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Abstract

Sparse linear regression with ill-conditioned Gaussian random covariates is widely
believed to exhibit a statistical/computational gap, but there is surprisingly little
formal evidence for this belief. Recent work has shown that, for certain covariance
matrices, the broad class of Preconditioned Lasso programs provably cannot suc-
ceed on polylogarithmically sparse signals with a sublinear number of samples.
However, this lower bound only holds against deterministic preconditioners, and
in many contexts randomization is crucial to the success of preconditioners. We
prove a stronger lower bound that rules out randomized preconditioners. For an
appropriate covariance matrix, we construct a single signal distribution on which
any invertibly-preconditioned Lasso program fails with high probability, unless it
receives a linear number of samples. Surprisingly, at the heart of our lower bound
is a new robustness result in compressed sensing. In particular, we study recov-
ering a sparse signal when a few measurements can be erased adversarially. To
our knowledge, this natural question has not been studied before for sparse mea-
surements. We surprisingly show that standard sparse Bernoulli measurements
are almost-optimally robust to adversarial erasures: if b measurements are erased,
then all but O(b) of the coordinates of the signal are identifiable.

1 Introduction

Random-design sparse linear regression (SLR) is a fundamental problem in high-dimensional statis-
tics and learning theory. The simplest formulation of this problem is the following: given indepen-
dent covariates X1, . . . , Xm drawn from an n-variable Gaussian distribution with zero mean and
positive-definite covariance Σ, and responses yi = 〈Xi, w

∗〉 for some unknown k-sparse signal w∗
(i.e. with at most k nonzero entries), the goal is to recover w∗. While there are more complex mod-
els (e.g. with noise or non-Gaussian distributions), we are proving lower bounds, so the simplified
model only makes our results stronger.

Information-theoretically, for any positive-definite covariance Σ, it’s possible to recover w∗ exactly
from only O(k log n) samples (Xi, yi). (Again, this is a special case of more general results for
the noisy setting.) However, the algorithm which achieves this sample complexity is computation-
ally inefficient — it has time complexity O(nk). Significant effort has gone into polynomial-time
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sample-efficient algorithms for sparse linear regression, under as weak conditions on the covariates
as possible [22, 16, 44, 15, 13, 21, 20, 14, 18, 12, 45, 53, 48, 38, 47, 11, 46]. Essentially all of
these algorithms are variations on one of two fundamental methods: `1 regularization (most notably,
the Lasso program [44]), and greedy variable selection (most notably, Orthogonal Matching Pursuit
[45]). Moreover, both of these methods seem to hit the same fundamental barrier: they require that
Σ is in some sense well-conditioned. The most basic assumption enabling efficient algorithms is a
bound on the condition number λmax(Σ)/λmin(Σ), and this assumption has been weakened (to e.g.
the Restricted Isometry Property [15], the Compatibility Condition [48], or Weak Submodularity
[18]) but not eliminated. This barrier, and the lack of algorithmic techniques which evade it, suggests
that sparse linear regression with general positive-definite Σ may exhibit a computational/statistical
gap: that is, sample-efficient signal recovery may be computationally hard.

Preconditioned Lasso. Recent work [32] provided the first computationally-efficient and sample-
efficient algorithm for a broad class of ill-conditioned covariance matrices Σ (specifically, covari-
ance matrices of Gaussian Graphical Models with low treewidth such as Gaussian time-series data).
The algorithm was a generalization of Lasso via an initial preconditioning step; while precondition-
ing has been enormously impactful for efficiently solving linear systems [39], it has only recently
been applied to sparse linear regression. The algorithmic results of [32] raise an obvious question:
can preconditioning close the statistical/computational gap for ill-conditioned sparse linear regres-
sion? Or is the gap inherent?

The answer is unclear. The basic obstacle is that no “candidate” hard instances of random-design
sparse linear regression are known: nearly all examples on which Lasso provably fails can be trivially
fixed by preconditioning [53, 23, 17, 46, 31]. The exception is the lower bound in [32], which
provides a limited negative answer to the first question: there is a covariance matrix Σ such that
any deterministic preconditioner fails (see Section 1.1 for a concrete statement). They showed that
for each preconditioner, there exists a specific bad signal on which it fails, where the signal chosen
depends heavily on the preconditioner.

