
Anycast Agility: Network Playbooks to Fight DDoS

A S M Rizvi∗

USC/ISI

Leandro Bertholdo∗

University of Twente

João Ceron
SIDN Labs

John Heidemann
USC/ISI

Abstract

IP anycast is used for services such as DNS and Content

Delivery Networks (CDN) to provide the capacity to han-

dle Distributed Denial-of-Service (DDoS) attacks. During a

DDoS attack service operators redistribute traffic between

anycast sites to take advantage of sites with unused or greater

capacity. Depending on site traffic and attack size, operators

may instead concentrate attackers in a few sites to preserve

operation in others. Operators use these actions during at-

tacks, but how to do so has not been described systematically

or publicly. This paper describes several methods to use BGP

to shift traffic when under DDoS, and shows that a response

playbook can provide a menu of responses that are options

during an attack. To choose an appropriate response from this

playbook, we also describe a new method to estimate true

attack size, even though the operator’s view during the attack

is incomplete. Finally, operator choices are constrained by

distributed routing policies, and not all are helpful. We ex-

plore how specific anycast deployment can constrain options

in this playbook, and are the first to measure how generally

applicable they are across multiple anycast networks.

1 Introduction

Anycast routing is used by services like DNS or CDN where

multiple sites announce the same prefix from geographically

distributed locations. Defined in 1993 [49] anycast was widely

deployed by DNS roots in the early-2000s [4, 29, 64], and

today it is used by many DNS providers and Content Delivery

Networks [16, 17, 24, 26, 80].

In IP anycast, BGP routes each network to a particular any-

cast site, dividing the world into catchments. BGP usually

associates networks with nearby anycast sites, providing gene-

rally good latency [62]. Anycast also helps during Distributed-

Denial-of-Services (DDoS) attacks, with each site adds to the

aggregate capacity at lower cost than a single very large site.

Each site is independent, so should DDoS overwhelm one

site, sites that are not overloaded are unaffected.

DDoS attacks are getting larger and more common. Differ-

ent root servers and anycast services frequently report DDoS

events [18,42,47,48]. Different automated tools make it easier

to generate attacks [81], and some offer DDoS-as-a-Service,

allowing attacks from unsophisticated users for as little as

∗Shared first author

US$10 [68]. DDoS intensity is still growing, with the 2020

CLDAP attack exceeding 2.3 Tb/s in size [66], and the 2021

VoIP.ms attack lasting for over 5 days [50, 65]. The reservoir

of attack sources grow with millions of Internet-of-Things

devices whose vulnerabilities fuel botnets [35].

Operators depend on anycast during DDoS attacks to pro-

vide capacity to handle the attack and to isolate attackers in

catchments. Service operators would like to adapt to an on-

going attack, perhaps shifting load from overloaded sites to

other sites with excess capacity. Prior studies of DDoS events

have shown that operators take these actions but suggested

that the best action to take depends on attack size and loca-

tion compared to anycast site capacity [45]. While prior work

suggested countermeasures, and we know that operators alter

routing during attacks, to date there has been only limited

evaluation of how routing choices change traffic [4,27,36,52].

Only very recent work examined path poisoning to avoid con-

gested paths [70]; there is no specific public guidance on how

to use routing during an attack.

The goal of this paper is to guide defenders in traffic engi-

neering (TE) to balance traffic across anycast during DDoS.

Our first contribution is a system with novel mechanism to

estimate true attack rate and plan responses. First, we propose

a new mechanism to estimate the true offered load, even when

loss happens upstream of the defender. Estimating the relative

load on each site (§3.3) is the first step of defense, so that the

defender can match load to the capacities of different sites,

or decide that some sites should absorb as much of the attack

as possible. Second, we develop a BGP playbook: a guide

that allows operators to anticipate how TE actions rebalance

load across a multi-site anycast system. Together, these two

elements provide a system that can automate response to

DDoS attacks by adjusting anycast routing according to the

playbook, or recommend actions to a human operator.

The second contribution is to understand how well routing

options for multi-hop TE work: AS prepending, community

strings and path poisoning. While well known, it is not widely

understood how available and effective these mechanisms are.

In §6 we show that while AS prepending is available almost

anywhere, community strings and path poisoning support

varies widely. We also show that their effectiveness varies

greatly, in part because today’s “flatter Internet” [15] means

AS prepending often shifts either nearly all or nearly no traffic.

Community strings provide finer granularity control, but we

show their support is uneven. Path poisoning may provide

control multiple hops away, but like community strings it

is often filtered, particularly for Tier-1 ASes. When these

factors combine with the interplay between multiple sites and

an anycast system, a BGP playbook is important to guide

defenders. Since the effects of TE are often specific to the

peers and locations of a particular anycast deployment, we

explore how sensitive our results are to different locations and

numbers of anycast sites (§7).

Our final contribution is to demonstrate successful defenses

in practice. We replay real-world attacks in a testbed and

show TE can defend (§8). Of course no single defense can

protect against all attacks, these examples show our approach

provides a successful defense to many volumetric and poly-

morphic DDoS attacks. They show that our algorithm and

process contributions (attack size estimation and playbook

construction) have practical application.

Our work uses publicly available datasets. Datasets for the

input and results from our experiments are available at no

charge. Because our data concerns services but not individu-

als, we see no privacy concerns.

2 Related Work

Anycast routing has been studied for a long time from the

perspective of routing, performance, and DDoS-prevention.

BGP to steer traffic: Prior work showed BGP is effective

to steer traffic to balance load on links [8, 27, 53]. However,

Ballani et al. showed that anycast requires planning and care

for effective load balancing [4]. Others proposed to manipu-

late BGP based on packet loss, latency and jitter [46, 52]. We

build on Ballani’s recommendation to plan anycast, proposing

a BGP playbook, and studying how well it can work.

Chang et al. [14] suggested using BGP Communities for

traffic engineering [10, 13, 74]. Recent work has examined

BGP communities for blackhole routing in IXPs and ISPs [21,

28]. Smith and Glenn examined path poisoning to address link

congestion [70]. While each of these are important options in

routing for defense, we show a system that guides the operator

to select between them. A system with multiple choices is

necessary because no single method works against all attacks.

For example, we show path poisoning does not work when

we poison a Tier-1 AS.

Anycast performance: Most anycast research focused on

efficient delivery and stability [11,39,40,59,79]. Later studies

explicitly investigate the proximity of the clients [4, 11, 39].

Some studies try to improve anycast through topology

changes [44, 62]. Anycast services for DDoS is already used

in commercial solutions e.g., Amazon [63], Akamai [75] and

AT&T [72]. However, none of them address how to use rout-

ing manipulations as a DDoS defense mechanism.

Anycast catchment control as a DDoS mitigation tool:

To our knowledge, the idea of handling DDoS attacks by ab-

sorbing or shifting load across anycast sites was first published

in 2016 [45]. Kuipers et al. [36] refined that work, defining

DETECTION

Detect DDoS
attack

2

ESTIMATION

Attack size
estimation

3

Deploy selected
BGP-TE and
measure
impacts 5

MAPPING

Compute BGP
playbook

1

Before attack

BGP Playbook

 Pick rule from
 playbook to
 shift or
 absorb 4

DEFENSE
STRATEGY DEPLOY

Figure 1: Overview of the decision process.

the traffic shifting approaches that we review in §3.4 and

explore through experiment. We develop the idea of a BGP

playbook to guide responses, and describe a new approach to

estimate attack size, and finally show that responses can be

effective with real-world events.

Commercial and automated solutions: Most published

commercial anti-DDoS solutions use routing to steer traffic

towards a mitigation infrastructure [22]. Sometimes there

is a requirement for all the sites to be connected through a

private backbone to support traffic analysis [63]. Another de-

fense uses BGP to divert all traffic to a scrubbing center, then

tunnels good traffic to the destination [69]. Other methods

use DNS manipulation [12], or anycast proxies [30] which

cannot be used in DNS anycast deployments itself. Rather

than outsourcing the problem, we explore how one can de-

fend it. Other automated defenses include responsive resource

management [25], client-server reassignment [34], and fil-

tering approaches [58]. Our method uses TE approaches to

efficiently use available resources in anycast.

3 Mechanisms to Defend Against DDoS

In this section we describe our BGP mitigation process; how

we pre-compute a BGP playbook, estimate the attack size and

select a TE response.

3.1 Overview and Decision Support

In Figure 1 we show how defense against DDoS works. De-

fense against a DDoS begins with detection 2 , then defen-

ders plan a defense 4 , carry it out 5 , and repeat this process

until the attack is mitigated or it ends (bottom cycle in Fig-

ure 1). Detecting the attack is straightforward, since large

attacks affect system performance. The challenge is selecting

the best response and quickly iterating.

We bring two new components to attack response (colored

light green in Figure 1): mapping before the attack, and es-

timating attack size when the attack begins. Mapping 1

(discussed in §3.2) provides the defender with a playbook of

planned responses and the information about how they will

change the traffic mix across their anycast system. Size estima-

tion 3 (discussed in §3.3) allows the defender to determine

how much traffic should be moved and select a promising

response from the playbook. Together, these tools help to

understand not only how to reduce traffic at a given site, but

also the sites where that traffic will go.

These components come together in our automated res-

ponse system (§3.4) that iterates between measurement and

attack size estimation, defense selection, then deployment.

Defense uses the playbook built during mapping; we provide

an example playbook in §6.4. We show how these defenses

operate in testbed experiments in §8.

Our system is designed for services that operate with a fixed

amount of infrastructure on specific anycast IP addresses and

do not employ a third-party scrubbing service. Operators of

CDNs with multiple anycast services, DNS redirection, or

scrubbing services may use our approach, but also have those

other tools. However, many operators cannot or prefer not to

use scrubbing and DNS redirection: all operators of single-

IP services (all DNS root servers), many ccTLDs who value

national autonomy, and scrubbing services themselves. Our

approach defends against volumetric attacks where we have

spare capacities in other sites. Since DDoS causes unavailabi-

lity of services, suboptimal site selection during an attack is

not a concern.

3.2 Measurement: Mapping Anycast

We map the catchments of anycast service before an attack

so that the defender can make an informed choice quickly

during an attack, building a BGP playbook (§6.4).

To map anycast catchments we used Verfploeter [20]. As an

active prober (ICMP echo request), Verfploeter observes the

responses of all ping-responsive IPv4 /24s and maps which

anycast site receives the responses. We provide a detailed

description of anycast and Verfploeter in Appendix A. Since

mapping happens before the attack, mapping speed is not an

issue.

Alternatively, we can map traffic by observing which cus-

tomers are seen at each site over time, or measuring from

distributed vantage points such as RIPE Atlas [3, 73]. (Opera-

tors may already collect this information for optimization.)

Mapping should consider not only the current catchments

but also potential shifts we might make during the attack.

This full mapping is easy to do with Verfploeter, which can

be continuously running in an adjacent BGP prefix to map

the possible shifts. This mapping process is important to

anticipate how traffic may shift. We will show later that BGP

control is limited by the granularity of routing policy (§6) and

by the deployment of the anycast sites (§7).

A challenge in pre-computed maps with routing alternatives

is that routing is influenced by all ASes. Thus, the maps may

shift over time due to changes in the routing policies of other

ASes. Fortunately, prior work shows that anycast catchments

are relatively slow to change [79]. We also show that our BGP

playbook is stable over time (§6.4 and Appendix E).

