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Abstract

We propose a provable defense mechanism against backdoor policies in reinforce-
ment learning under subspace trigger assumption. A backdoor policy is a security
threat where an adversary publishes a seemingly well-behaved policy which in fact
allows hidden triggers. During deployment, the adversary can modify observed
states in a particular way to trigger unexpected actions and harm the agent. We
assume the agent does not have the resources to re-train a good policy. Instead,
our defense mechanism sanitizes the backdoor policy by projecting observed states
to a ‘safe subspace’, estimated from a small number of interactions with a clean
(non-triggered) environment. Our sanitized policy achieves ϵ approximate opti-
mality in the presence of triggers, provided the number of clean interactions is

O
(

D
(1−γ)4ϵ2

)

where γ is the discounting factor and D is the dimension of state

space. Empirically, we show that our sanitization defense performs well on two
Atari game environments. 1

1 Motivation

The success of reinforcement learning (RL) brings up a new security issue: Often the task is so
complex that it takes considerable amount of resources to train a good policy. Such resources are
increasingly restricted to large corporations or nation states. Consequently, we imagine in the future
many users of RL have to be content with obtaining pretrained policies, without the possibility to
(re)train the policy themselves. Downloading a pretrained RL policy from an untrusted party opens
up a new attack surface known as backdoor policy attacks.

In a backdoor policy attack, an adversary prepares a pair (π†, f) where π† is a backdoor policy

and f is a trigger function. The adversary publishes the backdoor policy π† to be downloaded and
used by interested users. π† behaves like an optimal policy under normal deployment, until it is
triggered. A naive user, interested in performing well in the underlying RL problem, downloads the
backdoor policy π† unaware of the fact that adversary can activate the trigger to make the policy
perform poorly in the adversarial environment. For example, π† may be the driving policy for an
autonomous car. The car will drive normally under π† until the attacker puts up a special sticker
somewhere within the car’s camera view. The sticker acts as a trigger; when the trigger is present, the

1The code available at https://github.com/skbharti/Provable-Defense-in-RL
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policy π† produces undesirable actions such as crashing the car. Backdoor attacks are well-studied
in supervised learning, where instead of a policy π† it is a prediction model that contains built-in
backdoors that can be triggered to make wrong predictions [4][11][13]. Backdoor policy attack in
RL brings additional attack opportunities in that the adversary can plan the attack sequentially: the
immediate reward of a triggered round can even be good, as long as its state transition leads to much
worst long-term rewards. Initial empirical work has shown backdoor policy attack is a valid security
concern [6][7][19], but there has been neither formal attack specification nor provable defense.

This paper makes the following contributions: 1. We formally define backdoor policies and associated
trigger function in RL called ªsubspace triggerº. 2. We present a defense algorithm with performance
guarantees against all subspace trigger based adversaries. 3. We empirically verify the performance
of our sanitization algorithm on two Atari game environments.

Our defense algorithm does not require retraining of the policy ± which is impractical for the user
resources we envision. Instead, it is a wrapper method around the backdoor policy, rendering it
insensitive to triggers and hence harmless. For this reason we call our defense ªsanitizationº. The key
idea is to project potentially triggered states to a safe subspace. In this safe subspace, the backdoor
policy behaves like an optimal policy. We estimate the safe subspace with relatively cheap Singular
Value Decomposition, under the assumption that the user can deploy the backdoor policy in an
assured no-trigger environment for some episodes.

2 Related Work

The vast majority of backdoor attack literature targets supervised learning. Some work requires
original training data and expensive model retraining [16] [11] [8] [12] [3] [10] [1] which we avoid.
Some require surgical modification to the whitebox backdoor model [20] [4] [9] while our method is
a wrapper. We also do not attempt to reverse engineer the trigger as done in [18].

Our method is in spirit closely related to [12], which uses autoencoder to find the equivalent to
our ªsafe subspaceº. The connection is not incidental: our SVD is a special case of autoencoder.
Nonetheless, we study backdoor policies in RL, where the key difference is that damage is inflicted
via long term return instead of immediate reward while their work is in supervised learning setting
and is empirical.

The study on backdoor policies in RL is only recently emerging [7][6][19]. Most of these work are
again empirical, while we provide formal guarantees. Some of the recent works have also studied
backdoor attacks in multi-agent RL setting - [19] proposed a backdoor attack where the backdoor
behavior is triggered through a specific sequence of actions by the opponent which is clearly different
from our setting where the attacker injects trigger directly in the state space. A follow-up work [5]
proposed an empirical strategy to detect backdoor action sequence triggers in this setting which is
also different from ours.