This suggests the tantalizing possibility that any ill-conditioned SLR problem can be solved by
applying randomized preconditioning. This way, the signal can no longer be chosen adversarially
based on the preconditioner. Indeed, numerical linear algebra is full of situations where randomized
maps are useful precisely for this reason, including the JL embedding and other dimension reduction
methods, algorithms based on random metric embeddings, and the famous Nystrom method for
low rank approximation and preconditioning (see e.g. [56, 51, 42]). Also, it was observed in [31,
32] that randomized preconditioners (or, roughly equivalently, trying a class of preconditioners)
can be used to solve SLR problems in various cases where we do not currently know of a fixed
deterministic preconditioner that works. Given this context, we need to ask the following question:
can randomized preconditioning close the statistical/computational gap?

Our result. We give a near-complete negative answer to this revised question: for a carefully-
chosen Σ and distribution over the unknown signalw∗, any randomly-preconditioned Lasso program
with invertible preconditioners fails (see Section 2 for a more concrete statement).

Broader context on statistical/computational gaps. Random-design sparse linear regression is
very interesting among high-dimensional statistics problems, in that there is essentially no evi-
dence for its conjectured statistical/computational gap; while SLR with worst-case covariates (i.e.
not drawn from a distribution) has been proven computationally hard under standard worst-case
complexity-theoretic assumptions [37, 57, 30, 28], no such hardness is known for random-design
SLR.5 In contrast, problems as diverse as sparse PCA [7], average-case RIP certification [55],
planted dense subgraph [10], robust sparse mean estimation [8], and negative-spike sparse PCA
[8] have provably statistical/computational gaps under (variants of) the Planted Clique conjecture.

Why isn’t sparse linear regression on this list? One possibility is that there is no statisti-
cal/computational gap; in this case, our results imply that new algorithmic techniques beyond pre-
conditioning are needed, and our hard instances provide a natural testing ground for new techniques.

5This is when Σ is invertible. If Σ is not invertible the task would be learning the concept/regression
function, i.e. outputting any ŵ so that (ŵ − w)T Σ(ŵ − w) = 0. If required to output a k-sparse predictor
and Σ is not invertible, the problem is NP hard with infinitely many samples [29] as it’s equivalent to finding a
sparse solution of linear equations.
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But another potential explanation is the current dearth of conjecturally-hard instances of random-
design sparse linear regression. Reductions from Planted Clique (and other techniques for proving
average-case lower bounds) either explicitly or implicitly involve constructing distributions over the
unknown concept class which encapsulate (to some degree) the hardness of the original problem. For
instance, sparse PCA is conjecturally hard even when the planted sparse direction is drawn uniformly
at random from k-sparse vectors with nonzero entries ±1/

√
k [36, 9]. Similarly, non-reduction

based lower bounds like Statistical Query lower bounds6 are typically derived against the uniform
distribution over a finite set of concepts [27]. Thus, it is problematic that for sparse linear regression,
no such distribution has even been hypothesized: i.e., a family (Σn,Dn)n∈N where Σn describes
an n × n covariance matrix, and Dn describes a distribution over k(n)-sparse n-dimensional sig-
nals, specifying a model which seems to encapsulate some of the difficulty of random-design SLR.
While it would certainly be necessary that the covariance matrices Σn are ill-conditioned, there are
also natural families of ill-conditioned covariate distributions which lead to tractable instances (e.g.
[32, 31]), so such a property is by no means sufficient.

Our main result provides a family of covariance matrices and signal distributions which is hard
at least for all preconditioned Lasso algorithms (this was not accomplished by [32], because they
constructed a different signal for each preconditioner). Thus, our work can be viewed as a necessary
first step towards average-case computational hardness of ill-conditioned sparse linear regression.

1.1 The Preconditioned Lasso

Perhaps the canonical method to solve sparse linear regression problems is by solving a convex
program known as the Lasso [44]. In our noiseless setting, it reduces to the basis pursuit program

ŵ ∈ argmin
w∈Rn:Xw=y

‖w‖1 .

This program is well-studied, and it’s known to succeed with high probability with O(k log n) sam-
ples when Σ is well-conditioned [54], but it also is known to fail if Σ is ill-conditioned [23, 17, 31].
In the context of ill-conditioned SLR, the class of programs known as the Preconditioned Lasso
[32] is significantly more powerful. Informally, these algorithms apply some change-of-basis to
“condition” the covariates before solving the basis pursuit program. Formally:
Definition 1. For an invertible n× n matrix S (which we think of as an arbitrary function of Σ that
however cannot depend on the samples), the S-preconditioned Lasso on data (Xi, yi) applies the
transformation Xi 7→ S−1Xi, solves the basis pursuit to get an estimate v̂, and returns ŵ := ST v̂.
This corresponds to solving the convex program

ŵ ∈ argmin
w∈Rn:Xw=y

∥∥STw∥∥
1
. (1)

