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Abstract: Building causal knowledge is critical to science learning and scientific explanations 
that require one to understand the how and why of a phenomenon. In the present study, we 
focused on writing about the how and why of a phenomenon. We used natural language 
processing (NLP) to provide automated feedback on middle school students’ writing about an 
underlying principle (the law of conservation of energy) and its related concepts. We report the 
role of understanding the underlying principle in writing based on NLP-generated feedback.  

Introduction 
Understanding cause-and-effect relationships is an essential part of reasoning about scientific phenomena and 
writing scientific explanations. At the core of this process is learning underlying principles that explain 
observed/identified relationships (Russ et al., 2008; Vieira et al., 2019). This contributes to “a clear conceptual 
understanding of the principles and theories, plus the knowledge of how to apply these principles to a different 
context” (Vieira et al., 2019, p. 203). For example, when experimenting with a roller coaster simulation, students 
may be able to identify that a car’s motion will be sustained through the remainder of the ride when the initial 
drop height is higher than a subsequent hill. However, they may not be able to explain why this is so, particularly 
when they do not understand the underlying principle.  

In this study, middle school students learned about the law of conservation of energy (LCE) and its 
associated concepts and relationships (e.g., potential energy, kinetic energy, total energy), and received automated 
feedback through natural language processing (NLP) on their writing about the principle and related concepts. 
Our research questions were: 

1. How does students’ early understanding of an underlying principle (law of conservation of energy) relate
to their writing about the principle and related concepts?

2. How does students’ understanding of the underlying principle relate to feedback
effectiveness (evidenced in the quality of the revised essay)?

Conceptual framework 
We constructed the conceptual framework of the present study based on literature recognizing intuitive 
knowledge (diSessa, 1988, 2018), intuitive theories (Gopnik, 2012), and intuitive explanations (Keil & Wilson, 
2000) as part of a pathway toward scientific theory and scientific explanations. We acknowledge the importance 
of mechanistic reasoning (Carmichael et al., 2010; Russ et al., 2008; Vieira et al., 2019) in scientific 
explanations in that it enables one to understand underlying principles. Given that scientific explanations 
describe the how and why of a phenomenon based on scientific facts (Osborne & Patterson, 2011), 
covariational reasoning, which identifies cause-and-effect relationships without the why, is not sufficient. At the 
same time, we value the learning process that includes covariational reasoning and even perceptual 
explanations, especially considering that causal knowledge involves both scientific and intuitive theories 
(Gopnik, 2012). The conceptual framework guides us to attend more to the process of “reconciling theory with 
experience of the natural world” (Furtak et al., 2010, p. 177). We conceptualize automated feedback from NLP 
in the present study as a scaffold for students to translate between underlying principles and experience during 
the reconciliation process.  

Method 
Two eighth-grade science teachers and their 138 students from a mid-sized, US Midwestern city participated in 
this study. The study was conducted during a three-week, design-based physics unit focused on energy 



conservation and transformation, where students were invited to design a roller coaster using what they learned 
about physics. During the unit, students participated in five virtual labs using a roller coaster simulation, 
answered questions after each lab, and wrote and revised two design essays. The initial design essay (Essay 1) 
was to explain how height and mass affected the amount of energy there was in their roller coaster system, as 
well as how the LCE could be used to explain transformations. This initial essay was sent to our NLP 
technology, called PyrEval, to automatically assess students’ essays for feedback, which students could later use 
to revise their ideas. Students then learned about how height and mass affected speed. Students then wrote their 
second design essay (Essay 2), building on the ideas in their initial essay, using the feedback from PyrEval. 
Automated feedback was generated through the NLP technology that detected four main content units in 
students’ essays: one was about LCE and the other three were about related concepts (i.e., height and energy; 
mass and energy; initial drop in relation to hill height). Based on the presence or absence of each content unit, 
the feedback was given to either acknowledge their inclusion of the content unit or prompt them to explain the 
missing content unit. For example, students who did not explain LCE but explained other related concepts in 
their Essay 1 were asked to elaborate on their current explanation in connection with LCE.  

Data for this study consisted of students’ written responses from short answer questions about LCE 
after labs and for their design essays. Two researchers independently coded 15% of all students’ responses and 
achieved an Intra Class Correlation value of .947, which is considered excellent (Cicchetti, 1994). All 
discrepancies between raters were resolved through discussion.  