3 A Formal Definition of Backdoor Policies in RL

Let M = (S,A, P,R, µ, γ) denote the environment MDP with a continuous state space S = R
D,

discrete action space A, a transition function P : S ×A → ∆(S), a reward function R : S ×A →
[0, 1], an initial state distribution µ and a discounting factor γ ∈ [0, 1). The objective of the agent is
to find a policy that achieves the maximum value under the given MDP M,

V ∗
M = max

π
V π
M (1)

where V π
M = E [

∑∞
t=0 γ

tR(st, π(st))] is the expected discounted cumulative rewards of following
policy π under MDP M.

The attacker first chooses an optimal policy π∗ with a discounted state occupancy under M given

as dπ
∗

M(s) = (1− γ)
∑∞
t=0 γ

t
P(st = s|s0 ∼ µ, π∗). Let T ⊂ S denote the support of dπ

∗

M, i.e. T is

the smallest closed subset of RD s.t. P(T ) = 1. For simplicity, we assume that Es∼dπ∗

M
[s] = 0. This

assumption keeps the analysis clean but our algorithm and its results can be directly extended to the
non-zero mean case. Now, consider the eigen decomposition of the state covariance matrix Σ under
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dπ
∗

M,

Σ = Es∼dπ
∗

M
[ss⊤] =

D∑

i=1

λiuiu
⊤
i where λ1 ≥ · · ·λd ≥ λd+1 ≥ · · · ≥ λD. (2)

(a) An example of state space : the shaded region T is

the support of dπ
∗

M and E
⊥ is the smallest D − d

dimensional eigen subspace of Σ.

(b) The adversary triggers a clean state st(green) in E
⊥

direction so that the agent observes the triggered state

s
†
t
(red) and chooses a potentially malicious action

π
†(s†

t
) at st.

Figure 1: An example state space with state triggering by the adversary.

We denote by E = span({ui}|di=1) the top d eigen subspace of Σ and E⊥ = span({ui}|Di=d+1) is

its complement. The projection operator into E,E⊥ is given by ProjE =
∑d
i=1 uiu

⊤
i , Proj⊥E =

∑D
i=d+1 uiu

⊤
i respectively, see Figure 1. We call E the safe subspace of the state space (to be

explained in Assumption 3).

Assumption 1 The occupancy distribution dπ
∗

M has a bounded support along the smallest D − d

eigen-subspace E⊥ i.e. ∃C0 ∈ R s.t. under dπ
∗

M, P({s ∈ S : ∥ProjE⊥(s)∥2 ≤ C0}) = 1. Further,

we assume that dπ
∗

M is K-subGaussian.

In many real world examples, states are often bounded along standard basis directions so this
assumption is reasonable. It gives the attacker the flexibility to insert into π† arbitrary backdoor
behaviors on states outside the bounded support T while preserving the performance of optimal
policy inside T .

Backdoor Policy π† The attacker then constructs a backdoor policy π†, which behaves the same as

π∗ everywhere in the support T of dπ
∗

M, but outside this support π† can differ arbitrarily. However,

we assume that overall π† is L-Lipschitz.

Assumption 2 The backdoor policy π† is L-Lipschitz smooth i.e.

∃L ∈ R s.t. ∀s, s′ ∈ S, ∥π†(s)− π†(s′)∥1 ≤ L∥s− s′∥2.

In practice, people often use gradient descent trained neural network policies and it is reasonable

to assume them to be Lipschitz smooth [2] [14]. By letting π† = π∗ on T , the support of dπ
∗

M, the
attacker remains stealthy in a clean (non-triggered) environment and can coax the agent into believing
that the backdoor policy π† is a good one.

Subspace Trigger function f In tandem with the backdoor policy π†, the attacker also prepares a
trigger function f : (S)∗ → E⊥ to be used during deployment, where (S)∗ is the set of all possible
state sequence in the history. Importantly, such a trigger function restricts the adversary to only
inject triggers in E⊥ subspace and hence we call it ªsubspace triggerº function. Also, note that f is
adaptive in that it can depend on the entire history. For simplicity, we consider f that only depends on
history of states but it can be trivially generalized to include history of actions and rewards as well.
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At any time step t during deployment where the agent uses π†, the adversary can inject a trigger f(s0:t)

(ªthe stickerº) into the current state st so that the agent perceives a triggered state s†t = st + f(s0:t).

Consequently, the agent will take a potentially harmful action a†t ∼ π†(s†t) at state st. We emphasize
that the trigger only applies to the agent’s perceived state, i.e. the underlying MDP state is still at st.

