ARTIFACT
EVALUATED
Fusenix

ARTIFACT
EVALUATED
yusenix

ARTIFACT
EVALUATED
susenix

AAAAAAAAAAA

AVAILABLE REPRODUCED

Anycast Agility: Network Playbooks to Fight DDoS

A S M Rizvi* Leandro Bertholdo*
USC/ISI University of Twente
Abstract

IP anycast is used for services such as DNS and Content
Delivery Networks (CDN) to provide the capacity to han-
dle Distributed Denial-of-Service (DDoS) attacks. During a
DDoS attack service operators redistribute traffic between
anycast sites to take advantage of sites with unused or greater
capacity. Depending on site traffic and attack size, operators
may instead concentrate attackers in a few sites to preserve
operation in others. Operators use these actions during at-
tacks, but how to do so has not been described systematically
or publicly. This paper describes several methods to use BGP
to shift traffic when under DDoS, and shows that a response
playbook can provide a menu of responses that are options
during an attack. To choose an appropriate response from this
playbook, we also describe a new method to estimate true
attack size, even though the operator’s view during the attack
is incomplete. Finally, operator choices are constrained by
distributed routing policies, and not all are helpful. We ex-
plore how specific anycast deployment can constrain options
in this playbook, and are the first to measure how generally
applicable they are across multiple anycast networks.

1 Introduction

Anycast routing is used by services like DNS or CDN where
multiple sites announce the same prefix from geographically
distributed locations. Defined in 1993 [49] anycast was widely
deployed by DNS roots in the early-2000s [4, 29, 64], and
today it is used by many DNS providers and Content Delivery
Networks [16,17,24,26, 80].

In IP anycast, BGP routes each network to a particular any-
cast site, dividing the world into catchments. BGP usually
associates networks with nearby anycast sites, providing gene-
rally good latency [62]. Anycast also helps during Distributed-
Denial-of-Services (DDoS) attacks, with each site adds to the
aggregate capacity at lower cost than a single very large site.
Each site is independent, so should DDoS overwhelm one
site, sites that are not overloaded are unaffected.

DDoS attacks are getting larger and more common. Differ-
ent root servers and anycast services frequently report DDoS
events [18,42,47,48]. Different automated tools make it easier
to generate attacks [81], and some offer DDoS-as-a-Service,
allowing attacks from unsophisticated users for as little as

*Shared first author

John Heidemann
USC/ISI

Jodo Ceron
SIDN Labs

US$10 [68]. DDoS intensity is still growing, with the 2020
CLDAP attack exceeding 2.3 Tb/s in size [66], and the 2021
VoIP.ms attack lasting for over 5 days [50, 65]. The reservoir
of attack sources grow with millions of Internet-of-Things
devices whose vulnerabilities fuel botnets [35].

Operators depend on anycast during DDoS attacks to pro-
vide capacity to handle the attack and to isolate attackers in
catchments. Service operators would like to adapt to an on-
going attack, perhaps shifting load from overloaded sites to
other sites with excess capacity. Prior studies of DDoS events
have shown that operators take these actions but suggested
that the best action to take depends on attack size and loca-
tion compared to anycast site capacity [45]. While prior work
suggested countermeasures, and we know that operators alter
routing during attacks, to date there has been only limited
evaluation of how routing choices change traffic [4,27,36,52].
Only very recent work examined path poisoning to avoid con-
gested paths [70]; there is no specific public guidance on how
to use routing during an attack.

The goal of this paper is to guide defenders in traffic engi-
neering (TE) to balance traffic across anycast during DDoS.

Our first contribution is a system with novel mechanism to
estimate true attack rate and plan responses. First, we propose
a new mechanism to estimate the true offered load, even when
loss happens upstream of the defender. Estimating the relative
load on each site (§3.3) is the first step of defense, so that the
defender can match load to the capacities of different sites,
or decide that some sites should absorb as much of the attack
as possible. Second, we develop a BGP playbook: a guide
that allows operators to anticipate how TE actions rebalance
load across a multi-site anycast system. Together, these two
elements provide a system that can automate response to
DDoS attacks by adjusting anycast routing according to the
playbook, or recommend actions to a human operator.

The second contribution is to understand how well routing
options for multi-hop TE work: AS prepending, community
strings and path poisoning. While well known, it is not widely
understood how available and effective these mechanisms are.
In §6 we show that while AS prepending is available almost
anywhere, community strings and path poisoning support
varies widely. We also show that their effectiveness varies
greatly, in part because today’s “flatter Internet” [15] means
AS prepending often shifts either nearly all or nearly no traffic.
Community strings provide finer granularity control, but we

show their support is uneven. Path poisoning may provide
control multiple hops away, but like community strings it
is often filtered, particularly for Tier-1 ASes. When these
factors combine with the interplay between multiple sites and
an anycast system, a BGP playbook is important to guide
defenders. Since the effects of TE are often specific to the
peers and locations of a particular anycast deployment, we
explore how sensitive our results are to different locations and
numbers of anycast sites (§7).

Our final contribution is to demonstrate successful defenses
in practice. We replay real-world attacks in a testbed and
show TE can defend (§8). Of course no single defense can
protect against all attacks, these examples show our approach
provides a successful defense to many volumetric and poly-
morphic DDoS attacks. They show that our algorithm and
process contributions (attack size estimation and playbook
construction) have practical application.

Our work uses publicly available datasets. Datasets for the
input and results from our experiments are available at no
charge. Because our data concerns services but not individu-
als, we see no privacy concerns.

2 Related Work

Anycast routing has been studied for a long time from the
perspective of routing, performance, and DDoS-prevention.

BGP to steer traffic: Prior work showed BGP is effective
to steer traffic to balance load on links [8,27,53]. However,
Ballani et al. showed that anycast requires planning and care
for effective load balancing [4]. Others proposed to manipu-
late BGP based on packet loss, latency and jitter [46,52]. We
build on Ballani’s recommendation to plan anycast, proposing
a BGP playbook, and studying how well it can work.

Chang et al. [14] suggested using BGP Communities for
traffic engineering [10, 13, 74]. Recent work has examined
BGP communities for blackhole routing in IXPs and ISPs [21,
28]. Smith and Glenn examined path poisoning to address link
congestion [70]. While each of these are important options in
routing for defense, we show a system that guides the operator
to select between them. A system with multiple choices is
necessary because no single method works against all attacks.
For example, we show path poisoning does not work when
we poison a Tier-1 AS.

Anycast performance: Most anycast research focused on
efficient delivery and stability [11,39,40,59,79]. Later studies
explicitly investigate the proximity of the clients [4, 11,39].

Some studies try to improve anycast through topology
changes [44, 62]. Anycast services for DDoS is already used
in commercial solutions e.g., Amazon [63], Akamai [75] and
AT&T [72]. However, none of them address how to use rout-
ing manipulations as a DDoS defense mechanism.