Preconditioned Lasso obviously generalizes the Lasso, and it works for SLR tasks where applying
the Lasso directly will fail badly. For example, whenever the covariates come from autoregressive
time series data (e.g. random walk or AR(1)) the sparse linear regression problem can be solved
nearly optimally via Preconditioned Lasso, even though the covariates are likely to be heavily cor-
related. More generally, any covariance matrix with low-treewidth dependency structure induces an
SLR model that is tractable via Preconditioned Lasso, even if the matrix is arbitrarily ill-conditioned
[32]. Due to this generality, examples that are provably hard against the Preconditioned Lasso are
much more difficult to obtain, and much more interesting. Concretely, prior to the present work, the
only known hardness result against the Preconditioned Lasso was the following statement:7

Theorem 1.1 (Informal theorem statement from [32]). For any n > 0, there is a positive-definite
covariance matrix Σ : n×n such that for any preconditioner S, there exists some polylog(n)-sparse
signal w∗ which S-preconditioned Lasso with probability 1− o(1) fails to recover, when given o(n)
independent samples Xi ∼ N(0,Σ) and yi = 〈Xi, w

∗〉.
6Relatedly, for realizable regression problems there is a general computationally inefficient algorithm which

makes a smaller number of SQ queries [49].
7To be more precise, Theorem 1.1 and the definition of Preconditioned Lasso actually apply to all rectan-

gular n × s preconditioners, not just invertible preconditioners (note that Program 1 is still defined, though it
no longer corresponds to a change-of-basis). However, most algorithms applying Preconditioned Lasso in the
literature use invertible preconditioners [31, 32]. Moreover, restricting to invertible preconditioners does not
improve the failure probability achievable by the techniques in [32].
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This provides a converse to the algorithmic results of [32], which show that for certain covariance
matrices, there is a preconditioner that works for all signals. However, the limitation of Theorem 1.1
is that the hard signal depends on the preconditioner: unpacking the proof of Theorem 1.1 only
gives a signal distribution on which any preconditioner fails with probability Ω(1/n). Thus, the
lower bound is extremely weak if we allow for randomization in the choice of preconditioner, which
is how preconditioners are often applied in other contexts.

2 Main Results

In this paper, we eliminate that limitation and provide a single signal distribution which is provably
impossible to precondition. That is, we construct a covariance matrix and a sparse signal distribution
under which Preconditioned Lasso with any invertible, randomized change-of-basis must fail with
high probability, unless a linear number of samples are given.
Theorem 2.1 (Theorem E.3 of the Appendix). Let n > 0. There is a positive-definite covariance
matrix Σ : n× n and a distribution D over polylog(n)-sparse signals with the following property:
for any invertible randomized preconditioner S, if we draw w∗ ∼ D, then S-preconditioned Lasso
fails to recover w∗ with probability at least 1 − o(1), when given o(n) independent samples Xi ∼
N(0,Σ) and yi = 〈Xi, w

∗〉.

In fact, the full version of Theorem E.3 is even stronger: it shows that even if we fix a family of
poly(n) different preconditioners, they will all fail on a problem instance sampled from our distri-
bution with probability 1 − o(1). This allows us to rule out an even larger class of algorithms: for
example, the algorithm used in [31] for solving jointly walk-summable SLR instances adaptively se-
lects one out of n possible (invertible) preconditioners before running the Preconditioned Lasso, and
our lower bound shows that this strategy and variants are provably defeated by our new construction.

Additionally, we can extend our result to show hardness against rectangular n × s preconditioners.
For technical reasons we only achieve a failure probability of 1/2 − o(1), and require a bound on
the preconditioner size. Nonetheless, at this failure probability and with poly-logarithmically sparse
signals, we can rule out all polynomially-sized preconditioners.
Theorem 2.2 (Theorem E.10 of the Appendix). Let n > 0. There is a positive-definite covariance
matrix Σ : n×n and a distributionD over k-sparse signals, for any k ≥ log12(n), with the following
property: for any randomized preconditioner S with at most exp(k/ log10(n)) columns, if we draw
w∗ ∼ D, then S-preconditioned Lasso fails to recover w∗ with probability at least 1/2−o(1), when
given o(n) independent samples Xi ∼ N(0,Σ) and yi = 〈Xi, w

∗〉.

