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ABSTRACT: Infrastructure networks are vulnerable to a wide range of disruptions due to
natural hazards or man-made attacks. The ability of such networks to respond to and re-
cover from disruptions is characterized by their resilience which influences the impact of
disruptions and corresponding resource allocation. Therefore, the accurate assessment of in-
frastructure resilience is critical to inform the restoration process. This study investigates the
resilience assessment of interdependent infrastructure systems using topology- and flow-based
approaches. The objective of the research is to compare the two classes of models in order
to determine the importance of incorporating flow in resilience assessment methods, and to
explore the applicability of topology-based methods in assessing infrastructure resilience. In
order to conduct the comparison, we propose a mixed-integer program (MIP) to optimize the
resilience of coupled infrastructure networks, and we adapt the MIP to model the topology-
based problem by modifying the objective function and linearizing the constraints required
for calculating topology-based resilience. The proposed models and the comparative analysis
are illustrated with a case study of a 49-node coupled power-gas system.

1 Introduction

Interdependencies across critical infrastruc-
ture networks improve their operational ef-
ficiency. However, interdependent connec-
tions increase the vulnerability of infras-
tructure systems during disruptions due to
the cascading effect of failures (Vespignani,
2010; Buldyrev et al 2010). Understand-
ing systems resilience, the ability of a sys-
tems to recover from disruptions (Hosseini
et al 2016), has been recognized by aca-
demics, practitioners, and government agen-
cies (Goldbeck et al. 2017). As infras-
tructure networks become increasingly inter-
dependent, the resilience of interdependent
critical infrastructures (ICIs), which is deter-
mined by the vulnerability and recoverabil-

ity of a system, has recently garnered atten-
tion (Ouyang & Wang 2015; Zou & Chen
2017; Nan & Sansavini 2017; Goldbeck et al.
2017; Yu 2020). Many approaches have been
developed to assess the resilience of ICIs,
such as agent-based models, network-based
methods, system dynamics, and reinforce-
ment learning (Ouyang 2014; Sun & Zhang
2020). Among these approaches, network-
based methods have been widely applied due
to their ability to mathematically represent the
network characteristics of critical infrastruc-
tures, which then enables researchers to lever-
age powerful network-based modeling and
optimization techniques (Ouyang & Wang
2015; González et al. 2016; Fang & Zio
2019; Karakoc et al. 2019; Yu & Baroud
2020). Network-based approaches for the
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resilience assessment of infrastructure net-
works can be divided into two categories:
topology-based models and flow-based mod-
els (Ouyang 2014). Each of the two classes
of models has been used widely and sepa-
rately for resilience assessment (Johansson &
Hassel 2010; Gao et al. 2016; Goldbeck et
al. 2017; Sun & Zhang 2020; Ahangar et al.
2020). However, different types of models
may lead to different conclusions about re-
silience assessment and subsequently differ-
ent restoration plans of damaged ICIs. Few
studies have examined the differences be-
tween the resilience assessment using these
two classes of models. This study conducts a
comparative analysis of resilience assessment
methods using topology- and flow-based ap-
proaches.

1.1 Relevant Background

Topology-based models only consider the
topology in representing the ICIs, thus nodes
can become inoperable due to direct phys-
ical damage or the loss of connectivity to
the supply. In contrast, flow-based models
also include the flow in modeling ICIs. Each
link is associated with a flow and a flow ca-
pacity, therefore node can lose functional-
ity when the required amount of flow is not
provided even though the node is still con-
nected to the supply source. Some studies
have explored the difference between the two
class of models with a focus on the vulner-
ability of a single network. By comparing
the vulnerability assessment using topologi-
cal model and direct current optimal power
flow model (DCOPF) for the venerability as-
sessment of power grids, Hines et al. (2010)
conclude that although topology-based mod-
els can reveal general trends of vulnerabil-
ity, they can underestimate the vulnerability
of power systems. Ouyang (2013) evaluates
the vulnerability of synthetic power systems
in which the cascading failures are described
using the topological model, betweenness-
based model, and the DCOPF model. Ouyang
finds that the three models can produce al-
most identical topology-based vulnerability

at a high failure probability and the topology-
based vulnerability results can provide a good
approximation for flow-based vulnerability
when the failure probability of components is
high. Goldbeck et al. (2017) point out that
topological models cannot capture the char-
acteristics beyond network connectivity and
develop a dynamic network flow model to
assess the resilience of ICIs. While several
studies have investigated the applicability of
topology-based models in the context of vul-
nerability assessment, few studies compare
the two classes of models for the resilience
assessment of ICIs following different types
of disturbances.