Findings and discussion 

RQ1: How does students’ early understanding of the underlying principle (LCE) 
relate to their writing about the principle and the related concepts?  
We sorted students into four groups depending on which of the early short answer questions about LCE they 
answered correctly. We also categorized Essay 1 into four explanation patterns depending on which of LCE and 
related concepts were explained. We then ran a Fisher’s exact test. Table 1 lists all groups and patterns.  
Table 1  
Early Understanding Groups and Essay 1 Explanation Patterns 
Early Understanding of the Underlying Principle: 
Answers to the first and second lab questions about LCE  

Essay 1 Explanation Patterns: 
Explanations of LCE and related concepts 

Group A 
(n=29) 

Correctly answered the first and second lab 
questions 

Pattern 1 
(n= 70) 

Wrote about LCE and at least one of 
the related concepts 

Group B 
(n=23) 

Correctly answered only the first lab 
question 

Pattern 2 
(n= 4) 

Wrote about LCE 

Group C 
(n=32) 

Correctly answered only the second lab 
question 

Pattern 3 
(n=51) 

Wrote about at least one of the 
related concepts  

Group D 
(n=54) 

Did not answer either question correctly Pattern 4 
(n=13) 

Wrote neither 

Fisher’s exact test results showed that there was a statistically significant association between students’ 
early understanding of LCE and their Essay 1 writing quality (two-tailed, p<.001). Observed frequency table 
(Table 2) shows that among students who answered both lab questions about LCE correctly (Group A), 65.5% 
explained LCE and at least one related concept correctly in Essay 1. Among students who answered one of the 
lab questions about LCE correctly (Groups B and C), 65.6%-73.9% explained LCE and at least one of the related 
concepts correctly in their Essay 1. Among students who were not able to answer any of the lab questions about 
LCE correctly (Group D), only 24.1% explained LCE and at least one of the related concepts correctly in Essay 
1, but 64.8% explained at least one of the related concepts correctly in their Essay 1. The results also show that it 
was possible to write about related concepts without understanding the underlying principle. For example, one of 
the related concepts that students were expected to write about in their essays was the initial drop height of the 
roller coaster being higher than the subsequential hill that they designed to get the car to travel to the end of the 
roller coaster. That is, without understanding of LCE, cause-and-effect relationships were discoverable on the 
simulation and the data summary table without knowledge of underlying principles. Such phenomenological 
explanations (Furtak et al., 2010) written by students in Group D are not deficits within our conceptual framework. 
They are the opportunity for the process of reconciling underlying principles with data to begin. These students 
received automated feedback on their Essay 1 asking them to write about LCE.  



Table 2  
Observed Frequencies of Essay 1 Explanation Patterns per Early Understanding Group 

Pattern 1 
LCE and related concepts 

Pattern 2 
LCE only 

Pattern 3 
Related concepts only 

Pattern 4 
No LCE and no related concepts 

Group A 65.5% (n=19) 0.0% (n=0) 24.1% (n=7) 10.3% (n=3) 
Group B 73.9% (n=17) 4.3% (n=1) 8.7% (n=2) 13.0% (n=3) 
Group C 65.6% (n=21) 9.4% (n=3) 21.9% (n=7) 3.1% (n=1) 
Group D 24.1% (n=13) 0.0% (n=0) 64.8% (n=35) 11.1% (n=6) 
Note. Output in each cell indicates percentage within each early understanding group. 

RQ2: How does students’ understanding of the underlying principle (LCE) relate to
feedback effectiveness (evidenced in the quality of the revised essay)?  
We categorized Essay 2 into the four explanation patterns as in the first Fisher’s exact test and used the same early 
understanding group data. We then ran another Fisher’s exact test and found a statistically significant association 
between students’ early understanding of LCE and their Essay 2 writing quality (two tailed, p<.001) (Table 3). 
Table 3  
Observed Frequencies of Essay 2 Explanation Patterns per Early Understanding Group 

Pattern 1 
LCE and related concepts 

Pattern 2 
LCE only 

Pattern 3 
Related concepts only 

Pattern 4 
No LCE and no related concepts 

Group A 72.4% (n=21) 0.0% (n=0) 20.7% (n=6) 6.9% (n=2) 
Group B 65.2% (n=15) 0.0% (n=0) 21.7% (n=5) 13.0% (n=3) 
Group C 81.3% (n=26) 6.3% (n=2) 12.5% (n=4) 0.0% (n=0) 
Group D 37.0% (n=20) 0.0% (n=0) 57.4% (n=31) 5.6% (n=3) 
Note. Output in each cell indicates percentage within each early understanding group. 