Anycast catchment control as a DDoS mitigation tool:
To our knowledge, the idea of handling DDoS attacks by ab-
sorbing or shifting load across anycast sites was first published
in 2016 [45]. Kuipers et al. [36] refined that work, defining

Before attack
MAPPING

Compute BGP | s—)

-
playbook o

BGP Playbook

DEFENSE
DETECTION ESTIMATION STRATEGY DEPLOY

|::> . |::> Pick rule from |::> Deploy selected
Detect DDoS Att;ck size playbook to BGP-TE and
attack estimation shift or measure

o e absorb o impacts

Figure 1: Overview of the decision process.

the traffic shifting approaches that we review in §3.4 and
explore through experiment. We develop the idea of a BGP
playbook to guide responses, and describe a new approach to
estimate attack size, and finally show that responses can be
effective with real-world events.

Commercial and automated solutions: Most published
commercial anti-DDoS solutions use routing to steer traffic
towards a mitigation infrastructure [22]. Sometimes there
is a requirement for all the sites to be connected through a
private backbone to support traffic analysis [63]. Another de-
fense uses BGP to divert all traffic to a scrubbing center, then
tunnels good traffic to the destination [69]. Other methods
use DNS manipulation [12], or anycast proxies [30] which
cannot be used in DNS anycast deployments itself. Rather
than outsourcing the problem, we explore how one can de-
fend it. Other automated defenses include responsive resource
management [25], client-server reassignment [34], and fil-
tering approaches [58]. Our method uses TE approaches to
efficiently use available resources in anycast.

3 Mechanisms to Defend Against DDoS

In this section we describe our BGP mitigation process; how
we pre-compute a BGP playbook, estimate the attack size and
select a TE response.

3.1 Overview and Decision Support

In Figure 1 we show how defense against DDoS works. De-
fense against a DDoS begins with detection (2), then defen-
ders plan a defense (4), carry it out (5), and repeat this process
until the attack is mitigated or it ends (bottom cycle in Fig-
ure 1). Detecting the attack is straightforward, since large
attacks affect system performance. The challenge is selecting
the best response and quickly iterating.

We bring two new components to attack response (colored
light green in Figure 1): mapping before the attack, and es-
timating attack size when the attack begins. Mapping (1)
(discussed in §3.2) provides the defender with a playbook of
planned responses and the information about how they will
change the traffic mix across their anycast system. Size estima-
tion @ (discussed in §3.3) allows the defender to determine
how much traffic should be moved and select a promising
response from the playbook. Together, these tools help to

understand not only how to reduce traffic at a given site, but
also the sites where that traffic will go.

These components come together in our automated res-
ponse system (§3.4) that iterates between measurement and
attack size estimation, defense selection, then deployment.
Defense uses the playbook built during mapping; we provide
an example playbook in §6.4. We show how these defenses
operate in testbed experiments in §8.

Our system is designed for services that operate with a fixed
amount of infrastructure on specific anycast IP addresses and
do not employ a third-party scrubbing service. Operators of
CDNs with multiple anycast services, DNS redirection, or
scrubbing services may use our approach, but also have those
other tools. However, many operators cannot or prefer not to
use scrubbing and DNS redirection: all operators of single-
IP services (all DNS root servers), many ccTLDs who value
national autonomy, and scrubbing services themselves. Our
approach defends against volumetric attacks where we have
spare capacities in other sites. Since DDoS causes unavailabi-
lity of services, suboptimal site selection during an attack is
not a concern.

3.2 Measurement: Mapping Anycast

We map the catchments of anycast service before an attack
so that the defender can make an informed choice quickly
during an attack, building a BGP playbook (§6.4).

To map anycast catchments we used Verfploeter [20]. As an
active prober (ICMP echo request), Verfploeter observes the
responses of all ping-responsive IPv4 /24s and maps which
anycast site receives the responses. We provide a detailed
description of anycast and Verfploeter in Appendix A. Since
mapping happens before the attack, mapping speed is not an
issue.

Alternatively, we can map traffic by observing which cus-
tomers are seen at each site over time, or measuring from
distributed vantage points such as RIPE Atlas [3,73]. (Opera-
tors may already collect this information for optimization.)

Mapping should consider not only the current catchments
but also potential shifts we might make during the attack.
This full mapping is easy to do with Verfploeter, which can
be continuously running in an adjacent BGP prefix to map
the possible shifts. This mapping process is important to
anticipate how traffic may shift. We will show later that BGP
control is limited by the granularity of routing policy (§6) and
by the deployment of the anycast sites (§7).

A challenge in pre-computed maps with routing alternatives
is that routing is influenced by all ASes. Thus, the maps may
shift over time due to changes in the routing policies of other
ASes. Fortunately, prior work shows that anycast catchments
are relatively slow to change [79]. We also show that our BGP
playbook is stable over time (§6.4 and Appendix E).

3.3 Estimation of the Attack Size

After the detection of an attack, the first step in DDoS defense
is to estimate the attack size, so we can then select a defense

strategy of how much traffic to shift. Our goal is to measure
offered load, the traffic that is sent to (offered to) each site.
During DDoS offered load balloons with a mix of attack and
legitimate traffic, and loss upstream of the service means we
cannot directly observe true offered load. We later evaluate
our approach with real-world DDoS events (§4).

Idea: Our insight is that we can estimate true offered load
based on changes in some known traffic that actually does
arrive at the service, even when there is upstream loss.

To know how much offered load actually arrives at the ser-
vice, we need to estimate some fraction of legitimate traffic.
We can then observe how much this traffic drops during the
attack, inferring upstream loss. Unfortunately, there is no ge-
neral way to determine all legitimate traffic, since legitimate
senders change their traffic rates, and attackers often make
their traffic legitimate-appearing. Our goal is to reliable es-
timate some specific legitimate traffic; we describe several
sources next.

Traffic sources: There are several possible sources of
known legitimate traffic—we consider known measurement
traffic and regular traffic sources that are heavy hitters [5].

For DNS, our demonstration application, RIPE Atlas pro-
vides a regular source of known-good traffic, sent from many
places. RIPE makes continuous traffic from around 10k
publicly available vantage points [55]. Each RIPE vantage
point queries every 240 s, and there is enough traffic (about
2500 queries/minute) to provide a good estimate of offered
load. (Although RIPE Atlas is specific to DNS, other commer-
cial services often have similar types of known monitoring
traffic.)

To find the known-good traffic at each site, we use the
catchments of RIPE vantage points with pre-deployed RIPE
DNS CHAOS queries (one exists for each root DNS IP, such
as measurement ID 11309 for A-root). We can also use Verf-
ploeter or captured traces in the anycast sites. An advantage
of using RIPE traffic is that it does not place any new load on
the service.

Heavy hitters can provide an additional source of known-
good traffic. Many services have a few consistently large-
volume users with regular traffic patterns, and while they vary
over time, many are often stable. For DNS, we find that most
heavy hitters have a strong diurnal variation in rate; we model
them with TBATS (Trigonometric seasonality, Box-Cox trans-
formation, ARMA errors, Trend and Seasonal) [19] to factor
out such known variation. While an adversary could spoof
heavy hitters, that requires a large and ongoing investment to
succeed.