1.2 Contributions

The objective of our study is to evaluate
the ability of flow-based and topology-based
models in assessing the resilience of ICIs fol-
lowing cascading failures triggered by differ-
ent types of initial attacks. The contributions
of this study are three-fold. First, we evalu-
ate the cascading failures of ICIs under dif-
ferent types of attacks where the cascading
dynamics are simulated using the dynamic
network flow redistribution model. Second,
we develop a mixed-integer program (MIP)
to optimize flow-based resilience and adapt
the program to model the topology-based re-
silience optimization problem. Non-linear
constraints are linearized such that the pro-
grams can be solved efficiently. Finally, we
demonstrate shortcomings of the topology-
based resilience assessment by comparing the
resilience of coupled infrastructure networks
after different types of initial attacks.

The rest of this paper is structured as fol-
lows. Section 2 introduces the mathematical
representation of ICIs, the method for simu-
lating the cascading dynamics using the DFR
algorithm, and the MIP for flow-based and
topology-based resilience optimization. Sec-
tion 3.1 introduces the synthetic power-gas
networks used for illustrating the proposed
methods. The results from the case study are
shown in Section 3.2. Finally, the conclusion
and discussions about future work are pre-
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sented in Section 4.

2 Methodology

2.1 Mathematical Representation of Inter-
dependent Critical Infrastructures

ICI networks are represented as a directed
graph G(N,A) where N is the set of nodes and
A is the set of arcs. For ICI networks, the node
set N is the union of sets of nodes in each net-
work Nm, ∀m∈M, i.e. N = N1∪N2...∪N|M|.
Nodes represent the facilities in each net-
work, e.g. the power station and substations
in power systems and gas processing plants
and storage stations in gas distribution sys-
tems. The link set A is the union of sets
of links in each network Am, ∀m ∈ M, i.e.
A = A1∪A2...∪A|M| and the interdependency
links between the networks Am→l , ∀m, l ∈M.
Each node is associated with a demand value
and supply value. Each link is associated with
a flow value and a value of flow conservation
rate. Note that for links within a network, the
value of flow conservation rate is 1.

2.2 Attack Types

In order to simulate the damaged state of the
ICIs, four types of exogenous disturbances to
the networks are considered.

The first type of disturbance is random fail-
ure, which models the impact of natural haz-
ards. In this study, we consider that attacks
impact nodes only. In simulating the random
failure, nodes of the ICIs are removed ran-
domly from the networks. The random fail-
ures are repeated many times to average out
the impact of randomness. As critical infras-
tructure systems may also be subject to inten-
tional attacks that aim to maximize the dam-
age to the networks, we consider two types
of targeted attacks, including degree-based,
betweenness-based, and closeness-based at-
tacks. Degree centrality (D) is the number of
edges of a node. Betweenness centrality (B)
of a node is defined as the ratio between the
number of shortest paths between each pair of
nodes passing through the node under study

to the total number of shortest paths between
each pair of nodes, which is given by

B(v) = ∑
i6=v6= j

σi j(v)
σi j

(1)

where σi j is the total number of shortest paths
between node pair i and j and σi j(v) is the
number of those paths passing through node
v. The closeness centrality (C) measures how
close a node is to the other nodes in the net-
work, which is expressed as

C(i) =
N−1

∑
N−1
j=1 d(i, j)

(2)

where N is the total number of nodes in the
network and d(i, j) is the shortest path be-
tween node i and j (Hagberg et al. 2008).
For each type of targeted attack, nodes are in-
crementally removed beginning with the ones
having the highest value of the respective cen-
trality.

