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Abstract

Several species of the Agrobacterium genus represent unique bacterial pathogens able
to genetically transform plants, by transferring and integrating a segment of their own
DNA (T-DNA, transferred DNA) in their host genome. Whereas in nature this process
results in uncontrolled growth of the infected plant cells (tumors), this capability of
Agrobacterium has been widely used as a crucial tool to generate transgenic plants,
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for research and biotechnology. The virulence of Agrobacterium relies on a series of
virulence genes, mostly encoded on a large plasmid (Ti-plasmid, tumor inducing
plasmid), involved in the different steps of the DNA transfer to the host cell genome:
activation of bacterial virulence, synthesis and export of the T-DNA and its associated
proteins, intracellular trafficking of the T-DNA and effector proteins in the host cell,
and integration of the T-DNA in the host genomic DNA. Multiple interactions between
these bacterial encoded proteins and host factors occur during the infection process,
which determine the outcome of the infection. Here, we review our current knowledge
of the mechanisms by which bacterial and plant factors control Agrobacterium virulence
and host plant susceptibility.

1. Introduction

Agrobacterium tumefacienswas discoveredmore than a century ago as the

causing agent of the crown-gall disease, which results in uncontrolled cell

division (tumors) mostly at the roots and base of the stem of the infected

plants (Kado, 2014). Different species or strains of Agrobacterium may cause

different diseases in various host plants: A. tumefaciens causes crown galls,

A. vitis causes galls on the stem of grape species and A. rhizogenes causes root

proliferation (hairy root). The infection of plants by Agrobacterium species

represents a unique case of active horizontal gene transfer in the living world.

Indeed, Agrobacterium virulence relies mostly on two essential regions of its

Ti-plasmid (tumor-inducing plasmid): the virulence region (containing the

vir genes) and the T-DNA region (containing the T-DNA, a segment of

DNA transferred and integrated into the genome of the host plant cell).

In wild-typeAgrobacterium strains, the T-DNA contains several genes, which

will be expressed in the transformed plant cells. Some of these gene products

will affect host cell division and cause ectopic growth (such as the crown

gall), while another series of genes encode proteins responsible for the syn-

thesis of small molecules (opines) that are exported out of the host tissues and

used by Agrobacterium as a source of nutrition (Escobar & Dandekar, 2003).

Because the T-DNA transfer does not depend on its sequence, T-DNA

genes can be replaced by any sequence of interest, which made possible

the use of Agrobacterium as a tool for plant genetic transformation. Since

the discovery of the T-DNA as the “tumor-inducing agent,” numerous

studies have focused on identifying the bacterial and plant genetic factors

involved in the infection process and on deciphering the molecular mech-

anism of plant genetic transformation mediated by Agrobacterium (Gelvin,

2003a; Lacroix & Citovsky, 2019). Most of our current knowledge of the
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infection mechanisms is derived from the experiments performed with

A. tumefaciens; thus, we will use the term Agrobacterium in this chapter,

although we will refer mostly to A. tumefaciens.

Susceptibility of plants to Agrobacterium infection varies widely between

plant species; most notably monocotyledon species are generally recalcitrant

to transformation (De Cleene & De Ley, 1976). Variations are also observed

within a species, between varieties, or accessions (Chateau, Sangwan, &

Sangwan-Norreel, 2000). Moreover, organs, tissues, or cell types of a plant

differ in their susceptibility, and different treatments (nutritional, hormonal)

of the plant cells or tissues affect transformation efficiency, suggesting that

the physiological status of the cells also alters their susceptibility. Under

laboratory conditions, Agrobacterium-mediated genetic transformation can

be achieved with most plant species, with variable efficiency, and non-plant

species (yeast, fungi, and even mammalian cells) can also be transformed

(Lacroix, Tzfira, Vainstein, & Citovsky, 2006). Many genetic factors affect-

ing the susceptibility of plants to Agrobacterium have been identified (Gelvin,

2003b; Lacroix & Citovsky, 2019); their presence and activity may represent

the determinants for the outcome of the infection process. In this review, we

will focus on our current understanding of bacterial and plant factors con-

trolling Agrobacterium virulence and host plant susceptibility, from the first

cellular interactions to the integration of T-DNA into the host genome.

2. Bacterial factors defining Agrobacterium virulence

Agrobacterium virulence relies mostly on a series of genes (the vir genes),

located on the Ti plasmid, of which expression may be activated in response

to plant and environmental signals. These genes encode proteins involved at

different stages of plant infection and can be classified into different groups

according to their level of requirement for Agrobacterium-mediated transfor-

mation (Table 1). The first group represents a core of essential genes, abso-

lutely required for infection: virA and virG (main system for vir gene

induction), the virB operon, and virD4 (export of macromolecules from

the bacterial cells), and virD1 and virD2 (synthesis and transport of the

T-DNA). The second group of vir genes can be defined as important but

not absolutely essential (transformation occurs only at a very low rate with

Agrobacterium mutated in these genes): virC1 and virC2 (T-DNA synthesis),

virE1 and virE2 (protection and nuclear import of the T-DNA). A third

group, sometimes qualified as host-range genes, corresponds to genes that
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may be required as an enhancer of transformation efficiency only with a cer-

tain host or in specific conditions; this group includes virD5, virE3, and

virF. Finally, some of the vir genes are not found in all Agrobacterium strains

(virD3, virH1 and virH 2, virJ, virK, virL, virM); although they belong to the

vir regulon, their potential role in Agrobacterium infection is generally

Table 1 Agrobacterium virulence genes (see text for references).
Requirement for
transformation