Estimation: Our goal is to estimate offered load, T,f, e -
We can measure the observed traffic rate, T, pz.ve4> at the ac-
cess link. We define o as the access fraction—the fraction of
traffic that is not dropped. Therefore T,p 510 = O Toffered-

To estimate the access fraction (), we observe that known
good traffic has the same loss on incoming links as does
other good traffic and attack traffic. We estimate the known

traffic rate (from RIPE Atlas measurement traffic, or from
heavy hitters, or both), as Tiyy,- Then & - Tyoyn offered =

Tknown,observed» and our estimate of offered load is Toﬁ‘ered =
Tobserved : Tknown, offered / Tknown, observed-
3.4 Traffic Engineering as a Defense Strategy

With knowledge of the offered load, the defender can select
an overall defense strategy that will drive traffic engineering
decisions. The defender first must determine if the attack
exceeds overall capacity or not.

For attacks that exceed overall capacity, the defender’s goal
is to preserve successful service at some sites, while allowing
other sites to operate in degraded mode as absorbers [45].
The defender may also choose to shift traffic away from some
degraded sites to ease their pain. Unloading the overloaded
sites is recognized as breakwaters [36].

For moderate-size attacks, the defender should try to serve
all traffic, rebalancing to shift traffic from overloaded sites
to less busy sites. In heterogeneous anycast networks, where
some sites have more capacity than others, the defense appro-
ach can be different. In these cases, larger, “super”-sites can
attract traffic from smaller sites. For moderate-size attacks, it
may even be best for smaller sites to shut down if the super-
sites can handle the traffic.

Regardless of attack size, traffic engineering allows the
defender to shift attack traffic to absorber or breakwater sites.
We next describe traffic engineering options, and then how
one can automate response. For operators unwilling to fully
automate response, our system can still provide recommenda-
tions for possible actions and their consequences.

3.4.1 Traffic Engineering to Manage an Attack

Given an overall defense strategy (absorb or rebalance), the
defender will use traffic engineering to shift traffic, either
automatically (§3.4.2) or as advice under operator supervision.
For anycast deployments connected by the public Internet,
BGP [8] will be the tool of choice to control routing and
influence anycast catchments. Organizations that operate their
own wide-area networks may also be able to use SDN to
manage traffic on their internal WAN [31, 61]. Fortunately,
BGP has well established mechanisms to manage routing
policy. We use three BGP mechanisms in the paper: AS-Path
prepending, BGP communities and Path Poisoning.

AS-Path Prepending is a way to de-prefer a routing path,
send traffic to other catchments. BGP’s AS-Path is the list of
ASes back to the route originator. The AS-Path both prevents
routing loops and also serves as a rough estimate for distance,
with BGP preferring routes with shorter AS-Paths. By artifi-
cially inserting extra ASes into the AS-Path, the route origina-
tor can de-prefer one site in favor of others. Path prepending
is known to be a coarse routing technique for traffic engineer-
ing. We measure how fine the control AS-Path prepending
provides to anycast in §6.1.

We define Negative Prepending as the use of AS-Path
prepending to draw traffic towards a site, preferencing one

TE options to deprefer Site-1
AS_1: as-prepend : AS_4

AS_1 rt AS-5 --- PoISONING.---2-> @

1 no-export : peers - AS- o

AS_1: poison : AS_3 //ASL' 7, -
(attac

F7% - ----prepending. _

ST < attack s =
D As4 Y e

Rl /(“\ attack

“~=~--no_export.

Anycast

Network Ste1 /T P AS5

AS 2

©@—>

Site-3 Site-2

Figure 2: TE techniques to shift traffic from Site-1 to Site-2.

site over others. Prepending can only increase path lengths,
but an anycast operator in control of all anycast sites can
prepend at all sites except one, in effect giving that site a
shorter AS-Path (relative to the other sites) than it had before.
“Negative prepending by one at site S” is, therefore, shorthand
for prepending by one at all sites other than S.

Long AS-Paths due to prepending can make prefixes more
vulnerable to route hijacking [41]. However, this issue has
a small impact on anycast prefix, as always there is a site
announcing without any prepend, keeping the path length
limited. We suggest that formal defenses to hijacking such
as RPKI are needed even without prepending, and when they
are in place, prepending can be an even more valuable tool
for TE.

BGP Communities (or community strings) label specific
BGP routes with 32 or 64 bits of information. How this infor-
mation is interpreted is up to the ASes. While not officially
standardized, a number of conventions exist where part of the
information identifies an AS and the other part a policy such
as blackholing, prepend, or set local-preference. Community
strings are widely supported to allow ISPs to delegate some
control over routing policy to their customers [1,74].

Path Poisoning is another way to control the incoming
traffic. This technique consists of adding the AS of another
carrier to the AS PATH. Paths that repeat ASes in different
parts of the AS PATH indicate routing loops and must be
discarded by BGP.

When using path poisoning we announce a path with both
the poisoned AS and own AS (otherwise neighbors may filter
our announcement as not from us). We must therefore also
prepend twice at all other anycast sites, otherwise poisoning
also results in a longer AS path.

Figure 2 shows how traffic engineering can be applied to
anycast systems in order to modify the catchment. In this
example, site-1 is overwhelmed by an attack. Aiming to shift
bins of traffic to site-2 with spare capacity, we can make
BGP announcements. site-I poisons AS3, prepends (only
showing to AS4), and prevents announcement to AS5 using
not-export BGP community. These changes decrease load in
site-1, shifting the traffic to site-2.

3.4.2 Automatic Defense Selection

To automate defense we use a centralized controller. The
controller collects observations for all sites (from external
measurements, or assuming the site is saturated if it cannot

‘The BGP Anycast Tuner
st

Select desired goal

Figure 3: Operator assistance system.

reach the site), then takes action, if required (@ of Figure 1):
(1) The controller identifies sites that are overcapacity by com-
paring estimated load to expected capacity and observed re-
sources at each site. (2) The controller identifies all playbook
options that will reduce load at any impacted sites without
overloading currently acceptable sites. (3) It selects from any
viable options, favoring a uniform distribution and smallest
change (or selecting arbitrarily if necessary). If all changes
leave some sites overwhelmed, it can choose the “least bad”
scenario, or request operator intervention.

After deploying a new routing policy, the decision machine
continues to evaluate the traffic level at each site ((5) of Fig-
ure 1). If any site is still overwhelmed after 5 minutes, we
try again, repeating size estimation, decision, and action. In
the subsequent iterations, the controller only considers the
routing options that were considered in the previous itera-
tion (from step (2) of this decision process). We allow time
between attempts so announcements can propagate [37]. To
avoid oscillation or interference with route flap dampening,
after three attempts we escalate the problem to the human
operator. We choose these values for timer duration and num-
ber of retries from recommendations of operators to avoid
oscillation, other options are possible. Explore other options
is possible as future work.

Return to service: After a period with no overloaded
sites, we can automatically revert any interventions, on the
assumption that default routing provides users best service.
Leaving interventions in place for some time can help with
polymorphic attacks (§8).