In both theorems, the probability is over the choice of preconditioner, the signal distribution, and the
random samples. Surprisingly, the key technique used to prove Theorem 2.1 and 2.2 is a positive
identifiability result in compressed sensing. We show that random sparse compressive design matri-
ces are robust to adversarial erasures. To prove our lower bounds, we will fix one such matrix M ,
and we will define the covariance matrix Σ = (MTM + εI)−1 for small ε > 0; the robustness of
M will then imply important properties of Σ. Note that the final Gaussian SLR design matrix (with
independent rows drawn from N(0,Σ)) will be quite different from the erasure-robust design matrix
M . But first, we describe the application of such matrices M to compressed sensing, as we believe
it is of independent interest and a main contribution of this work.

2.1 Key Technique: Erasure-Robust Sparse Designs

In this section we describe the key technique that enables our main results, an erasure-robust sparse
design, and provide an independent motivation for this design from compressed sensing. At the end,
we provide intuition for how it connects back to hardness against Preconditioned Lasso.

There is a vast literature on sparse linear regression and compressed sensing. Many determinis-
tic conditions and stochastic models for the measurement matrix (also known as design matrix
or covariate matrix) have been demonstrated to imply that sparse signals can be recovered either
information-theoretically or algorithmically [54]. In noisy settings, the goal is usually either ap-
proximate recovery under an `p norm or prediction error (e.g. [14, 53]); exact support recovery with
some assumptions about the signal-to-noise ratio (e.g. [53]); or approximate support recovery under
distributional assumptions about the signal (e.g. [40]). However, in noiseless settings, the goal is
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invariably exact recovery. This is obviously ideal. But in situations where the measurements are not
entirely controlled by the algorithm designer, exact recovery could be impossible. A natural goal is
then to try to recover part of the signal. To our knowledge, this notion of partial recovery of sparse
signals (i.e. due to shortcomings of the measurement matrix rather than due to noise) has received
essentially no attention; see Section 3 for a discussion of related notions.

Part of the reason may be that it’s not obvious what models for a compressive measurement matrix
exhibit the behavior that some but not all of the coordinates of a sparse signal are identifiable, besides
artificial examples where e.g. unconstrained variables are added to the system. Such examples do not
answer the question of whether partial recovery is possible under fundamentally weaker modelling
assumptions than total recovery.

Erasure-robustness. Our key technical contribution is a proof that partial recovery is possible in
a natural semi-random model. Specifically, we show that random sparse compressive measurement
matrices M are “erasure-robust”, by which we mean that if an adversary erases a small fraction of
the measurements 〈Mi, x

∗〉, replacing them with question-marks, then most of the coordinates of the
sparse signal vector x∗ are still information-theoretically identifiable. Moreover, the identifiability
result is stable under additive measurement noise with polynomially small norm.

Adversarial erasures have been studied in compressing sensing before, and of course have also
been long and extensively studied in coding theory (see e.g. [35, 33, 24]). For random dense
compressive matrices, it’s known that deleting a small fraction of the measurements essentially
does nothing; the sparse signal is still totally recoverable with high probability [19, 52, 34]. But
for random sparse matrices (which in the absence of erasures do also enable total sparse recovery
[5]), no such robustness has been proven, because it’s not true: the adversary may simply delete
all measurements interacting with a particular coordinate, rendering that coordinate unidentifiable.
Given this, partial recovery is the best that can be hoped for. Our result implies that it is also
attainable, at least information-theoretically. Moreover, we achieve a nearly-tight bound on the
number of unidentifiable coordinates. Here is the informal statement:
Theorem 2.3 (Theorem C.14 of the Appendix). Let n,m > 0 satisfy n > m > Θ(log2 n), and
let M be an m × n matrix with independent Bernoulli-p entries for p = Θ(log2 n)/m. With
high probability, the following holds. For any set of “deleted” equations B ⊆ [m] of size |B| ≤
O(m/ polylog(n)), there is a set C (the “unidentifiable coordinates”) of size |C| ≤ 2|B| such that

‖xCc‖2 ≤ poly(n) · ‖MBcx‖∞
for any O(m/ polylog(n))-sparse vector x ∈ Rn.

To make apparent the implication for compressed sensing, we state the following corollary:
Corollary 2.4. Let M ∈ {0, 1}m×n be a fixed, known matrix for which the guarantee of Theo-
rem 2.3 holds. Let x∗ ∈ Rn be an unknown k-sparse vector with k ≤ O(m/ polylog(n)). Define
measurements y = Mx∗ + η for some noise vector η with ‖η‖∞ ≤ δ, but suppose that y undergoes
adversarial erasures. That is, we only observe y ∈ Rm where

yi =

{
? if i ∈ B
yi if i ∈ Bc ,

for an adversarially-chosen setB ⊆ [m]. Then we can information-theoretically identify an estimate
x̂ ∈ Rn and a region of uncertainty C ⊆ [n] such that |x̂i − xi| ≤ δ · poly(n) for all i 6∈ C.
Moreover, the region of uncertainty is a function of B (not depending on x or y) and is bounded as
|C| ≤ 2|B|.

