by the application (e.g., B-tree node), TimeStone allo-

cates a master object on NVM (see Figure 3). On updating

a master object, TimeStone creates a new version ( 1 ) on

DRAM, chaining multiple version objects from new to old

object’s age. TimeStone dereferences the right version object

during the dereference phase with the help of timestamps.

Each version object gets assigned a timestamp when it is

committed (commit-ts). Also, each transaction gets a times-

tamp (local-ts), which denotes the transactions’ start time.

TimeStone traverses the version chain and chooses the most

recent version of an object based on these timestamps (i.e.,

commit-ts<=local-ts). This guarantees a consistent snap-

shot of NVM data for all transactions at any given time.

Operational log based immediate durability. TimeStone

uses a DRAM-NVM hybrid logging technique, named TOC

logging for efficient crash consistency. The TOC logging

consists of Transient Version Log (TLog) on DRAM, Oper-

ational log (OLog) and Checkpoint log (CLog) on NVM, as

illustrated in Figure 3. TimeStone creates a new version on

TLog ( 1 ), and logs the performed operation to the OLog ( 2 )

for immediate durability. An operational log entry is typically

much smaller than the conventional undo/redo logging, which

duplicates the data, thus making crash consistency efficient.

Asynchronous log reclamation and replay based recovery.

As more versions are created, TLog eventually becomes full,
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triggering log reclamation. When TLog is reclaimed, the latest

version of an object on TLog (A9 over A8) is checkpointed to

the CLog ( 3 ). Similarly, when CLog becomes full, the latest

checkpoint (A9 over A6) is written back to the master object

( 4 ). To recover from a crash, TimeStone first applies the

checkpoints in CLog to the respective master objects and re-

verts them to a consistent snapshot. Then the OLog is executed

to recreate all the updates that are lost on TLog.

3 Overview of TENET

3.1 Threat Model and Assumptions

TENET aims to protect against spatial and temporal mem-

ory safety violations in buggy application code. Furthermore,

TENET considers the possibility of a memory safety violation

on DRAM data corrupting NVM. TENET also aims to guar-

antee fault tolerance for NVM data against the uncorrectable

media errors (UMEs). PTMs in general and TimeStone in

particular cannot guarantee ACID properties for the applica-

tion code that is outside the transaction or when the PTMs’

APIs are misapplied. This applies to TENET as well, i.e., it

cannot guarantee memory safety and fault-tolerance for the

code outside the transaction. TENET is not designed to handle

SDC that occur outside the NVM media. Protection against

the adversarial attacks (e.g., control-flow attacks) is out-of-

scope. However, the protection techniques and mechanisms

against SDC and control-flow attacks can be orthogonally

deployed to TENET. In TENET, application code is distrusted

while TENET library code and OS kernel are considered as a

trusted computing base (TCB).

3.2 Design Goals

• Protect NVM data from memory safety violations.

TENET should detect all spatial and temporal safety bugs

not only from NVM but also from DRAM. Any memory

safety bugs either in DRAM or NVM code should not cor-

rupt NVM data.

• Protect NVM data against UMEs. TENET should provide

a robust fault tolerance mechanism to recover and restore

NVM data from UMEs transparently.

• Low performance and storage overhead. TENET aims

to be a practical system that offers an enhanced protection

scope and strong fault tolerance at a minimal performance

and storage overhead.

3.3 Design Overview

TENET re-purposes the multi-versioning and transactional

semantics of TimeStone to achieve its design goals. Below we

introduce TENET’s main techniques as illustrated in Figure 4.

(1) Separation of NVM protection domain from DRAM. A

memory safety bug (e.g., out-of-bound write) either in DRAM

or NVM can result in NVM data corruption. Enforcing full

memory safety in every single memory access incurs pro-

hibitive runtime overhead as prior studies show [27, 94].

To prevent unauthorized NVM writes without checking ev-

ery single memory access, TENET grants the write permission

to the NVM region only for the TCB i.e., the TENET library

code. In other words, the application code has read-only per-

mission for the NVM, and consequently, it only writes on

DRAM. When the application commits its transaction, writer

thread gets write permission to execute the TENET library

code which propagates the updates on DRAM to the NVM.

TENET completely segregates DRAM and NVM regions so

that all new version and master objects are created on DRAM

(referred to as DRAM Objects). Therefore, TENET application

code does not require write access to NVM, as it writes only to

the DRAM region. If a buggy application code tries to write

to the NVM region, it will receive an exception (SIGSEGV)

from TENET and will be terminated. TENET exploits Intel

Memory Protection Keys (MPK) [49,74] to efficiently switch

NVM permissions for each thread.

(2) On-commit spatial safety enforcement. As applica-

tions can always write to the TLog (i.e., DRAM), it is vul-

nerable to arbitrary memory scribble. A corrupted DRAM

object can be eventually propagated to CLog ( 6 in Figure 4)

and the master object ( 8 ), consequently corrupting the NVM

data. We propose on-commit spatial safety enforcement to pre-

vent corrupted DRAM objects from reaching NVM. TENET

adds eight byte canary values at the start and at the and of a

DRAM object during its creation ( 2 ). Specifically, TENET

assigns a random value to C0, and the hash of C0 and its lo-

cation (xor(C0,&C1)) to C1. When an application commits

the transaction, TENET inspects the integrity of canary values

of all DRAM objects in that transaction ( 3 and 4 ). If the

canaries are compromised (i.e., C0 != xor(C0,&C1)), then

TENET aborts the transaction and gracefully terminates with-

out propagating the corrupted objects to NVM.

Our on-commit spatial safety enforcement is efficient

with minimal performance overhead. Unlike the prior ap-

proaches [27, 69, 79, 95], our technique avoids reading addi-

tional metadata, and it checks the integrity only once during

the transaction commit. Note that NVM objects do not have

canary values and thus no NVM space overhead.

(3) On-first-dereference temporal safety enforcement.

Even after an NVM (master) object is freed (and then reallo-

cated), a program still can reference it via dangling pointers

which can corrupt the NVM data in unintended ways.