As interaction protocol 1 specifies, transition and reward happen according to (st, a
†
t), not (s†t , a

†
t).

By carefully designing f and coupling the behavior of backdoor policy on the triggered states, the
adversary can either drastically decrease the value the agent receives, or force the agent to perform a
nefarious action sequence.

Given an agent using a backdoor policy π†, and an adversary with a trigger function f , the interaction
between them in an environment (possibly backdoored) takes place as follows:

Procedure 1 Interaction Protocol in a Backdoor Environment

Entities: MDP environment M, RL agent accepted backdoor policy π† from the adversary,
adversary has trigger function f .

1: the environment draws s0 ∼ µ.
2: for t = 0, 1, · · · do
3: the adversary injects trigger f(s0:t) to state st (adversary can choose to set f(·) = 0 meaning

no trigger).

4: the agent observes s†t = st + f(s0:t) and takes the action a†t ∼ π†(s†t).

5: the environment evolves st+1 ∼ P (·|st, a†t), rt ∼ R(st, a
†
t)

Assumption 3 The trigger function f : (S)∗ → E⊥ is adaptive and the adversary can only inject a

trigger in the E⊥ subspace of the state space S. Further, we assume that the perceived triggered
states are B-bounded in expectation as below,

∀π, ∀t ∈ N E
s0:t∼d

π◦f,0:t
M

[∥(st + f(s0:t))∥2] ≤ B

where dπ◦f,0:tM denotes the distribution of partial state trajectory up to time step t under policy π and
trigger function f .

This assumption requires the adversary to keep the perceived triggered states to be B-bounded in
expectation at every time step. Note that the adversary can still sometime inject large triggers as long
as it keeps the average triggered states bounded.

11

Figure 2: An example MDP under subspace trigger attack.

As an example, we present a toy MDP in Figure 2 where states are in R
2. The initial state is always

state F . There are two actions: left and right, and non-zero rewards are mentioned below an action.
Transition is deterministic. Clearly, an optimal policy π∗ is to take the left action at F and E which
yields a zero immediate reward but γ/(1 − γ) long term return. The x-axis is the safe subspace
E. Note that the states A to C are non-reachable in the clean environment which gives the attacker
leverage to hide the backdoor actions. The attacker’s backdoor policy π† is denoted by the orange
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arrows in the above diagram. In particular, B is far enough from F so that the deterministic choice
π†(B) =ªrightº is allowed by the Lipschitz condition.

In the backdoor environment, when the agent starts at state s0 = F , the adversary injects a trigger

f(F ) ∈ R
2 in upward direction along E⊥ so that the agent perceives its state as s†0 = F +f(F ) = B

instead. The agent will then choose action a†0 =ªrightº as directed by its policy π†(B). However,
the underlying MDP has its true state at F , so the agent moves to G. The agent may be happy that
it received an immediate reward of 1 compared to 0 reward on left. However, the readers can see
the agent is now doomed in the long term without further attacks. For γ close to 1, the optimal
value γ

1−γ in the clean environment can be arbitrarily large while the value under the above attack is

1. This example contrasts sharply with backdoor attacks on supervised learning which focuses on
instantaneous gratification.

Given a policy π and a trigger function f , the value of the policy π in the triggered environment is
given as,

V π
M,f = E

[
∞∑

t=0

γtR(st, π(st + f(s0:t)))

]

= E

[
∞∑

t=0

γtR(st, π ◦ f(s0:t))
]

= V π◦f
M

Here, we note that the trigger function f affects the value of the agent only through action selection.
Also, since f is adaptive (i.e. it depends on current state and history), the composition of a Markovian
policy π with the trigger function f leads to a non-Markovian policy π ◦ f .

Goal of the defender The defender is provided with a backdoor policy π†, and has a sample of
interactions between π† and the clean environment M. This is realistic in many applications: for
example, even if a user does not trust the driving policy π† she downloads, she can test drive the car
for a few days in an enclosed driving facility. The goal of the defender is to sanitize the backdoor
policy π† such that the sanitized policy performs near-optimally even in the presence of trigger
function f .

4 Sanitization Algorithm and Guarantees

We propose Algorithm 2 to sanitize and render backdoor policy harmless. Our sanitization algorithm
works in an unsupervised manner by first recovering an estimate of the safe subspace using the clean

samples from dπ
†

M and projecting every states onto this empirical clean subspace to sanitize the state

before feeding into the backdoor policy π† (recall the agent is stuck with π† since she does not have
the resources to retrain).

Algorithm 2 Defense through subspace sanitization

Entities: MDP environment M, RL agent with policy π†, adversary with trigger function f .
Inputs: sample access to clean environment M, number of clean samples n.