2.3 Cascading Failure

To obtain accurate damage state of the in-
terdependent networks following different at-
tacks, it is necessary to simulate cascading
failures. In this study, we adapt the local flow
redistribution model (Wang & Chen 2008;
Wang et al. 2019) to simulate the cascad-
ing failures triggered by initial attacks. The
model in Wang & Chen (2008) only works
for undirected networks, and we adapt their
model for directed networks. In each step
during the failure propagation, link k and
node i will be overloaded and thus fail if the
flow or supply exceed the respective capacity,
which is assumed to be (1+α) times the re-
spective initial value (Eqs. (3) and (4)) (Mot-
ter & Lai 2002).

uk = (1+α) fk0, ∀k ∈ A (3)
ci = (1+α)qi0, ∀i ∈ N (4)

The additional flow assigned to each adjacent
link of the failed edge is proportional to the
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Algorithm 1: Simulating cascading failures

Input: ID of attacked nodes Nd
0 , tolerance

rate α , supply capacity of each node ci,
and supply capacity of each link uk.

Output: ID of damaged components Nd
t and

Ad
t after cascading failures

1: t← 1
2: while True do
3: Redistribute the flow to the failed

nodes to the remaining functional links
4: Check if each of the remaining links

fails using Eq. (3) and store the ID of all
failed links in Ad

t
5: Check if each of the remaining nodes

fails using Eq. (4) and store the ID of all
failed nodes in Nd

t
6: t← t +1
7: if |Nd

t+1|= |Nd
t | & |Ad

t+1|= |Ad
t | then

8: Break
9: end if

10: end while

initial flow of the adjacent link. For example,
if link (i, j) fails, the flow redistributed to the
adjacent link (i,v), ∆ fiv, is given by

∆ fiv =
fiv

∑
a∈Vi

fia
fi j, ∀v ∈Vi (5)

where Vi is the set of outgoing neighbors of
node i, i.e. nodes that have a link from node
i; fia and fi j are the flow along link (i,a)
and (i, j), respectively. For each type of tar-
geted attacks, the nodes are sorted in descend-
ing order according to the respective central-
ity and are attacked (removed) incrementally
from the network. The procedure for simulat-
ing the cascading failures is described in Al-
gorithm 1.

2.4 Resilience Optimization

2.4.1 Resilience Measure

Resilience of the interdependent networks at
a time period t during the recovery, denoted as
Rt , is defined as the weighted average of the

Table 1. Notations

Sets and indices
T set of time periods, t ∈ T
M Set of networks, m ∈M
N, A Set of all nodes and links respectively

i ∈N and k ∈ A
Nd+ set of demand nodes
Nd , Ad Set of damaged nodes and links respectively
Am→l Set of interlinks from network m to l
Nm

iter Set of nodes ∈ Nl that require supply from Nm

Parameters
ci Supply capacity of node i
di Demand of node i
wm Weight of the resilience of network m
uk Flow capacity on link k
Nr Maximum number of components repaired in

a single time period
ηk Conversion rate of resource flow from i to j

on link k = (i, j)
ε A sufficiently small positive number

Decision variables
fkt Flow on link k at time t
qit Supply at node i at time t
sit Unmet demand at node i at time t
xit =1 if the repair of node i starts at time t;

0 otherwise
xkt =1 if the repair of link k starts at time t;

0 otherwise
yi0 =1 if node i is not damaged; 0 otherwise
yk0 =1 if link k is not damaged; 0 otherwise
yit =1 if node i functions at time t; 0 otherwise
ykt =1 if link k functions at time t; 0 otherwise
zit =1 if node i can receive supply at time t;

0 otherwise
zkt =1 if the start and end nodes of k and link k

itself functions at time t; 0 otherwise
Rt The resilience of ICIs at time t

percentage of satisfied demand in each indi-
vidual network. Formally, Rt is given by Eq.
(6).