We propose on-first-dereference temporal safety enforce-

ment to efficiently enforce temporal safety of NVM objects

with a minimal runtime overhead. TENET uses a tag-based

approach, which essentially checks if a pointer points to the

right object by comparing tags associated with the pointer and

the pointed object. When TENET creates an NVM (master)

object, it assigns a 2-byte random integer as a tag of the object

(e.g., 0xCAFE for Node A in Figure 4). We encode this 2-byte

tag in the upper 16-bit of a pointer, which is unused in the x86

architecture. When the object is freed, its associated tag on

the header set to zero for detecting use-after-free. When the

object is dereferenced first time in a TENET transaction ( 1 ),

TENET checks whether the encoded tag in the pointer matches
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Figure 4: Overall architecture of TENET with an example of updating Node A to its 9th version (A9). n denotes the newly added memory safety

checks and replication to the TimeStone transaction. Note that the application has read/write access to DRAM and read-only permission for

NVM. When accessing Node A, TENET validates its temporal safety by comparing the tags, 0xCAFE ( 1 ). If the tags do not match, the transaction

is aborted. Otherwise, the writer proceeds to traverse the Node A’s version chain, makes a copy of the latest version (A8) in its TLog and updates

it to A9 ( 2 ). Upon commit, Node A9 is validated for spatial safety by checking the canary values ( 3 and 4 ). The transaction is aborted if the

validation fails. Otherwise, the writer commits the transaction by updating its OLog ( 5 ) for durability and it also synchronously updates the

replica OLog for fault tolerance ( 6 ). When reclaiming the TLog, Node A9 is once again validated for spatial safety before checkpointing it to the

CLog ( 7 ) followed by synchronously updating the replica CLog ( 8 ). Similarly, when the CLog is full, TENET writes back the latest checkpoint

(Node A9) to the original master object Node A ( 9 ). The updated Node A is then asynchronously replicated to the disk ( 10 ).

with the tag in the pointed object. If the tags do not match,

it means the pointer points to the already-freed/-reallocated

object (i.e., dangling pointer), which violates temporal safety.

In this case, TENET aborts the transaction immediately.

Our approach is efficient and imposes minimal performance

overhead because it checks the temporal safety of each object

only once in a transaction. Also, accessing the inlined tags is

cache-friendly, which, unlike prior approaches [27,71,79,95],

requires no additional metadata lookup.

(4) Off-critical path NVM replication to SSD. TENET

replicates all NVM data; in the case of a UME, corrupted

NVM pages can be restored using the replica. The main chal-

lenge in designing a replication scheme is minimizing the

performance overhead and storage cost. While replication to

another NVM region can be performance efficient, it incurs

2× higher capacity cost. Instead, we propose a hybrid NVM-

SSD replication technique; TENET asynchronously replicates

the master objects to SSD ( 10 ) and synchronously replicates

the transaction logs (CLog and OLog) to NVM ( 6 , 8 ). Master

objects, are application data structures, which can be large and

also potentially occupy the entire NVM space. Hence, TENET

replicates master objects to the SSD off the critical path to

reduce both storage cost and performance overhead. Although

the replication is asynchronous, TENET guarantees loss-less

NVM data recovery by prudently leveraging the transaction

logs and grace period semantics. Meanwhile, transaction logs

are small and finite, so TENET replicates them to NVM to

reduce performance overhead. Further, TENET is also capable

of recovering from multiple simultaneous UMEs occurring

in one or multiple NVM pages. We explain this design, its

correctness and recovery guarantees in §4.4 and §4.5.

3.4 Putting It All Together For TimeStone

TENET makes the NVM read-only for all except the TENET’s

library code. So the NVM objects in TimeStone do not need

spatial safety checks as they are read-only objects. TENET

enforces temporal safety checks for all NVM objects (us-

ing pointer tags) during the object dereferencing to detect

dangling pointers. On the contrary, DRAM objects are vulner-

able to application scribbles (due to write permission) hence

TENET enforces on-commit spatial safety checks using the

canary bits. DRAM objects do not need separate temporal

safety checks as they are managed internally by TENET; i.e.,

as DRAM objects are accessed via the respective NVM ob-

ject, enforcing temporal safety for NVM objects indirectly

guarantees it for DRAM objects. We discuss the correctness

of these techniques in §4.3. TimeStone can not handle UMEs,

so TENET proposes to replicate master objects and transaction

logs to SSD and NVM respectively; in the event of a UME,

NVM data can be restored using the NVM/SSD backup. In

a nutshell, we optimally apply TENET’s memory safety tech-

niques to the vulnerable parts of TimeStone and organically

redesigned it to guarantee full memory safety. If TENET was

to be used for other PTMs, then its techniques can well be

applied, albeit it may require some engineering effort. We

discuss this further in §6. Refer to Figure 4 for a summary on

lifecycle of a TENET transaction.

4 TENET Design

In this section, we first describe TENET transaction design

(§4.1) followed by the design of memory safety (§4.2-§4.3),
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fault tolerance replication (§4.4), and recovery (§4.5).

4.1 TENET Transaction

Below we explain how TimeStone transaction is redesigned

using TENET to enforce memory safety and fault tolerance.

4.1.1 NVM Object Dereference

Object dereferencing in TimeStone (§2.4) only traverses the

version chain and returns the correct version, whereas in

TENET, object dereferencing is a two-step process.

(1) Temporal safety validation. TENET validates the master

object pointer for temporal safety (§4.3.2) to detect dangling

pointers; transaction aborts if the validation fails (§4.1.4).

(2) Version chain traversal. If the object passes the valida-

tion, then TENET dereferences the correct DRAM object or

directly the master object if the version chain does not exist.

4.1.2 Updating an Object

In TENET, a writer updates a master object by creating a

new DRAM object as done in the TimeStone. However,

TimeStone allows its users (application) to allocate and write

to the NVM when creating new master objects. Thus, a buggy

application can easily corrupt the NVM region. In TENET,

this is restricted to prevent direct NVM writes; so the appli-

cation allocates and writes to a new master object (shadow

master object) on the DRAM and then during the commit

phase TENET library creates a corresponding NVM copy only

if the writes pass the spatial safety violation checks.

4.1.3 Committing a Transaction

In TimeStone, the commit procedure updates the OLog to guar-

antee durability and then makes all the updates atomically

visible. TENET’s commit procedure happens in three phases:

(1) Spatial safety validation. All the new versions and

shadow master objects created in a transaction are validated

for spatial safety violations (§4.3.1). Upon successful valida-

tion, TENET allocates and updates the persistent master object

from the corresponding shadow master object.