Gene
name Function

Essential virA Sensor, part of the two-component regulator

of vir gene expression

virB1–11 Main components of the T4SS responsible for

export of T-complex and effector proteins

virD1 T-strand synthesis

virD2 T-strand synthesis, protein component of the

T-complex, nuclear import of the T-DNA

virD4 Part of the T4SS (coupling factor)

virG Part of two-component system, transcription

activator of vir genes

Important virC1–2 Enhance T-strand synthesis

virE1 Chaperone for VirE2 protein

virE2 Effector protein, protection of the T-strand

Host range virD3 Unknown

virD5 Effector protein, prevents VirF degradation

virE3 Effector protein, interacts with VirE2, anchor

for VirE2 after its entry in the host cell,

transcription regulator

virF Effector protein, F-box protein, proteasomal

degradation of several host plant target proteins

Unknown virH1–2 Detoxification

virJ Homolog of chromosomally encoded acvB

virK Unknown

virL Unknown

virM Unknown
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unknown. Originally, the importance of virulence genes was assessed by

testing the ability of Agrobacterium insertion mutants for different genes to

induce tumor formation after infection of plants highly susceptible to

Agrobacterium (usually tobacco or kalanchoe) (Horsch et al., 1986; Stachel,

An, Flores, & Nester, 1985). It is likely that non-essential or accessory genes

play a role in the infection of other, less susceptible, plant species. In addi-

tion, the importance of these genes may be undetectable under laboratory

conditions, but play a role under natural conditions, in the highly com-

petitive environment of the rhizosphere. Besides the vir genes present on

the Ti-plasmid, some chromosomally encoded genes are required for

Agrobacterium virulence. These genes are involved mostly in sensing envi-

ronmental conditions and modulation of virulence induction (chvG, chvE,

chvI, exoR), or in the attachment of Agrobacterium cells to plant cell/tissue

surface (chvA, chvB, exoC).

3. Virulence factors in non-Agrobacterium species

Interestingly, homologs of virulence genes have been found in many

bacterial species related to Agrobacterium, within plasmids of bacteria belong-

ing to the Rhizobiaceae family. Indeed, the study of many plasmids from

species of the agrobacteria-rhizobia complex shows that partial or complete

vir regions are often found in these plasmids and that combination of these

mobile genetic elements in one strain may lead to the assembling of a func-

tional DNA transfer machinery (Weisberg et al., 2020), which raises the

question of whether other, non-Agrobacterium, species can transfer DNA

to eukaryotic hosts. Because most of the virulence determinants are found

on a mobile genetic element (Ti-plasmid), a strain harboring no Ti-plasmid

or only an incomplete virulence system may become virulent by acquiring a

plasmid from another strain by conjugative plasmid transfer.

It has been known for a long time that transferring a plasmid(s) containing

a functional virulence region and a T-DNA to several species closely related to

Agrobacterium (belonging to the Rhizobiaceae and Phyllobacteriaceae families)

could confer the ability to transfer T-DNA to the recipient species

(Broothaerts et al., 2005; Hooykaas, Klapwijk, Nuti, Schilperoort, &

Rorsch, 1977; Wendt, Doohan, & Mullins, 2012; Zuniga-Soto, Mullins,

& Dedicova, 2015). These results indicate that these bacterial strains harbor

all the chromosomally encoded factors required for T-DNA transfer. More

recently, it was shown that a vir region of the native plasmid p42a of

Rhizobium etliCFN42 strain is functional, and able to transfer T-DNA to host
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plant cells (albeit with low efficiency), when that bacterial strain was trans-

formed with a plasmid containing a T-DNA region only, (Lacroix &

Citovsky, 2016). It was later shown that R. etli vir gene expression was

regulated by phenolics, similarly to Agrobacterium (Wang, Lacroix, Guo, &

Citovsky, 2017).

4. Regulation of virulence gene expression

All the vir gene or operon promoters contain at least one specific

sequence, 10- to 12-bp sequences (vir box) located between 200 and

50bp upstream of the transcription initiation site, which is required for

the coordinated vir gene induction (Steck,Morel, &Kado, 1988). The activ-

ity of these promoters, and thus the expression of the vir genes, is mostly

under the control of a two-component receptor system composed of the

VirA and VirG proteins (Stachel & Zambryski, 1986). VirA is an integral

membrane sensor protein that integrates several signals; once activated,

VirA mediates the phosphorylation of VirG, which then binds to the vir

box containing promoters and promotes vir gene expression (Fig. 1). The
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Fig. 1 Regulation of vir gene expression by plant and environmental factors (see text
for details).
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most important of these activating signals is a plant-produced phenolic

compound, acetosyringone (AS, 3,5-dimethoxyacetophenone) (Bolton,

Nester, & Gordon, 1986; Stachel, Messens, Van Montagu, & Zambryski,

1985). Several other phenolic compounds related to AS (including phenolic

glycosides) are also able to activate the VirA/VirG system ( Joubert et al.,

2004; Melchers, Regensburg-Tuink, Schilperoort, & Hooykaas, 1989).

Genetic studies suggest that AS and other phenolics bind directly to

VirA (Lee, Jin, Sim, & Nester, 1995), although it cannot be completely

excluded that a yet unknown intermediary protein bind phenolics in the

periplasm before activating VirA. A range of reducing monosaccharides

(e.g., D-glucose and D-galactose) can bind to ChvE, a chromosome-encoded

periplasmic protein, which then enhances vir gene expression by directly

binding to VirA (Cangelosi, Ankenbauer, & Nester, 1990; Shimoda,

Toyoda-Yamamoto, Aoki, & Machida, 1993). This interaction results in

an increase of VirA/VirG sensitivity and of saturating concentration for

the vir gene induction by phenolics (Shimoda et al., 1990). Other environ-

mental features, such as low pH and low phosphate concentration, also affect

vir gene expression. Together, they activate ChvG/ChvI, another two-

component regulatory system, which in turn increases the expression of

virG (Charles & Nester, 1993). Low pH results in the degradation of

ExoR, a periplasmic inhibitor of ChvG (Heckel, Tomlinson, Morton,

Choi, & Fuqua, 2014). Moreover, low pH (between pH 5 and 6) enhances

VirA activity directly (Melchers et al., 1989) or through ChvE (Gao &

Lynn, 2005).