Rt = ∑
m∈M

wm

(
∑

i∈Nm
1− sit

di

)
(6)

In Eq. (6), sit is the slack (unmet demand) at
node i at time t, di is the demand at node i, and
wm is the weight of network m. In our study,
we assume an equal weight of each network
(i.e., wm = 1

|M| , ∀m ∈M).
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2.4.2 Notation

The notations in Table 1 are used in formulat-
ing the resilience optimization problem.

2.5 MIP for Resilience Optimization

The model for optimizing the restoration of
damaged ICIs is provided in Model (7). The
objective function is to maximize the sum of
resilience during the restoration horizon. The
major decision variables include the dynamic
network flow on links, supply at nodes, and
the repair schedule.

Max ∑
t∈T

Rt (7a)

s.t.

∑
t∈T

xit = 1, ∀i ∈ Nd (7b)

∑
t∈T

xkt = 1, ∀k ∈ Ad (7c)

∑
i∈N

xit + ∑
k∈A

xkt ≤ Nr, ∀t ∈ T (7d)

∑
k=(i, j)∈Am

fkt − ∑
k=( j,i)∈Am

fkt

= qit + sit−di, ∀m ∈M, i ∈ Nm, t ∈ T (7e)

qm
it ≤ ∑

k=( j,i)∈Al→m

ηk fkt ,

∀m ∈M, i ∈ Nm
iter, t ∈ T (7f)

0≤ fkt ≤ yity jtyktuk, ∀k = (i, j) ∈ A, t ∈ T
(7g)

0≤ qit ≤ yitci, ∀i ∈ N, t ∈ T (7h)
0≤ sit ≤ di, ∀i ∈ N, t ∈ T (7i)
xkt ≤ xit , ∀i ∈ N,k = (i, j) ∈ A, t ∈ T (7j)
yit ≤ yi(t−1)+ xi(t−1), ∀i ∈ N, t ∈ T\{1}

(7k)

ykt ≤ yk(t−1)+ xk(t−1), ∀k ∈ A, t ∈ T\{1}
(7l)

yi(t−1) ≤ yit , ∀i ∈ N, t ∈ T (7m)

yk(t−1) ≤ ykt , ∀k ∈ A, t ∈ T (7n)

yi1 = yi0, ∀i ∈ N (7o)
yk1 = yk0, ∀k ∈ A (7p)
yit ,ykt ∈ {0,1}, ∀i ∈ N,k ∈ A, t ∈ T (7q)
xit ,xkt ∈ {0,1}, ∀i ∈ N,k ∈ A, t ∈ T (7r)

In this model, constraints (7b) and (7c) en-
sure that damaged nodes Nd or links Ad will
certainly be restored at one of the time peri-
ods. Constraint (7d) ensures that at most Nr
damaged components can be restored at one
time period. Constraint (7e) enforces flow
conservation. Constraint (7f) guarantees that
the supply at nodes dependent on another net-
work is less than the converted supply. Nm

iter
represents the set of nodes in network m that
requires supply from another network. For-
mally, Nm

iter is given by

Nm
iter = {i∈Nm∩{i′ | ∃ l ∈M,( j, i′)∈ Al→m}}

(8)

Constraint (7g) ensures that the flow on each
functional link is capped and the flow on a
link will be zero unless the start node, end
node, and the link itself are all functional.
Constraints (7h) and (7i) define the range of
supply and slack, respectively. Constraint (7j)
states that an arc will not be restored until its
start node is restored. Constraints (7k) and
(7l) guarantee that nodes or links will be func-
tional if it is repaired. Constraints (7m) and
(7n) state that the functional state of compo-
nents is non-deteriorating over the recovery
process. Constraints (7o) to (7r) force the re-
spective decision variables to be binary vari-
ables.