In particular, the estimator is simply x̂ = argminx:‖MBcx−yBc‖∞≤δ
‖x‖0 . The region of uncertainty

C is any set C satisfying the guarantee of Theorem 2.3 with respect to B; it can be (inefficiently)
computed from B via brute-force computation of singular values of submatrices of M . Then, since
x̂− x∗ is 2k sparse, the guarantee of Theorem 2.3 gives that

‖(x̂− x∗)Cc‖∞ ≤ poly(n) · ‖MBc(x̂− x∗)‖∞
≤ poly(n) · ‖(MBc x̂− yBc) + (yBc −MBcx∗)‖∞ ≤ poly(n) · δ

as claimed in the corollary.

5



Sparsity of the measurement matrix (and not just the signal) is well-studied in compressed sensing
and has various practical applications. For example, in scientific experiments it is often the case
that linearity of the response with respect to the covariates is a modelling assumption that’s only
reasonable for a sparse covariate vector [26]. Our result implies that even with a sparse measurement
matrix, adversarial erasures (due to e.g. experimental error) are not disastrous. (Note that in the
above theorem, each row of the measurement matrix is roughly (n log2 n)/m sparse, which up to
logarithmic factors cannot be improved, even without erasures, since the measurement matrix must
have Ω(n) nonzero entries).

Open question. Our results show that partial sparse recovery in this semi-random model is possible.
However, finding a computationally efficient algorithm is an interesting open problem.

Connection to lower bounds against Preconditioned Lasso. It may seem rather mysterious that
construction of an erasure-robust, “good” design matrix is the key ingredient in a distributional hard
example for a family of sparse recovery algorithms. The technical reasons for this connection are
deferred to the overview, but here we try to give some high-level intuition. First, for intuition, we
restrict our focus to sparse preconditioners, because dense preconditioners (morally) do not preserve
the sparsity of the unknown signal and therefore should not work. Now, if Σ is very ill-conditioned,
the preconditioner essentially needs to “fix” Σ by reweighting the different eigenspaces.

If we are allowed to construct the signal based on the preconditioner, then the preconditioner is
forced to be a good approximation for Σ everywhere, with no bad directions. But from any good
measurement matrix, using the fact that it has dense kernel, we can construct a Σ so that no sparse
preconditioner can approximate Σ everywhere. This is the approach taken in [32] for Theorem 1.1.

In our case, we need to construct the signal distribution without knowing the preconditioner, so
the preconditioner is only forced to be a good approximation for Σ in most directions. Ruling out
sparse preconditioners then corresponds to a measurement matrix which has a density property even
if some of the rows are ignored (specifically, erasure-robustness). Sparsity of the measurement
matrix is needed so that the rows are valid sparse signals, and compressivity is needed so that Σ is
ill-conditioned in many directions.

3 Related Work

Hard Examples for SLR. As we mentioned earlier, SLR with worst-case covariates is known
to be computationally hard under worst-case complexity-theoretic assumptions [37, 57, 30, 28].
However, for the random-design covariate model, there is no known reduction-based hardness, even
under average-case or cryptographic assumptions. We enumerate known restricted hardness results:

First, there is a large literature on when the Lasso and Basis Pursuit programs fail at sparse recovery,
even for random designs [53, 23, 17, 46, 31]. While these results do (technically speaking) prove
lower bounds against classes of algorithms, these classes are quite small; the constructed examples
are only proven to be hard for the Lasso and/or Basis Pursuit (at best, these programs have one meta-
parameter). In fact, as has been previously observed [58, 32], all of the “hard” examples provided
in the above works can be fixed by a simple change-of-basis.

Second, there is a more general lower bound against the class of convex programs solving least-
squares regression with coordinate-separable regularizers [58]. While this is a fairly broad class of
algorithms (incomparable with the Preconditioned Lasso), the result has two limitations. One is that
the constructed hard signals depend on the regularizer, so there is no single signal distribution that is
hard for the entire class. The other limitation is that, like in the previous works on hardness against
the Lasso, the hard example in [58] can be made easy for the Lasso by a simple change-of-basis.

Third, in [32], motivated by the latter limitation, covariance matrices are constructed such that for
any change-of-basis, there is a sparse signal (in the original basis) which causes the “preconditioned”
basis pursuit program to fail. However, as we have previously noted, this result is still limited by the
strong dependence of the signal on the preconditioner: it does not even rule out the possibility that
there are always two preconditioners so that every signal can be recovered by one of them.