Because the expression of vir genes is costly in energy for the bacterial

cells (Platt, Bever, & Fuqua, 2012), it is also important that their expression

is repressed in later infectious stages when Vir proteins are not required

anymore. Several mechanisms could play this role in Agrobacterium.

Indeed, Agrobacterium virulence is inhibited in response to the auxin IAA

(indole acetic acid), produced at high levels by developing Agrobacterium-

induced tumors (Liu & Nester, 2006). IAA likely can bind VirA, acting

as a competitive inhibitor of AS. Another pathway capable of turning off

the vir gene expression was recently suggested. In this pathway, sucrose

would bind to and inactivateAgrobacterium SghR, resulting in the expression

of SghA; SghA would then free SA (salicylic acid) from its storage form SAG

(SA β-glucoside), and SAwould inhibit VirA (Wang et al., 2019). However,

this model relies on two yet unproved assumptions: the massive release of

sucrose from plants to the extracellular space and the export of SAG (usually

stored in vacuoles) from plant cells.
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In addition, the ability to inhibit vir gene expression may represent a

mechanism of plant defense to prevent infection by Agrobacterium, and con-

sequently a source of variability of susceptibility to Agrobacterium between

plant species. For example, two chemicals isolated from corn seedling

homogenates (DIMBOA and MDIBOA) were shown to inhibit both vir

gene induction and Agrobacterium growth (Sahi, Chilton, & Chilton,

1990; Zhang et al., 2000). Like IAA, these two molecules derive from

the tryptophan biosynthetic pathway (Melanson, Chilton, Masters-

Moore, & Chilton, 1997), and could also inhibit vir gene expression by

binding to VirA. In studies with plants deficient or overexpressing genes

for the synthesis of salicylic acid (SA, the major signal molecule of the

systemic acquired resistance pathway), it was shown that SA inhibited vir

gene expression, most likely by interfering with VirA activity (Anand

et al., 2008; Yuan et al., 2007). The plant gaseous growth regulator ethylene

was also able to inhibit Agrobacterium virulence (Nonaka, Sugawara,

Minamisawa, Yuhashi, & Ezura, 2008; Nonaka, Yuhashi, et al., 2008),

although it is not known if ethylene has a direct effect on vir gene expression.

Whereas most of the regulation pathways cited above converge on the

VirA/VirG two-component system, vir gene expression can also be altered

via pathways independent of this system. Indeed, a mutation in Ros, a tran-

scription regulator encoded by the Agrobacterium chromosome, resulted in

the activation of expression of the virC and virD operons (Close et al.,

1987). Furthermore, an investigation of the small RNA-dependent gene

regulations inAgrobacterium showed that some of the vir genes were regulated

via this pathway (Dequivre et al., 2015).

5. T-DNA synthesis

The T-DNA synthesis corresponds to the production of the single

strand T-DNA segment via a mechanism of strand-replacement (Stachel,

Timmerman, & Zambryski, 1986). Two 24–25bp sequences, known as

the left border (LB) and the right border (RB), present as a direct repeat

on the Ti-plasmid, mark the beginning and the end of the T-DNA

(Peralta & Ream, 1985; Yadav, Vanderleyden, Bennett, Barnes, &

Chilton, 1982), which can be mobilized from the Ti-plasmid in the form

of a single-stranded DNA intermediate (the T-strand). The processing of

the T-strand is mediated by VirD2, acting as an endonuclease (Albright,

Yanofsky, Leroux, Ma, & Nester, 1987; Yanofsky et al., 1986), associated
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with VirD1, most likely acting as a DNA topoisomerase (Ghai &Das, 1989).

The result of this process is the immature T-complex, comprised of the

T-strand and of a molecule of the VirD2 protein that remains covalently

linked to its 50-end (RB) (Young & Nester, 1988). VirC1 and VirC2 were

also shown to bind to “overdrive” sequences located close to the T-DNA

borders, causing an increase in the amount of processed T-strand molecules

(De Vos & Zambryski, 1989).

6. T-DNA and associated protein export

Export of T-DNA and associated proteins from the bacterial cells

relies on a Type IV secretion system (T4SS) encoded by the virB operon

and virD4, via a mechanism close to the plasmid translocation during

bacterial conjugation (Li & Christie, 2018). In addition to the VirD2-

T-strand complex, four other proteins are translocated to the host cell:

VirE2, VirE3, VirD5, and VirF. Firstly, the VirD2-T-strand complex and

the translocated proteins must be targeted to the T4SS within the bacterial

cell. All these proteins display an arginine-rich C-terminal sequence

required for their export (Vergunst et al., 2000, 2005), although it is not

an exact signal sequence (identical for all these proteins). The presence of

a similar signal sequence shared between the different exported proteins sug-

gests a unique pathway of recognition of the translocated proteins within

bacterial cells, but such a unique pathway has not been identified yet.

Instead, several different factors have been suggested for each of the exported

proteins. Interaction with the T4SS coupling protein VirD4 seemed

required to recruit VirE2 to the cell poles, where T4SS is assembled

(Atmakuri, Ding, & Christie, 2003). VirC1 and VirC2 likely assist the

targeting of VirD2 (and thus the T-complex) to the cell poles (Atmakuri,

Cascales, Burton, Banta, & Christie, 2007). More recently, VBPs (VirD2-

binding proteins) were identified as bacterial factors able to recruit VirD2

and the associated T-strand to the T4SS energizing components (VirD4,

VirB4, and VirB11) (Guo, Hou, Hew, & Pan, 2007; Guo, Jin, Sun,

Hew, & Pan, 2007). In other systems, VBPs can recruit relaxase proteins

and conjugating DNA intermediates to the T4SS during conjugation.