3.3 Estimation of the Attack Size

After the detection of an attack, the first step in DDoS defense

is to estimate the attack size, so we can then select a defense

strategy of how much traffic to shift. Our goal is to measure

offered load, the traffic that is sent to (offered to) each site.

During DDoS offered load balloons with a mix of attack and

legitimate traffic, and loss upstream of the service means we

cannot directly observe true offered load. We later evaluate

our approach with real-world DDoS events (§4).

Idea: Our insight is that we can estimate true offered load

based on changes in some known traffic that actually does

arrive at the service, even when there is upstream loss.

To know how much offered load actually arrives at the ser-

vice, we need to estimate some fraction of legitimate traffic.

We can then observe how much this traffic drops during the

attack, inferring upstream loss. Unfortunately, there is no ge-

neral way to determine all legitimate traffic, since legitimate

senders change their traffic rates, and attackers often make

their traffic legitimate-appearing. Our goal is to reliable es-

timate some specific legitimate traffic; we describe several

sources next.

Traffic sources: There are several possible sources of

known legitimate traffic—we consider known measurement

traffic and regular traffic sources that are heavy hitters [5].

For DNS, our demonstration application, RIPE Atlas pro-

vides a regular source of known-good traffic, sent from many

places. RIPE makes continuous traffic from around 10k

publicly available vantage points [55]. Each RIPE vantage

point queries every 240 s, and there is enough traffic (about

2500 queries/minute) to provide a good estimate of offered

load. (Although RIPE Atlas is specific to DNS, other commer-

cial services often have similar types of known monitoring

traffic.)

To find the known-good traffic at each site, we use the

catchments of RIPE vantage points with pre-deployed RIPE

DNS CHAOS queries (one exists for each root DNS IP, such

as measurement ID 11309 for A-root). We can also use Verf-

ploeter or captured traces in the anycast sites. An advantage

of using RIPE traffic is that it does not place any new load on

the service.

Heavy hitters can provide an additional source of known-

good traffic. Many services have a few consistently large-

volume users with regular traffic patterns, and while they vary

over time, many are often stable. For DNS, we find that most

heavy hitters have a strong diurnal variation in rate; we model

them with TBATS (Trigonometric seasonality, Box-Cox trans-

formation, ARMA errors, Trend and Seasonal) [19] to factor

out such known variation. While an adversary could spoof

heavy hitters, that requires a large and ongoing investment to

succeed.

Estimation: Our goal is to estimate offered load, Toffered.

We can measure the observed traffic rate, Tobserved , at the ac-

cess link. We define α as the access fraction—the fraction of

traffic that is not dropped. Therefore Tobserved = α ·Toffered.

To estimate the access fraction (α), we observe that known

good traffic has the same loss on incoming links as does

other good traffic and attack traffic. We estimate the known

Scenario/ known-good traffic offered load during attack estimated/

Date Dur. normal observed α normal observed reported estimated α̂ reported

2015-11-30 3h 33.08 1.85 0.0559 0.03 M 0.37 M 5.1 M 6.6 M 0.07 1.3

2016-06-25 3h 36.58 0.33 0.0091 0.03 M 0.10 M 10 M 11 M 0.01 1.1

Testbed 5min 425.2 207.0 0.4900 8.5 k 16.3 k 29.2 k 33.2 k 0.56 1.1

Table 1: Estimating sizes of offered load (second from right) based on known-good traffic (second from left) with real-world

attacks at B-root and testbed experiment. Traffic rates are in queries/second (reporting only the peaks).

Testbed Used Sites #

Peering

Amsterdam*†(AMS), Boston* (BOS),

Belo Horizonte*†(CNF), Seattle* (SEA)

Athens* (ATH), Atlanta* (ATL),

Salt Lake City* (SLC), Wisconsin* (MSN)

8

Tangled

Miami (MIA)*, London (LHR)*,

Sydney (SYD)*, Paris (CDG)*,

Los Angeles (LAX)*, Enschede (ENS)*,

Washington (IAD)*, Porto Alegre (POA)*†

8

Table 2: Testbed and respective sites used in our experiments.

Transit providers (*) and IXP (†).

5 Evaluation Approach

We next describe how we will evaluate the effectiveness of

TE (§6) and that results generalize to different deployments

(§7). Traffic engineering in response to DDoS depends on the

anycast deployment—where sites are and with whom they

peer. We evaluate on two different testbeds. Our approach

(estimation, TE, and playbook construction) can be applied

anywhere with different anycast setups. We expect network

operators will execute our approaches on a test prefix (in

parallel with their operational network) prior to an event so

that no service interruption happens.

5.1 Anycast Testbeds

We evaluate our ideas on testbeds to see the constraints of

real-world peering and deployments. We use two indepen-

dent testbeds: Peering [60] and Tangled [7]. Table 2 sum-

marizes information about each testbed with their own set

of geographically distributed sites along with their locations

(Peering supports more sites but we used 8 sites). These sites

show different connectivity, and have one or more transits and

IXP peers. Most Peering sites have academic transits while

Tangled has more commercial providers. Our testbed is about

the same size as many operational networks, since nearly half

of real-world networks have five or fewer sites [16].

5.2 Measuring Routing Changes

To measure the effect of a BGP change, we first change the

routing announcement at a site, give some time to propagate,

confirm that the announcement is accepted, and finally start

the anycast measurement.

Route convergence: After a change, we allow some time

for BGP route propagation. We know that routing and for-

warding tables can be inconsistent (resulting in loops or black

holes) while prefix is updating [37, 67, 76]. Although routing

updates are usually stable within 5 minutes [67], we wait 15

Experiment Key Takeaways

Path prepending Works everywhere to effectively de-prefer a site

(§6.1.2), but shifts traffic in large amounts (§6.1.3),

and has few traffic levels (Figure 6).

Neg. Prepending Works everywhere to prefer a site (§6.1.2).

BGP communi-

ties

Although widely implemented, well-known communi-

ties are not universal (§6.2.1).

When supported, they provide finer-granularity control

than prepending (§6.2.2).

BGP path poiso-

ning

Many Tier-1 ASes drop the announcements when it

sees Tier-1 ASes in the paths. (§6.3.1)

Control over traffic is limited by the filters from other

ASes. (§6.3.2).

Table 3: Experiment summarization and findings.

minutes for routing to settle when building our playbook since

it is a non-attack period. When the attack is not mitigated after

deploying a routing policy, our system moves to a different

approach after 5 minutes.

Propagation of BGP policies: Policy filtering could limit

the acceptance of announced routes, although in practice these

limits do not affect our traffic engineering. Best practices for

networks at the edge to filter out AS-Paths longer than 10

hops, and ASes in the middle often accept up to 50 hops, both

more prepends than we need. Based on routing observations

from multiple global locations using RIPE RIS, we confirm

that configurations in our experiments are never blocked due

to route filtering in multi-hops away from our anycast sites.

6 Traffic Engineering Coverage and Control

From an estimate of attack load, operators use BGP to shift

traffic. We next evaluate three TE mechanisms: AS-Path

prepending, community strings and path poisoning. For each

we consider when it works and what degree of control it pro-

vides. Table 3 summarizes our key results from tests on two

testbeds (§5.1); in §7 we evaluate generalizability.

6.1 Control With Path Prepending

First we consider AS-Path prepending as a defense strategy.

6.1.1 Prepending coverage

Support for AS-Path prepending is quite complete—it re-

quires no explicit support from the upstream provider, so we

found prepending worked at all sites in both of our testbeds.

In Peering, we are allowed to use a maximum of three

prepends, and in Tangled we use up to five prepends. Previ-

ous study [14] shows a maximum of 5 prepends is sufficient

because 90% of active ASes are located less than six AS hops

away. We use RIPE RIS [56] to check the routing visibility

when prepends are in place, and we do not observe changes

in the routing propagation for both testbeds. Otherwise, this

might reveal the existence of AS path length filters [32, 33].

6.1.2 Does prepending work?

Since AS-Path prepending is widely supported, we next eval-

uate this attractive TE method.

We explore this question for a representative scenario using

Peering using three sites from three continents—Europe

(Amsterdam-AMS), North America (Boston-BOS) and South

America (Brazil-CNF). In §7 we generalize to other configura-

tions. We estimate load by counting /24 blocks in catchments,

then compare the baseline with TE options. (We also explored

traffic weighted by traffic loads instead of blocks, getting the

same qualitative results and shapes with different constants,

Appendix F.)

Figure 5 shows the traffic from each site under different

conditions. The middle bar in each graph is the baseline, the

default condition with no prepending. We then add prepending

at each site, with one, two or three prepends in each bar going

to the right of center. We also consider negative prepending

(§3.4.1) in one to three steps, with bars going left of center.

We first consider the baseline (the middle bar) of all three

graphs in Figure 5. Amsterdam (AMS, the bottom, maroon

part of each bar) gets about 68% of the traffic. AMS receives

more traffic than BOS and CNF because that site has two

transit providers and several peers, and Amsterdam is very

well connected with the rest of the world.

We next consider prepending at each site (the bars to the

right of center). In each case, prepending succeeds at pushing

traffic away from the site, as expected. For AMS, each prepend

shifts more traffic away, with the first prepend cutting traffic

from 68% to 37%, then to 29%, then to about 16%. BOS

and CNF start with less traffic and prepending has a stronger

effect, with one prepend sending most traffic away (at BOS,

from 15% to 7%) and additional prepends showing little fur-

ther change. These non-linear changes are because changing

BGP routing with prepending is based on path length, and the

Internet’s AS-graph is relatively flat [2, 15].

The bar graphs also show that when prepending pushed

traffic away from a site, it all goes to some other site. Where

it goes depends on routing and is not necessarily propor-

tional to the split in other configurations. For example, after

one prepend to AMS, more traffic goes to CNF (the top sky

blue bar) than to BOS (the middle yellowish bar). These

unexpected shifts are why we suggest pre-computing a “play-

book” of routing options before an attack (§3.2) to guide

decisions during an attack and anticipate the consequences of

a change.

We also see that negative prepending succeeds at drawing

traffic towards the site—in each case the bars to the left of

center see more traffic in the site that is not prepending while

the others prepend. AMS sees relatively little change (68% to

89%) since it already has most traffic, while BOS and CNF

each gain up to 68% of traffic.

All three sites show some networks that are “stuck” on that

site, regardless of prepending. One reason for this stickiness

is when some networks are only routable through one site be-

cause they are downstream of that exchange. We confirm this

by taking traceroute to two randomly chosen blocks that are

stuck at BOS. Traceroutes and geolocation (with Maxmind)

confirm they are in Boston, at MIT and a Comcast network

(based on the penultimate traceroute hop). We have used the

local-preference BGP attribute to move such stuck blocks, but

a systematic exploration of that option is future work.

In summary, the experiment shows that AS prepend does

work and can shift traffic among sites, however, this traffic

shift is not uniform.

6.1.3 What granularity does prepending provide?

Having established that prepending can shift traffic, we next

ask: how much control does it provide? This question has

two facets: how much traffic can we push away from a site or

attract to it, and how many different levels are there between

minimum and maximum.

Limits: Figure 5 suggested that in Peering, with those

three sites, there is a limit to the traffic that can shift. AMS,

BOS, and CNF always get about 16%, 7% and 3% of blocks,

regardless of prepending.