Fourth, for isotropic random-design SLR (i.e. when Σ = I), there has been work on identifying the
precise sample complexity of sparse recovery. In particular, there appears to be a constant-factor
gap between the sample complexities of algorithmic recovery and information-theoretic recovery.
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Evidence has been given for this gap via the Overlap Gap Property [25], which implies the failure of
a restricted class of “stable” algorithms. However, this problem seems fundamentally different from
the problem we consider, where the hardness arises from the ill-conditioning of the covariates, and
the sample complexity gap is conjecturally exponential rather than a constant.

Partial sparse recovery. There are several other works in compressed sensing that use the ter-
minology of “partial” recovery. To our knowledge, these works all consider different settings from
ours; we explain the differences. First, in [3], partial sparse recovery refers to totally recovering a
signal that is only partially sparse (where the signal space is divided into two sets of coordinates, and
it’s known that the signal is sparse on the first set). Second, in [43], the goal is indeed to recover only
part of the support of the signal. However, their model is the Gaussian Sequence Model (i.e. where
the measurement matrix is the identity), where it is obvious that partial recovery is possible, because
there is no compression. Third, as discussed previously, one common goal in noisy models is partial
support recovery (see e.g. [40]). There, the goal is to estimate the support with few false positives
and false negatives, and the reason for error is simply that some coordinates of the signal may be
very small and therefore indistinguishable from noise. In contrast, partial identifiability occurs in our
setting even without noise, due to a weaker model for the measurement matrix. Moreover, proving
partial support recovery in the setting of [40] requires make strong probabilistic assumptions about
the signal, e.g. that the support is a uniform sparse set. In contrast, our results prove conditions
under which a measurement matrix enables partial recovery of arbitrary sparse signals.

4 Technical Overview

We start with a sketch of the proof of Theorem 1.1 from [32], which only achieves a failure proba-
bility of O(1/n), and which formally motivates the need for erasure-robust sparse designs. We then
sketch the proof of our main technical result that random sparse designs are erasure-robust. Finally,
we discuss how this result leads to stronger lower bounds against Preconditioned Lasso.

4.1 Lower Bounds via Sparse Designs.

The hard covariance matrix constructed in [32] to prove Theorem 1.1 is defined as Σ̃ = Θ̃−1 where
Θ̃ = Θ+ εI and Θ = MTM , for a rectangular matrix M . Note that for small ε > 0, this covariance
is very ill-conditioned, so long as M has non-trivial kernel. To prove that all Preconditioned Lasso
algorithms with m samples fail to recover k-sparse signals, these three properties are used:

1. The rows of M are k-sparse,

2. dim kerM ≥ 2m,

3. kerM is bounded away from all (n/k) log(n)-sparse vectors.

The first property is self-explanatory. One way to achieve the second property is if M has at most
n − 2m rows. And the third property, in compressed sensing, is essentially what a design matrix
needs to satisfy to information-theoretically enable (n/k) log(n)-sparse recovery. Thus, to show that
Ω(n) samples are needed to recover polylog(n)-sparse signals, M must be a sparse, compressive
matrix which (as a design matrix) enables the recovery of n/ polylog(n)-sparse signals.

How do these properties imply that for every preconditioner S, there is a bad k-sparse signal? By
the first property, the rows of M are valid signals. For each row Mi, if it is not a bad signal for
S-preconditioned Lasso, then it can be shown to induce a certain constraint on S: namely, that every
column of S either has small magnitude or is nearly orthogonal to Mi. So if none of the rows of Mi

are bad signals, then every column of S either has small magnitude or lies near kerM , in which case
by the third property it must be (n/k) log(n)-dense. Roughly speaking, this structure can be used
together with the second property to show that a k-sparse signal with uniformly random support
causes the Preconditioned Lasso to fail.

A hard signal distribution? The above proof shows that for any preconditioner, either it fails
(with high probability) on a random k-sparse signal, or there exists some row of M on which it
fails. If we want a signal distribution that is uniformly hard, it’s therefore natural to equiprobably
pick either (a) a random row of M , or (b) a random k-sparse signal. But then the above proof only
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implies that for this signal distribution, for any preconditioner, the Preconditioned Lasso fails with
probability Ω(1/n). Moreover, it’s not clear whether the failure probability can be improved under
just the above assumptions: consider the case that for some preconditioner, just a few rows of M
are bad signals. Then the likelihood that one of these rows is chosen as the signal is only O(1/n).
Moreover, the columns of S are now only forced to be orthogonal to most rows of M , not all. As a
result, the columns may have large magnitude and yet fail to be dense, because for sparse matrices
like M , it’s possible to adversarially delete a few rows so that the kernel of the remaining rows
contains sparse vectors. This is an obstacle to proving that such a preconditioner must fail on a
sparse signal with uniformly random support.