However, VBPs did not interact with the other exported effector proteins

of Agrobacterium, thus they do not represent the only factors recognizing

C-terminal sequences of the exported proteins.

Agrobacterium represents a model for the study of T4SSs; thus, the struc-

ture of its T4SS is known in detail (Christie, 2004), and the sequence of
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interactions between the different subunits of the T4SS and the T-DNA

transport substrate was elucidated (Cascales & Christie, 2004).

7. Attachment and biofilm formation

Generally, interactions between pathogenic bacteria and their eukary-

otic host require a close interaction between bacteria and the plant cells/

tissue is necessary. The attachment of the bacterial cell relies on several

bacterial and plant factors and often results in the formation of a biofilm.

In the case of Agrobacterium, this process of transition from motile planktonic

bacterial cells to biofilm can be divided into three steps (Heindl et al., 2014).

First, bacterial cells are attracted toward the plant cell surface by chemotaxis,

which is triggered by the same plant exudates that induce virulence, i.e.,

phenolic compounds and reducing sugars (Guo, Huang, & Yang, 2017).

Bacteria approach the surface of plant tissue via flagellum-dependent motil-

ity, relying on the ChvA sensor (Merritt, Danhorn, & Fuqua, 2007; Wright,

Deakin, & Shaw, 1998). Second, there is initial contact and reversible

attachment between the bacterial cells and the host tissue surface. Third,

bacterial attachment is stabilized, and bacteria are embedded within a bio-

film. Agrobacterium synthesizes several exocellular polysaccharides known

to play a role in attachment and biofilm formation: 1,2-β-D-glucan produced
and exported by the activity of ChvA, ChvB, and ExoC, for attachment and

virulence (Cangelosi et al., 1989; de Iannino & Ugalde, 1989); unipolar

polysaccharides (UPPs) involved in attachment (Xu, Kim, Danhorn,

Merritt, & Fuqua, 2012); and cellulose for attachment consolidation and

biofilm formation (Matthysse, 1983). Potential plant cell surface receptors

able to bind these exopolysacharides (such as the lectins known to be

involved in Rhizobium-host cell attachment) have not yet been identified

for Agrobacterium host cell attachment. Proteins exposed at the surface of

Agrobacterium cells could also play a role in attachment. Indeed, several

Arabidopsis genes were shown to encode proteins interacting with VirB2,

the main component of the T4SS pilus (Hwang & Gelvin, 2004).

Although T-DNA transfer efficiency was affected in Arabidopsis lines

mutants in these genes, it is not known whether this change in efficiency

reflects a disruption of attachment or of another step (passage of T-DNA

or proteins from bacterial to plant cell, or cell signaling). VirB5 is a minor

component of the T4SS located at the tip of the VirB2 pilus (Aly &

Baron, 2007); although it was shown that the addition of free extracellular

VirB5 enhances the T-DNA transfer (Lacroix &Citovsky, 2011), there is no

indication that it is involved in attachment. Whereas their requirement for
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virulence is not clear, CtpA and PilA (two other extracellular Agrobacterium

proteins) were shown to play a role in the first steps of Agrobacterium attach-

ment to plant tissue surface (Wang, Haitjema, & Fuqua, 2014).

Two Arabidopsis mutant lines resistant toAgrobacterium could potentially

be deficient in proteins involved in bacterial attachment, although their

function was not completely elucidated. This is the case of CSLA9 (Zhu,

Nam, Carpita, Matthysse, & Gelvin, 2003), encoding an enzyme that is

likely synthesizing cell wall polysaccharides, and of AGP17 (an extracellular

arabinogalactan-protein) (Gaspar et al., 2004).

8. T-DNA entry in the plant cell

The mechanism of the entry of T-DNA and associated proteins

through the host cell membrane and the nature of the plant factors involved

in this process are not completely understood. Theoretically, there are three

ways by which the exported macromolecules could pass through the mem-

brane and enter the host cell cytoplasm. Similar to a mechanism occurring in

the type III secretion system (T3SS) (Notti & Stebbins, 2016), the trans-

ported macromolecules could pass through the VirB2 pilus, their entry into

the plant cell relying on interactions between pilus proteins and host-cell

membrane-associated proteins. In another scenario, close to a proposed

mechanism for bacterial conjugation (Cabezón, Ripoll-Rozada, Peña, de

la Cruz, & Arechaga, 2015), after depolymerization of the VirB2 pilus,

the membranes of the bacterial and host cells would be close enough to

fusion together, allowing the transfer of macromolecules. Finally, the mac-

romolecules exported from Agrobacterium cells could be deposited at the

surface of the host cell and internalized via interactions with host membrane

factors and potentially via the endocytosis pathway. Recent studies have

shown that the transport of VirE2 probably takes advantage of the host cell

endocytosis pathway (Li & Pan, 2017); indeed, VirE2 entry into plant cells

was associated with early endosome formation, and VirE2 interacted with

AP2M, a protein located on the cytoplasmic side of the clathrin-coated ves-

icles. So far, there is no evidence that the internalization of other translocated

macromolecules is also associated with the endocytotic pathway.