1: Sanitization phase :

2: run π† for n clean episodes, collect {sj}|nj=1
i.i.d∼ dπ

†

M.

3: calculate the empirical covariance Σn = 1
n

∑n
j=1 sjs

⊤
j and its eigen decomposition,

Σn =
∑D
i=1λ̂iûiû

⊤
i where λ̂1 ≥ · · · λ̂d ≥ λ̂d+1 ≥ · · · ≥ λ̂D.

4: construct the empirical projection operator ProjEn
=

∑d
i=1 ûiû

⊤
i .

5: define the sanitized policy π†
En

: S → ∆(A) s.t. ∀s ∈ S, π†
En

(s) = π† ◦ ProjEn
(s).

6: Deployment phase :

7: at every time step t, the agents takes the action π†
En

(s†t).

Algorithm 2 has a strong guarantee. We recall that the backdoor policy performs optimally in the

clean environment i.e. V π†

M = V ∗
M. So, we would like the performance of sanitized policy π†

En
in the

triggered environment(M, f) to be as close to the performance of the optimal policy in the clean

environment. Thus, we are interested in upper bounding the performance difference V ∗
M - V

π
†
En

◦f

M .
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(a) Pictorial representation of sanitization process. (b) Clean state. (c) Triggered state. (d) Sanitized state.

Figure 3: On the left, a clean state st is triggered into s†t which is projected back onto the estimated

safe subspace En as ProjEn
(s†t) during sanitization. The agent finally takes the action π†(ProjEn

(s†t))

instead of π†(s†t). Figure (b,c,d) on the right, instantiates this process on the breakout game example.
Note that the square trigger (top left) in the triggered state in figure (c) is filtered out after projection
onto the empirical safe subspace as in figure (d).

Theorem 4 Let π† be the backdoor policy, f be the triggered function and let dπ
†

M denote the

discounted state occupancy distribution of π† under clean environment MDP M. Further, let
δ∗ = λd − λd+1 > 0 be the eigen gap between the safe subspace E and E⊥ as defined in (2). Under

assumptions 1, 2, 3 stated above, for a defender that uses the sanitized policy π†
En

as defined in
Algorithm 2 against an attacker with trigger function f , we have that,

∀ϵ > 0, ∀δ > 0, if n ≥ CdB2L2K4∥Σ∥22
δ∗

2(1− γ)4 · ϵ2

(

D + log
2

δ

)

, with probability ≥ 1− δ, (3)

V ∗
M − V

π
†
En

◦f

M ≤ L

(1− γ)2
·

√
√
√
√

D∑

i=d+1

λi

︸ ︷︷ ︸

approximation error

+ ϵ
︸︷︷︸

estimation error

(4)

where L is the Lipschitz constant of the policy π† in assumption 2, B is the upper bound on the
expected observed triggered states in assumption 3, K is the sub-Gaussian parameter of the state-

occupancy distribution dπ
†

M, γ is the discount factor and C is some fixed constant.

We make the following remarks:

• Our safety guarantee is an (ϵ, δ)-PAC style guarantee with both approximation and estimation
error terms. The first term is a fixed approximation error ϵapp that the defense algorithm has to

suffer even in the presence of infinite clean samples. However, if the eigen energy of E⊥ subspace
∑D
i=d+1 λi = 0, i.e. if the adversary injects trigger only in the null eigen spaces of Σ, the defender

can avoid the approximation error.

• The second term ϵ is the estimation error which scales as O(1/
√
n) and can be made as small as

required with more clean samples.

• The overall sample complexity grows polynomially in the effective horizon 1/(1− γ), the inverse
eigen-gap 1

δ∗
, the inverse estimation error 1

ϵ
and the dimension of state space D. We note that the

lower the eigen separation between the safe subspace and its complement, the more difficult will it
be for the defender to recover the safe subspace using samples; hence more difficult the defense.

Proof: The key step in the proof is the following value decomposition:

V ∗
M − V

π
†
En

◦f

M = V π†

M − V
π
†
En

◦f

M (5)

= V π†

M − V
π
†
E

M
︸ ︷︷ ︸

(1)

+V
π
†
E

M − V
π
†
E
◦f

M
︸ ︷︷ ︸

(2)

+V
π
†
E
◦f

M − V
π
†
En

◦f

M
︸ ︷︷ ︸

(3)

(6)
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Term (1) leads to an approximation error in the clean environment which cannot be avoided even
in presence of infinite samples. Term (2) is the performance difference of the true projected policy

π†
E = π† ◦ ProjE when acting on clean vs triggered environment. Term (3) is the estimation error

that arises due to the fact that the defender only gets sample access to the clean environment.