3.4.3 Operator Assistance System

We discussed our approach with operators of root DNS and
cloud services to get feedback on the approach. While they
were enthusiastic about automated defenses to deal with
common DDoS events, and to handle events during non-
business hours, some operators prefer human-supervised (non-
automated) response, and all expected human supervision of
response during initial deployment to build trust before full
automation.

To support human-supervised response, we design an ope-
rator assistance system as an alternative (or precursor) to
automation. This system provides a web-based interface that
activates route changes, coupled with playbook lookup that
recommends good options based on current sensor status (Fig-

7.0 n T T T - .
Estimated rate '
_ 6.0} Observedrate [
L2 Reported rate =+ = i
> '
RN 1 L1 [g H
g s0f :
T
s)
S 40} :
= L)
£ :
] 3.0 !
E .] .
> 20f Normal duration H attack duration
g]
5]
O 10t !
0.0 A~~~

-250 -200 -150 -100 -50 0 50 100 150
Duration (seconds) relative to attack start

Figure 4: Estimating real-world attack events: estimating Nov.
2015 event with 5.59% access fraction.

ure 3). Details are described in Appendix B.

4 Evaluation of Offered Load Estimation

We next evaluate estimating offered load with real-world
events; a testbed evaluation is in Appendix C.

4.1 Case Studies

We test our approach with two large DNS DDoS events from
2015-11-30 and 2016-06-25. The November 2015 event was
a DNS flood, and the June 2016 was a SYN and ICMP flood
attack. B-root exhibited significant upstream loss in both
these events, so we estimate true offered load to B-root and
compare to observations at other roots for ground truth.

To apply our system we measure the access fraction (o)
using the known-good traffic. Table 1 shows the expected ty-
pical known-good traffic (“normal”), the observed rate under
attack (“observed”) and the computed .. Here we use RIPE
Atlas as known good [54]. We see similar results (omitted
due to space) when using the top 100 heavy hitters.

Figure 4 compares the observed load (the bottom blue line)
with the estimated offered load (the middle, varying, orange
line) from our system, as compared to the attack rate reported
from other roots (the dashed purple line). The offered load
columns of Table 1 give numeric values.

Even though the attack was large, we see that the estimated
attack size of the 2015 event of 4-6.5 Mg/s is close to the
reported 5.1 Mq/s [45,47]. We also see similar results from the
2016 event [48], where we estimate 8—11 Mgq/s of total traffic,
compared to the 10 Mq/s reported rate (details with figure in
§C.2). We also add the result from Testbed experiment which
also shows a good accuracy (details in §C.1).

These two events show that even with high rates of up-
stream loss we are able to get reasonable estimates of total
offered load. Our results provide good accuracy when the
known-good traffic has 2500 queries/minute with RIPE, and
additional known-good traffic can improve accuracy. Use
of additional known-good traffic (such as heavy hitters) im-
proves accuracy in these cases by providing a larger signal.
However, in practice, even a rough estimation allows a far
better response than using directly observed load.

We conclude that attack size estimation is close enough to
help plan response to DDoS events.

Scenario/ known-good traffic offered load during attack estimated/
Date Dur. | normal observed o | normal observed reported estimated a reported
2015-11-30 3h 33.08 1.85 0.0559 | 0.03M 0.37M 5.1M 6.6M 0.07 1.3
2016-06-25 3h 36.58 0.33 0.0091 | 0.03M 0.10M 10M 11M 0.01 1.1
Testbed Smin 425.2 207.0 0.4900 163k 29.2k 332k 0.56 1.1

Table 1: Estimating sizes of offered load (second from right) based on known-good traffic (second from left) with real-world
attacks at B-root and testbed experiment. Traffic rates are in queries/second (reporting only the peaks).

Testbed Used Sites #
Amsterdam*(AMS), Boston* (BOS),
Belo Horizonte*{(CNF), Seattle* (SEA)
Athens* (ATH), Atlanta* (ATL),

Salt Lake City* (SLC), Wisconsin* (MSN)
Miami (MIA)*, London (LHR)*,

Sydney (SYD)*, Paris (CDG)*,

Los Angeles (LAX)*, Enschede (ENS)*,
Washington (IAD)*, Porto Alegre (POA)*¥

Peering

Tangled

Table 2: Testbed and respective sites used in our experiments.
Transit providers (*) and IXP (7).

S Evaluation Approach

We next describe how we will evaluate the effectiveness of
TE (§6) and that results generalize to different deployments
(§7). Traffic engineering in response to DDoS depends on the
anycast deployment—where sites are and with whom they
peer. We evaluate on two different testbeds. Our approach
(estimation, TE, and playbook construction) can be applied
anywhere with different anycast setups. We expect network
operators will execute our approaches on a test prefix (in
parallel with their operational network) prior to an event so
that no service interruption happens.

5.1 Anycast Testbeds

We evaluate our ideas on testbeds to see the constraints of
real-world peering and deployments. We use two indepen-
dent testbeds: Peering [60] and Tangled [7]. Table 2 sum-
marizes information about each testbed with their own set
of geographically distributed sites along with their locations
(Peering supports more sites but we used 8 sites). These sites
show different connectivity, and have one or more transits and
IXP peers. Most Peering sites have academic transits while
Tangled has more commercial providers. Our testbed is about
the same size as many operational networks, since nearly half
of real-world networks have five or fewer sites [16].

5.2 Measuring Routing Changes

To measure the effect of a BGP change, we first change the
routing announcement at a site, give some time to propagate,
confirm that the announcement is accepted, and finally start
the anycast measurement.

Route convergence: After a change, we allow some time
for BGP route propagation. We know that routing and for-
warding tables can be inconsistent (resulting in loops or black
holes) while prefix is updating [37,67,76]. Although routing
updates are usually stable within 5 minutes [67], we wait 15

Experiment
Path prepending

Key Takeaways
Works everywhere to effectively de-prefer a site
(§6.1.2), but shifts traffic in large amounts (§6.1.3),
and has few traffic levels (Figure 6).
Neg. Prepending Works everywhere to prefer a site (§6.1.2).
BGP communi- Although widely implemented, well-known communi-
ties ties are not universal (§6.2.1).
When supported, they provide finer-granularity control
than prepending (§6.2.2).
BGP path poiso- Many Tier-1 ASes drop the announcements when it
ning sees Tier-1 ASes in the paths. (§6.3.1)
Control over traffic is limited by the filters from other
ASes. (§6.3.2).

Table 3: Experiment summarization and findings.

minutes for routing to settle when building our playbook since
it is a non-attack period. When the attack is not mitigated after
deploying a routing policy, our system moves to a different
approach after 5 minutes.

Propagation of BGP policies: Policy filtering could limit
the acceptance of announced routes, although in practice these
limits do not affect our traffic engineering. Best practices for
networks at the edge to filter out AS-Paths longer than 10
hops, and ASes in the middle often accept up to 50 hops, both
more prepends than we need. Based on routing observations
from multiple global locations using RIPE RIS, we confirm
that configurations in our experiments are never blocked due
to route filtering in multi-hops away from our anycast sites.