Figure 6 confirms this result with a 5-site deployment (two

from Europe, one from North America, one from South Amer-

ica and one from Australia) in our other testbed (Tangled).

X axis is presented with the number of prepends applied to

each site. The number zero (0) represents the baseline, the

positive numbers (1-5) are the number of prepending applied

and the negative numbers represent negative prepends. As

depicted, each site can capture at most 55–65% of blocks, and

can shed at most 95% of blocks, even with up to 5 prepends.

We can also see that we do not get a granular control as only

three points are between the minimum and maximum.

We conclude that while prepending can be a useful tool to

shift traffic, it provides relatively limited control.

6.2 Control with BGP Communities

We next show that BGP community strings have the opposite

trade-off: what options they support vary from site to site, but

when available, they provide more granular control over traffic.

We use whatever community strings that can be supported at

each site. Specific values for the same concept often vary.

6.2.1 Community string coverage

ASes must opt-in to exchange community strings with peers,

as opposed to prepending’s near-universal support (since AS

paths are used for loop detection, prepending works unless it

is explicitly filtered out). Explicit support is required because

communities are only a tagging mechanism; the actions they

trigger are at the discretion of peering AS. Prior work has stu-

died the diverse options supported by community strings [28].

To evaluate coverage, we review support for BGP commu-

nities in the testbeds we use. The testbeds provide information

Site: Peering Tangled

Routing policy AMS BOS CNF SEA ATH ATL SLC MSN MIA LHR IAD CDG LAX ENS SYD POA

AS-path prepend X X X X X X X X X X X X X X X X

no-peer X – X – – – – – X X – X – – X X

no-export M – – – M – – – X X – X – – X X

no-client – – – – – – – – X – – – – – – –

Selective prepend X X X X X X X X X X – X – – X X

Selective announcement X X X X X X X X X X - X - - X X

Path poisoning X X X X X X X X X – – – – – – X

non-transit peers 854 0 129 0 0 0 0 0 0 0 0 0 0 0 0 250

transits 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2

options 856 1 130 1 1 1 1 1 1 1 1 1 1 1 1 252

Table 4: Traffic engineering options on each testbed sites. X: supported, -: not supported, M: not tested.

binations. For example, each transit reaches more than half

of all blocks reachable from AMS, so we know some blocks

are reachable from both transit providers. Thus, while there is

some control over how many blocks to route to AMS, some

peers are very “strong” and will pick up many blocks if they

are allowed to announce our prefix.

Third, we see the important role of route servers. While

direct coordination with 12 IXP peers brings only 7% blocks

at AMS, a route server lets AMS reach more ASes and 14%

of the blocks alone.

Finally, we see that transit providers play an important role.

AMS site has two transit providers—BIT BV (AS12859)

and Netwerkvereniging Coloclue (AS8283). Announcing to

AS8283 attracts more traffic to AMS than announcing to

AS12859. Different AS relationship of these two transits with

their upstream provides us a different traffic distribution.

As shown in our experiments, when compared to AS path

prepending, BGP communities provide way more better con-

trol over traffic distribution.

To investigate if the results found on Peering can be

generalized, we made a set of experiments on Tangled.

Like Peering, we select 3 sites from three continents—

London(LHR), Miami (MIA) and Porto Alegre (POA), and

use communities for selective prepending and selective an-

nouncement from LHR. In Figure 8, we show the catchment

distribution after using the community strings from LHR. In

the baseline, when no communities are used, LHR handles

69% of traffic. From right to left, we see a gradual decrease

in the catchment distribution from 69% to 33%. Stop announ-

cing to IXP peers reduces traffic from 69% to 64%. But using

prepending and no export communities in AS2914 (NTT

America), AS1299 (Telia Company) and AS3356 (Level 3),

we can get 30-60% of the catchments in LHR.

Both testbeds show that community strings are not widely

available in all sites, and that even well-known communities

are not fully adopted. However, community strings can pro-

vide finer-grained control. Selective announcement mostly

provides more “flexibility” depending on how many IXP peers

and transits are connected. We also find that some sites do

not provide the support that we expect which means commu-

nity strings require an extra step like contacting the transit

provider for an explicit agreement.

6.3 Control with Path Poisoning

We next turn to path poisoning, and show that like community

strings, coverage and granularity are limited by routing filters

deployed in upstream peers.

6.3.1 Poisoning coverage

Support for path poisoning is dependent on the ASes we are

poisoning and on route filters deployed by our upstream ASes.

We find that many ISPs, especially Tier-1 ASes, filter out

AS paths that poison any Tier-1 AS. Tier-1 ASes deploy

these filters to block BGP announcements from customers

that contain other Tier-1 ASes in the path to prevent route

leaks [43, 71]. This filtering often makes path poisoning inef-

fective to control traffic.

To verify that poisoning Tier-1 ASes is often ineffective

from filtering, we poison Tier-1 ASes announcing only from

AMS in Peering, a unicast set-up blocking the impacts of

other sites, and make traceroutes from 1000 RIPE vantage

points to our prefix. Our measurement shows the evidence

of filters when we poison Tier-1 ASes—AS7018 (AT&T),

AS6453 (Tata Communications America), and AS1299 (Telia

Company). We observe many vantage points fail to reach our

prefix as they are dependent on Tier-1 ASes for their routes.

Some others change their paths avoiding Tier-1 ASes. We

also validate route disappearance via most Tier-1 ASes using

RouteViews telescopes [77].

Although poisoning Tier-1 ASes is often ineffective, poiso-

ning is effective with most non-Tier-1 ASes. Unfortunately,

these ASes carry little traffic when they are not immediate

upstreams. Poisoning these small ASes only has little impact

on traffic. We again traceroute after poisoning a non-Tier-1

AS (AS57866), and observe that Tier-1 ASes propagate the

poisoned path. This proves poisoned paths with Tier-1 and

non-Tier-1 ASes are treated differently by other ASes.

6.3.2 What granularity does poisoning provide?

Path poisoning coverage is limited because one cannot usually

poison a Tier-1 AS. This same filtering limits the granular-

ity that poisoning allows: poisoning Tier-1 ASes is not al-

lowed, poisoning non Tier-1 ASes has little impact when they

are multiple hops away because they represent little traffic.

Poisoning immediate neighbors may shift traffic, but is more

complex than just not announcing to them. We confirm these

Traffic to Site (%)

Routing Policy AMS BOS CNF

(a) 6peers, 12peers ∼5 ∼35 ∼55

(b) Route-server 15 35 55

(c) All-IXP-Peers/Poison transits 15 35 45

(d) 3xPrepend AMS 15 35 45

(e) 2xPrepend AMS 25 35 45

(f) 1xPrepend AMS 35 25 35

(g) -3xPrepend BOS 25 65 5

(h) -2xPrepend BOS 35 65 5

(i) -1xPrepend BOS 45 45 15

(j) -3xPrepend CNF 25 15 65

(k) -2xPrepend CNF 35 5 55

(l) -1xPrepend CNF 45 5 45

(m)Transit-1 45 25 35

(n) Transit-2 55 15 25

(o) Poison Tier-1/Transit-2 35 25 35

(p) Poison Transit-1 55 25 25

(q) Baseline 65 15 15

(r) 1,2xPrepend BOS 65 5 25

(s) 3xPrepend BOS 75 5 25

(t) 1,2,3xPrepend CNF 75 15 5

(u) -1,-2,-3xPrepend AMS 85 5 5

Table 5: Policies and traffic distribution (in 10% bins); groups

sorted by rough fraction of traffic to AMS, and colors showing

the traffic compared to the baseline distribution.

observations with detailed experiments in Appendix D, but

we conclude that path poisoning is not generally an effective

tool for traffic engineering.

6.4 Playbook Construction

Based on our understanding of prepending, communities and

poisoning, we can now build a playbook of possible traf-

fic configurations for this anycast network. In practice, we

build the playbook automatically using scripts that connect to

BGP, then iterate through different BGP configurations, then

run Verfploeter [20] to measure new catchments. Playbooks

are necessarily specific to each anycast deployment, but we

show in §7 that the process generalizes. Using a playbook,

an operator does not need a single “best” approach, rather a

combination of approaches in the playbook ensures a greater

control over traffic distribution.

A playbook is a list of variations of routing policy and the

resulting traffic distributions. Table 5 shows the playbook for

our testbed, with the baseline of 65% blocks to a site shown

in white. We group different levels of prepending (positive or

negative) at each site, and show selected community string

and poisoning configurations.

To summarize the many configurations from Table 5, Ta-

ble 6 identifies which combinations result in specific traffic

ratios at each site. Each letter in this table refers back to a

specific configuration from Table 5. During an attack, if the

anycast system begins at the baseline configuration (q), if

AMS is overloaded, the operator could select a TE configura-

tion higher in the table (perhaps ‘e’, ‘g’, or ‘j’). The operator

can then see the implications of that TE choice on other site

(for example, ‘e’ increases load on both other sites, with ‘g’

Traffic to Site (%) AMS BOS CNF

0-10 a k, l, r, s, u g, h, t, u

10-20 b, c, d j, n, q, t i, q

20-30 e, g, j f, m, o, p n, r, p, s

30-40 f, h, k, o a, b, c, d, e f, m, o

40-50 i, l, m i c, d, e, l

50-60 n, p – a, b, k

60-70 q, r g, h j

70-80 s, t – –

80-90 u – –

90-100 – – –

Traffic options 9 6 7

Table 6: Peering playbook (AMS, BOS, and CNF)

increases load on BOS but decreases it at CNF).

An operator may also use a playbook with traffic load for

two reasons. First, loads in most interesting services have

diurnal pattern. Second, loads from each /24 prefix may vary

because of the number of clients behind each prefix (more on

Appendix F). Building the playbook with load is computa-

tionally simple; an operator can just use the same catchment

mapping along with the per prefix load.

Even with attack size estimation, attacks are accompanied

by uncertainty, and attacker locations may be uneven. How-

ever, the playbook provides a much better response than “just

relying on informal prior experience” in two ways: the de-

fender can anticipate the consequences of the TE action (that

traffic will go somewhere!), and the defender can choose be-

tween different possible outcomes if the first is incomplete.

Playbook flexibility and completeness: Table 6 helps

quantify the “flexibility” that traffic engineering allows us

in this anycast deployment. Using these 10% traffic bins, we

see that AMS has 9 options, CNF 7, and BOS only 6. Because

AMS and CNF mostly swap traffic after TE changes, and

because BOS is less well connected, no configuration with

three sites allows BOS to take traffic within 50-60% range,

and no 3-site configuration can drive BOS or CNF over 70%.

This analysis shows more central sites like AMS, and it

may suggest the need for topology changes (perhaps adding

another site in Europe or Asia to share AMS’ load).

7 Deployment Stability and Constraints

In §6 we showed BGP-based TE provides considerable flex-

ibility. Building playbooks supports defenders by allowing

them to explore how transit providers, prepending, community

strings, and poisoning affect their specific deployment. We

next look at how stable the results are depending on choice of

sites and the number of sites. While the details of the playbook

vary for each deployment, and we do not claim our testbeds

represent all possible deployments, we show our approach is

flexible and can respond to attacks in different deployments—

our approach generalizes.