(2) Transaction durability and replication. Updating OLog

guarantees durability, and replicating it ensures fault toler-

ance (§4.4.1). Also, TENET adds all the newly created master

objects in (1) to the replica buffer to trigger async disk writes

using background workers (§4.4.2).

(3) Publishing the updates atomically. TENET makes the

updates atomically visible by adding the new versions to

their respective version chain, and this procedure is exactly

the same as TimeStone. Additionally, TENET frees all the

shadow master objects, if any, and exits the critical section.

4.1.4 Aborting a Transaction

Common abort procedure. TENET rolls back any used log

space, lock status, and reclaims all the shadow master objects

and also its NVM counterpart if one exists. This is common

for all three abort cases described below.

Abort due to lock conflict. During the object update (§4.1.2),

if the writer fails to acquire a lock, it aborts the transaction.

This is a benign abort i.e., no memory safety violations, so

TENET performs the common abort procedure and retries the

transaction after the backoff period.

Abort due to memory safety violation. All ongoing trans-

actions are aborted if a transaction aborts due to spatial safety

or temporal safety violation. TENET executes the common

abort procedure and returns an exception.

Abort due to a UME. The OS notifies a UME by sending

a SIGBUS signal. TENET’s signal handler catches the signal,

returns a UME exception to notify the application, and grace-

fully terminates the process. TENET fixes the affected NVM

region during the recovery process (§4.5).

4.2 Unauthorized NVM Write Prevention

TENET already prevents application code from directly writ-

ing to the NVM by using DRAM objects for the updates. How-

ever, a buffer overflow on DRAM can corrupt the NVM data

as NVM is directly mapped to the applications’ address space.

TENET employs Memory Protection Keys (MPK), a hardware

feature available in the Intel systems [33, 34, 43, 74, 82] to

detect NVM writes out of TENET library code.

Using MPK to enforce read-only NVM access. With MPK,

a page can be assigned to one of the 16 available protec-

tion domains. The assigned protection domain is encoded

in the page table entry. A thread’s access permission to the

protection domains is controlled at the per-thread level via a

user-accessible register, PKRU. A thread can switch its access

permissions to the protection domains by writing to the PKRU

register, which only costs 20 CPU cycles. In TENET, each

NVM pool is assigned a unique protection key during pool

creation. Only the TCB (i.e., TENET library code) is allowed

to write to the NVM pool. Thus, a thread grants itself read-

write permissions to the corresponding NVM pool during

the library code execution and revokes it before exiting the

library. As a result, if the application writes to NVM (e.g.,

due to buffer overflow), MMU prevents the access and OS

sends a SIGSEGV signal. Thus, any spatial safety violations

due to a buggy write is contained within the DRAM region.

4.3 Enforcing Memory Safety

In this section, we explain the spatial (§4.3.1) and temporal

safety design (§4.3.2). In §4.3.3, we explain the array interface

as an example, and how the interface provides memory safety.

4.3.1 On-commit Spatial Safety Design

TENET enforces spatial safety for all DRAM objects to pre-

vent NVM data corruption due to a buggy DRAM write.

Technique. As illustrated in the Figure 4, all DRAM objects

are assigned two 8-byte canaries at the start C0 and at the end

C1. Specifically, C0 is a random value and C1 is the hash of C0

and its location (xor(C0,&C1)). TENET inspects the integrity

of canary bits to detect buffer overflows and underflows.
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On-commit validation. When the application commits its

writes (§4.1.3), TENET inspects canary bits for all the newly

created DRAM objects. A transaction is committed only when

both C0 and C1 are intact in all the DRAM objects. Otherwise,

the transaction aborts and discards all the corrupted objects.

An erroneous transaction can corrupt the DRAM objects out-

side of the current transaction i.e., the ones that are part of

other concurrent transactions or the ones that are not part of

any ongoing transactions at all. To detect such cases, TENET

places an 8-byte canary at the start and the end of the trans-

actions’ write set. Note that all the DRAM objects including

the shadow master objects are part of a transactions’ write

set. TENET validates the write set canaries before and after

each step of the commit process (§4.1.3). This ensures that

a transactions’ write set (i.e., DRAM object) has not been

corrupted by an erroneous concurrent transaction, particularly

between the initial validation ((1) in §4.1.3) and the publica-

tion of the updates ((3) in §4.1.3). However, if the write set

canaries are found to be compromised then TENET aborts all

the transactions as explained in §4.1.4.

Correctness. Deferring spatial safety checks until the com-

mit time does not violate the correctness as the other concur-

rent transactions can not observe any uncommitted DRAM

objects. Although a rare case, to avoid reading a DRAM

object that is corrupted (after it commits), TENET performs

spatial safety check before dereferencing a committed DRAM

object. Subsequently, the DRAM objects ( 7 in Figure 4) and

the shadow master objects are re-validated before and after

copying to the NVM to prevent Time-of-Check-Time-of-Use

(TOCTOU) bugs [6]. If an DRAM object is found to be cor-

rupted post the copy operation then the corresponding NVM

object will be safely reclaimed as part of the transaction abort

procedure. Finally, TENET cannot detect the corruptions that

occur without overwriting the canaries, aka intra-object over-

flows. We discuss this further in §6.3.

4.3.2 On-first-dereference Temporal Safety Design

TENET enforces temporal safety for all NVM (master) objects

to detect dangling pointer dereference. Accessing an already

free-ed (or reallocated) address can corrupt the NVM data

due to use-after-free (or use-after-realloc) bugs.

Technique. To detect dangling pointers, TENET assigns an

unique 2-byte tag for all the master objects, which is stored

in the object’s header (0xCAFE in Figure 4) at the time of its

creation. A copy of this tag is also encoded in the unused

upper 16-bits of the master objects’ address. On deallocating

the master object, the tag in the objects’ header is set to zero.

On-first-dereference validation. When the application ac-

cesses a master object for the first time in a transaction,

TENET validates the pointer to the master object before

traversing the version chain (§4.1.1). TENET extracts the

tag encoded in the master objects’ pointer and compares it

with the tag stored in the respective master objects’ header.