6 Traffic Engineering Coverage and Control

From an estimate of attack load, operators use BGP to shift
traffic. We next evaluate three TE mechanisms: AS-Path
prepending, community strings and path poisoning. For each
we consider when it works and what degree of control it pro-
vides. Table 3 summarizes our key results from tests on two
testbeds (§5.1); in §7 we evaluate generalizability.

6.1 Control With Path Prepending
First we consider AS-Path prepending as a defense strategy.
6.1.1 Prepending coverage

Support for AS-Path prepending is quite complete—it re-
quires no explicit support from the upstream provider, so we
found prepending worked at all sites in both of our testbeds.
In Peering, we are allowed to use a maximum of three
prepends, and in Tangled we use up to five prepends. Previ-
ous study [14] shows a maximum of 5 prepends is sufficient
because 90% of active ASes are located less than six AS hops
away. We use RIPE RIS [56] to check the routing visibility

when prepends are in place, and we do not observe changes
in the routing propagation for both testbeds. Otherwise, this
might reveal the existence of AS path length filters [32,33].

6.1.2 Does prepending work?

Since AS-Path prepending is widely supported, we next eval-
uate this attractive TE method.

We explore this question for a representative scenario using
Peering using three sites from three continents—Europe
(Amsterdam-AMS), North America (Boston-BOS) and South
America (Brazil-CNF). In §7 we generalize to other configura-
tions. We estimate load by counting /24 blocks in catchments,
then compare the baseline with TE options. (We also explored
traffic weighted by traffic loads instead of blocks, getting the
same qualitative results and shapes with different constants,
Appendix F.)

Figure 5 shows the traffic from each site under different
conditions. The middle bar in each graph is the baseline, the
default condition with no prepending. We then add prepending
at each site, with one, two or three prepends in each bar going
to the right of center. We also consider negative prepending
(§3.4.1) in one to three steps, with bars going left of center.

We first consider the baseline (the middle bar) of all three
graphs in Figure 5. Amsterdam (AMS, the bottom, maroon
part of each bar) gets about 68% of the traffic. AMS receives
more traffic than BOS and CNF because that site has two
transit providers and several peers, and Amsterdam is very
well connected with the rest of the world.

We next consider prepending at each site (the bars to the
right of center). In each case, prepending succeeds at pushing
traffic away from the site, as expected. For AMS, each prepend
shifts more traffic away, with the first prepend cutting traffic
from 68% to 37%, then to 29%, then to about 16%. BOS
and CNF start with less traffic and prepending has a stronger
effect, with one prepend sending most traffic away (at BOS,
from 15% to 7%) and additional prepends showing little fur-
ther change. These non-linear changes are because changing
BGP routing with prepending is based on path length, and the
Internet’s AS-graph is relatively flat [2, 15].

The bar graphs also show that when prepending pushed
traffic away from a site, it all goes to some other site. Where
it goes depends on routing and is not necessarily propor-
tional to the split in other configurations. For example, after
one prepend to AMS, more traffic goes to CNF (the top sky
blue bar) than to BOS (the middle yellowish bar). These
unexpected shifts are why we suggest pre-computing a “play-
book™ of routing options before an attack (§3.2) to guide
decisions during an attack and anticipate the consequences of
a change.

We also see that negative prepending succeeds at drawing
traffic towards the site—in each case the bars to the left of
center see more traffic in the site that is not prepending while
the others prepend. AMS sees relatively little change (68% to
89%) since it already has most traffic, while BOS and CNF
each gain up to 68% of traffic.

All three sites show some networks that are “stuck’ on that
site, regardless of prepending. One reason for this stickiness
is when some networks are only routable through one site be-
cause they are downstream of that exchange. We confirm this
by taking traceroute to two randomly chosen blocks that are
stuck at BOS. Traceroutes and geolocation (with Maxmind)
confirm they are in Boston, at MIT and a Comcast network
(based on the penultimate traceroute hop). We have used the
local-preference BGP attribute to move such stuck blocks, but
a systematic exploration of that option is future work.

In summary, the experiment shows that AS prepend does
work and can shift traffic among sites, however, this traffic
shift is not uniform.

6.1.3 What granularity does prepending provide?

Having established that prepending can shift traffic, we next
ask: how much control does it provide? This question has
two facets: how much traffic can we push away from a site or
attract to it, and how many different levels are there between
minimum and maximum.

Limits: Figure 5 suggested that in Peering, with those
three sites, there is a limit to the traffic that can shift. AMS,
BOS, and CNF always get about 16%, 7% and 3% of blocks,
regardless of prepending.

Figure 6 confirms this result with a 5-site deployment (two
from Europe, one from North America, one from South Amer-
ica and one from Australia) in our other testbed (Tangled).
X axis is presented with the number of prepends applied to
each site. The number zero (0) represents the baseline, the
positive numbers (1-5) are the number of prepending applied
and the negative numbers represent negative prepends. As
depicted, each site can capture at most 55-65% of blocks, and
can shed at most 95% of blocks, even with up to 5 prepends.
We can also see that we do not get a granular control as only
three points are between the minimum and maximum.

We conclude that while prepending can be a useful tool to
shift traffic, it provides relatively limited control.

6.2 Control with BGP Communities

We next show that BGP community strings have the opposite
trade-off: what options they support vary from site to site, but
when available, they provide more granular control over traffic.
We use whatever community strings that can be supported at
each site. Specific values for the same concept often vary.

6.2.1 Community string coverage

ASes must opt-in to exchange community strings with peers,
as opposed to prepending’s near-universal support (since AS
paths are used for loop detection, prepending works unless it
is explicitly filtered out). Explicit support is required because
communities are only a tagging mechanism; the actions they
trigger are at the discretion of peering AS. Prior work has stu-
died the diverse options supported by community strings [28].

To evaluate coverage, we review support for BGP commu-
nities in the testbeds we use. The testbeds provide information

AMS B BOS O CNF O

AMS B BOS O CNF O AMS B BOS O CNF O

Percentage(%) of catchment
Percentage(%) of catchment

3xAMS
2xAMS
1xAMS
Baseline
1xAMS
2xAMS
3xAMS
3xBOS
2xBOS
1xBOS

(a) AMS site.

Baseline

(b) BOS site.

Percentage(%) of catchment

1xBOS
2xBOS
3xBOS
3xCNF
2xCNF
1xCNF
1xCNF
2xCNF
3xCNF

Baseline

(c) CNF site.

Figure 5: Peering: Impact of path prepending in catchment distribution with AMS, BOS and CNF sites on 2020-02-24.

100

~—e— CDG

H
o
3

AMS ®BOS O CNF @ LHR @ MIA @ POA B

LHR
—— MIA
—— POA
—— SYD

®
3

®

3

3

3
o
3

IS
S

a
3

N

S

Percentage(%) of catchment

Percentage (%) of catchment

N
S
o

Figure 7:
Figure 6: Tangled: Effect of path

prepending on catchments.

about two dozen locations with diverse peers. Each one of
these peers has been evaluated about its support to this feature.