7.1 Effects of Choice of Anycast Sites

First we see how sites affect our playbook. New sites change

catchments because they depend on location and peering,

Months AMS(%) BOS(%) CNF(%)

2020-02 68.1 14.6 17.3

2020-04 70.4 14.2 15.4

2020-06 65.3 14.1 20.6

Table 7: Percent blocks in each catchment over time.

with five, and from 56% to 23% with seven, always dropping

by half.

Even with more sites, some blocks are often “stuck” at a

particular site. With three negative prepends, AMS gets most

of the traffic, but it tops out at 90% with three sites, and only

87% and 84% with five and seven. We conclude that each site

has its own set of “stuck blocks” that are captive to it and will

not move with traffic engineering.

With more sites, the fine control of BGP communities be-

comes more important because path-prepending becomes less

sensitive. For example, selective announcements with com-

munities are need for AMS with 5 or 7 sites; prepending three

times shifts all traffic.

New sites: Adding more sites also shows how our playbook

can help guide deployment of new sites. Predicting traffic

shifts for a new site is difficult, but experimenting with a test

prefix can build a playbook pre-deployment.

7.3 Playbook Stability Over Time

A playbook has a limited use if routing changes immediately.

We know routing changes when links fail, or when ISPs be-

gin new peering or purchase new transit. For how long is a

playbook applicable?

To answer this question, Table 7 shows the fraction of /24

blocks going to each catchment over time for the baseline

configuration. We see that the fraction of blocks is generally

quite stable, with only about 5% of blocks shifting in or out of

a site. In addition, prior work has shown very strong anycast

stability over hours to days [38, 79]. We checked the stability

of B-root catchment. We found that after two weeks 0.35%

prefixes, and after one month only 0.65% prefixes changed

their catchment (more on Appendix E). While catchments are

relatively stable, we expect operators will refresh playbooks

periodically (perhaps weekly or monthly).

8 Defenses at Work

In this section we describe four real-world attacks processing

the traffic in our system. We show that we can successfully

respond to a different types of attacks in different ways.

Methodology: We use real-world attacks from B-root

server operator, the Dutch National Scrubbing Center, and

from an anonymized enterprise network. These events include

polymorphic, adversarial, and a volumetric attack.

We evaluate these events by simulating traffic rates against

a three-site anycast network. The first two events use Peering

with our AMS, BOS, CNF configuration from §6. We vary this

topology, using BOS, SEA, SLC from §7.1 in the last event.

We replay the traffic in simulation, assigning traffic to each

anycast site based on catchments measured in our experiments.

We do not simulate the gradual route propagation, but instead

have routing take effect 300 s after a change (a conservative

bound, most routing changes happen in half that time). We

then evaluate traffic levels at each site and compare that to a

target capacity.

For each attack we run our system in defense, estimating the

attack size and selecting a pre-computed playbook response.

Since our playbook allows different responses: when we have

choices we select different methods of defense: prepending,

negative prepending, or community strings (Figure 11).

A 2017 polymorphic attack: Our first event is a DNS flood

from 2017-03-06 in B-root [51] (Figure 11a). This event

was a volumetric polymorphic attack where the attack queries

have common formats like RANDOM.qycl520.com\032 (from

0 s) and RANDOM.cailing168.com\032\032 (changed at

4750 s, so polymorphic in nature). We assume 60k packets/s

(30 Mb/s) capacity at each anycast site. The event was small

enough that B-root was able to fully capture it across all ac-

tive anycast sites at the time. The event lasted about 5 hours,

but we show only the first 2.25 hours. Services and attacks

capacity today will both be much larger; we use a small attack,

scaling the attack and capacity up would show similar results.

In Figure 11a we can identity AMS site receives 100k

packets/s traffic that is more than the capacity (shown as the

maroon striped area). Our system notices the attack from

bitrate alerts. It then estimates the AMS overload by comput-

ing the offered load using observed load and access fraction.

The system maps networks to number of packets to each site

using the pre-computed playbook (Table 6). Using this map-

ping our system/operator can then select a response. From

Figure 11a, we can see the impact of the selected routing

approach—announcing only to Transit-1 using community

string. After 300 s, we can see no striped area which indicates

the attack is mitigated.

The attacker changes the query names at 4750 s, making

this attack polymorphic. Filtering on query names would need

to react, but our routing changes can still mitigate the attack

regardless of this type of change.

A 2021 variable-length polymorphic attack: We next ex-

amine an HTTP-attack launched on an enterprise network on

2021-09-05 in Figure 11b. This polymorphic attack changes

after each of three pauses. The initial attack consists of mil-

lions of HTTP GETs (15k packets/s) launched from an IoT

botnet; it terminates when the enterprise’s operator deploys IP-

based filtering. About 1000 s later, a different botnet launched

a multi-vector attack combining HTTP GETs using random

paths (to avoid caching) and spoofed TCP ACKs. We then

see a lull, brief burst, another lull, and a burst to the end.

The initial attack at time 0 overloads one site (AMS),

prompting our routing response. After the estimation, we be-

gin a route shift away from AMS, but the attack ends quickly

(after 90 s), while routes are still changing.

Since the normal traffic sources originate from Europe,

Tangled admins who allowed us to run measurements. We thank

Dutch National Scrubbing Center for sharing DDoS data with us.

References

[1] AMPATH. Bgp resources. https://ampath.net/AMPATH_

BGP_Policies.php. [Online; accessed 12-Oct-2021].

[2] APNIC. BGP-stats routing table report—Japan view.

https://mailman.apnic.net/mailing-lists/bgp-

stats/archive/2020/05/msg00001.html, May 1 2020.

[3] Vaibhav Bajpai, Steffie Jacob Eravuchira, and Jürgen Schön-

wälder. Lessons learned from using the ripe atlas platform for

measurement research. ACM SIGCOMM Computer Communi-

cation Review, 45(3):35–42, 2015.

[4] Hitesh Ballani, Paul Francis, and Sylvia Ratnasamy. A

measurement-based deployment proposal for IP anycast. In

Proceedings of the 6th ACM SIGCOMM conference on Internet

measurement, pages 231–244, 2006.

[5] Ran Ben-Basat, Gil Einziger, Roy Friedman, and Yaron Kass-

ner. Heavy hitters in streams and sliding windows. In IEEE

INFOCOM 2016 - The 35th Annual IEEE International Con-

ference on Computer Communications, pages 1–9, 2016.

[6] Terry Benzel, Robert Braden, Dongho Kim, Cliford Neuman,

Anthony Joseph, Keith Sklower, Ron Ostrenga, and Stephen

Schwab. Experience with deter: a testbed for security research.

In 2nd International Conference on Testbeds and Research

Infrastructures for the Development of Networks and Commu-

nities, 2006. TRIDENTCOM 2006., pages 10–pp. IEEE, 2006.

[7] Leandro M. Bertholdo, João M. Ceron, Wouter B. de Vries, Ri-

cardo de Oliveira Schmidt, Lisandro Zambenedetti Granville,

Roland van Rijswijk-Deij, and Aiko Pras. Tangled: A co-

operative anycast testbed. In 2021 IFIP/IEEE International

Symposium on Integrated Network Management (IM), pages

766–771, 2021.

[8] Matthew Caesar and Jennifer Rexford. BGP routing policies in

ISP networks. IEEE Network Magazine, 19(6):5–11, Novem-

ber 2005.

[9] CAIDA. AS rank. https://asrank.caida.org/, 2020. [On-

line; accessed 12-Oct-2021].

[10] CAIDA. CAIDA UCSD BGP community dictionary. https:

//www.caida.org/data/bgp-communities/, 2020. [On-

line; accessed 12-Oct-2021].

[11] Matt Calder, Ashley Flavel, Ethan Katz-Bassett, Ratul Maha-

jan, and Jitendra Padhye. Analyzing the performance of an

anycast CDN. In Proceedings of the 2015 Internet Measure-

ment Conference, pages 531–537, 2015.

[12] Mark D Carney, Jeffrey A Jackson, Andrew L Bates, and

Dante J Pacella. Method and apparatus for mitigating dis-

tributed denial of service attacks, November 24 2015. US

Patent 9,197,666.

[13] R. Chandra, P. Traina, and T. Li. BGP communities attribute.

Technical Report 1997, RFC Editor, 1996.

[14] Rocky KC Chang and Michael Lo. Inbound traffic engineering

for multihomed ASs using AS path prepending. IEEE network,

19(2):18–25, 2005.

[15] Yi-Ching Chiu, Brandon Schlinker, Abhishek Balaji Radhakr-

ishnan, Ethan Katz-Bassett, and Ramesh Govindan. Are we one

hop away from a better Internet? In Proceedings of the ACM In-

ternet Measurement Conference, pages 523–529, Tokyo, Japan,

October 2015. ACM.

[16] Danilo Cicalese, Jordan Augé, Diana Joumblatt, Timur Fried-

man, and Dario Rossi. Characterizing ipv4 anycast adoption

and deployment. In Proceedings of the 11th ACM Conference

on Emerging Networking Experiments and Technologies, pages

1–13, 2015.

[17] Danilo Cicalese and Dario Rossi. A longitudinal study of IP

anycast. ACM SIGCOMM Computer Communication Review,

48(1):10–18, 2018.

[18] Cloudflare. Famous DDoS attacks | the largest DDoS attacks of

all time. https://www.cloudflare.com/learning/ddos/

famous-ddos-attacks/. [Online; accessed 12-Oct-2021].

[19] Alysha M De Livera, Rob J Hyndman, and Ralph D Snyder.

Forecasting time series with complex seasonal patterns using

exponential smoothing. Journal of the American Statistical

Association, 106(496):1513–1527, 2011.

[20] Wouter B. de Vries, Ricardo de O. Schmidt, Wes Hardaker,

John Heidemann, Pieter-Tjerk de Boer, and Aiko Pras. Verf-

ploeter: Broad and load-aware anycast mapping. In Proceed-

ings of the ACM Internet Measurement Conference, London,

UK, 2017.

[21] Christoph Dietzel, Anja Feldmann, and Thomas King. Black-

holing at IXPs: On the effectiveness of DDoS mitigation in

the wild. In International Conference on Passive and Active

Network Measurement, pages 319–332. Springer, 2016.

[22] Ramin Ali Dousti, Frank Scalzo, and Suresh Bhogavilli. Au-

tomated ddos attack mitigation via bgp messaging, March 22

2018. US Patent App. 15/273,510.

[23] Xun Fan and John Heidemann. Selecting representative ip

addresses for internet topology studies. In Proceedings of the

10th ACM SIGCOMM conference on Internet measurement,

pages 411–423. ACM, 2010.

[24] Xun Fan, John Heidemann, and Ramesh Govindan. Evaluating

anycast in the domain name system. In 2013 Proceedings

IEEE INFOCOM, pages 1681–1689. IEEE, 2013.

[25] Seyed K Fayaz, Yoshiaki Tobioka, Vyas Sekar, and Michael

Bailey. Bohatei: Flexible and elastic ddos defense. In 24th

USENIX Security Symposium, pages 817–832, 2015.

[26] Ashley Flavel, Pradeepkumar Mani, David Maltz, Nick Holt,

Jie Liu, Yingying Chen, and Oleg Surmachev. Fastroute: A

scalable load-aware anycast routing architecture for modern

CDNs. In 12th USENIX Symposium on Networked Systems

Design and Implementation (NSDI 15), pages 381–394, 2015.