If they match, then it is a valid pointer. When an application

struct node {
  int key;
  char val[16];
} node;

void foo() {
  tenet_array<node, 2> arr;
  node n1 = arr[5];
  node n2 = arr[0];
  tenet_lock(&arr[0]);
  memcpy(arr[0].val,buff,32);
  auto ptr = arr;
  //...

  arr.~tenet_array(); //arr is freed!
  //...

  node n0 = ptr[0];  
}

node[1]
tag=0xBEBE

node[0]
tag=0xCAFE

NVM

DRAM

Free
&node[1]&node[0]sizebase

addr

MetadataMetadata

Pointer Array to 
Master Objects 

node[0]
tag=0xCAFEC

0

C
1

Array Elements
(Master Objects)

node[1]
tag=0x0000

node[0]
tag=0x0000

&node[1]&node[0]sizebase
addr

❶
❷
❸

❹

❺

❻

DRAM
Object

X

X

X

Figure 5: Memory safety design for arrays. 2 and 4 are spatial

safety violations due to out-of-bound read (detected by bounds check-

ing) and write (detected using canaries), respectively. 6 is temporal

safety violation due to use-after-free (detected using pointer tags).

accesses a master object with a dangling pointer, tag matching

would fail; the tag in the header would either be zero (if the

address is already freed) or different random value (if the

free-ed address is reallocated). In that case, TENET cuts the

version chain access and aborts the transaction.

Correctness. Once a master object is successfully deref-

erenced, it can be safely used without any further temporal

safety checking within the transactions’ lifetime. This is be-

cause TENET (and TimeStone) uses an RCU-style, epoch-

based garbage collection scheme so it never frees an object

(and its versions) with live references from other transactions;

i.e., an object will be free-ed only when all the transaction

that has live references exits. Also, a DRAM object can be

dereferenced only via its NVM object and TENET cuts the

version chain access upon detecting a dangling pointer, which

indirectly guarantees temporal safety for DRAM objects.

4.3.3 Spatial and Temporal Safety for Array Objects

In TimeStone, an array is stored and accessed as a single

pointer. Even if the application just reads/writes to one ar-

ray element, TimeStone dereferences the entire array. Such

a design is highly unsafe. For instance, once the entire array

is dereferenced, a buggy application can read/write out-of-

bounds resulting in an undetected corruption. This is a noto-

riously hard problem even in the DRAM world. To address

this, we redesigned the array interface in TENET. An array

is internally represented as an array of pointers where each

array index stores a pointer to its element. With this design,

TENET dereferences only the array index that the application

intends to read/write. If the application accesses an index that

is out-of-bound, TENET aborts the transaction.

Array interface. 1 in Figure 5 presents the TENET’s array

interface. In TENET, each array element is a master object;

and an array consists of pointers to these master objects along

with the base address and size information. This representa-

tion is internal and the application accesses its array in the

traditional C semantics. We do not present the pseudocode
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for our interface due to space limitations. Essentially, TENET

retains the C-style semantics by leveraging C++ operator over-

loading. tenet_array class overloads the necessary operators

to hide the internal representation. For instance, the array ac-

cess operator ([]) is overloaded to perform bounds checking,

then access the master object at the index. Similarly, other

operators (=, +, -, etc) are also appropriately overloaded to

retain the programmability and to make the interface transpar-

ent. However, this representation requires additional memory

to maintain pointers to the array elements. An N element array

requires a space of N*sizeof(N), whereas TENET requires an

additional sizeof(void*)*N space to maintain the pointers.

Memory safety validations. Figure 5 illustrates how TENET

enforces memory safety for arrays (arr with two elements).

The canary-based spatial safety and the tag-based temporal

safety apply to every array element. In addition, TENET per-

forms bounds checking for every array dereference using the

base address and size metadata i.e., index > size ( 2 ). In

4 , a transaction writes to the val out-of-bounds, TENET de-

tects this violation by inspecting the corrupted canary bits in

the commit phase. In 6 , transaction dereferences a dangling

pointer (freed in 5 ) and TENET detects it by comparing the

tags (0xCAFE ̸= 0x0000) during the object dereference.

4.4 Enforcing fault tolerance Against UMEs

This section explains the synchronous log replication and the

off-critical path master object replication design to guarantee

fault tolerance against UMEs.

4.4.1 Transaction Log Replication

As illustrated in Figure 4, the primary log pool on the NVM

consists of all the transaction logs (OLog and CLog). TENET

maintains a consistent backup of the primary log pool by

synchronously replicating the logs on the critical path, i.e.,

when an OLog or a CLog in the primary log pool is updated,

the corresponding log in the replica log pool is also updated.

Atomicity for primary and replica log writes is inherently

guaranteed by the transactions’ commit protocol (§4.1.3); i.e.,

TENET commits a transaction only when both the logs are

updated. So, if a crash happens before updating the replica

log, then the transaction is considered to be aborted and the

partially written log entries are discarded during the recovery

phase. Similarly, during log reclamation, the primary log is

reclaimed first and the replica log is reclaimed up to the same

point to maintain consistency. TENET ensures that pages in

the primary and the replica log pool do not overlap by main-

taining two disjoint NVM pools for the primary and replica

log pool. In this way, TENET can recover from multiple UMEs

even if it spans across many pages within a log pool.

Why replicate logs on the critical path? TimeStone buffers

the updates to the master objects in the OLog and CLog to max-

imize the write coalescing. Hence, if the logs in the primary

pool are corrupted, it may cause a significant amount of data

loss during the recovery. As a result, TENET replicates the

primary log pool synchronously to ensure that there is always

a consistent backup. Thus, TENET can simply use the replica

log pool to recover the NVM data without losing any com-

mitted updates. TENET uses NVM to reduce the performance

overhead as the replication is done in the critical path.

4.4.2 Off-critical Path NVM Replication to SSD

TENET makes three critical design choices for a performant

and cost-efficient NVM (master) objects replication: (1) ob-

jects are replicated to SSDs instead of NVM to reduce the

storage cost overhead, (2) replication is performed out of the

critical path to reduce the performance overhead (§4.4.3), and

(3) TENET uses grace period semantics to enforce NVM-SSD

consistency to guarantee loss-less recovery (§4.4.4).

4.4.3 Off-critical Path Writes to SSD

TENET leverages io_uring [8] for accelerating SSD writes.

io_uring is a high-performance asynchronous IO framework.

io_uring maintains two queues, a submission queue (SQ)

where the TENET adds its disk write requests and a comple-

tion queue (CQ) where TENET can poll for the completed

disk writes. Both queues are shared between the kernel and

the user space, which further reduces the context-switching

overhead for request submission and polling.