9. T-DNA intracellular transport

The transport of the T-DNA within the plant cell relies on inter-

actions between translocated Vir proteins and several host factors. Prior

to the potential integration of the T-DNA in the host genome, the
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VirD2-T-strand complex and translocated proteins playing a role in the host

nucleus must be imported into the nucleus. The T-complex depends on its

associated proteins to reach its host cell nucleus. VirD2, attached covalently

to the 50-end of the T-strand, is targeted to the nucleus via its interaction

with a specific importin alpha (Ballas & Citovsky, 1997), and other members

of the importin alpha family (Bakó, Umeda, Tiburcio, Schell, & Koncz,

2003). VirD2 likely represents the “pilot” protein mediating the targeting

of T-complex toward the nucleus. However, the transport of a large

DNAmolecule (such as the T-DNA) through the cytoplasm and the nuclear

pore likely requires more than a single protein molecule. Many studies sug-

gest that VirE2, as an ssDNA-binding protein, can bind and coat the

T-DNA, efficiently leading to the formation of a mature T-complex

(Citovsky, Wong, & Zambryski, 1989; Gelvin, 1998). Indeed, VirE2 binds

to ssDNA with a strong affinity (Christie, Ward, Winans, & Nester, 1988;

Citovsky et al., 1989), which results in ssDNA-VirE2 filament with a helical

structure (Abu-Arish et al., 2004). Transformation experiments using

Agrobacterium virE2 mutant strains result in an increased level of truncations

in the integrated T-DNA (Rossi, Hohn, & Tinland, 1996), consistent with

the role of VirE2 in protecting the T-DNA against nucleolytic degradation.

However, so far, such a mature T-complex has not been visualized in living

plant cells, suggesting that it might not exist as a stable macromolecular

assembly. Early studies showed a nuclear targeting for VirE2 labeled

with different markers (Citovsky, Zupan, Warnick, & Zambryski, 1992;

Ziemienowicz, G€orlich, Lanka, Hohn, & Rossi, 1999). In later studies,

VirE2 fused with autofluorescent proteins remained mostly cytoplasmic

(Lee, Fang, Kuang, & Gelvin, 2008; Shi, Lee, & Gelvin, 2014), with a ten-

dency to form aggregates consistent with the strong VirE2 homo-

polymerization. In a different experimental setting, where VirE2 fusion

with a partial GFP sequence was expressed in Agrobacterium and fluorescence

was reconstituted after Agrobacterium-mediated transfer in plant cell

expressing the other part of GFP, VirE2 was at least partially nuclear

(Li, Yang, Tu, Lim, & Pan, 2014). The intracellular targeting of VirE2

may depend on its interaction with several host proteins. Indeed, VirE2

was shown to interact with VIP1 (VirE2 interacting protein 1) (Tzfira,

Vaidya, & Citovsky, 2001), VIP2 (VirE2 interacting protein 2) (Anand

et al., 2007), core histones (Lacroix, Loyter, & Citovsky, 2008; Loyter

et al., 2005), and importins alpha (Bhattacharjee et al., 2008). Other trans-

located proteins (VirE3, VirD5, and VirF) are also targeted to the nucleus,

after binding to host importins. Interestingly, VirE3 interacts with VirE2,

which is likely involved in two steps of VirE2 intracellular transport:
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accumulation of VirE2 on the cytoplasmic side of the host cell plasma mem-

brane immediately after it enters the host cell (Li, Tu, & Pan, 2018), and

VirE2 subsequent nuclear targeting (Lacroix, Vaidya, Tzfira, & Citovsky,

2005). A more recent study suggests that VirE2 nuclear import depends

on the presence of the T-DNA and that VirE2 interaction with the plant

nucleoporin CG1 facilitates the passage of the T-complex through nuclear

pores (Li et al., 2020).

10. T-DNA integration

Several studies have shown that the sites of integration ofAgrobacterium

T-DNA are not targeted to a specific region of the host genome. In the first

studies, T-DNA integration sites were found throughout the genome but

mostly in the region of the active expression (Alonso et al., 2003).

However, this observation was based on an experimental bias because the

transgenic plants were recovered after selection and required expression

of the gene encoding resistance agent to the selection pressure. Indeed, a

similar experiment realized without selection pressure revealed that integra-

tion occurs truly randomly in the host genome (Kim, Veena, & Gelvin,

2007), whereas there is a possible local bias toward some epigenetic markers

in the chromatin (Shilo et al., 2017). Agrobacterium does not encode a ded-

icated integrase among its effector proteins, thus the integration of the

T-DNA into the host genome depends on the activity of several host path-

ways. Indeed, VirD2 was once suspected to mediate T-DNA integration

(Pansegrau, Schoumacher, Hohn, & Lanka, 1993; Tinland, Schoumacher,

Gloeckler, Bravo-Angel, & Hohn, 1995), but it was later shown not to

be the case (Ziemienowicz, Tinland, Bryant, Gloeckler, & Hohn, 2000).

It is likely, however, that interactions between Agrobacterium effector and

host proteins are required for integration. It has been shown that induction

of DSBs in plant tissue prior to Agrobacterium infection results in an increase

in stable transformation (Salomon & Puchta, 1998), suggesting that DSBs

in the host genome might be a target for T-DNA integration and that

the activation of DNA damage reaction following DSB induction might also

enhance T-DNA integration. Experiments realized with yeast (Saccharomyces

cerevisiae) as host cells demonstrate that the outcome of integration indeed

depends on the activity of host factors. Using yeast as host cells has two

advantages: many viable mutants in different DSB repair pathways are

available, and DSB repair occurs via either HR (homologous recombination)

or NHEJ (non-homologous end joining) pathways. With yeast mutants in

genes essential for the HR pathway (Rad51 or Rad52), only integration
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via NHEJ was observed, whereas when the NHEJ was disrupted (mutation in

Ku70 or Mre11) all integration events resulted from HR (van Attikum,

Bundock, & Hooykaas, 2001; van Attikum et al., 2003). In plants (where

DSB repair is mostly mediated by NHEJ), the situation seems more complex.