In constraint (7g), fkt ≤ yity jtyktuk, ∀k =
(i, j) ∈ A, t ∈ T is non-linear. We linearize it
using an auxiliary variable zkt , ∀k ∈ A, t ∈ T .
The equivalent linear constraints are given by

zkt ≤ yit ,∀k = (i, j) ∈ A, t ∈ T (9a)
zkt ≤ y jt ,∀k = (i, j) ∈ A, t ∈ T (9b)
zkt ≤ ykt ,∀k ∈ A, t ∈ T (9c)
zkt ≥ yit + y jt + ykt ,∀k = (i, j) ∈ A, t ∈ T

(9d)

For simplicity, we assume that only Nr
damaged components can be repaired during
a time period. Thus, the total time periods for
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restoration is given by

|T |=
⌈

∑i∈N(1− yit)+∑k∈A(1− ykt)

Nr

⌉
+1

(10)

where ∑i∈N(1− yit) + ∑k∈A(1− ykt) repre-
sents the total number of damaged compo-
nents as 1− yit = 1 or 1− ykt = 1 if node i
or link k is damaged, and 0 otherwise. d·e
is the ceiling function that returns the least
integer greater or equal to the input number.
The additional one time period is added to en-
sure that the slack is zero, i.e. the resilience
returns to 1, at the last time period. In this
study, Nr = 2 is assumed for simplicity. In
practice, a more accurate value of Nr can be
determined based on information on the re-
sources available to perform the repairs.

2.5.1 Topology-based Resilience Assess-
ment

Topology-based models for resilience assess-
ment only consider connectivity among net-
work components. The topology-based re-
silience optimization problem is modeled by
(i) setting the capacity of flow and supply to
a sufficiently large value in the flow-based
optimization model, and (ii) modifying the
objective function. For the topology-based
optimization problem, the resilience at time
t, R′t , is defined as the proportion of func-
tional demand nodes that can still receive
supply. Mathematically, topology-based re-
silience measure is defined as

R′t =

∑

i∈Nd+∩N f
t

yit

|Nd+ |
(11)

where |Nd+ | represents the number of demand
nodes (nodes with positive demand), and

∑

i∈Nd+∩N f
t

yit represents the number of func-

tional demand nodes that can receive supply
at time t. Because the slack at a functional

demand that can receive supply must be lower
than the demand, Eq. (11) is equivalent to

R′t =

∑
i∈Nd+ , sit<di

yit

|Nd+ |
(12)

In Eq. (12), determining whether or not the
slack at a demand node is lower than its de-
mand results in a logical constraint. We trans-
form this logical constraint using an auxiliary
variable zit , ∀i ∈ Nd+ , t ∈ T , which is equal to
1 if sit < di, and 0 otherwise. The equivalent
linear constraints are

sit

di
≤ 1− εzit (13a)

sit

di
≥ 1− zit (13b)

In Eq. (13a), ε is a significantly small pos-
itive number. Using the auxiliary variable,
the resilience measure for the topology-based
model becomes

R′t =

∑
i∈Nd+

zit

|Nd+ |
(14)

3 Case study

3.1 Data description

We illustrate the proposed approaches with
a case study of 49-node power-gas networks
(Figure 1) 1. The power-gas networks are
generated by coupling the IEEE RTS 24-bus
test system (left) with a 25-node gas network
(right) through gas-powered generators (G1
to G4) (Zlotnik et al. 2016). Note that not all
power generators require gas supply to pro-
duce electricity. For instance, the generators
at K1, K2, and nodes with generators can
have a demand for electricity as well. In the
power network, there are 17 demand nodes,
5 supply nodes, and 34 links while in the gas

1The case study data and code to implement
the models are available at: https://github.com/
jinzhuyu/ICOSSAR2021

https://github.com/jinzhuyu/ICOSSAR2021
https://github.com/jinzhuyu/ICOSSAR2021
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Figure 1. Schematic of 49-node coupled power-gas networks (Zlotnik et al. 2016)

network, there are 4 demand nodes, 1 supply
node, and 24 links. The links across the two
networks include the links from J8 to K22,
J13 to K15, J24 to K13, and J19 to K7. The
gas to power energy conversion rate is 172.47
(U.S. EIA 2020).