To circumvent this obstacle, we need to show that a preconditioner S which has columns orthogonal
to most rows of M , but not all, still has useful structure. As we suggested earlier, this can be done
by reasoning about sparse compressive matrices under adversarial deletions.

4.2 Erasure-robustness

We will return to the lower bound problem in the next section of the overview, but for now focus on
the core technical result about partial recovery with adversarial erasures. Based on the discussion
after Theorem 2.3, we need to solve the following problem.

Let M be an m × n sparse random Bernoulli matrix with parameter p = Θ(log n)/m. We want to
show that with high probability, M supports erasure-robust partial sparse recovery: that is, for any
set B ⊆ [m] of “bad equations”, there is a small set C ⊆ [n] such that if x ∈ Rn is τ -sparse, then

‖xCc‖2 ≤ poly(n) · ‖MBcx‖∞ .

Erasure-robustness: the exact case. For simplicity, in this proof sketch we start by considering
the exact case, where MBcx = 0, and we want to show that either | supp(x)| ≥ τ or supp(x) ⊆ C.
Without erasures (i.e. B = ∅), this property follows for C = ∅ by the fact that the adjacency
graph of M is with high probability a unique-neighbor expander.8 Concretely, because the graph is
a (1− ε)d expander for a small constant ε > 0, any set S ⊆ [n] of size at most τ := O(m/ log(n))
has at least (1 − O(ε))d|S| unique neighbors in [m]. Moreover, if j ∈ [m] is a unique neighbor of
supp(x) for some vector x ∈ Rn, then Mjx 6= 0. Thus, if Mx = 0 then supp(x) must have no
unique neighbors, so either | supp(x)| ≥ τ or x = 0.

However, this argument breaks down in the presence of adversarial erasures. All that can be said
is that if MBcx = 0 then supp(x) must have no unique neighbors in Bc. By the unique neighbor
lower bound, it does follow that either | supp(x)| ≥ τ or | supp(x)| ≤ O(|B|/d) — this can be
thought of as a kind of density amplification result for kerMBc , since it eliminates the possibility
of any vector in the kernel having an intermediate density. Unfortunately, this does not directly
imply erasure-robustness, because we need a single set C that contains the supports of all sparse
vectors in kerM , not a different C for each x. (For example, if we allow C = supp(x) then the
result is not very interesting.) Moreover, it’s not clear that anything useful can be said about the
vertex set supp(x): certainly many vertices in supp(x) must be adjacent to “bad” equations, but it’s
conceivable that other vertices could be farther away. Pictorially, one possible case (of many) is that
B could be chosen as the set of “boundary” equations of a ball subgraph; then kerMBc certainly
contains a vector supported on the ball, which is not actually contained in the neighborhood of B.

Given the above obstacles, one approach is to show that although supp(x) may not be contained
in the neighborhood of B, it must be contained in a distance-r ball around B, for some small but
super-constant r. The argument is that if there is a vertex of supp(x) which is distance greater than r
fromB, then by iteratively growing neighborhoods of the vertex untilB is reached, the support must
have size at least dr, and a contradiction is reached if dr > |B|/d, because then B cannot contain
all unique neighbors of supp(x). Unfortunately, the constructed set C (the distance-r ball around
B) then has size |B| · (d2)r ≈ |B|3, since the distance metric is that two coordinates are adjacent if
they share an equation. This is much larger than the desired bound (O(|B|)) and in particular, too
large to use in our ultimate lower bound application.

In summary, to get the linear bound claimed in Theorem 2.3, we need a different argument. The key
idea is to exploit linearity. We want to show that the union U of supports of all τ -sparse vectors in

8We note that this initial part of the argument (the case without erasures) is quite reminiscent of arguments
used in the analysis of LDPC codes (see e.g. [41]).
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kerMBc has small size. We’ve seen that for any fixed x, there is a density amplification result: if
MBcx = 0 and x is |B|/d-dense, then xmust be τ -dense. So take vectors x(1), . . . , x(n) ∈ kerMBc

which are τ -sparse (and therefore |B|/d-sparse) and which cover U . Now observe that since x(1)

and x(2) are O(|B|/d)-sparse, any linear combination c1x(1) + c2x
(2) must be 2|B|/d-sparse. But

c1x
(1) +c2x

(2) ∈ kerMBc by linearity. So if 2|B|/d < τ , then by the (contrapositive of the) density
amplification result, we in fact know that the sum is |B|/d sparse! Inductively, it follows that any
linear combination c1x(1) + · · ·+ cnx

(n) is |B|/d-sparse. But for generic c1, . . . , cn, we have

supp(c1x
(1) + · · ·+ cnx

(n)) =
n⋃
i=1

supp(x(i)) = U.