In Table 4 we describe path prepending and poisoning sup-
port and what types of community strings are supported at
each site. We group communities by class: advertisement
options (no-peer, no-export to customers, and no export to
anyone), selective prepending, and peers and transits that sup-
port selective advertisement. We also show the number of
non-transit peers and transits.

Peering allows selective announcement to the transits and
peers at each site, although the number of peers and transits
varies. Many sites with one transit provide no alternatives.
We considered selective announcement options at AMS, with
854 peers (106 bilateral peers including 2 route servers with
748 peers), and 2 transit providers [60]. CNF has one transit
provider and 129 peers (with only 6 bilateral peers, other peers
are connected through 2 route servers). For our Verfploeter
measurement, we consider the peers and route servers with
bilateral BGP sessions. A single peer covers a small fraction
of the address space in our Verfploeter measurement. For
some peers, we observed no coverage at all which requires
further investigation with the peers to confirm our observation.
Hence, all the selective announcement options do not make
difference in the catchment distribution (see the catchment in
AMS with 12 peers compared to the transit-1 in Figure 7). The
options column of Table 4 summarizes these results, showing
how many routing options we have using community strings.

We evaluate Tangled to provide a second deployment with
different peers. Tangled built its anycast network over cloud
providers, crowd-sourced transit providers and IXPs. All tran-
sit providers and IXPs sites support communities as described

2 %
2 %
% o
3
2%
LA)

Peering:
strings (at AMS) on catchments for
AMS, BOS, CNF on 2020-02-25.

H
o
3

N A2 o
S 5 & &

Percentage(%) of catchment

e
o
R
o
o
P
a“\\e,,w
a\“\asee

Community Figure 8: Tangled: using different
communities to shift traffic on site

LHR on 2020-04-05.

in Table 4. With Tangled, the POA site has 250 peers and
most of them support communities strings.

We conclude that the number of options at each anycast site
may vary depending on the number of connections with peers
and transits. This uncertainty shows the need for a playbook
that shows the possible options.

6.2.2 At what granularity do community strings work?

We next examine how well community strings work and what
granularity of control they provide. We use community strings
to make BGP selective announcements, where we propagate
our route only to specific transit providers or IXP peers.

For our experiment, we use Peering, varying announce-
ments at AMS and observing traffic when anycast is provided
from AMS, BOS and CNF (the same topology as §6.1.2).
As described in §6.2.1 selective announcement community
strings are provided only at AMS and CNEF, and they affect
our Verfploeter measurement only at AMS with several peers
together, two transits one by one, and route servers.

To select the target ASes for selective announcement, we
sort all the working peers of AMS site, based on the size
of their customer cone using CAIDA’s AS rank list [9]. We
then choose the 6 largest IXP peers and the 12 largest, as the
left two bars in Figure 7. We then examine the route server,
announced separately (the next bar), and then all IXP peers
including route servers. Finally, we see the coverage with
each of the two transit providers, announced separately.

First, we see that selective announcement provides more
control than prepending, as AMS shifts from baseline 68% of
blocks to other configurations from 53 to 6% of blocks.

Second, we see that there is some overlap in some com-

Site: Peering Tangled
Routing policy AMS BOS CNF SEA ATH ATL SLC MSN | MIA LHR IAD CDG LAX ENS SYD POA
AS-path prepend v v v v v v v v v v v v v v v v
no-peer v - v - - - - - v v - v - - v v
no-export A - - - A - - - v v - v - - v v
no-client - - - - - - - - v - - - - - - -
Selective prepend v v v v v v v v v v - v - - v v
Selective announcement v v v v v v v v v v - v v v
Path poisoning v v v v v v v v v - - - - - - v
non-transit peers 854 0 129 0 0 0 0 0 0 0 0 0 0 0 0 250
transits 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2
options 856 1 130 1 1 1 1 1 1 1 1 1 1 1 1 252

Table 4: Traffic engineering options on each testbed sites. v : supported, -: not supported, A: not tested.

binations. For example, each transit reaches more than half
of all blocks reachable from AMS, so we know some blocks
are reachable from both transit providers. Thus, while there is
some control over how many blocks to route to AMS, some
peers are very “strong” and will pick up many blocks if they
are allowed to announce our prefix.

Third, we see the important role of route servers. While
direct coordination with 12 IXP peers brings only 7% blocks
at AMS, a route server lets AMS reach more ASes and 14%
of the blocks alone.

Finally, we see that transit providers play an important role.
AMS site has two transit providers—BIT BV (AS12859)
and Netwerkvereniging Coloclue (AS8283). Announcing to
AS8283 attracts more traffic to AMS than announcing to
AS12859. Different AS relationship of these two transits with
their upstream provides us a different traffic distribution.

As shown in our experiments, when compared to AS path
prepending, BGP communities provide way more better con-
trol over traffic distribution.

To investigate if the results found on Peering can be
generalized, we made a set of experiments on Tangled.
Like Peering, we select 3 sites from three continents—
London(LHR), Miami (MIA) and Porto Alegre (POA), and
use communities for selective prepending and selective an-
nouncement from LHR. In Figure 8, we show the catchment
distribution after using the community strings from LHR. In
the baseline, when no communities are used, LHR handles
69% of traffic. From right to left, we see a gradual decrease
in the catchment distribution from 69% to 33%. Stop announ-
cing to IXP peers reduces traffic from 69% to 64%. But using
prepending and no export communities in AS2914 (NTT
America), AS1299 (Telia Company) and AS3356 (Level 3),
we can get 30-60% of the catchments in LHR.

Both testbeds show that community strings are not widely
available in all sites, and that even well-known communities
are not fully adopted. However, community strings can pro-
vide finer-grained control. Selective announcement mostly
provides more “flexibility”” depending on how many IXP peers
and transits are connected. We also find that some sites do
not provide the support that we expect which means commu-
nity strings require an extra step like contacting the transit
provider for an explicit agreement.

6.3 Control with Path Poisoning

We next turn to path poisoning, and show that like community
strings, coverage and granularity are limited by routing filters
deployed in upstream peers.

6.3.1 Poisoning coverage

Support for path poisoning is dependent on the ASes we are
poisoning and on route filters deployed by our upstream ASes.

We find that many ISPs, especially Tier-1 ASes, filter out
AS paths that poison any Tier-1 AS. Tier-1 ASes deploy
these filters to block BGP announcements from customers
that contain other Tier-1 ASes in the path to prevent route
leaks [43,71]. This filtering often makes path poisoning inef-
fective to control traffic.

To verify that poisoning Tier-1 ASes is often ineffective
from filtering, we poison Tier-1 ASes announcing only from
AMS in Peering, a unicast set-up blocking the impacts of
other sites, and make traceroutes from 1000 RIPE vantage
points to our prefix. Our measurement shows the evidence
of filters when we poison Tier-1 ASes—AS7018 (AT&T),
AS6453 (Tata Communications America), and AS1299 (Telia
Company). We observe many vantage points fail to reach our
prefix as they are dependent on Tier-1 ASes for their routes.
Some others change their paths avoiding Tier-1 ASes. We
also validate route disappearance via most Tier-1 ASes using
RouteViews telescopes [77].