Technique. TENET maintains a per-writer replica buffer in

the NVM, where writers enqueue the new master objects

that are created in the ongoing transaction and the objects

that are updated with the latest checkpoints from the CLog

( 8 in Figure 4). TENET then spawns multiple workers to

visit the per-thread replica buffer and issue the disk writes

using io_uring’s submission queue. The workers then poll for

the request completion in the io_uring’s completion queue

and exit only when all the requests are completed. TENET

creates a separate disk file for each master object pool; during

replication, TENET writes a master object at the disk file offset,

same as the objects’ corresponding NVM file offset. This is

critical to correctly roll back the corrupted page from the disk

to the NVM during the recovery.

4.4.4 Enforcing NVM-SSD Consistency

Although replication is asynchronous, TENET guarantees that

no committed data will be lost upon either a crash or a UME.

TENET accomplishes this by leveraging the OLog, CLog, and

grace period detection.

Grace period detection in TimeStone. A grace period is

the quiescence period, in which all application threads that

entered the critical section (since the start of detection), fin-

ish, and exit their respective critical section. A background

thread (gp-thread) continuously detects the grace period, and

publishes the detected grace period timestamp. TimeStone

uses the timestamp to safely reclaim/free the obsolete en-

tries/objects in the TLog, CLog, and the OLog. TENET extends

this design to enforce NVM-SSD consistency.

Modified grace period detection in TENET. To detect a
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grace period, the gp-thread not only waits for all the threads

to exit the critical section but also waits for all master objects

that are created/updated by these threads to be written to the

SSD. The key invariant is that when a grace period is detected,

it guarantees that all master objects created/updated in that

window are persisted to the SSD. This means that the TLog,

OLog, and the CLog will not be reclaimed until the disk writes

are guaranteed to be persisted. That is because gp-threadwill

not publish the grace period timestamp unless the disk writes

are completed and without it the logs can not be reclaimed.

In a nutshell, all the updates that are not persisted in the SSD

are guaranteed to be either in the OLog (newly created master

objects) or in the CLog (updates to the existing master object).

Guaranteeing consistent loss-less recovery. If a UME oc-

curs before the SSD writes finish, during recovery, TENET

can restore the NVM objects with the stale SSD replica (from

the previous grace period). Then it uses the CLog to update

the existing master objects with the latest checkpoints and

uses OLog to recreate the new master objects that are missing

in the stale replica. Note that TENET maintains a consistent

backup of OLog and CLog at all times (§4.4.1). Also, the OLog

and CLog execution are idempotent i.e., re-executing the same

log entries multiple times does not violate the consistency.

TENET can tolerate multiple UMEs across any number of

pages in a master object pool as it replicates to the SSDs.

Given at least one of the log pools is consistent, TENET can

recover up to the last committed transaction. Note that even

if both the log pools are affected by UMEs, TENET can still

recover the master objects to the state of last grace period.

4.5 Recovery

(1) Recovering from non-UME crashes. This recovery in-

cludes recovering from a system crash or a memory safety

violation. Upon restart, the recovery procedure is of two steps:

(1) CLog replays, where all the entries in the CLog are replayed

to set the master objects to a consistent state. This step is

necessary to bring all the master objects to the latest check-

pointed state. (2) Then all OLog entries are sorted based on

their commit-ts and replayed sequentially in the exact sorted

order. This will bring the master objects to the last committed

state before the crash occurs. Note that, if the crash happens

due to a memory safety violation, a developer should fix the

bug to avoid repetitive non-UME crashes.

(2) Recovering from a UME crash. Upon restart, if TENET

cannot open its NVM pools, it indicates a UME has occurred.

The recovery steps depend on the victim pools’ type.

UME in the master object pool. TENET identifies the cor-

rupted physical offset using the ndctl tool [9] and then ex-

tracts the corresponding logical file offset. TENET brings

the entire page where the corrupted offset belongs from the

replica disk file. Then TENET allocates a new NVM page

using fallocate and updates it using the disk replica. Finally,

it deallocates the corrupted page and removes it from the oper-

ating system’s bad block list. Once NVM is restored, TENET

recovers similar to the non-UME crash as explained in (1),

i.e., CLog replay followed by the OLog replay.

UME in a log pool. TENET does not need to access the

disk to fix the bad page. Instead, it fixes the affected NVM

page by allocating a new empty page. Then TENET uses the

uncorrupted backup log pool to perform CLog and OLog replay.

At the end of the recovery, it frees all the CLogs and OLogs,

and new logs are allocated during the normal execution.

5 Implementation

TENET library is implemented in C and C++ which is ∼11K

LoC. The core TENET library includes the TimeStone PTM

(∼7K LoC), memory safety checks (∼1.5K LoC), and the

NVM-SSD replication (∼2.5K LoC). We rigorously tested

TENET with a carefully curated set of unit tests, functional

tests, and integration tests along with the offline testing tools

such as the Pmemcheck [48], Address sanitizer [80] to ensure

correctness of our implementation.

6 Discussion

In this section, we discuss the key takeaways in TENET (§6.1)

and the applicability of TENET’s ideas on ARM architecture

(§6.2). We also discuss the limitations and potential future

research directions in §6.3.

6.1 Leveraging the Concurrency Guarantees of PTM

Enforcing low overhead spatial safety. Most PTMs per-

form out-of-place updates to enforce the Isolation property

(ACID) [30, 40,56,62,68,87], to support concurrent read and

write [30, 40, 56], and to enable write batching [30, 56, 87].

These PTMs have at least two separate domains: one in which

new updates are made and buffered, and another that contains

consistent data (i.e., old updates) to which the new updates are

eventually merged. TENET leverages this property to enforce

a separate protection domain, such a design enables it to use

light-weight techniques such as MPK and canaries to enforce

spatial safety without having to check every access.

PTMs such as the libpmemobj [47] that perform in-place

updates can be modified to perform out-of-place updates as

done in Pangolin [94]. Although Pangolin uses microbuffer-

ing to perform out-of-place updates, it relies on expensive

data checksum to enforce spatial safety i.e., checksum is cal-

culated and verified every time the data is moved to and from

the microbuffers. SafePM [27] relies on compiler instrumen-

tation of loads and stores and hence it needs to perform spatial

and temporal safety checks at every access resulting in a high

performance overhead (§7.3).

