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AbstractÐWith the rapid proliferation of mobile devices, the
marriage of millimeter-wave (mmWave) and MIMO technologies
is a natural trend to meet the communication demand of
data-hungry applications. Following this trend, mmWave multi-
user MIMO (MU-MIMO) has been standardized by the IEEE
802.11ay for its downlink to achieve multi-Gbps data rate. Yet,
its uplink counterpart has not been well studied, and its way
to wireless local area networks (WLANs) remains unclear. In
this paper, we present a practical uplink MU-MIMO mmWave
communication (UMMC) scheme for WLANs. UMMC has two
key components: i) an efficient Bayesian optimization (BayOpt)
framework for joint beam search over multiple directional
antennas, and ii) a new MU-MIMO detector that can decode
asynchronous data packets from multiple user devices. We have
built a prototype of UMMC on a mmWave testbed and evaluated
its performance through a blend of over-the-air experiments
and extensive simulations. Experimental and simulation results
confirm the efficiency of UMMC in practical network settings.

Index TermsÐmmWave, MU-MIMO, 6G, Bayesian learning

I. INTRODUCTION

Recently, the marriage of millimeter-wave (mmWave) and
multi-user multiple-input-and-multiple-output (MU-MIMO)
technologies has attracted much research and development
attention in wireless local area networks (WLANs) as it has
potential to offer 100s Gbps data rate via simultaneous trans-
mission of multiple independent data streams [1]. As a con-
crete step towards its real-life applications, downlink mmWave
MU-MIMO has been standardized by IEEE 802.11ay [2], and
its theoretical data rate can reach 176 Gbps.

However, the advancement of mmWave MU-MIMO is
mainly limited to its downlink. Very limited progress has
been made so far for its uplink. While both 802.11ac (sub-
6GHz) and 802.11ay (60GHz) support downlink MU-MIMO,
neither of them supports uplink MU-MIMO. This stagnation
underscores the grand challenges in the design of practi-
cal yet efficient uplink mmWave MU-MIMO communication
schemes. In addition, the demand of uplink data rate is dramat-
ically increasing in emerging applications such as autonomous
driving and video streaming. Ericsson predicts that the amount
of global uplink traffic will reach 70 EB per month in 2027
[3]. Therefore, there is a critical need to fill this gap.

In this paper, we present a practical yet efficient uplink
MU-MIMO mmWave communication scheme (UMMC) for
a wireless local area network (WLAN). UMMC allows mul-
tiple stations to simultaneously send their data packets to
an access point (AP) while not requiring fine-grained inter-
station synchronization. We address two challenges in the
design of UMMC. The first challenge lies in the analog

beamforming for a multi-antenna AP. While the literature has

a wealth of analog beamforming work, existing approaches
can be generally classified into two categories: model-based
optimization (e.g., [4], [5, Table V]) and model-free beam
search (e.g., [6], [7], [8], [9], [10]). While model-based ap-
proaches offer the optimal antenna weight vectors (AWVs)
for analog beamforming, they require accurate antenna models
and channel knowledge, which are hard to obtain. Therefore,
these approaches are not amenable to practical use. Model-free
approaches do not require the above knowledge as they aim to
find the best beam in a predefined beambook. However, most
of them focus on maximizing the signal strength for a single-
antenna mmWave device while minimizing their beam search
overhead. While maximizing signal strength is equivalent to
maximizing data rate in single-antenna systems, it is not the
case in MU-MIMO systems. This is because the capacity of
an MU-MIMO channel is dependent upon not just the signal
strength but also the correlation of MIMO channels. When
two stations have highly-correlated channels, the AP may not
be capable of decoding their packets even if the signals are
strong.

To address this challenge, we design a Bayesian optimiza-
tion (BayOpt) framework for joint beam search at the AP. This
framework is inspired by two facts: i) the relation between
a selected beam and its achievable data rate in MU-MIMO
communications is complex and unknown in real systems; and
ii) BayOpt has been proved to be an effective technique for
finding an optimal or near-optimal solution to an optimization
problem whose objective function and constraints are unknown
and costly to evaluate. The key idea of the BayOpt framework
is to guide beam search using the posterior probability derived
from those beams that have already been evaluated. The more
beams we evaluate, the more accurate information we have for
the remaining beams. Compared to exhaustive search, BayOpt
appears to be surprisingly efficient in finding a near-optimal
beam within a given airtime budget.

Another challenge in the design of UMMC is the syn-

chronization among stations. Actually, the signal detection in
uplink MU-MIMO transmission has been well studied in sub-
6GHz wireless networks, and some signal detection methods
such as zero-forcing (ZF) and minimum mean square error
(MMSE) have been widely used in practice. However, existing
signal detectors are based on an important assumption Ð the
data packets from different stations are synchronized in time
when impinging on the AP. Particularly, in OFDM systems, the
time misalignment of the packets when arriving at the AP must
be less than the time duration of an OFDM symbol’s cyclic
prefix (CP). While this requirement can be achieved in narrow-
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mulative distribution function and the probability density
function of standard normal distribution, respectively, and ξ
is a parameter that determines the amount of exploration
during the optimization. A large value of ξ leads to more
exploration, while a small value leads to more exploitation.
In our experiments, we empirically set ξ to 0.1.