Although poisoning Tier-1 ASes is often ineffective, poiso-
ning is effective with most non-Tier-1 ASes. Unfortunately,
these ASes carry little traffic when they are not immediate
upstreams. Poisoning these small ASes only has little impact
on traffic. We again traceroute after poisoning a non-Tier-1
AS (AS57866), and observe that Tier-1 ASes propagate the
poisoned path. This proves poisoned paths with Tier-1 and
non-Tier-1 ASes are treated differently by other ASes.

6.3.2 What granularity does poisoning provide?

Path poisoning coverage is limited because one cannot usually
poison a Tier-1 AS. This same filtering limits the granular-
ity that poisoning allows: poisoning Tier-1 ASes is not al-
lowed, poisoning non Tier-1 ASes has little impact when they
are multiple hops away because they represent little traffic.
Poisoning immediate neighbors may shift traffic, but is more
complex than just not announcing to them. We confirm these

Traffic to Site (%)
Routing Policy AMS BOS CNF |
(a) 6peers, 12peers ~5 ~35 ~55
(b) Route-server 15 35 55
(c) All-IXP-Peers/Poison transits | 15 35 45
(d) 3xPrepend AMS 15 35 45
(e) 2xPrepend AMS 25 35 45
(f) IxPrepend AMS 35 25 35
(g) -3xPrepend BOS 25 65 5
(h) -2xPrepend BOS 35 65 5
(i) -1xPrepend BOS 45 45 15
(j) -3xPrepend CNF 25 15 65
(k) -2xPrepend CNF 35 5 55
(1) -1xPrepend CNF 45 5 45
(m)Transit-1 45 25 35
(n) Transit-2 55 15 25
(o) Poison Tier-1/Transit-2 35 25 35
(p) Poison Transit-1 55 25 25
(q) Baseline 65 15 15
(r) 1,2xPrepend BOS 65 5 25
(s) 3xPrepend BOS 75 5 25
(t) 1,2,3xPrepend CNF 75 15 5
(u) -1,-2,-3xPrepend AMS 85 5 5

Table 5: Policies and traffic distribution (in 10% bins); groups
sorted by rough fraction of traffic to AMS, and colors showing
the traffic compared to the baseline distribution.

observations with detailed experiments in Appendix D, but
we conclude that path poisoning is not generally an effective
tool for traffic engineering.

6.4 Playbook Construction

Based on our understanding of prepending, communities and
poisoning, we can now build a playbook of possible traf-
fic configurations for this anycast network. In practice, we
build the playbook automatically using scripts that connect to
BGP, then iterate through different BGP configurations, then
run Verfploeter [20] to measure new catchments. Playbooks
are necessarily specific to each anycast deployment, but we
show in §7 that the process generalizes. Using a playbook,
an operator does not need a single “best” approach, rather a
combination of approaches in the playbook ensures a greater
control over traffic distribution.

A playbook is a list of variations of routing policy and the
resulting traffic distributions. Table 5 shows the playbook for
our testbed, with the baseline of 65% blocks to a site shown
in white. We group different levels of prepending (positive or
negative) at each site, and show selected community string
and poisoning configurations.

To summarize the many configurations from Table 5, Ta-
ble 6 identifies which combinations result in specific traffic
ratios at each site. Each letter in this table refers back to a
specific configuration from Table 5. During an attack, if the
anycast system begins at the baseline configuration (q), if
AMS is overloaded, the operator could select a TE configura-
tion higher in the table (perhaps ‘e’, ‘g’, or ‘j’). The operator
can then see the implications of that TE choice on other site
(for example, ‘e’ increases load on both other sites, with ‘g’

Traffic to Site (%) AMS BOS CNF
0-10 a k,1,r,s,u g htu
10-20 b,c,d j»n,q,t i, q
20-30 e, gj f, m, 0, p n,r1,p,s
30-40 f,h,k,o a,b,c,d,e f m,o
40-50 i, 1, m i c,d,e, 1
50-60 n, p - a, b,k
60-70 q.r g, h j

70-80 s, t - -

80-90 u - -
90-100 - - -
Traffic options 9 6 7

Table 6: Peering playbook (AMS, BOS, and CNF)

increases load on BOS but decreases it at CNF).

An operator may also use a playbook with traffic load for
two reasons. First, loads in most interesting services have
diurnal pattern. Second, loads from each /24 prefix may vary
because of the number of clients behind each prefix (more on
Appendix F). Building the playbook with load is computa-
tionally simple; an operator can just use the same catchment
mapping along with the per prefix load.

Even with attack size estimation, attacks are accompanied
by uncertainty, and attacker locations may be uneven. How-
ever, the playbook provides a much better response than “just
relying on informal prior experience” in two ways: the de-
fender can anticipate the consequences of the TE action (that
traffic will go somewhere!), and the defender can choose be-
tween different possible outcomes if the first is incomplete.

Playbook flexibility and completeness: Table 6 helps
quantify the “flexibility” that traffic engineering allows us
in this anycast deployment. Using these 10% traffic bins, we
see that AMS has 9 options, CNF 7, and BOS only 6. Because
AMS and CNF mostly swap traffic after TE changes, and
because BOS is less well connected, no configuration with
three sites allows BOS to take traffic within 50-60% range,
and no 3-site configuration can drive BOS or CNF over 70%.

This analysis shows more central sites like AMS, and it
may suggest the need for topology changes (perhaps adding
another site in Europe or Asia to share AMS’ load).

7 Deployment Stability and Constraints

In §6 we showed BGP-based TE provides considerable flex-
ibility. Building playbooks supports defenders by allowing
them to explore how transit providers, prepending, community
strings, and poisoning affect their specific deployment. We
next look at how stable the results are depending on choice of
sites and the number of sites. While the details of the playbook
vary for each deployment, and we do not claim our testbeds
represent all possible deployments, we show our approach is
flexible and can respond to attacks in different deployments—
our approach generalizes.

7.1 Effects of Choice of Anycast Sites

First we see how sites affect our playbook. New sites change
catchments because they depend on location and peering,

BOS O SEA B SLC B

,_.
=)
=3

Percentage(%) of catchment
Percentage(%) of catchment

BOS O SEA B SLC B BOS O SEA B SLC B

Percentage(%) of catchment

3xBOS
-2xBOS
1xBOS
Baseline
1xBOS
2xBOS
3xBOS
3xSEA
2XxSEA
1xSEA

(a) BOS site.

Baseline

(b) SEA site.

1xSEA
2xSEA
3xSEA
-3xSLC
2xSLC
1xSLC
1xSLC
2xSLC
3xSLC

Baseline

(c) SLC site.

Figure 9: Peering: Impact of choosing BOS, SEA and SLC sites on 2020-02-28

In §6.1, we studied catchments with three specific Peering
sites on three continents: AMS, at a large, commercial IXP
in Europe; CNF with an academic backbone transit in Brazil;
and BOS, an academic site in the U.S. We now switch to three
educational sites all in the United States: SEA, at University
of Washington on the west coast; SLC, at the University of
Utah in the Rockies; and BOS, at Northeastern University in
Boston on the east coast.