Enforcing low overhead temporal safety. Almost all PTMs

support a stronger Consistency (ACID) guarantee such as

linearizability or serializability. Such PTMs usually perform

conflict checks (i.e., read/write set validation) during the com-

mit phase and the transactions are aborted if a read-write

conflict is observed during the validation. In the context of

temporal safety, this means that objects with live references
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in any on-going transaction will not be freed until those trans-

actions finish. Unlike the prior PTM works, TENET leverages

this property to perform temporal safety checks only at the

first dereference and avoids redundant checks during every

pointer deference in a transaction. This is because, once an

object is dereferenced, it can not be freed by concurrent trans-

actions, a inherent guarantee provided by PTM.

6.2 TENET’s Ideas on ARM Architecture

ARM processors support memory domains [2], which is simi-

lar to Intel MPK except that the permission switch happens

in the OS kernel. Moreover, ARM processors have been sup-

porting virtual address (pointer) tagging (upper 12-16 bits) at

the hardware level and it is shipped with the top byte ignore

(TBI) feature [14,19,23]. Therefore, we believe that TENET’s

ideas can be applied beyond x86 architectures.

6.3 Limitations and Future Work

Protecting against intra-object overflow. Protecting against

intra-object overflow is a hard, open research problem. Even

the state-of-the-art techniques, such as BOGO [95] do not

protect against intra-object overflow. We believe that pro-

tecting against intra-object overflow with reasonable per-

formance overhead would require significant architectural

changes and/or compiler-level instrumentations because of

the fine granularity of protection [46, 90]. However, TENET

protects the transactional metadata which are essential for

correct execution and recovery from the intra-object overflow.

We do this by placing an additional intra-object canary be-

tween the metadata section and the application data section in

a DRAM object (not shown in the figures). This restricts the

corruption to only the application data section of an object.

Protecting against the code outside the transaction.

TENET already protects the NVM data from spatial safety vi-

olations due to the code outside the transaction by using MPK.

However, it is possible to corrupt the DRAM objects outside

the transaction and TENET may not detect such corruption,

particularly the ones that do not overwrite the canaries. One

way to protect the DRAM objects is to protect all the TLogs

using the MPK and allow to switch permission only within

the TENET library. However, as TLog is per-thread and there

are only 16 MPKs available, we may need to employ MPK

virtualization [74] to offer a more fine-grained protection.

Impact of shorter tags. In TENET, we use all the upper 16-

bits to store the pointer tag; expansion of address space in the

future will reduce the number of available bits thus making

the tag range shorter. TENET allows to reuse of duplicate tags

across different pointers, but if the bits are too few (e.g., only

4 bits are available), reusing tags may cause false negatives.

In TENET, tag reuse becomes a problem, only if the reallo-

cated pointer is assigned with the same tag (that it had before

last free), which makes TENET ’s temporal safety detection

probabilistic. Reusing tags across different pointers or the

same pointer with non-consecutive reallocations results in a

deterministic detection. As the CPU vendors are extending

hardware support for pointer tagging, we believe that expand-

ing this idea to overcome bit limitations (e.g., similar to x86

segmentation overcoming 64KB address limitation) will be

an interesting future work.

7 Evaluation

We evaluate TENET by answering the following questions,

(1) what are the performance overhead of TENET’s memory

safety and off-critical path disk replication techniques (§7.1)?

(2) How does TENET perform in comparison with the other

state-of-the-art memory safe PTMs (§7.3)? (3) What is the

tail latency of TENET (§7.4)? (4) How does TENET fare in

the bug detection, correction, and recovery stress tests (§7.5)?

Evaluation platform. We use a system with Intel Optane

DC Persistent Memory (DCPMM). It has two sockets with

Intel Xeon Gold 5218 CPU with 16 Physical cores, 256GB of

NVM (2×128GB), 32 GB of DRAM (2×16GB) per socket,

and 2×1TB M.2 SSDs (Samsung 970 EVO). We used GCC

11.2.1 with -O3 flag to compile benchmarks and ran all our

experiments on Linux kernel 5.16.12 with io_uring support.

Configuration. We preset the size of TLog and OLog to 8

MB and CLog to 32 MB, respectively. We also present the

performance analysis for varying log size in §7.4. We use two

SSDs for NVM replication i.e., one SSD per socket. Through-

out our evaluation, we present two versions of TENET: (1)

TENET-MS – which enforces only memory safety (i.e., no

NVM/SSD replication), and (2) TENET – which enforces both

memory safety and NVM/SSD replication for fault tolerance.

For microbenchmarks, we initially warm up the data struc-

tures with 1 Million (M) keys followed by executing a mix of

lookup, insert, update, and delete operations for 60 seconds

as done in the prior PTM works [30, 40, 56, 75–77, 87]. For

the real-world evaluation, we use the YCSB benchmark [29]

to evaluate TENET’s B+Tree based key-value store engine for

10M keys, we use 8 bytes integer keys and 100 bytes values

with Zipfian distribution. We present the average performance

of 10 runs, with an average error rate of ±1.8%.

7.1 Performance Analysis of TENET

Figure 6 compares the performance of TENET-MS and

TENET against the TimeStone for three different workloads

with varying read/write ratios. Comparing TENET-MS and

TENET with TimeStone will enable us to quantify the over-

heads due to memory safety and fault tolerance techniques.

7.1.1 TENET-MS vs TimeStone

For the read-dominated workloads, TENET-MS performs

mostly on-par (< 5% overhead) or slightly better than the

TimeStone. This is because reads in TENET-MS require only

temporal safety checks and the overhead from spatial safety

checks are negligible due to the lower write ratio. The low

overhead temporal safety checks can be attributed to our in-

place pointer tagging technique wherein it only requires one

shifting operation for extracting the tag from the pointer and

one compare operation for validating the extracted tag.
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Figure 6: Performance comparison of TENET-MS and TENET

against TimeStone for Hash Table (HT), Binary Search Tree (BST),

and Linked List (LL) for 24 threads.
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Figure 7: Performance comparison of TENET-MS and TENET

against TimeStone for the B+tree key-value store with 24 threads.