Beam Selection. In the tth iteration, the beam selected for
evaluation is obtained by solving the following problem:

θ⃗t = argmax
θ⃗∈B\Θ

EI(θ⃗), (10)

where B is the set of all predefined beams and Θ is the set
of beams that has been evaluated so far. We note that (10) is
easy to solve because (9) is a simple, disciplined function.

C. Practical Considerations

There are two challenges associated with the above BayOpt
framework when it is applied to beam search. In the following,
we first point out the challenges and then present our solutions.

Limited number of evaluations. MmWave systems have
a fixed airtime budget for beam search/training, which de-
termines the maximum number of evaluations/iterations that
can be performed before data transmission. In practice, given
the limited airtime budget for beam search, it is unlikely to
find the optimal beam for data transmission. Therefore, the
beam search problem is further constrained by the number of
evaluations. To address this challenge, we propose a recenter-

and-shrink (RaS) scheme for the Gaussian process regression.
This scheme was inspired by [16]. The basic idea is that, when
approaching the evaluation budget, we recenter the search
space to the current optimal beam and shrink the search space.
Doing so increases the probability of finding a better beam
when we reach the evaluation budget. Following this idea, we
modify the acquisition function in (10) to:

θ⃗t = argmax
θ⃗∈B\Θ

EI(θ⃗) (11)

s.t. θm ∈

{

[−π
2
, π

2
] if 1 ≤ t < T/2

[θ+m − ϕt

2
, θ+m + ϕt

2
] if T/2 ≤ t ≤ T.

where t is the iteration/evaluation index, T is the maximum
number of evaluations, θ⃗+ = [θ+m]Mm=1 is the best beam found
so far, and ϕt is the reduced search range. Empirically, we set
ϕt = ( 3

2
− t

T
)π in our experiments.

Cubic Computational Complexity. The computational
complexity of Gaussian process regression is cubic to the
number of data samples, i.e., O(t3), where t is the number of
evaluations that have been performed [14]. Clearly, the com-
putation rapidly increases as the evaluation procedure evolves.
To overcome the computation challenge of Gaussian process, a
wealth of sparse approximations have been recently suggested,
such as the subset of data (SoD) approximation, the subset
of regressors (SoR) approximation, the deterministic training
conditional (DTC) approximation, and partially independent
training conditional (PITC) approximation [17]. In these meth-

ods, a subset of the latent variables are treated exactly while

the remaining variables are treated approximately to reduce

the computation. Here, we employ the SoR approximation for
the beam search as it demonstrates a good tradeoff between
performance and computation (see Tables 8.1 & 8.2 in [17]).

Algorithm 1 Bayesian optimization for analog beam search

1: Required: T : the budgeted number of evaluations.

2: Output: A beam θ⃗∗ in the predefined beambook B for

data packet reception at the AP

3: Initialization Θ = [⃗0].
4: for t = 1, 2, · · · , T do

5: Calculate Φ using (14)

6: Calculate µ(θ⃗) using (12) and Σ(θ⃗) using (13)

7: Construct the surrogate function EI(θ⃗) using (9)

8: Find the next beam direction θ⃗t by solving (11)

9: Add θ⃗t to Θ

10: end for

11: return θ⃗∗ = argmin
θ⃗∈Θ

f(θ⃗).

Denote Φ as the subset of training data samples that
are selected for exact regression, where Φ ⊂ Θ. Per [17],
the Gaussian process regression can be characterized by the
approximate mean and covariance as follows:

µ(θ⃗) = σ−2k(θ⃗,Φ)Q−1k(Φ,Θ)f(Θ), (12)

Σ(θ⃗) = k(θ⃗,Φ)Q−1k(Φ, θ⃗), (13)

where Q = σ−2k(Φ,Θ)k(Θ,Φ) + k(Φ,Φ).
A question to ask is how to select the active data samples

for Φ. Empirically, we define an integer number τ ∈ Z which
is smaller than t. We choose the τ beams in Θ that are closest
to θ⃗+ as the active samples for Φ. Denote g(θ⃗) ≜ ||θ⃗+ − θ⃗||2

as the metric for θ⃗. Based on this metric, we sort the elements
in Θ in a non-decreasing order and denote the resulting vector

as Θsrt = [θ⃗s1 , θ⃗s2 , · · · , θ⃗st ]. Then, we let:

Φ = [θ⃗s1 , θ⃗s2 , · · · , θ⃗sτ ]. (14)

With the approximation in (12)-(14), the computational
complexity of Gaussian process regression in the tth iteration
decreases to O(τ2t) [14]. More importantly, the complexity
scales linearly (rather than cubically) with the number of
iterations.

We present the proposed BayOpt algorithm in Alg. 1. In a
nutshell, it is a non-parametric online learning algorithm that
guides the beam search using the posterior probability of those
data samples that have been evaluated so far.

V. ASYNCHRONOUS MU-MIMO DETECTION

In this section, we first review the MMSE MU-MIMO
detector, and then present a transformation for MMSE MU-
MIMO detector so that it can decode asynchronous data
packets. The resulting detector fundamentally relaxes the
inter-user synchronization for uplink MU-MIMO, and thus
is particularly suited for mmWave communications. Finally,
we conduct performance analysis of the proposed detector in
mmWave networks.

A. Conventional (Synchronous) MMSE MU-MIMO Detector

Consider the uplink MU-MIMO transmission from N sta-
tions to an M -antenna AP as shown in Fig. 1. Suppose that
data packets from the N stations are perfectly aligned in time
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