Conflicted data resulted from the analysis of T-DNA integration efficiency in

Arabidopsis lines mutated in genes representing the different DSB repair path-

ways. In Arabidopsis mutant deficient in Ku80 and Lig4, it was found that

T-DNA integration was inhibited in two studies (Friesner & Britt, 2003;

Li et al., 2005), while it was reported in another study that mutation in

Ku80 did not affect integration efficiency (Gallego, Bleuyard, Daoudal-

Cotterell, Jallut, & White, 2003). In a similar study with Arabidopsis mutants

in different genes representing the known pathway of DSB repair, it was

reported that none of these mutants displayed inhibition of the T-DNA inte-

gration (Park et al., 2015). However, only very low levels of integration were

observed in Arabidopsis lines disrupted in several of these pathways (Mestiri,

Norre, Gallego, & White, 2014). In rice plants where expression of Ku70,

Ku80, and Lig4 was downregulated, lower rates of T-DNA integration were

measured (Nishizawa-Yokoi et al., 2012). Redundancy between the different

DNA repair pathways existing in plants may explain partially the discrepancy

between the results reported in these different studies. It is also possible that

other pathways are involved in T-DNA integration.

Recently, the role of polymerase theta (also known as Tebichi in plants)

in T-DNA integration was investigated. Indeed, sequence analysis of a large

number of T-DNA integration sites showed that many of them displayed a

signature of ligation by polymerase theta, and T-DNA integration was

impaired in an Arabidopsis line deficient in this gene (van Kregten et al.,

2016). Because polymerase theta, first discovered as a suppressor of genome

instability, is also involved in microhomology-mediated end joining

(MMEJ), or alternative end-joining (alt-EJ) (Black, Kashkina, Kent, &

Pomerantz, 2016), it was suspected that this alternative pathway of DNA

repair is involved in T-DNA integration. In a more recent study, it was

shown that in addition to polymerase theta ligating the 30-end of the

T-DNA to the genomic DNA, other proteins were required to remove

the VirD2 protein from the T-complex before the ligation (Kralemann

et al., 2022). Indeed, while attachment of the 30-end resulted from the poly-

merase theta activity exclusively, removal of VirD2 and ligation of the

50-end could occur via two different mechanisms. Either VirD2 was

removed by TDP2 and ligation was mediated by canonical NHEJ, or

VirD2 removal relied on MRE11 (part of the MRN complex), and attach-

ment to the genomic DNA occurred via the polymerase theta pathway.
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Moreover, in Arabidopsis double mutants in TDP2 and Mre11 very low rate

of stable transformation was observed, suggesting the requirement for several

DNA repair pathways for T-DNA integration.

11. Host factors interacting with Agrobacterium effector
proteins

Besides the main roles of Agrobacterium essential effectors for intracel-

lular transport and, potentially, integration, many other bacterial-host

protein interactions occur during the infection process (Table 2). These

interactions may represent either the targets of Agrobacterium effector pro-

teins (their interaction being part of a mechanism by which the effector

Table 2 Agrobacterium encoded effector proteins and their host interacting proteins
(see text for references).
Effector Host protein Host species Known or suspected functions

VirD2 Importin α Arabidopsis Nuclear import

Cyclophilins Arabidopsis Unknown

2C protein

phosphatase

Tomato Regulation of nuclear import

CAK2M Alfalfa Interaction with host chromatin, integration

TBP Alfalfa

Core

histones

Yeast Interaction with host chromatin

VirE2 Importin α Arabidopsis Nuclear import

VIP1 Arabidopsis Nuclear import, plant transcriptional

regulation
RSG (VIP1

ortholog)

Tobacco

bZIP

proteins

(related to

VIP1)

Arabidopsis

VIP2 Arabidopsis

benthamiana

Required for integration, plant

transcriptional regulation

XRCC4 Arabidopsis Integration

GST Rice Regulation of nuclear import

Continued
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protein enhances the efficiency of Agrobacterium-mediated transformation)

or pathways of plant “defense” against Agrobacterium (resulting in inhibition

of Agrobacterium-mediated transformation). Until now, the search for host

factors involved in Agrobacterium-plant interactions was done mostly with

susceptible plant species (such as Arabidopsis andNicotiana species). It is likely

that if more investigations were performedwith resistant host plants, more of

the second category host factors would be uncovered.

11.1 VirD2
VirD2 interacts with several members of a subgroup of Arabidopsis cyclo-

philins, single domain cyclophilins (Bakó et al., 2003; Deng et al., 1998).

Cyclophilins represent a large family of proteins (21 in Arabidopsis), present

in different subcellular compartments and involved in a wide variety of cellular

Table 2 Agrobacterium encoded effector proteins and their host interacting proteins
(see text for references).—cont’d
Effector Host protein Host species Known or suspected functions

VirE3 Importin α Arabidopsis Nuclear import

Csn5 Arabidopsis Plant transcriptional regulation

Brp Arabidopsis

JAZ8 Arabidopsis Regulation of plant defense reaction

VirD5 Spt4 Yeast Mitotic destabilization

Aurora

kinase

Yeast and

Arabidopsis

VIP1 Arabidopsis Prevents VBF binding and VIP1

proteasomal degradation

VIP2 Arabidopsis Plant transcriptional regulation

VirF ASK1 Arabidopsis Proteasomal degradation (part of the SCF

complex)

VIP1 Arabidopsis Target for degradation, T-complex

uncoating, plant transcriptional regulation

VFP3 Arabidopsis Plant transcriptional regulation

VFP5 Arabidopsis Plant transcriptional regulation

VFP4 Arabidopsis Target for degradation, plant transcriptional

regulation
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processes (Romano, Horton, & Gray, 2004). Their potential function in

Agrobacterium T-DNA transfer is not known, whereas treatment with

cyclosporine A (which binds cyclophilins and inhibited interaction between

cyclophilin and VirD2) resulted in inhibition of T-DNA transfer. A type 2C

serine/threonine protein phosphatase from tomato was also found to interact

with VirD2 (Tao, Rao, Bhattacharjee, & Gelvin, 2004), this phosphatase

is thought to inhibit VirD2 nuclear targeting via dephosphorylation of

VirD2. Furthermore, it was reported that VirD2 interacts and is phosphory-

lated by CAK2M (a cyclin-dependent kinase-activating kinase) in alfalfa cells;

CAK2M also phosphorylates a subunit of RNA-polymerase II able to recruit

TATA-binding protein (TBP), and VirD2 was found to associate with TBP.