For write-intensive workload, TENET-MS performs on

par with TimeStone; this shows that our canary based spa-

tial safety checks incur only a minimal overhead. For BST,

TimeStone suffers from high transaction aborts due to lock

conflicts on parent nodes. Unlike the BST, hash table is inher-

ently more concurrent and incurs lower aborts due to less lock

conflicts. Memory safety validation steps in TENET-MS re-

duce the aborts; our further analysis revealed that TimeStone

incurs about 3.5× more aborts than TENET-MS for BST. Con-

sequently, TENET-MS performs on par with TimeStone for

hash table and slightly faster in case of a BST.

7.1.2 TENET vs TimeStone

In addition to memory safety, TENET guarantees fault toler-

ance by performing NVM/SSD replication. For read-mostly

workloads, TENET performs on par with that of TimeStone

and TENET-MS. Due to a lower write ratio, the number of

log writes, and master object writes are less; consequently

replication does not add any significant overhead. However,

the replication overhead becomes evident as the write ratio

increases from 20% to 80% and TENET performs up to 12.6%

and 18% slower than the TENET-MS and TimeStone, respec-

tively. As the master objects are inserted/deleted/updated fre-

quently, the replica writes to SSD also increases. Therefore,

grace period detection is relatively longer in TENET as the

gp-thread has to wait for all the SSD writes to complete. A

longer grace period detection increases traffic in the TLog as

the log reclamation becomes slower. Overall, TENET adds a

modest overhead (< 18%) over TimeStone while enforcing

memory safety and fault tolerance.

7.2 Real-world Workload Evaluation

We built a B+tree-based key-value store using TENET; we

chose B+tree (fanout=64) to test and evaluate our array inter-

face but any other data structures can also be used. Figure 7
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Figure 8: Scalability of TENET-MS and TENET for B+tree

PTM Spatial Safety Temporal Safety UME NVM Cost

Libpmemobj [47] No No Yes High

TimeStone [56] No No No None

SafePM [27] Yes Yes No Moderate

Pangolin [94] Partial No Yes Moderate

TENET-MS Yes Yes No None

TENET Yes Yes Yes Low

Table 1: Comparison of TENET against other PTMs.

compares the performance of TENET-MS and TENET key-

value store against the TimeStone key-value store.

TENET-MS. TENET-MS is 17% slower than the TimeStone

across all YCSB workloads. For data structures (that do not

use an array), such as the hash table, every read to a hash

node requires only one object dereference because each hash

node is a master object. But for a B+tree, reading one leaf

node requires a 2× fanout (2×64) number of dereferences

as each array element (of the key-value array) is a master

object. Although TimeStone incurs the same number of object

dereference, the additional temporal safety checks during the

object dereferencing in TENET-MS causes a 17% slowdown.

TENET. For write-intensive YCSB-A, TENET performs 41%

slower than TimeStone. This is because of lower chances of

write coalescing in the TLog and CLog. As the writes hap-

pen at the array element level, the chances of an array index

being repeatedly written to is less. This is the worst-case

scenario for TimeStone as it relies on maximizing write co-

alescing on DRAM objects to reduce NVM writes. Lower

write-coalescing causes frequent checkpoints (from TLog) on

CLog and frequent checkpoint writebacks (from CLog) to the

NVM object. TimeStone just performs frequent writebacks to

the NVM object; for TENET, increase in the number of write-

backs also increases the SSD writes due to replication. This

trend is corroborated by the performance of TENET for read-

intensive YCSB workloads (B, C, and D), where it exhibits

only a 21% slowdown against TimeStone. This is almost

half of the slowdown experienced for the YCSB-A workload

(41%) as the number of SSD writes are lower in read-intensive

workloads. In a nutshell, TENET guarantees memory safety

for arrays (TENET-MS) with a modest 17% overhead and

providing fault tolerance adds an additional 24% overhead

due to the reduced write coalescing in TimeStone.

7.3 Comparison with Other PTMs

Table 1 compares the protection scopes of PTMs; TENET is

the only PTM to offer full memory safety and cost-efficient
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Figure 9: TENET-MS vs SafePM: performance overhead study with

hash table for read-intensive and write-intensive workloads.

fault tolerance. We have discussed the limitations in the pro-

tection scope of prior works in §2.3. Moreover, TENET incurs

a relatively minimal performance overhead as compared to

SafePM (Figure 9) and Pangolin which incurs up to 60% and

67% overhead over the libpmemobj.1 To ensure fairness, we

compare SafePM and TENET-MS on basis of performance

overhead incurred over their respective baseline PTM. Note

that SafePM does not guarantee fault tolerance against the

UMEs, so we use only TENET-MS for comparison.

As shown in Figure 9, SafePM performs up to 67% slower

than the libpmemobj across both the workloads. When the

libpmemobj’s performance saturates after 16 threads, SafePM

performs on-par; this is because the high contention overhead

in the libpmemobj amortizes the memory safety overhead

in SafePM. SafePMs’ overheads come from: (1) additional

undo logging to guarantee crash consistency for the memory

safety metadata. Note that this undo logging is in addition

to the ones performed by the libpmemobj transaction, (2) the

memory safety metadata must be accessed for every read and

write which further slows down the performance.

Unlike the SafePM, TENET-MS guarantees memory safety

with a modest 5%-8% performance overhead; because, (1)

it does not require additional crash consistency for memory

safety metadata as the pointer tags are embedded in the ob-

jects, and (2) memory safety checks are performed only once

per transaction (on-commit and on-first-dereference).

7.4 Other Evaluations and Analysis

Scalability analysis. Figure 8 and Figure 9 shows the read

and write scalability of TENET-MS and TENET for hash ta-

ble and B+tree, respectively. Both TENET-MS and TENET

show good read and write scalability for B+tree and hash

table. The performance difference across thread counts are

consistent with what is observed for 24 threads in Figure 6

and Figure 7. For read-intensive workloads, TENET-MS and

TENET show less than 5% performance slowdown for a hash

table and a 17% (TENET-MS) and 24% (TENET) slowdown

for a B+tree. For a write-intensive hash table, TENET-MS

and TENET exhibit a 5% and 18% slowdown respectively,

while for B+tree, TENET-MS and TENET exhibit a 17% and

1Directly referenced from the paper as Pangolin is not open-sourced.
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Figure 10: Tail latency comparison of TENET-MS and TENET

against TimeStone for B+tree with 24 threads.

44% slowdown. Overall, both TENET-MS and TENET scales

on-par with TimeStone; this shows that the TENET’s memory

safety and fault tolerance techniques does not impede the

original scalability of TimeStone.