[27] Ruomei Gao, Constantinos Dovrolis, and Ellen W Zegura. In-

terdomain ingress traffic engineering through optimized AS-

path prepending. In International Conference on Research in

Networking, pages 647–658. Springer, 2005.

[28] Vasileios Giotsas, Georgios Smaragdakis, Christoph Dietzel,

Philipp Richter, Anja Feldmann, and Arthur Berger. Inferring

BGP blackholing activity in the internet. In Proceedings of the

Internet Measurement Conference, pages 1–14. ACM, 2017.

[29] T. Hardie. Distributing authoritative name servers via shared

unicast addresses. Technical Report 3258, RFC Editor, 2002.

[30] Lee Hahn Holloway, Srikanth N Rao, Matthew Browning

Prince, Matthieu Philippe François Tourne, Ian Gerald Pye,

Ray Raymond Bejjani, and Terry Paul Rodery Jr. Mitigat-

ing a denial-of-service attack in a cloud-based proxy service,

October 7 2014. US Patent 8,856,924.

[31] Chi-Yao Hong, Subhasree Mandal, Mohammad Al-Fares, Min

Zhu, Richard Alimi, Kondapa Naidu B., Chandan Bhagat,

Sourabh Jain, Jay Kaimal, Shiyu Liang, Kirill Mendelev, Steve

Padgett, Faro Rabe, Saikat Ray, Malveeka Tewari, Matt Tierney,

Monika Zahn, Jonathan Zolla, Joon Ong, and Amin Vahdat.

B4 and after: Managing hierarchy, partitioning, and asymmetry

for availability and scale in Google’s software-defined WAN.

In Proceedings of the ACM SIGCOMM Conference, Budapest,

Hungary, August 2018. ACM.

[32] Geoff Huston. BGP in 2017. https://labs.apnic.net/

?p=1102, Jan 8 2018. [Online; accessed 12-Oct-2021].

[33] Team Cymru Inc. Secure Cisco IOS BGP template. https://

www.team-cymru.com/secure-bgp-template.html. [On-

line; accessed 12-Oct-2021].

[34] Quan Jia, Huangxin Wang, Dan Fleck, Fei Li, Angelos Stavrou,

and Walter Powell. Catch me if you can: A cloud-enabled

ddos defense. In 2014 44th Annual IEEE/IFIP International

Conference on Dependable Systems and Networks, pages 264–

275. IEEE, 2014.

[35] Brian Krebs. Krebsonsecurity hit with record DDoS. Kreb-

sOnSecurity, Sept, 21, 2016.

[36] Jan Harm Kuipers. Anycast for DDoS. https://essay.

utwente.nl/73795/1/Kuipers_MA_EWI.pdf, 2017. [On-

line; accessed 12-Oct-2021].

[37] Craig Labovitz, Abha Ahuja, Abhijit Bose, and Farnam Jaha-

nian. Delayed Internet routing convergence. ACM SIGCOMM

Computer Communication Review, 30(4):175–187, 2000.

[38] Matt Levine, Barrett Lyon, and Todd Underwood. TCP

anycast—don’t believe the FUD. Presentation at NANOG

37, June 2006.

[39] Zhihao Li, Dave Levin, Neil Spring, and Bobby Bhattacharjee.

Internet anycast: Performance, problems, & potential. In Pro-

ceedings of the 2018 Conference of the ACM Special Interest

Group on Data Communication, pages 59–73, 2018.

[40] Ziqian Liu, Bradley Huffaker, Marina Fomenkov, Nevil Brown-

lee, et al. Two days in the life of the DNS anycast root servers.

In International Conference on Passive and Active Network

Measurement, pages 125–134. Springer, 2007.

[41] Doug Madory and Matt Prosser. Excessive BGP AS path

prepending is a self-inflicted vulnerability. Presentation at

RIPE 79, October 2019.

[42] Marek Majkowski. Memcrashed - major amplification

attacks from UDP port 11211. https://blog.cloudflare.

com/memcrashed-major-amplification-attacks-from-

port-11211/, 2018. [Online; accessed 12-Oct-2021].

[43] Tyler McDaniel, Jared M Smith, and Max Schuchard. Flexseal-

ing bgp against route leaks: peerlock active measurement and

analysis. arXiv e-prints, pages arXiv–2006, 2020.

[44] Stephen McQuistin, Sree Priyanka Uppu, and Marcel Flores.

Taming anycast in the wild Internet. In Proceedings of the

Internet Measurement Conference, pages 165–178, 2019.

[45] Giovane C. M. Moura, Ricardo de O. Schmidt, John Heide-

mann, Wouter B. de Vries, Moritz Müller, Lan Wei, and Chris-

tian Hesselman. Anycast vs DDoS: Evaluating the November

2015 root DNS event. In Proceedings of the ACM Internet

Measurement Conference, November 2016.

[46] Priyadarsi Nanda and AJ Simmonds. A scalable architecture

supporting QoS guarantees using traffic engineering and pol-

icy based routing in the Internet. International Journal of

Communications, Network and System Sciences, 2009.

[47] Root Server Operators. Events of 2015-11-30. https://root-

servers.org/media/news/events-of-20151130.txt,

2015. [Online; accessed 12-Oct-2021].

[48] Root Server Operators. Events of 2016-06-25. https://root-

servers.org/media/news/events-of-20160625.txt,

2016. [Online; accessed 12-Oct-2021].

[49] Craig Partridge, Trevor Mendez, and Walter Milliken. Host

anycasting service. Technical Report 1546, RFC Editor, 1993.

[50] The Canadian Press. Canadian communications company

voip.ms hit by cyber attack. https://www.thestar.com/

business/2021/09/21/canadian-communications-

company-voipms-hit-by-cyber-attack.html/, 09 2021.

[51] LANDER project. Lander:b root anomaly-20170306.

https://ant.isi.edu/datasets/readmes/B_Root_

Anomaly-20170306.README.txt, 2019. [Online; accessed

12-Oct-2021].

[52] Bruno Quoitin, Cristel Pelsser, Olivier Bonaventure, and Steve

Uhlig. A performance evaluation of BGP-based traffic en-

gineering. International journal of network management,

15(3):177–191, 2005.

[53] Bruno Quoitin, Cristel Pelsser, Louis Swinnen, Olivier

Bonaventure, and Steve Uhlig. Interdomain traffic engineering

with BGP. IEEE Communications magazine, 41(5):122–128,

2003.

[54] RIPE. Measurements. https://atlas.ripe.net/

measurements/10310/. [Online; accessed 12-Oct-2021].

[55] RIPE. Root dns observations. Measurement ID 1009 (A-Root),

1010 (B-Root), etc., 2021.

[56] RIPE Network Coordination Centre. RIPE - Routing

Information Service (RIS). https://https://www.

ripe.net/analyse/internet-measurements/routing-

information-service-ris, 2020.

[57] ASM Rizvi, Joao Ceron, Leandro Bertholdo, and John Hei-

demann. Anycast agility: Adaptive routing to manage ddos.

arXiv preprint arXiv:2006.14058, 2020.

[58] ASM Rizvi, John Heidemann, and Jelena Mirkovic. Dynami-

cally selecting defenses to DDoS for DNS (extended). Tech-

nical Report ISI-TR-736, USC/Information Sciences Institute,

May 2019.

[59] Sandeep Sarat, Vasileios Pappas, and Andreas Terzis. On

the use of anycast in DNS. In Proceedings of 15th Inter-

national Conference on Computer Communications and Net-

works, pages 71–78. IEEE, 2006.

[60] Brandon Schlinker, Todd Arnold, Italo Cunha, and Ethan Katz-

Bassett. PEERING: Virtualizing BGP at the Edge for Research.

In Proc. ACM CoNEXT, Orlando, FL, December 2019.

[61] Brandon Schlinker, Hyojeong Kim, Timothy Cui, Ethan Katz-

Bassett, Harsha V. Madhyastha, Italo Cunha, James Quinn,

Saif Hasan, Petr Lapukhov, and Hongyi Zeng. Engineering

egress with Edge Fabric: Steering oceans of content to the

world. In Proceedings of the ACM SIGCOMM Conference,

pages 418–431, Los Angeles, CA, USA, August 2017. ACM.

[62] Ricardo de O. Schmidt, John Heidemann, and Jan Harm

Kuipers. Anycast latency: How many sites are enough? In

International Conference on Passive and Active Network Mea-

surement, pages 188–200, Sydney, Australia, March 2017.

[63] Thomas Bradley Scholl. Methods and apparatus for distributed

backbone internet ddos mitigation via transit providers, Febru-

ary 3 2015. US Patent 8,949,459.

[64] A. Shaikh, R. Tewari, and M. Agrawal. On the effectiveness of

H Artifact Appendix

H.1 Abstract

In this artifact, we provide datasets and software tools related

to our paper “Anycast Agility: Network Playbooks to Fight

DDoS” [9]. Our artifact contains several datasets generated

from our anycast experiments and analysis. Our datasets pro-

vide a snapshot of the results that we generated during our

experiments. Some of our experimental results are dependent

on the current state of the network interconnections and poli-

cies. However, due to the anycast stability, we expect to get

similar results if we redo the experiments now. Our published

datasets support our key results and are publicly available.

We also provide tools and scripts that can be useful for other

researchers.

H.2 Artifact check-list (meta-information)

• Algorithm: We provide an algorithm to select the best routing

option from a BGP playbook containing multiple routing op-

tions and their impacts over traffic distribution (Section 3.4.2

of the paper [9]). We provide a working Python script for this

selection algorithm. We include instructions about this tool in

our anygility tool page [10].

• Compilation: We use shell/python script and java program

for our tools. One needs to install Python and Java to run our

tools. We depend on Verfploeter software, and we mention a

series of other dependencies in the software READMEs [10].

• Binary: Some of our tools require extra binary files. We in-

clude those binary files with our software package, and provide

instructions.

• Data set: We provide several datasets generated from our

experiments and analysis [11]. Some software tools require

extra datasets to run (e.g. IP hitlist). We include a sample

dataset file with the software tool.

However, we do not include large data files with our software

tools. But these datasets can be downloaded separately (we

provide the instruction in §H.3.1).

• Run-time environment: We tested our tools in Linux oper-

ating system. Peering toolbox on Fedora 34, and Tangled on

Ubuntu 18.04 LTS and macOS 12. In some cases, our tools

require root access. Our tools notify the users when it needs

root access.

• Run-time state: Our key idea related to network playbook

(Section 3.1 and 6.4 of the paper [9]) is dependent on the

network interconnections and policies. We include the dates of

experiments in our datasets. Since anycast is stable, we expect

a similar outcome if we rerun the experiment.

• Execution: Some of our tools might need a long time to

run. For example, our automated playbook builder announces

different routing configurations, runs Verfploeter, and captures

traces after a fixed interval. If we consider the whole process

from measurement to playbook for 7 sites, it takes around 27-

35 hours. For 3 sites it was around 17-24 hours. If we have

more sites, or more routing policies, it would take even more

time.

• Security, privacy, and ethical concerns: In the required cases,

we anonymize IP addresses to prevent IP disclosure. As an ex-

ample, we anonymize IP addresses in the DDoS attack datasets.