This shows that in fact we can find a set C of size O(|B|/d) satisfying the desired property.

Erasure robustness: the general case. Note that the above argument was when MBcx = 0. The
proof for the general case, when MBcx is small but not nonzero, uses the same insight with several
complications. First, we need a quantitative density amplification lemma which states that if MBcx
is small and x has more than |B| coordinates with magnitude exceeding some threshold δ, then we
can trade off density for magnitude, i.e. find τ coordinates with magnitude exceeding δ/ poly(n).
To prove this without losing a superpolynomial factor on the threshold, we actually need the graph
to satisfy a stronger property than just expansion: we also need that for any two disjoint sparse sets
S, T ⊆ [n], the intersection of their neighborhoods has size only O(

√
d ·max(|S|, |T |)). Note that

expansion would only give a bound of O(εdmax(|S|, |T |)). Nonetheless, it can be proven that the
random sparse adjacency matrix of M satisfies the desired stronger property with high probability.

Second, the iterative addition procedure in the noiseless case requires a modification for the noisy
case; each addition causes the quantitative threshold to decay, and after n additions it would decay
by a factor superpolynomial in n. Instead, we add the vectors x(1), . . . , x(n) recursively according
to a d-ary tree. This tree has depth only logd n, which allows the decay to be controlled to only a
poly(n) factor, proving Theorem 2.3.

4.3 Stronger lower bound via erasure-robustness

We now return to the problem of proving hardness against Preconditioned Lasso. Theorem 2.3
can be used to show that for an appropriately chosen M , if the number of rows of M that are bad
signals for S-preconditioned Lasso is at most n/ polylog(n), then there is a set C ⊆ [n] of size
n/ polylog(n) such that each column of S is either n/ polylog(n)-dense, or has small magnitude
on coordinates outside the set C. This is precisely the structure lemma we need for preconditioners
that succeed on most rows of M : it crucially allows for a nearly-linear number of rows of M that
are bad signals, although in exchange there is a set C of sublinear size where we cannot control the
columns of S (the corresponding structure lemma in [32] could not tolerate any bad rows). We also
show that in this situation, the number of dense columns of S must be Ω(n).

With these results, we can prove our lower bounds. First, to prove our lower bound against invertible
preconditioners (Theorem 2.1), we define a distribution over polylog(n)-sparse signals by takingw∗
to be the sum of polylog(n) random rows ofM , plus an infinitesimal uniformly random polylog(n)-
sparse vector. Under certain conditions, if at least one of the rows in the sum is a bad signal, then the
sum must also be a bad signal. With this amplification (at the cost of a polylog(n) factor in sparsity),
any invertible preconditioner must fail with probability 1− o(1): either there are Ω(n/ polylog(n))
bad rows of M , in which case the sum of the chosen rows is a bad signal with high probability, and
the infinitesimal perturbation does not affect the program failure. Or, S has many dense columns,
in which case STw∗ is dense due to the perturbation. By a dimension-counting argument (which
crucially uses invertibility of S), this implies that there exists a feasible direction of improvement
for the program objective.

Extending the lower bound to rectangular preconditioners is more involved and involves generaliza-
tions of techniques from [32]. The factor of 1/2 in Theorem 2.2 arises because we are not able to
construct a single signal distribution that causes failure of both “incompatible” preconditioners (i.e.
for which more than n/ polylog(n) rows of M are bad signals) and “compatible” preconditioners
(for which at most n/ polylog(n) rows of M are bad signals, so the structure lemma applies) with
high probability. Instead, we take a mixture of the two cases’ hard distributions: either a sum of rows
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of M , or a uniformly random sparse vector. Due to the lack of invertibility of the preconditioners,
the second case is no longer a simple dimension-counting argument. In [32], the proof crucially
relies on a “projection lemma” which states that if dim kerM ≥ 2m, then any fixed direction is
unlikely to align with the span of the covariates. Since our structure lemma has no control over the
preconditioner columns in the subspace indexed by the set C, we prove a generalized projection
lemma which states that alignment is unlikely even on Cc. This yields Theorem 2.2.
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