Storage cost analysis. With TENET, the DRAM space us-

age is bounded by the size of TLog (8MB). TENET stores the

replica logs in the NVM and this is bounded by the size of

OLog and CLog. TENET replicates the application data struc-

ture to the SSD; given the $/GB of SSD ($0.15) and the

NVM ($10) [15, 20], TENET saves ∼60× on storage cost

when replicating the entire NVM space (512GB) to the SSD

as opposed replicating to the NVM. In addition to the cost

benefits, TENET can recover from multiple UMEs spanning

across multiple pages while Pangolin can recover only from a

single page is corruption.

Tail latency. Figure 10 shows the tail latency of TENET-

MS and TENET compared against the TimeStone. As done in

prior works [55,60], we sample 10% of operations so that the

tail latency calculation does not overshadow the performance.

TENET-MS performs on-par with TimeStone, which shows

the efficacy of our memory safety techniques. However, for

write-intensive YCSB-A, TENET’s tail latency spikes up at the

99th and 99.9th percentile. This is because of the additional

writes incurred while performing replication to the NVM/SSD

for fault tolerance. For read-intensive workload, TENET’s tail

latency is almost on par with TimeStone as lower ratio reduces

the number of SSD writes. TENET-MS shows similar tail

latency to that of the TimeStone across workloads as it does

not perform replication. We believe our fault tolerance design

can be further optimized for tail latency by making log writes

asynchronously, which would be an interesting future work.

Log size sensitivity. To study the impact of log size on the

performance, we present the relative performance of TENET

for varying log sizes using a concurrent hash table with 1 and

24 threads (Figure 11). We show the performance only for

write-intensive workloads as read-intensive workloads are less

sensitive to the log size. The X-axis represents the log size,

and the Y-axis represents the relative performance normalized

to the default log size used in all the previous evaluations.

TENET’s performance increases up to 21% with the increas-

ing log size. As the log size is decreased, the performance

drops to 38%. As the log size increases, the writers spend

less time reclaiming log space and hence better performance.
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Alternatively, for smaller log sizes, the writers spend more

time reclaiming log space. TENET requires all SSD writes in

a grace period window to be persisted before reclaiming the

log space, further increasing the pressure on the writers. So

we observe a larger performance drop (38%) for a smaller log

size and relatively a smaller performance gain (21%) when

the log size is increased. We confirmed that this behavior is

consistent across different thread counts and data structures.

7.5 Error Detection and Correction

Spatial safety test. Our test cases select transactions at ran-

dom to intentionally cause buffer overrun bugs on a B+tree

leaf nodes’ value pointer (p_val) and to access the key array

(in a B+tree node) out-of-bounds. For the buffer overflow bug,

the erroneous transactions execute a memcpy on the p_val for

1KB where the p_val pointer is of size 100 bytes. We also

tested intra-array overflow with a smaller size of 128 bytes.

For out-of-bound access, the erroneous transactions access the

key array at index 96, which is beyond the original fanout (64).

For all test cases, TENET detected spatial safety violations in

the commit phase and aborted the transactions, returning an

exception to the B+tree code. In our 200 random tests, TENET

detected spatial safety violations 100% of the time.

Temporal safety test. We modified the delete function in our

open-chaining hash table benchmark to free the target node

and not update the previous nodes’ next pointer (p_next).

A randomly chosen transaction executes the buggy delete

logic and spawns read transactions to access the dangling

p_next. TENET detected the dangling pointer access during

the object dereferencing phase and returned an exception

to the application. Further, to test the case where a free-ed

address may be reallocated again, we kept allocating a new

hash node until the free-ed NVM address was reallocated. Our

test case then waits for a transaction to access the dangling

p_next (reallocated). We repeated both the temporal safety

tests 200 times, and TENET detected dangling pointer access

and returned an exception to the application.

UME Test. We used the ndctl utility tool (ndctl inject-

error) for injecting a UME at a specified offset [9]. While run-

ning the benchmark, we first injected a UME in the log pool,

particularly on a randomly chosen CLog. TENET’s SIGBUS han-

dler received the OS notification and terminated the program

gracefully. Upon restart, TENET rightly identified the cor-

rupted log pool and successfully recovered using the replica

log pool. We also injected UME in one of the master ob-

ject pools and observed that TENET restored the NVM status

successfully using the SSD replica. Both these tests were

repeated multiple times and TENET successfully recovered

the hash table without losing any data. The recovery time for

TENET and TimeStone are similar, bounded by OLog and CLog

size (not shown due to space constraints). The SSD access is

performed in the background using io_uring and the cost is

relatively small. Our future work will develop techniques to

accelerate recovery.

8 Related Work

DRAM based memory safety techniques. Memory safety

violation in the DRAM has been extensively studied in the

security community [26,32,35,36,59,69–71,73,79,81,83,84,

92, 95]. In fact, our work was inspired by this line of research

which essentially conveys that memory safety violations are

the source of all evils. But the downside of these techniques

is that they suffer from high performance overhead (up to

200%). In TENET, we reduce the performance overhead by

leveraging the concurrency properties of the PTM and also

by limiting our scope of protection (e.g., no support for con-

trol flow attacks). Moreover, applying these DRAM based

techniques to NVM is non-trivial as they are not designed

to be crash consistent and adding crash consistency to these

techniques comes with its own set of challenges and may

potentially increase the performance overhead.

NVM bug finding techniques. There are a plethora of

works on detecting crash consistency bugs in the NVM soft-

ware [37, 38, 58, 63, 64, 72]. These techniques primarily focus

on detecting bugs that violate crash consistency correctness

such as atomicity, linearizability, and persistence ordering

bugs; they neither focus on memory safety nor UMEs.

9 Conclusion

In this paper, we propose TENET. TENET enforces

DRAM/NVM memory domain separation using MPK to pre-

vent NVM writes out of TENET library. Additionally, TENET

uses canary values and in-place pointer tagging to guarantee

on-commit spatial safety and on-first-dereference temporal

safety. Further, TENET proposes off-critical path NVM/SSD

data replication to guarantee a performance and cost-efficient

fault tolerance for the NVM data against the UMEs. Our

evaluations showed the performance efficiency of TENET’s

techniques along with a thorough analysis on scalability, stor-

age cost, and tail latency. Overall, TENET provides enhanced

NVM data protection at a modest performance and storage

cost as compared to the other state-of-the-art PTMs.
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