For privacy reasons, we restrain ourselves from sharing certain

attack data from Dutch national scrubbing center, and from an

enterprise.

• Metrics: We provide datasets related to anycast catchments

and DDoS attacks. Each dataset reports different metrics. We

provide the details of these metrics in our README files. Our

README files are included with the dataset packages.

• Output: We provide experimental outputs from Tangled and

Peering testbeds. Tangled provides the measurement output in

csv format while Peering provides raw captured traces in pcap

format. These data files are parsed to generate output files in

human-readable formats or graphs. The graphs are built using

jupyter notebook and gnuplot scripts. We provide these scripts

in our dataset webpage [11].

• Experiments: We provide scripts to automatically announce

different routing configurations in both Peering and Tangled

testbeds. We provide our generated datasets from these experi-

ments. We provide some sample data to test our route selection

process independent from running the whole measurement

process.

• How much disk space required (approximately)?: Software

tarballs are about 500KB. Our datasets related to the anycast

experiments require around 100 GB disk space. Our attack

datasets are large since we provide the whole day traffic cap-

tures (around 500 GB each). As our datasets are large, a user

can download a portion of the datasets.

• How much time is needed to complete experiments (approx-

imately)?: Some of the experiments may take a whole day

(building a playbook with all routing options). Measurement

process can take days depending the chosen measurement. Our

decision maker can take decision within seconds. Parsing tools

may need different times depending on the data size.

• Publicly available (explicitly provide evolving version

reference)?: Our evolving datasets and software tools

are publicly available at https://ant.isi.edu/datasets/

anycast/anycast_against_ddos/index.html.

• Code licenses (if publicly available)?: Our tools are free; so

anyone can redistribute it and/or modify it under the terms of

the GNU General Public License, version 2, as published by

the Free Software Foundation. We include this license notice

with every tools that we make publicly available.

• Data licenses (if publicly available)?: We follow the data

sharing policy through the participation of the LACREND

project in the DHS IMPACT program [5].

• Archived (explicitly provide DOI or stable reference)?: Our

stable reference for this artifact is here: https://zenodo.

org/record/6473023 with DOI 10.5281/zenodo.6473023.

H.3 Description
We provide datasets and tools for measuring anycast agility against

DDoS. Our datasets are available upon request [5]. We provide

datasets about the traffic distribution after BGP changes in testbeds,

attack data from a DNS root server and from a national scrubbing

Software

tools

Software

dependencies

Software

source

Dataset

dependencies

Dataset

source

Traffic

Estimator

Java openjdk-11.0.13 pcap traces With dataset

tshark Wireshark RIPE IPs Included

playbook

builder

Access to

Peering

Required

Testbed

access
Hitlitst With dataset

Pinger
Provided +

open source

playbook

tuner
Python Python 3.10.2

Playbook Included

Load Included

load_parser+

ParsingLoad

shell+Java openjdk-11.0.13
Dataset dir.

with pcaps
With dataset

pingextract
Provided +

open source
Load file With dataset

BGPTuner
Python

bgptuner-requirements.txt
Python 3.8 Playbook with specific site list Included

measurement scripts

+ tangler-cli

Bash

Python

Verfploter

ExaBGP

Access to Tangled

Bash 4.4

Python 3.8

Verfploter 0.1.42

ExaBGP 4.1.2

— —

vp-cli Python Python 3.8 Verfploter 0.1.42 files Included

make-playbook Python Python 3.8 stats files Included

run-playbook

Python

ExaBGP

Access to Tangled

Python 3.8

ExaBGP 4.1.2
Routing Playbook Included

Table 1: Software tools dependencies.

center, other data related to anycast catchment stability, and other

supporting data for our software tools. We provide codes for traffic

estimation, for reproducing experiments, and for parsing the col-

lected data.

H.3.1 How to access

Our datasets are available from the institutional storage system [6].

We provide the datasets based on requests [5]. After getting a request,

we provide the download instructions. Our software tools will be

available to download from its own webpage [10].

H.3.2 Hardware dependencies

Our whole uncompressed datasets size is over 1 TB. However, a user

can download the partial datasets [6]. An interested user may want

to look over the meta data of each dataset (using the README files),

and keep the required amount of free storage.

H.3.3 Software dependencies

We provide several tools for different purposes [10]. We tested our

software tools in Linux operating system. Some of our tools are

dependent on external data sources and binaries. In most cases,

we provide a sample data source with the package, and for other

cases one can download the datasets with our released dataset. We

provide the required binaries with our tools. One might need to

install dependencies like Python or Java. We detail dependencies on

(Table 1).

H.3.4 Data sets

We provide a full list of datasets in our web page [11].

We release datasets related to catchment distribution after routing

configuration changes. We announce different BGP options, run Verf-

ploeter to ping millions of responsive targets, and then capture the

responses at every site. Our dataset includes raw pcap files captured

from these measurements, and parsed data files in human-readable

format.

We also provide DDoS attack data collected from B-root and

Dutch national scrubbing center from 2015 to 2021.

Within other datasets, we provide datasets for anycast stability,

and other supporting datasets to run our software tools.

The READMEs for these datasets are available with the dataset

package.

H.3.5 Models

N/A

H.3.6 Security, privacy, and ethical concerns

We see no privacy concerns with our shared datasets. In cases like

the DDoS attack data, we only share the /24 prefixes to hide the

exact IP.

H.4 Installation

Instructions for running the tools are available in the webpages [10].

H.5 Evaluation and expected results

We provide the key results of the paper by mentioning the figures and

tables, and list the corresponding datasets and tools in Table 2. Next,

we list the key results, then we describe how can one get these results,

and possible variations in the results. Please check the detailed steps

to regenerate the graphs from the provided datasets.

H.5.1 Results with traffic estimation:

We propose a new technique to estimate the true offered load when

we have loss in the upstreams (Section 3.3 and 4 [9]). We show our

traffic estimation technique works well with the real world-attack

events. For traffic estimation, we provide a tool named TrafficEsti-

mator [14]. Using our traffic estimation tool, we show that we can

correctly estimate the true offered load for real-world DDoS events.

To reproduce the same result, one needs to feed the attack traces

to our program (provided as attack data in peering dataset [12]). One

needs to have the pcap traces that we used, and needs to install tshark

(with Wireshark) to feed the traffic content to our program. We used

tracefiles for 2015-11-30 and 2016-06-25 events. A user needs to

know the attack start time to use the right pcap files to observe the

estimation outputs. The provided README tells the attack start

time. We also need to provide a list of RIPE IPs that our program

will use (already provided with the tool). We provide the instructions

for running this tool in our webpage [14].

If running correctly, one can regenerate the same results that we

showed in the paper. Depending on the start and end time of the

attack trace, we might get a slightly different estimation. But on

average we expect to get the same results.

Detailed steps:

We show the results generated for 2015 and 2016 events. This cov-

ers Figure 4, Figure 12, and Table 1. We use the following datasets:

1. Non-attack traffic 2015: B_Root_Anomaly-20151130/29/2015

1129-065024-00175689.pcap.xz,

2. Non-attack traffic 2016: B_Root_Anomaly-20160625/24/2016

0624-200008-00356777.pcap.xz,

3. Attack traffic 2015: B_Root_Anomaly-20151130/30/2015113

0-065209-00177422.pcap.xz,

4. Attack traffic 2016: B_Root_Anomaly-20160625/25/2016062

5-221823-00357641.pcap.xz,

5. RIPE IPs 2015: ripe-ips-2015-11-30.txt (provided with the

tool),

6. RIPE IPs 2016: ripe-ips-2016-06-25.txt (provided with the

tool).

The first step is to calculate the RIPE traffic rate during normal

period (known-good traffic - normal column of Table 1). To get this

value, we feed non-attack traffic to our estimator to get the RIPE

traffic rate during normal period. We use the following command to

get this:

For 2015 event: xzcat B_Root_Anomaly-20151130/29/2015

1129-065024-00175689.pcap.xz | sudo tshark -r - -T fields -e

frame.time_epoch -e ip.src | java -jar TrafficEstimator.jar ripe-ip

s-2015-11-30.txt 192.228.79.131,2001:500:84::9077:f4f0

For 2016 event: xzcat B_Root_Anomaly-20160625/24/2016

0624-200008-00356777.pcap.xz | sudo tshark -r - -T fields -e

frame.time_epoch -e ip.src | java -jar TrafficEstimator.jar ripe-ip

s-2016-06-25.txt 192.228.79.62,2001:500:84::ad9b:d590

Please wait for some time to see the generated output in

the command prompt. The given addresses (192.228.79.* and

2001:500:84::*) are the B root server addresses (different because

of the different anonymization keys). This command will generate

an output like:

2015: “Time diff: 5.01 Counter-packets: 193 Rate: 38.47” 2016:

“Time diff: 5.06 Counter-packets: 195 Rate: 38.52”

Key results [9, 11] Shared datasets Related tools

Figure 3
sample dataset

provided with the tool

tangled tools [15]

bgp-tuner

Figure 4, Table 1, Figure 12

peering and root DNS dataset [12]

B_Root_Anomaly-20151130

B_Root_Anomaly-20160625

TrafficEstimator and selection tools [14]

TrafficEstimator

Figure 5

peering and root DNS dataset [12]

anycast_catchment_distribution-20200224:

prepending (3 sites) 2020-02-24

peering tools [15]

playbook_builder

load_parser

ParsingLoad

Figure 6
tangled dataset [13]

Usenix_anygility_5_sites_2022-03-24_NEW

tangled tools [15]

measurement scripts

tangler-cli, vp-cli

Anygility-Tangled-Catchment-load-distribution.ipynb

Figure 7

peering and root DNS dataset [12]

anycast_catchment_distribution-20200224,

community (3 sites) 2020-02-25

peering tools [15]

playbook_builder

load_parser

ParsingLoad

Figure 8
tangled dataset [13]

community dataset (3 sites)

tangled tools [15]

measurement scripts

tangler-cli, vp-cli

Table 5, Table 6

peering and root DNS dataset [12]

anycast_catchment_distribution-20200224:

prepending (3 sites) 2020-02-24,

community strings (3 sites) 2020-02-25,

poisoning (3 sites) 2021-04-09

peering tools [15]

load_parser

ParsingLoad

Figure 9

peering and root DNS dataset [12]

anycast_catchment_distribution-20200224:

prepending (3 sites) 2020-02-28

peering tools [15]

playbook_builder

load_parser

ParsingLoad

Figure 10

peering and root DNS dataset [12]

anycast_catchment_distribution-20200224:

prepending (3,5,7 sites) 2020-02-24,

2020-04-07, 2020-04-08

Community (3, 5, 7 sites) 2020-02-25 and 2020-04-19

peering tools [15]

playbook_builder

load_parser

ParsingLoad

Table 7

peering and root DNS dataset [12]

anycast_catchment_distribution-20200224:

baseline (3 sites) 2020-02,

2020-04, and 2020-06

peering tools [15]

load_parser

ParsingLoad

Figure 11
peering and root DNS dataset [12]

B_Root_Anomaly_message_question-20170306

peering tools [15]

ParsingLoad

TimeBasedPrefixLoad

AnycastSiteLoad

Figure 13

peering and root DNS dataset [12]

anycast_catchment_distribution-20200224:

poisoning (3 sites) 2021-04-09

peering tools [15]

load_parser

ParsingLoad

Figure 14
tangled dataset [13]

poisoning dataset (3 sites)

peering tools [16]

measurement scripts

tangler-cli, vp-cli

Figure 15
peering and root DNS dataset [12]

anycast_catchment_stability-20210701
-

Figure 16

peering and root DNS dataset [12]

B_Root_Anomaly_message_question-20200214

B_Root_Anomaly_message_question-20210528

peering tools [15]

ParsingLoad

TimeBasedPrefixLoad

AnycastSiteLoad

Table 2: Paper key results with datasets and tools. We provide the scripts to generate the graphs for our key results in our

webpage [11].