Since the triggers always lie in E⊥ (by assumption 3), projection of s†t onto E engulfs the trigger
part of it effectively reducing the second error term to zero. To see this, simply observe that

π†
E(st+f(s0:t)) = π†(ProjE(st+f(s0:t))) = π†(ProjE(st)) = π†

E(st) using linearity of projection
operator and orthogonality of triggers f(·) to E subspace, which implies,

V
π
†
E
◦f

M = E

[
∞∑

t=0

γtR(st, π
†
E(st + f(s0:t)))

]

=E

[
∞∑

t=0

γtR(st, π
†
E(st))

]

= V
π
†
E

M . (7)

We now bound the approximation error in the clean environment, the term (1) in (6):

V π†

M − V
π
†
E

M

(1)
=

1

1− γ
E
s∼dπ

†

M

[(

π†(s)− π†
E(s)

)⊤

Qπ
†
E (s, ·)

]

(2)

≤ 1

1− γ
E
s∼dπ

†

M

[

∥π†(s)− π†
E(s)∥1∥Qπ

†
E (s, ·)∥∞

]

(3)

≤ L

1− γ
· ∥Qπ

†
E∥∞ ·

√

E
s∼dπ

†

M

∥(I − ProjE)s∥22
(4)

≤ L

(1− γ)2
·
√

E
s∼dπ

†

M

∥∑D
i=d+1uiu

⊤
i s∥22

(5)
=

L

(1− γ)2
·
√
∑D
i=d+1λi (8)

where (1) uses performance difference lemma (Lemma 8), (2) is Holders inequality, (3) uses L-

Lipschitzness of π† and Jensen’s inequality, (4) uses ∥Qπ
†
E∥∞ ≤ 1/(1− γ) and (5) follows from

the following :

E
s∼dπ

†

M

∥
∑

i

uiu
⊤
i s∥22 =

∑

i

E
s∼dπ

†

M

[
u⊤
i ss

⊤ui
]
=

∑

i

E
s∼dπ

†

M

[
tr(ss⊤uiu

⊤
i )

]

=
∑

i

tr(E
s∼dπ

†

M

[
ss⊤

]
uiu

⊤
i ) =

∑

i

tr(λiuiu
⊤
i ) =

∑

i

λi. (9)

Next, we bound the estimation error in the triggered environment, the third term in (6). Let π =
π† ◦ ProjE and π′ = π† ◦ ProjEn

, then the difference in value of these policies in a triggered
environment is given as

V π◦f
M (s0)− V π′◦f

M (s0) (10)

(1)
=

∞∑

t=0

γt E
s0:t∼d

π◦f,0:t
M

[

Qπ′◦f
M (s0:t, π ◦ f(s0:t))−Qπ′◦f

M (s0:t, π
′ ◦ f(s0:t))

]

(2)

≤
∞∑

t=0

γt E
s0:t∼d

π◦f,0:t
M

[

∥π ◦ f(s0:t)− π′ ◦ f(s0:t)∥1∥Qπ′◦f
M (s0:t, ·)∥∞

]

(3)

≤ 1

1− γ

∞∑

t=0

γt E
s0:t∼d

π◦f,0:t
M

[
∥(π†(ProjE(st + f(s0:t)))− π†(ProjEn

(st + f(s0:t)))∥1
]

(4)

≤ 1

1− γ

∞∑

t=0

γtL E
s0:t∼d

π◦f,0:t
M

[
∥(ProjE − ProjEn

)(st + f(s0:t))∥2
]

(5)

≤ L

1− γ
· ∥ProjE − ProjEn

∥2
∞∑

t=0

γt E
s0:t∼d

π◦f,0:t
M

[∥(st + f(s0:t))∥2]

(6)

≤ B · L
(1− γ)2

∥ProjE − ProjEn
∥2 (11)
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where (1) follows from performance difference lemma for non-Markovian policies (Lemma 8),
(2) follows from Holder’s inequality, (3) follows from ∥Q∥∞ ≤ 1/(1 − γ), (4) follows from

L-Lipschitzness of π†, (5) follows from L2 matrix vector norm inequality and (6) uses the B-
boundedness of the trigger functions f as defined in 3.

Now, if n ≥ CdB2L2K4∥Σ∥2

δ∗
2(1−γ)4·ϵ2

(
D + log 2

δ

)
, using Lemma 6 with (11), we can upper bound the

estimation error by ϵ, i.e.