Because orthologs of CAK2M and TBP are involved in transcription-coupled

DNA repair, it was suggested that they are involved in T-DNA integration.

Finally, VirD2 interacted with yeast core histones (Wolterink-van Loo,

Escamilla Ayala, Hooykaas, & van Heusden, 2015), which might also play

a role in the interaction between T-complex and host chromatin during

integration.

11.2 VirE2
The first series of studies uncovered the interaction between VirE2 and VIP1

(VirE2 interacting protein 1) by yeast-two-hybrid screening (Kunik et al.,

2001); and that increased transformation levels were observed in tobacco

plants overexpressing Arabidopsis VIP1 (AtVIP1), likely by the role of

VIP1 in facilitating VirE2 nuclear targeting (Tzfira et al., 2001; Tzfira,

Vaidya, & Citovsky, 2002). However, a later study, using Arabidopsis

mutants, concluded that VIP1 was not required for the Agrobacterium-

mediated transformation (Shi et al., 2014). VIP1 belongs to a family of

bZIP (basic Leucine zipper) transcription factors found in Arabidopsis and

most plant species. Recently, it was shown that VirE2 could interact not

only with AtVIP1 but also with several of its close Arabidopsis homologs,

as well as with the AtVIP1 tobacco ortholog NtRSG (Wang et al., 2018).

Moreover, VirE2 proteins from different Agrobacterium strains displayed var-

iable binding efficiency with the different AtVIP1 homologs. Another study

confirmed the interactions between VirE2 and several AtVIP1 homologs

and demonstrated that disrupting VIP1 transcription activator ability (but

not its VirE2 binding ability) did not affect T-DNA transfer efficiency

(Lapham et al., 2018). The second interactor of VirE2 (VIP2, or VirE2

interacting protein 2) was discovered after yeast two-hybrid screening of
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an Arabidopsis cDNA library. It was demonstrated that VIP2 (a transcription

regulator) is required for Agrobacterium T-DNA integration (stable transfor-

mation) but not for its transient expression, both in Arabidopsis and

N. benthamiana (Anand et al., 2007). VirE2 also interacted with

Arabidopsis XRCC4 (X-ray cross complementation group 4), a protein

involved in the NHEJ DNA repair pathway, potentially interfering with

the host plant DSB repair pathway to facilitate the T-DNA integration

(Vaghchhipawala, Vasudevan, Lee, Morsy, & Mysore, 2012). Finally, it

was reported that VirE2 interacted with the rice protein OsGSTU5, a tau

class GST (glutathione S-transferase). That interaction occurred in the host

cell cytoplasm and likely resulted in VirE2 glutathionylation and inhibition

of Agrobacterium-mediated transformation, potentially by reducing VirE2

affinity for single-stranded T-DNA (Tiwari et al., 2022).

11.3 VirD5
Agrobacterium VirD5 was first found to interact with VirF, another effector

protein; VirF being naturally unstable in the plant cell, its association with

VirD5 resulted in the protection of VirF against degradation (Magori &

Citovsky, 2011). Moreover, VirD5 expression was shown to induce cell

toxicity in yeast and plant cells via its interaction with kinetochore proteins

(Spt4 in yeast and Aurora kinases in yeast and plants), causing chromosomal

instability (Zhang & Hooykaas, 2019; Zhang, van Heusden, & Hooykaas,

2017). How this interaction could be involved in the Agrobacterium infection

process is still unknown. It was also reported that VirD5 interacted with

VIP1 (VirE2 interacting protein 1), competing with VBF and potentially

preventing VIP1 degradation (Wang et al., 2014), as well as with VIP2

(VirE2 interacting protein 2), potentially preventing VIP2 interaction with

Cap-binding proteins (proteins involved in mRNA biosynthesis) (Wang

et al., 2018). In the latter case, it is not clear how this interaction would play

a role in Agrobacterium T-DNA transfer and integration.

11.4 VirE3
Besides binding to VirE2 and being targeted to the host cell nucleus via the

interaction with the importin alpha (Garcı́a-Rodrı́guez, Schrammeijer, &

Hooykaas, 2006; Lacroix et al., 2005), VirE3 was shown to interact with

several Arabidopsis proteins, such as Csn5 (a component of the COP9

signalosome) and Brp (a member of the TFIIB family that binds to

TATA box) (Garcı́a-Rodrı́guez et al., 2006). Although a potential role of

CSn5 in Agrobacterium-mediated T-DNA transfer is not known, the
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interaction with Brp correlates with the demonstrated function of VirE3 in

the transcriptional regulation (Niu, Zhou, Henkel, van Heusden, &

Hooykaas, 2015). Recently, it was reported that VirE3 interacts with

Arabidopsis JAZ8, a transcription regulator involved in the plant defense

reaction (Li et al., 2021). It seems that VirE3 was able to interfere with

JAZ8 transcription regulator activity to mitigate plant defense response

via the SA pathway, whereas overexpression of JAZ8 reduced the efficiency

of Agrobacterium-mediated transformation.