We waited until 5 s to fix the final rate of the RIPE IPs. This rate

is the cumulative rate measured from the start time. known-good

traffic - normal column from Table 1 has a similar value.

The second step is to run the same TrafficEstimation java utility

to find the estimated rate. We run the following commands for this:

2015 event: xzcat B_Root_Anomaly-20151130/30/201511

30-065209-00177422.pcap.xz | sudo tshark -r - -T fields -e

frame.time_epoch -e ip.src | java -jar TrafficEstimator.jar ripe-ip

s-2015-11-30.txt 192.228.79.131,2001:500:84::9077:f4f0 38.47

2016 event: xzcat B_Root_Anomaly-20160625/25/201606

25-221823-00357641.pcap.xz | sudo tshark -r - -T fields -e

frame.time_epoch -e ip.src | java -jar TrafficEstimator.jar ripe-ip

s-2016-06-25.txt 192.228.79.62,2001:500:84::ad9b:d590 38.52.

Please note that this command has an extra parameter (38.47

and 38.52) which we got from the previous command outputs. This

command will generate two types of output lines. For 2015 event,

we are showing a snapshot after 20 s, and for 2016 event we are

showing a snapshot after 42 s.

2015 event output:

Time diff: 19.99 Counter-packets: 37 Rate: 1.85 1448866349.106

Count-packets: 1604914 Observed rate: 320982.8 Estimated:

6674713.88

2016 event outptut:

Time diff: 41.98 Counter-packets: 14 Rate: 0.33

1466893148.1316 Count-packets: 451957 Observed rate:

90370.72 Estimated: 11186300

Our program shows the RIPE rate when it finds new RIPE IPs

in DNS traffic (starting after 1 minute). The observed rate line is

printed at every 5 s. So, the users normally observe more number of

first line.

The first line for 2015 event indicates that after 20 s during the

attack period, our program receives 37 RIPE packets at a rate of

1.85 RIPE packets/s. This value corresponds to the known good

traffic - observed column value from Table 1. Dividing by the prior

normal rate of 38.47, we get the access fraction value, α. The first

line for 2016 event indicates that the program gets 14 RIPE packets

within 41.98 s with a rate of 0.33 RIPE packets/s. This value indi-

cates the known good traffic - observed column value from Table

1. Dividing by the prior rate of 38.52 RIPE packets/s, we get the

value of access fraction, α in Table 1. Please note that, because of a

different RIPE IP list and measurement start time (using different

pcap files), we are getting a slightly different value than what we

have in the table.

Our program generates the second line at every 5 s. This line

indicates the timestamp at every 5 s, packet count within that 5 s, the

observed rate (packet count / 5.0), and the estimated traffic rate (ob-

served rate / α). This observed rate corresponds to the offered load

during attack - observed rate column of Table 1. For 2015 event, the

sample output value is close to 0.32M packets/s, and for 2016 event

this value is 0.09M packets/s. These two values are similar to what

we have in Table 1 (0.37 and 0.10). A user will observe variable rates

at different times. This observed rate is then divided by the calculated

access fraction (α) to get the estimated offered load—offered load

during attack - estimated column (∼6.6M queries/second for 2015

event and ∼11M queries/second for 2016 event), which is close the

reported rate of 5M queries/second and 10M queries/second, respec-

tively [7, 8]. We use the estimated values from our TrafficEstimation

program to generate the graphs—Figure 4 and Figure 12. Depending

on the attack start time and RIPE IPs, the estimated values may vary

slightly but we expect to get a similar trend. The offered load during

attack - normal column indicates the normal traffic rate at a given

time which we can measure from B root traffic (TrafficEstimator

tool can measure this; we just need to feed the normal traffic with the

known RIPE rate parameter) but we are skipping this detail since it is

not directly related to the key outcomes. α̂ is calculated by dividing

observed rate by the reported rate.

Our outcomes for known-traffic measurement, and estimated rate

measurement may vary depending on the RIPE IPs we used and the

traffic data we are using. We tried 5 s of traffic to find out the known

traffic rate. This choice is arbitrary, a user can wait for some more

time. Given the RIPE IPs that we provided, a user may expect to see

25-50 RIPE queries per second. Please note that, we used a subset

of RIPE IPs. A larger RIPE IP set along with their consistent signal

would ensure more stable RIPE query rate. We also provided some

snapshots for the estimated rate measurement. Please note that, they

are just snapshots. Estimated rates are dependent on the observed

traffic rates (always varying), and the access fraction.

H.5.2 Building BGP playbook:

We propose a BGP playbook to fight against DDoS attacks. We build

the BGP playbook with different routing options and their impacts

over traffic distribution (Section 6 and 7 [9]). We show that BGP

playbook can help the operators to select the right routing option

during an attack event, and a playbook can provide a granular control

over traffic distribution.

To reproduce the result, a user needs to announce different BGP

configurations, and then run Verfploeter/pinger [3] to learn the pre-

fixes to anycast site catchment. We provide scripts (playbook_builder

in Peering and tangler-cli in Tangled) for our testbeds to makes these

announcements automatically [15, 16]. One needs to have access

to the testbeds to run this experiment. We used Peering [17] and

Tangled [2] testbeds. These testbeds authorize an anycast prefix

for a specific time period. One needs to ask for permission with a

proposal to use these testbeds [1,18]. Our script is dependent on verf-

ploeter/pinger tool which is available online [3], and we provide a

binary. This tool needs a target hitlist of IPs which we provided with

our dataset (search for internet_address_history_it88w20191127 [6]).

We provide a tool named getting_hitlist_ips to parse this raw hitlist

file to get the list of responsive IPs. The instruction to run these tools

is available in our webpage [15, 16].

To validate our results, we also provide the datasets that we got

from our experiments. We include captured pcap files, and data

in human-readable format for Peering [12], and in csv format for

Tangled [13]. To reproduce results from the collected data, we also

provide tools called load_parser and ParsingLoad in Peering [15],

and measurement scripts in Tangled [16].

Our result is dependent on the stability of the network state. Since

anycast catchment is fairly stable, we expect to get a slight variation

but similar results if we rerun the experiment.

Detailed steps: We provide an example here to reproduce Fig-

ure 5 from our paper. Other similar graphs and tables like Figure

5—Figue 7, Figure 8, Table 5, Table 6, Figure 9, Figure 10, Table

7, Figure 13, Figure 14 can be generated using the similar process.

Please note that figures for community strings and path poisoning

(Figure 7, Figure 10, and Figure 13) for Peering utilizes only Pars-

ingLoad utility alone (we provide the details later in this subsection).

At first, one needs to run playbook_builder tool to make BGP

announcements for every prepending option. This step is dependent

on getting access from the Peering testbed. Also, Internet routing

changes, and we will not get the same outputs that we received while

doing the experiment. As a result, we provide the collected data in

pcap form to skip this step. Please find this dataset in peering and root

DNS dataset—prepending (3 sites) 2020-02-24. The other datasets

for other figures mentioned in prior paragraph are also provided.

To recreate Figure 5, we provide the following datasets:

1. The pcap files in peering and root DNS dataset: anycast_catch

ment_distribution-20200224/Path_Prepending_AMS,BOS,C

NF-20200224,

2. The IP hitlist internet_address_hitlist_it88w-20191127/interne

t_address_hitlist_it88w-20191127.fsdb.bz2,

3. Some "load" data, provided with the software tool (we consider

catchment in this figure so a full load data is not important).

After having these data, one needs to run anygility-

peering/src/getting_histlist_ips/getting_hitlist_ips on the hitlist:

bzcat /data/internet_address_hitlist_it88w-20191127/internet_a

ddress_hitlist_it88w-20191127.fsdb.bz2 | python3 ./getting_hitlist_i

ps/data/ip_list_20191127.txt.

This will create a text file, ip_list_20191127.txt, containing one

responsive IP address per line.

Then one needs to run anygility-peering/src/load_parser/load_par

ser.sh on the pcaps with the generated IP hitlist and sample load-file,

and its corresponding load-date (e.g. –load=. –ldate=2022-02-01 to

use the one provided with the tool):

bash load_parser.sh --numbers=3 --sites=AMS,BOS,CNF --date

=2020-02-24 --dir=/data/anycast_catchment_distribution-2020022

4/Path_Prepending_AMS,BOS,CNF-20200224/ --load=.--ldate=2

022-02-01 --hitlist=/data/ip_list_20191127.txt Please note that the

trailing / in the –dir argument is necessary.

This will run the ParsingLoad java utility for each announcement

configuration, which will

• generate .dat files with ping responses from the .pcap files

using pingextract utility.

• compute catchment data, both in terms of /24-blocks and “load”

and store these as .txt files inside the data directory. For each

announcement configuration, two files <DATE>-catchment-

percentage.txt and <DATE>-load-percentage.txt are created.

In addition, a combined all-<DATE>-load-<LOAD-DATE>.txt

file is created in the data root directory.

The content of all-<DATE>-load-<LOAD-DATE>.txt consists of

multiple blocks of this form:

<routing-configuration-path>

- <missing /24 count> <missing /24 relative>

site_1 <site_1 /24 count> <site_1 /24 relative> <site_1 /24 relative

received>

[...]

site_n <site_n /24 count> <site_n /24 relative> <site_n /24 relative

received>

multiple <multiple /24 count> <multiple /24 relative> <multiple

/24 relative received>

- <missing load count> <missing load relative>

site_1 <site_1 load count> <site_1 load relative> <site_1 load

relative received>

[...]

site_n <site_n load count> <site_n load relative> <site_n load

relative received>

multiple <multiple load count> <multiple load relative> <multiple

load relative received>

Figure 5 then shows bar-graphs created from the <site_x /24

relative received> values.

Using ParsingLoad alone: The script load_parser utilizes Pars-

ingLoad for each of the path prepending configurations. When we

are not parsing path prepending configurations, we can just utilize

ParsingLoad utility alone. We utilize ParsingLoad alone for commu-

nity strings and path poisoning (Figure 7 and Figure 13). We run

ParsingLoad for each of these routing configuration separately.

java -jar ParsingLoad.jar 3 AMS,BOS,CNF anycast_catchment_

distribution-20200224/Community_Strings_AMS,BOS,CNF-2020

0225/2020-02-25-AMS,BOS,CNF-AMS-ALL-PEERS/ /nfs/lander

/traces/verfploeter/broot_verfploeter/Peering/Peering_Mapping/20

20/community_strings/2020-02-25-AMS,BOS,CNF-AMS-ONLY-

PEERS/ 2020-02-25 loads/ 2020-02-22

The output has the same format like all-<DATE>-load-<LOA

D-DATE>.txt as we mentioned above. We combine these gener-

ated files to build Figure 7 and Figure 13. We use ParsingLoad

separately for each routing configuration with community strings

and path poisoning. But a script for all the community string and

path poisoning options is also possible. For path poisoning, we used

poisoning datasets (inside anycast_catchment_distribution-2020022

4) for AS174 (Tier-1), AS8283 (Transit-2), and AS12859 (Transit-1).