V
π
†
E
◦f

M − V
π
†
En

◦f

M ≤ ϵ. (12)

Finishing the proof of Theorem 4: We plug back (7), (8), (12) in (6) to conclude the proof. □

Computational Complexity The computation complexity of our subspace sanitization algorithm is
O(D3 + T ·D2) where D is the dimension of the state space and T is the total number of time step
the agent runs during deployment. The algorithm incurs a one time cost of O(D3) for computing the
SVD of the empirical covariance matrix and the projection operation at each time step of deployment
requires O(D2) compute time.

5 Experiments

In this section, we present some experimental results that validate our sanitization algorithm against
backdoor attacks in Atari game environments. We performed the sanitization experiments on backdoor
policies in two Atari games: (i) Boxing-Ram game with a vector RAM state space, (ii) Breakout game
with an image state space. In each case, we acted as the attacker and pre-trained a backdoor policy
using a reward poisoning schema as described in [7]. The backdoor policy was trained to a level
such that the agent performs well in clean environment but fares poorly in the triggered environment.
In each case, we used our sanitization algorithm to sanitize the backdoor policy and reported their
results.

5.1 Boxing-Ram game

Environment and attack specification The state consists of a 32 dimensional byte RAM vector: a
concatenation of four 8-byte vectors representing information stored in the simulator’s RAM from
the latest four time steps. The attacker exploits an unused byte (which is always zero in the clean
environment) to inject triggers directly into the vector RAM state space. Concretely, f = 255 · e28
where e28 is 28th canonical basis vector in R

32. The action space consists of 18 different actions:
moving left, right, up, down, punch, and combinations thereof.

Backdoor policy The backdoor policy consists of a 4 layered fully connected neural network
with second layer shared to the critic network. The joint actor critic network is trained using PPO
algorithm [15] implemented in Pytorch. The backdoor policy has been trained using an environment
poisoning scheme following [6] to train the agent to seek low value in the triggered environment. The
policy has been trained to a level such that it receives high returns in the clean environment. However,
when the attacker activates the trigger, the agent will move close to the opponent to get beaten down
without fighting back, thus minimizing its return.

5.2 Breakout game

Environment and the attack specification We consider a version of breakout game where the
states consist of a stack of four down-scaled board images (4× 84× 84) from the last 4 time steps
and the action space consists of three actions: move left, move right, and do not move. The attack
directly takes place in the image state space where the attacker injects a 6× 6 pixel square trigger on
the top left part of the arena, see Figure 3.

Backdoor policy The backdoor policy is a neural network with two convolutional layers followed
by two dense layers with ReLU activation units. The policy has been trained using environment
poisoning attack scheme following [7] with a backdoor objective to force the agent to take ‘do not
move’ action in the triggered states. Empirically, the policy has been trained to a level such that
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(b) Breakout game.

Figure 4: Performance of the backdoor policy in the clean environment (blue), and in the triggered
environment (brown). With sufficient clean sanitization samples (n), our sanitized policy recovers
back the clean performance (green). Shading is ± standard deviation.

it consistently performs very well in the clean environment receiving high returns. However, in
presence of trigger, it falters into not moving at all thus losing lives very quickly.

5.3 Empirical results of our sanitization algorithm

For a fixed sanitization sample count n, the defender collects n clean episodes from the environment

and chooses an independent sample from each episode to get n samples dπ
†

M. Empirically, we observe
that choosing roughly 2n correlated samples also works for sanitization in these examples. It then
constructs a sanitized policy (as defined in Algorithm 2) using top d eigen bases of the empirical
covariance matrix. The safe space dimension d is decided using the eigen gap in the empirical
covariance matrix (all eigenvectors with eigenvalues ≥ 10−10 are chosen as ‘safe subspace’, see
section 5.4 for further discussion).

In Figure 4, the blue and brown lines show the performance of backdoor policy in clean and triggered
environment, respectively. The y-axis shows the mean and standard deviation of empirical agent value
obtained from 4 independent trials. In each trial, we estimated the empirical value from averaging
the returns obtained from 5 independent episodes sampled using the respective (policy, trigger) pair.
We observe that the backdoor policy performed well in the clean environment (blue). However, its
performance dropped significantly in the presence of triggers (brown). Next, the green line shows

the performance of the sanitized policy constructed using n clean samples (on x-axis) from dπ
†

M.
We clearly observe that in both the examples, the performance of sanitized policy increases with
n and after a sufficient number of clean samples the sanitized policy recovers backs the original
clean performance (of backdoor policy in the clean environment, blue line) even when acting in the
triggered environment. This empirically verifies the success of our sanitization algorithm against
subspace backdoor attacks.