Overall improvements in writing quality were visible in that more essays included correct explanations 
of both LCE and related concepts (Pattern 1), and less essays included no correct explanation of LCE and/or 
related concepts (Pattern 4) in Essay 2 than Essay 1. Automated feedback that prompted students to write about 
LCE when other related concepts were explained without explaining the why, beyond referring to their simulation 
data as reasons, may have helped students connect concrete experiences (from the simulation) to LCE. These 
findings also suggest that early understanding of LCE could be impactful, but based on Group C who showed the 
largest increase in Pattern 1, a longer process of reconciling theory with data may have been even better.    

The overall improvement in explanation patterns hinted that the feedback given between Essay 1 and 
Essay 2 may have played a positive role. We ran a repeated measures ANOVA to see if there was a statistically 
significant difference in writing quality scores between Essay 1 and Essay 2. The results showed that Essay 2 was 
significantly better than Essay 1, F(1, 134) = 22.96, p<.001. The effect size was medium (Cohen’s d = .42). 
Furthermore, the improvement from Essay 1 to Essay 2 differed depending on the explanation patterns that the 
students included in Essay 1, F(3, 134) = 101.77, p<.001, Cohen’s d = 1.5. That is, the improvement from Essay 
1 to Essay 2 shown among students who included explanations of only LCE (Pattern 2) in Essay 1 was 
significantly larger than the improvement shown among the students who included explanations of only related 
concepts (Pattern 3) in Essay 1. Feedback worked better among those who understood and wrote about the 
underlying principle (LCE) than those who were able to write about one or more of related concepts but without 
the underlying principle. The effect size was large (Cohen’s d = 1.5).  

We also ran linear mixed effect models using the lme4 R package (Bates et al., 2014) to see further about 
the relations between students’ understanding of the underlying principle and their revised essay, with 
other possible predicting variables for the revised essay quality. Table 4 lists the output of mixed effect 
model analysis with Essay 2 writing quality as a dependent variable. We included fixed effects of early 
understanding group, Essay 1 explanation pattern, Essay 1 writing quality, NLP accuracy, Essay 1 revision, 
and engagement. We also included in the model teacher and class clustering factors as random effects to 
control for the potential impact of the teacher and class variance. The model specification was as follows: Essay 
2 writing quality ~ early understanding group + Essay 1 explanation pattern + Essay 1 writing quality + Essay 
1 revision + engagement + (1|Teacher) + (1|Class). There were two significant predicting variables at .05 
significance level: Essay 1 writing quality (ß=0.87, p<0.0001) and Essay 1 revision (ß=1.12, p<0.0001). 
While there were still indirect effects of early understanding and Essay 1 explanation pattern reported above, only 
these two variables were direct predictors for Essay 2 writing quality. This means that students’ revised 
essay quality was better when they revised their Essay 1 as per automated feedback. It seems 
intuitive that their revised essay quality was better when their first essay quality was already better, but this 



finding also suggests that the automated feedback did not ask students to revise their essay when unneeded. 
Also, the finding that their revised essay quality was better when revisions were made according to the 
automated feedback suggests that the positive impact of automated feedback on improving writing quality. 
Especially considering the improvements reported above including more Explanation Pattern 1 in Essay 2, the 
findings demonstrate a unique potential contribution of PyrEval to science learning and writing as a scaffold for 
students’ translating, connecting, and reconciling between theory with experience (diSessa, 2018; Furtak et 
al., 2010; Puntambekar & Goldstein, 2007). This will in turn contribute to knowledge building that 
recognizes possible interplay between intuitive explanations and scientific explanations and value the role of 
intuitive explanations that can be leveraged through automated feedback scaffolding toward scientific 
explanations.  

Table 4  
Linear Mixed Effects Model Analysis results for Essay 2 Writing Quality Scores 

Estimate Std. Error t value Pr(>|t|) 
(Intercept) 0.2564 0.37739 0.679 0.498 
Early understanding group -0.06933 0.0457 -1.517 0.132 
Essay 1 explanation pattern 0.01206 0.08241 0.146 0.884 
Essay 1 writing quality  0.87115 0.07475 11.655 0.00002 *** 
NLP accuracy 0.01633 0.05768 0.283 0.778 
Essay 1 revision 1.12133 0.11685 9.597 0.00002 *** 
Engagement 0.10284 0.13072 0.787 0.433 
Marginal R2/Conditional R2 0.691/0.803 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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