H.5.3 Selection from the playbook:

We provide a tool [14] to select the right routing configuration from

the BGP playbook (Section 3.4.2 [9]). Using this tool, we show

that an automated approach can be useful to select the right routing

approach.

Our selection tool provides output based on the current playbook,

and offered load. To show how the selection tool works, we provide

a sample playbook (based on Table 5 [9]), and a load file. When the

users run the tool with the given inputs, they can see the selection

output. We also include a tool named bgp-tuner for showing the

graphical interface [16].

Depending on the playbook and offered load, one can observe a

different output, which can be a complete different policy selection.

Detailed steps: We provided a sample playbook and offered load

file with the playbook_tuner tool. Please run the following command

to see the outputs from this program:

cat load.txt | ./playbook_tuner –setup "playbook.txt"

This will result the following output:

Overloaded site: AMS

Suggested config: 1AMS, Estimated load distribution: 41292.64

29494.75 41292.64

Other configs: Poison-Tier-1, Estimated load distribution:

41292.64 29494.75 41292.64

Other configs: Poison-Tier-2, Estimated load distribution:

41292.64 29494.75 41292.64

This tells that prepending AMS by 1 would provide the best

possible load distribution. Some other options are also possible.

H.5.4 Attack mitigation:

We show that BGP playbook is helpful to mitigate the real-world

DDoS events.

To reproduce the same result, we provide the B-root attack traces

in pcap and in message question formats [12]. Due to privacy reason,

we cannot share the attack data from the Enterprise and Dutch Na-

tional Scrubbing Center. We also provide the catchment distribution

for different BGP changes [12,13]. Matching the attack prefixes and

attack loads to the prefix-wise catchment gives us the traffic distri-

bution at different sites. If one wants to test the B-root event, they

need to run TimeBasedPrefixLoad tool to get the per prefix attack

load [15]. Then one needs to run AnycastSiteLoad program to get

the per anycast site load [15].

Since the attack and catchment mapping are fixed, we expect to

get the same results that we showed in the paper.

Detailed steps: We show the detailed steps to generate Figure

11(a) here. All other subfigures of Figure 11 and Figure 16 can be

generated using the similar process.

To generate Figure 11(a), we need the following datasets:

1. peering and root DNS dataset: B_Root_Anomaly_message_q

uestion-20170306/: Figure 11(a) shows 10000 s of traffic. To

make the data processing faster, we recommend to use a subset

of this whole timeframe. We recommend the user to download

the datasets from 06:40:00 AM to 06:50:00 AM to reproduce

a fraction of the whole timeframe combining both attack and

non-attack period. The file names represent the dates and times

(format: YYYYMMDD-HHMMSS-*).

2. peering and root DNS dataset: anycast_catchment_distribution

-20200224/Path_Prepending_AMS,BOS,CNF-20200224/202

0-02-24-AMS,BOS,CNF/

3. peering and root DNS dataset: /anycast_catchment_distrib

ution-20200224/Community_Strings_AMS,BOS,CNF-202

00225/2020-02-25-AMS,BOS,CNF-AMS-Transit-1-Trial-2

/(update: this Trial-2 dataset is newly added. We also provided

Trial-1 dataset for 2020-02-25-AMS,BOS,CNF-AMS-Transit-

1 which will give a similar output, but we did not use that in

the paper).

At first, run the TimeBasedPrefixLoad java utility on the down-

loaded message_question format data. We only need time, source

IP and message length for our measurement. message_question for-

matted files have several attributes/columns. We used fsdb tool to

retrieve the times, source IPs, and message length [4]. Please follow

the instruction to install FSDB from here: https://www.isi.edu/

~johnh/SOFTWARE/FSDB/perl-Fsdb-2.74_README.html. Next,

use the following command to run TimeBasedPrefixLoad jar to

generate the prefix-wise load for each 5 s:

xzcat B _ R o o t _ A n o m a l y _ m e s s a g e _ q u e s t i o n - 2 0 1 7

0306/06/20170306-044* | dbcol time srcip msglen |

java -jar TimeBasedPrefixLoad.java o u t p u t - 2 0 1 7 0 3 0 6 /

192.228.79.64,2001:500:84::bb26:87a2.

Here, dbcol is a utility from FSDB to select the right column

from the message_question format dataset. output-20170306 will

have multiple txt files named with a number indicating the time

segment. This command will generate prefix-wise load at every 5 s

in output-20170306 directory: <network_prefix> <number_load>

<bytes>.

Then we run AnycastSiteLoad java utility to find out the per site

load at every 5 s. We run this utility for two routing configurations—

one without any routing change and one with announcing only to

Transit-1.

java -jar AnycastSiteLoad.jar 3 AMS,BOS,CNF anycast_catchm

ent_distribution-20200224/Path_Prepending_AMS,BOS,CNF-202

00224/2020-02-24-AMS,BOS,CNF/ 2020-02-24 output-20170306/

2017-03-06,

java -jar AnycastSiteLoad.jar 3 AMS,BOS,CNF anycast_catch

ment_distribution-20200224/Community_Strings_AMS,BOS,CN

F-20200225/2020-02-25-AMS,BOS,CNF-AMS-Transit-1-Trial-2/

2020-02-25 output-20170306/ 2017-03-06.

Please note that these two commands utilize output-20170306

that we generated in our previous step. These two commands gen-

erate two files in the corresponding catchment directory named

as <CATCHMENT-DATE>-load-<ATTCK-DATE>-ingress.txt. The

output format inside the file: <time> <site-1> <count-site-1> <bit-

site-1> <...> <site-n> <count-site-n> <bit-site-n>. The first file con-

tains load without any routing change, the second file contains load

after announcing only to Transit-1. We combine these two files to

show non-attack period (no policy deployed), and period when the

route propagation is done (when we deployed Transit-1).

To match the results with the Figure 11(a), the first output file will

contain (<count-site-n> column) traffic load during normal period

(before 0 s from the graph with around 20k packets/s). The first out-

put file also contains the attack traffic (AMS load over 60k packets/s

after 160 s of the first file). This is similar to the traffic from 0 s to

300 s of Figure 11(a). After that we announce only to Transit-1 (after

300 s of Figure 11(a)). The second output file contains this data (after

160 s from the file).

H.6 Notes

Considering the real datasets are big, and time expensive to run, we

include smaller datasets collected using a small hitlist fraction (0.1%

of original size) in experiments with Tangled. While the produced

playbook will differ from paper results, we believe it can help for

testing purpose. For Peering tools, we sometimes include smaller

sample supporting data files.

If desired, we can provide access to the Tangled testbed. Access to

Peering testbed is dependent on the approval from Peering admins.

H.7 Version

Based on the LaTeX template for Artifact Evaluation V20220119.

References

[1] Tangled admins. Tangled anycast testbed. https://

anycast-testbed.nl/, 2019. [Online; accessed 15-Feb-

2022].

[2] Leandro M Bertholdo, Joao M Ceron, Wouter B de Vries, Ri-

cardo de Oliveira Schmidt, Lisandro Zambenedetti Granville,

Roland van Rijswijk-Deij, and Aiko Pras. Tangled: A co-

operative anycast testbed. In 2021 IFIP/IEEE International

Symposium on Integrated Network Management (IM), pages

766–771. IEEE, 2021.

[3] Wouter De Vries. Verfploeter/pinger: Active measurement

of anycast catchements. https://ant.isi.edu/software/

verfploeter/pinger/index.html, 2019. [Online; accessed

15-Feb-2022].

[4] John Heidemann. John heidemann / software / fsdb. https:

//www.isi.edu/~johnh/SOFTWARE/FSDB//, 1991. [Online;

accessed 19-Mar-2022].

[5] Analysis of Network Traffic (ANT) group. Ant dataset re-

quests. https://ant.isi.edu/datasets/requests.html,

2022. [Online; accessed 15-Feb-2022].

[6] Analysis of Network Traffic (ANT) group. Ant datasets.

https://ant.isi.edu/datasets/index.html, 2022. [On-

line; accessed 15-Feb-2022].

[7] Root Server Operators. Events of 2015-11-

30. https://root-servers.org/media/news/

events-of-20151130.txt, 2015. [Online; accessed

12-Oct-2021].

[8] Root Server Operators. Events of 2016-06-

25. https://root-servers.org/media/news/

events-of-20160625.txt, 2016. [Online; accessed

12-Oct-2021].

[9] A S M Rizvi, Leandro Bertholdo, João Ceron, and John Heide-

mann. Anycast agility: Network playbooks to fight DDoS. In

Proceedings of the 31st USENIX Security Symposium, page to

appear. USENIX, August 2022.

[10] A S M Rizvi, Leandro Bertholdo, Joao Ceron, and John Hei-

demann. anygility - anycast agility tools: playbook builder

and decision maker. https://ant.isi.edu/software/

anygility/index.html, 2022. [Online; accessed 2-Mar-

2022].

[11] A S M Rizvi, Leandro Bertholdo, Joao Ceron, and John

Heidemann. Artifacts about anycast agility against ddos.

https://ant.isi.edu/datasets/anycast/anycast_

against_ddos/index.html, 2022. [Online; accessed

2-Mar-2022].

[12] A S M Rizvi, Leandro Bertholdo, Joao Ceron, and John Heide-

mann. Datasets about anycast agility against ddos in peer-

ing testbed. https://ant.isi.edu/datasets/anycast/

anycast_against_ddos/peering/index.html, 2022. [On-

line; accessed 2-Mar-2022].

[13] A S M Rizvi, Leandro Bertholdo, Joao Ceron, and John Hei-

demann. Datasets about anycast agility against ddos in tan-

gled testbed. https://ant.isi.edu/datasets/anycast/

anycast_against_ddos/tangled/index.html, 2022. [On-

line; accessed 15-Feb-2022].

[14] A S M Rizvi, Leandro Bertholdo, Joao Ceron, and

John Heidemann. Tools about anycast agility against

ddos. https://ant.isi.edu/software/anygility/

system/index.html, 2022. [Online; accessed 2-Mar-2022].

[15] A S M Rizvi, Leandro Bertholdo, Joao Ceron, and John Hei-

demann. Tools about anycast agility against ddos in peer-

ing testbed. https://ant.isi.edu/software/anygility/

peering/index.html, 2022. [Online; accessed 2-Mar-2022].

[16] A S M Rizvi, Leandro Bertholdo, Joao Ceron, and John Heide-

mann. Tools about anycast agility against ddos in tangled

testbed. https://ant.isi.edu/software/anygility/

tangled/index.html, 2022. [Online; accessed 2-Mar-2022].

[17] Brandon Schlinker, Todd Arnold, Italo Cunha, and Ethan Katz-

Bassett. PEERING: Virtualizing BGP at the Edge for Research.

In Proc. ACM CoNEXT, Orlando, FL, December 2019.

[18] Peering The BGP Testbed. Peering the bgp testbed. https:

//peering.ee.columbia.edu/, 2019. [Online; accessed 15-

Feb-2022].