5.4 Dependence of our algorithm on the dimension d of safe subspace

Our theory assumes that the defender knows the dimension of the safe space d which might not
always hold true in practice. Though, the defender still has an access to eigen spectrum of the clean
empirical covariance matrix Σn which it can use to estimate d and the corresponding ‘safe subspace’.
A good estimate of d is important, because both underestimation and overestimation can lead to loss
in performance. Specifically, with underestimation the defender might lose important dimensions in
the safe subspace, and with overestimation the defender may include spurious dimensions from E⊥

hampering effective sanitization in both scenarios. This phenomenon is depicted by the empirical
value curve (green) in Figure 5, where we see that the performance of the sanitized policy decreases
both with underestimation and overestimation of d. In practice, one can choose d based on the
spectral gap of the empirical covariance matrix Σn. From the singular value spectrum curve (blue) in
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(b) Breakout game.

Figure 5: Performance of sanitized policies with different safe space dimension d (in green); Plot of
log singular value spectrum of empirical covariance matrix (in blue) with n = 40 for boxing-ram
game and n = 32768 for the breakout game.

Figure 5, we observe that the correct threshold corresponds to dimension just before the first major
dip in singular values; which occurs after dimension 24 in Boxing-Ram game and near dimension
20000 in Breakout game. We used these thresholds to select d in our experiments.

6 Conclusion

We formally specified backdoor policy with subspace trigger attacks in RL. We then proposed a
sanitization algorithm that allows a user to safely use a backdoor policy under subspace trigger
attackers. Our defense has the advantage of being a wrapper method and does not require expensive
policy retraining. Our sanitization work makes RL safer and contributes to trustworthy AI. Future
work will address the limitations of our defense, namely the need for clean environment interactions
and the assumption that triggers reside in a subspace E⊥.
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Appendix

Lemma 5 (Davis Kahn sinΘ bound [21]) Let Σ, Σ̂ ∈ R
D×D be symmetric, with eigen values

λ1 ≥ · · ·λD and λ̂1 ≥ · · · λ̂D, where Σvi = λivi, ∀i ∈ [D] and Σ̂v̂i = λ̂iv̂i, ∀i ∈ [D]. Further,

define E = [v1, · · · , vd] ∈ R
D×d, Ê = [v̂1, · · · , v̂d] and assume that δ∗ = λd − λd+1 > 0.

Then, we have that,

∥ sinΘ(E, Ê)∥F ≤ 2
√
d

δ∗
∥Σ− Σ̂∥2 (13)

Lemma 6 (Concentration of sub-Gaussian covariance) Let D be a zero-mean sub-Gaussian dis-
tribution in R

D s.t. for X ∼ D, we have that, ∥⟨X,x⟩∥ψ2
≤ K∥⟨X,x⟩∥2, ∀x ∈ R

D. Denote the

covariance matrix Σ = EX∼D

[
XXT

]
and Σn = 1

n

∑n
i=1 XiX

⊤
i , where Xi

i.i.d∼ D. Then ∀δ > 0,
we have that,

∥Σn − Σ∥2 ≤ CK2∥Σ∥





√

D + log 2
δ

n
+

D + log 2
δ

n





with probability ≥ 1− δ, for some fixed small constant C.

Proof: Refer to Theorem 4.7.1 and Exercise 4.7.3 in Vershynin [17]. □

Note that in large data regime, i.e. n >> D, only the first term dominates while in the small data
and large dimension regime the second terms dominates. In large data regime, for any given error
parameter ϵ > 0, one can sample n large enough and so the first term dominates the second one.

Lemma 7 (Concentration of Projection matrix) Let X ∈ R
D be a zero mean sub-gaussian random

vector with bounded sub-gaussian norm i.e.

∃K ∈ R s.t. ∥⟨X, v⟩∥ψ2
≤ K∥⟨X, v⟩∥L2 ∀v s.t. ∥v∥2 = 1

Given n i.i.d sample {Xi}|ni=1
i.i.d∼ PX , let Σn = 1

n

∑n
i=1 XiX

⊤
i be the empirical estimate of the

covariance matrix Σ = E[XX⊤]. Further, let the eigen decomposition of Σ,Σn be given as,

Σ =

D∑

i=1

λiuiu
⊤
i , Σn =

D∑

i=1

λ̂iûiû
⊤
i

and ProjE =
∑d
i=1 uiu

⊤
i and ProjEn

=
∑d
i=1 ûiû

⊤
i denote the projection operator onto the top

d true and empirical eigen subspaces E = span({ui}|di=1) and En = span({ûi}|di=1) respectively.