11.5 VirF
VirF contains an F-box domain and was shown to interact with several ASK

proteins (plant homologs of Skp1 functioning in the SCF pathway of

proteasomal degradation) from Arabidopsis (Schrammeijer et al., 2001). VirF

activity as a component of the SCF pathway was demonstrated in yeast

and plant cells, and VirF interacted with one of its target Arabidopsis VIP1

(Tzfira, Vaidya, & Citovsky, 2004). Indeed, VirF was able to induce destabi-

lization of VIP1 (and of its associated VirE2, potentially stripping the T-DNA

from VirE2 coating) via proteasomal degradation. Later, several other targets

of VirF were discovered, including VFP4 a transcription regulator involved

in the plant defense response (Garcı́a-Cano, Hak, Magori, Lazarowitz, &

Citovsky, 2018); VirF also interacted with two closely related trihelix-domain

transcription factors (VFP3 and VFP5) but without activating the host UPS

pathway (Garcı́a-Cano et al., 2015). Interestingly, Agrobacterium induces the

expression of a plant F-box protein (VBF, VIP1 binding F-box), which could

partially substitute for VirF activity in plant cells by targeting VIP1 (Zaltsman,

Krichevsky, Loyter, & Citovsky, 2010). It was originally believed that, unlike

theAgrobacterium octopine strain A6, the nopaline strain C58 did not encode a

functional VirF. However, it was shown that C58-VirF is most likely a func-

tional F-box protein because it contains an F-box domain andwas able to bind

ASK1 (Lacroix & Citovsky, 2015). C58-VirF did not interact with VIP1,

suggesting that it could have a set of target host proteins different from

A6-VirF.

12. Plant transcriptional response to Agrobacterium
infection

Transcriptomic studies have shown that the expression of many

host genes is modified upon Agrobacterium infection. Among the genes of

which expression is regulated, many of them are involved in plant defense

reactions (reviewed in (Willig, Duan, & Zhang, 2018)).
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Like most of the higher eukaryotes, plants can sense bacteria through the

perception of PAMPs (pathogen-associated molecular patterns), via a recep-

tor that triggers a plant defense response when activated. For example,

Arabidopsis was able to detect Agrobacterium via one of these PAMPs called

EF-Tu (elongation factor thermo unstable), resulting in a defense response

(Zipfel et al., 2006). Plants usually recognize another PAMP, flagellin

22 (flg22, a fragment of bacterial flagellin) via the receptor FLS2 (flagellin

sensitive 2), but Agrobacterium harbors a highly divergent flg22 that

evades detection by most plants (Felix, Duran, Volko, & Boller, 1999).

Interestingly, some plant species, such as the wild grape Vitis riparia, may

encode a different FLS2 receptor that can recognize Agrobacterium flg22;

tobacco plants expressing this receptor displayed increased resistance to

Agrobacterium (F€urst et al., 2020). Several elements of the signaling cascade

involved in pathogen-triggered immunity in Arabidopsis were shown to

be important for Agrobacterium infection. Indeed, two mitogen-activated

protein kinase kinases MKK4/MKK5 and their downstream mitogen-

activated protein kinases MPK3/MPK6 were shown to play a crucial role

in the induction of various plant defense pathways byAgrobacterium, and their

activity affected the efficiency of Agrobacterium-mediated transformation

(Liu et al., 2021).

Although a plant defense response to Agrobacterium infection is observed

at the transcriptional level, in most plant species no extensive defense

reaction is observed upon Agrobacterium infection. As shown in the previous

section, several of the translocated effectors were suggested to act as tran-

scriptional regulators themselves or to interfere with host transcription reg-

ulation pathways, which could mitigate the plant defense reaction. For

example, VirE2 interaction with two plant transcription regulators involved

in plant defense reaction (VIP1 and VIP2) might alter their activity. VirE3

was shown to act as a transcription regulator itself, as well as to interact with

Arabidopsis JAZ8 (affecting JAZ8 role as a SA pathway activator). VirD5 is

also suspected to induce a transcriptional response, either directly or via its

interaction with VIP2. Finally, VirF can interact with several transcription

regulators, and in some cases (e.g., VIP1, VFP4) induce their proteasomal

degradation. In fact, it was demonstrated that VirF-dependent degradation

of VFP4 resulted in mitigating the host defense response. Globally,

Agrobacterium encodes effector proteins that can in many ways interfere with

the transcriptional response of its host plant.

For the most part, the plant transcriptional response to Agrobacterium

seems to be related to the regulation of the general plant defense response.
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In a few cases, however, the activation of a plant factor specifically involved

in Agrobacterium-mediated T-DNA transfer was shown. For example, VirE3

induced the expression of Arabidopsis VBF, a functional equivalent of

Agrobacterium VirF (Niu et al., 2015). It was reported in two recent studies

that several genes involved in plant DNA repair pathways are transcription-

ally activated in tobacco and Arabidopsis plants challenged by Agrobacterium

infection, and this activation seemed to depend on the presence of the

vir genes (Hu, Lacroix, & Citovsky, 2021; Joseph, Chandhini, Das,

Mysore, & Shah, 2021). We can speculate that this increased expression

of DNA repair-related genes plays a role in T-DNA integration.

13. Conclusions

The study of Agrobacterium-mediated genetic transformation of plants

has revealed a complex network of interactions between bacterial and host

factors. On the bacterial side, Agrobacterium encoded proteins are either

directly mediating the transfer of T-DNA or enhancing this transfer, for

example, by interfering with plant defense response. On the plant side, many

plant proteins interact with bacterial factors, and a plant defense reaction is

triggered. Agrobacterium has evolved many strategies to use host pathways to

its advantage and to mitigate the plant defense response. Most research so far

was performed in plant species susceptible to Agrobacterium, and it is likely

that more host factors will be discovered in the future, particularly those that

render some plant species resistant to Agrobacterium. Furthermore, there is a

certain level of variability of the virulence factors between Agrobacterium

strains and species, to which correspond different capabilities of the factors

from different host species to interact with bacterial factors. The adequation

and the nature of these interactions between host and bacterial species deter-

mine the outcome of infection and are responsible for the differences in

susceptibility of host plants to different Agrobacterium strains.
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