3.2 Results

We first explore the performance of networks,
which is defined as the proportion of satis-
fied demand, after cascading failures (Figure
2). The tolerance rate is arbitrarily assumed
to be 40%. Note that depending on the de-
sign capacity and the initial value of supply
at nodes or flow along the links, the tolerance
rate can be any positive number. Random at-
tacks are simulated 50 times to obtain the av-
erage performance. As can be observed from
Figure 2, random attacks can cause greater
damage to network performance than all the
targeted attacks when the percentage of nodes
attacked is around 15% to 35%. When the
proportion of nodes attacked is below 15%,
betweenness-based attacks lead to the great-
est loss in network performance, followed by
random attacks. When more than 35% of
nodes are attacked, degree-based attack is the
most destructive. These observations indi-
cate that depending on the attack intensity and
the networks, ICIs can be more vulnerable to

random attacks than intentional attacks. The
trend in the deterioration of the performance
as additional nodes fail is different for dif-
ferent attacks. The network performance af-
ter random and degree-based attacks first de-
clines rapidly before slowing down. A similar
trend can be observed for betweenness-based
attacks. However, the inflection point occurs
at a much lower value of the percentage of
nodes attacked. In contrast, the deterioration
rate of the performance given closeness-based
attacks is more stable as a function of the in-
crease in the percentage of attacked nodes.
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Figure 2. Performance of networks under different
types of attacks

The resilience assessment of the 49-node
power-gas networks after different types of
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Figure 3. Restoration over time (a) flow-based and (b)
topology-based models with 20% nodes attacked

attacks is depicted in Figure 3 (20% nodes at-
tacked) and Figure 4 (60% nodes attacked).
It can be seen that, irrespective of the at-
tack type and percentage of nodes attacked,
the resilience obtained using the topological
model is consistently higher than the flow-
based model and the time to full restoration
is much shorter when using the topology-
based model. These two observations indi-
cate that topological models can overestimate
the resilience and underestimate the time to
full restoration of ICIs following disruptions,
which may lead to increased restoration costs
and even prolonged disruption (Yu & Baroud
2019). This is due to the fact that topologi-
cal models ignore the network flow, therefore
components will be considered to be func-
tional although 1) the required flow is not pro-
vided or 2) the flow along a link or into a node
exceeds the capacity. Furthermore, using
topology-based models, the resilience of ICIs

is consistently the highest after betweenness-
based attacks, followed by random attacks,
degree-based attacks, and closeness-based at-
tacks. However, the ranking of resilience af-
ter different types of attacks using flow-based
models are different over the percentage of
nodes attacked. This observation also indi-
cates that topology-based models can be mis-
leading in the restoration management after
the ICIs are damaged by different types of at-
tacks.
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Figure 4. Restoration over time (a) flow-based and (b)
topology-based models with 60% nodes attacked

4 Conclusion

In this paper, we compare the resilience
assessment of ICIs using flow-based and
topology-based models after ICIs are dam-
aged by different types of attacks. In esti-
mating the damage state of ICIs, cascading
failures are simulated using the dynamic flow
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redistribution model. In evaluating the re-
silience of damaged ICIs, a MIP for the flow-
based resilience optimization problem is de-
veloped and adapted for the topology-based
problem. Considering the network perfor-
mance following different types of attacks,
we conclude that while ICIs are generally
more vulnerable to targeted attacks than ran-
dom attacks, ICIs may sometimes be more
vulnerable to random attacks than targeted at-
tacks, depending on the percentage of nodes
attacked and the structure of the ICIs. By
comparing the resilience assessment of ICIs
using flow-based and topology-based models,
we show that 1) the topology-based model
tends to overestimate the resilience of ICIs
and underestimate the time to full restoration,
and 2) the resilience assessment of ICIs using
topology-based models after different types
of attacks can be misleading.

Future research can be conducted in several
directions. First, since the physical laws on
the power system and gas system are not in-
cluded for simplicity of analysis, future work
can incorporate the physical laws into the cas-
cading failure simulation and restoration op-
timization to obtain a more accurate analysis.
As there exist other flow distribution mod-
els, e.g. global flow redistribution models
(Moreno et al. 2002, Yağan 2015, Scala et
al. 2016), future research can also compare
the cascading failures and the restoration af-
ter those failures using different flow redistri-
bution rules.
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