Then, if n ≥ CdK4∥Σ∥2

2

δ∗
2·ϵ2

(
D + log 2

δ

)
, we have,

w.p ≥ 1− δ, ∥ProjE − ProjEn
∥2 ≤ ϵ (14)

where δ∗ is the eigen gap between top d and the rest eigen subspace of true covariance matrix Σ.

Proof: Let E⊤En = U cosΘ(E,En)V
T denote the singular value decomposition of E⊤En and

cosΘ(E,En) = diag(cos θ1, · · · , cos θd) be the diagonal matrix with the cosine of principal angles
{θ1, · · · , θd} between E and En subspaces as its diagonal entries. With this definition, it is easy to
show that,

∥ProjE − ProjEn
∥2 =

√
2∥ sinΘ(E,En)∥2

Next, using sinΘ variant of Davis Kahn theorem 5, we have,

∥ sinΘ(E,En)∥F ≤ 2
√
d

δ∗
∥Σn − Σ∥2 (15)

=⇒ ∥ProjE − ProjEn
∥2 ≤

√
2∥ sinΘ(E,En)∥F ≤ 2

√
2d

δ∗
∥Σn − Σ∥2 (16)
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Note that we have used the fact that L2 norm is upper bounded by Frobenious norm. Next, using
concentration bound for covariance matrix of sub-gaussian random vectors 6(in large sample regime),
we have, w.p. ≥ 1− δ,

∥Σn − Σ∥2 ≤ CK2∥Σ∥2

√

D + log( 2
δ
)

n
(17)

Using it along with (16), gives us, w.p. ≥ 1− δ,

∥ProjE − ProjEn
∥2 ≤ 2

√
2d

δ∗
CK2∥Σ∥2

√

D + log( 2
δ
)

n
(18)

Finally, choosing n ≥ CdK4∥Σ∥2

δ∗
2·ϵ2

(
D + log 2

δ

)
, establishes the lemma.

□

Lemma 8 (Performance difference lemma for a general policy) Let π, π′ be two time and history
dependent non-Markovian policies acting in environment MDP M. Then, the performance difference
between the value function of these policy in environment M is given by :

V π
M(s0)− V π′

M(s0) =

∞∑

t=0

γt E
s0:t∼d

π,0:t

M

[

Qπ′

M(s0:t, π(s0:t))−Qπ′

M(s0:t, π
′(s0:t))

]

(19)

Further, if π, π′ are Markovian, we have,

V π
M(s0)− V π′

M(s0) =
1

1− γ
Es∼dπ

M

[

Qπ′

M(st, π(st))− V π′

M(st)
]

(20)

Proof: We provide a complete proof of the performance difference lemma for self sufficiency.

V π
M(s0)− V π′

M(s0) = E

[
∞∑

t=0

γtR(st, π ◦ f(st))
]

− V π′◦f
M (s0) (21)

= E

[
∞∑

t=0

γt
(

R(st, π ◦ f(s0:t)) + V π′◦f
M (s0:t)− V π′◦f

M (s0:t)
)
]

− V π′◦f
M (s0)

(22)

= E

[
∞∑

t=0

γt
(

R(st, π ◦ f(s0:t)) + γV π′◦f
M (s0:t+1)− V π′◦f

M (s0:t)
)
]

(23)

=

∞∑

t=0

γtE
[(

R(st, π ◦ f(s0:t)) + γV π′◦f
M (s0:t+1)− V π′◦f

M (s0:t)
)]

(24)

=

∞∑

t=0

γtE
[(

R(st, π ◦ f(s0:t)) + γV π′◦f
M (s0:t+1)− V π′◦f

M (s0:t)
)]

(25)

=

∞∑

t=0

γt E
s0:t∼d

π◦f,0:t
M

[

E
st+1

[(

R(st, π ◦ f(s0:t)) + γV π′◦f
M (s0:t+1)− V π′◦f

M (s0:t)
) ∣
∣
∣s0:t

]]

(26)

=

∞∑

t=0

γt E
s0:t∼d

π◦f,0:t
M

[

Qπ′◦f
M (s0:t, π ◦ f(s0:t))− V π′◦f

M (s0:t)
]

(27)

Further, if π, π′ are Markovian, it simplifies to

V π
M(s0)− V π′

M(s0) =

∞∑

t=0

γt E
s∼dπ,t

M

[

Qπ′

M(st, π(st))− V π′

M(st)
]

(28)

=
1

1− γ
Es∼dπ

M

[

Qπ′

M(st, π(st))− V π′

M(st)
]

(29)

□
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