More important than just geographic location, site connec-
tivity is the most important factor in choosing sites. Multiple
transit providers increase the chance of having more BGP op-
tions to affect traffic control and granularity. While a poorly
connected site inside a university network tends to provide
less traffic control options.

Prepending baseline: Figure 9 shows catchment sizes for
the three North American sites with positive and negative
prepending. Now the baseline distribution is unbalanced, but
less so than before, with SEA capturing 50% of blocks. We
discussed SEA’s heavy traffic with the Peering operators.
They suspect that SEA is near to the Seattle IXP, making its
paths one hop from many commercial providers. Which site
has the greatest visibility depends on its peering and will vary
from deployment to deployment.

Prepending coverage and granularity: As with our prior
experiments, we can adjust prepending to see how traffic
shifts. With these three sites, traffic shifts very quickly for
BOS and SEA after one positive or negative prepend. SLC
has more flexibility, perhaps because it has the smallest catch-
ment at the baseline, and gains more coverage with each step
of negative prepending, to 42%, 63%, and 91% of blocks. Of-
ten (but not always), we see that academic sites exhibit less
granularity because either they have few peers, or their peers
are academic networks with similar connectivity. As a result,
minor changes in AS-Path length place one site further from
the others. In addition, this less granular control shows the
importance of building a playbook that is specific to a given
deployment, or when the anycast topology changes.

Community coverage: While communities are common at
IXPs and transit providers, academic networks (NRENs) have
a more simple set of communities. None of those academic
sites provide community strings.

This observation confirms our prior coverage observation:
community string support is not uniformly available. We also

AMS B BOS O CNF O ATH B SEA B SLC @ ATL @
100

80

60

40 -

20

Percentage(%) of catchment

1xAMS
3xAMS
6-peers
1xAMS
3xAMS
6-peers
1xAMS
3xAMS
6-peers

n o
s £
Z =
x 8
m o3
"o
*,

-3xAMS

*Baseline
-3xAMS

*Baseline

3-sites 7-sites 1
Figure 10: Peering: Impacts of changing the number of any-
cast sites from 2020-04-07 to 2020-04-10.

5-sites

looked at other combinations of sites in Peering and found
similar results (in the extended version of the paper [57]).

Path poisoning: We repeated our path poisoning exper-
iments with three sites in Boston, Salt Lake City and Seat-
tle. We confirm that Tier-1 ASes typically cannot be poi-
soned (§6.3.1). We also see filters designed to prevent route
leaks [71] also interfere with poisoning.

Our experiments confirm that while catchments are
deployment-specific, our qualitative results hold—prepending
works but is coarse, and community strings and poisoning are
not supported everywhere.

7.2 Effects of Number of Anycast Sites

Next, we vary the number of sites and see how that changes
control traffic. We select 3, 5 and 7 sites from each testbed,
and build a playbook to evaluate defense options. Figure 10
shows selected configurations, grouped by number of sites.

Baseline: With more sites, overall capacity increases and
baseline load at each site falls. For example, in Figure 10, the
baselines (with an asterisk*) at the largest site (AMS) shifts
from 70% of blocks with three sites to 61% and 56% with
5 and 7 sites. Smaller sites shift less (BOS goes from 14%
to 6% and 6%, and CNF from 15% to 8% and 6%). Greater
capacity and distribution requires a larger and distributed
attacker to exhaust the overall service. We see similar results
on our alternate testbed Tangled, as described in the extended
version of the paper [57].

Traffic flexibility: With more sites, the largest site usually
shows the largest changes and has the fewest catchment sizes.
Comparing baseline to one prepending in Figure 10, AMS
shifts from 70% to 37% with three sites, from 61% to 29%

Months AMS(%) BOS(%) CNF(%)
2020-02 68.1 14.6 17.3
2020-04 70.4 14.2 15.4
2020-06 65.3 14.1 20.6

Table 7: Percent blocks in each catchment over time.

with five, and from 56% to 23% with seven, always dropping
by half.

Even with more sites, some blocks are often “stuck’ at a
particular site. With three negative prepends, AMS gets most
of the traffic, but it tops out at 90% with three sites, and only
87% and 84% with five and seven. We conclude that each site
has its own set of “stuck blocks” that are captive to it and will
not move with traffic engineering.

With more sites, the fine control of BGP communities be-
comes more important because path-prepending becomes less
sensitive. For example, selective announcements with com-
munities are need for AMS with 5 or 7 sites; prepending three
times shifts all traffic.

New sites: Adding more sites also shows how our playbook
can help guide deployment of new sites. Predicting traffic
shifts for a new site is difficult, but experimenting with a test
prefix can build a playbook pre-deployment.

7.3 Playbook Stability Over Time

A playbook has a limited use if routing changes immediately.
We know routing changes when links fail, or when ISPs be-
gin new peering or purchase new transit. For how long is a
playbook applicable?

To answer this question, Table 7 shows the fraction of /24
blocks going to each catchment over time for the baseline
configuration. We see that the fraction of blocks is generally
quite stable, with only about 5% of blocks shifting in or out of
a site. In addition, prior work has shown very strong anycast
stability over hours to days [38,79]. We checked the stability
of B-root catchment. We found that after two weeks 0.35%
prefixes, and after one month only 0.65% prefixes changed
their catchment (more on Appendix E). While catchments are
relatively stable, we expect operators will refresh playbooks
periodically (perhaps weekly or monthly).

8 Defenses at Work

In this section we describe four real-world attacks processing
the traffic in our system. We show that we can successfully
respond to a different types of attacks in different ways.

Methodology: We use real-world attacks from B-root
server operator, the Dutch National Scrubbing Center, and
from an anonymized enterprise network. These events include
polymorphic, adversarial, and a volumetric attack.

We evaluate these events by simulating traffic rates against
a three-site anycast network. The first two events use Peering
with our AMS, BOS, CNF configuration from §6. We vary this
topology, using BOS, SEA, SLC from §7.1 in the last event.
We replay the traffic in simulation, assigning traffic to each

anycast site based on catchments measured in our experiments.
We do not simulate the gradual route propagation, but instead
have routing take effect 300 s after a change (a conservative
bound, most routing changes happen in half that time). We
then evaluate traffic levels at each site and compare that to a
target capacity.

For each attack we run our system in defense, estimating the
attack size and selecting a pre-computed playbook response.
Since our playbook allows different responses: when we have
choices we select different methods of defense: prepending,
negative prepending, or community strings (Figure 11).

A 2017 polymorphic attack: Our first event is a DNS flood
from 2017-03-06 in B-root [51] (Figure 11a). This event
was a volumetric polymorphic attack where the attack queries
have common formats like RANDOM.qycl520.com\032 (from
0s) and RANDOM.cailingl68.com\032\032 (changed at
4750, so polymorphic in nature). We assume 60k packets/s
(30 Mb/s) capacity at each anycast site. The event was small
enough that B-root was able to fully capture it across all ac-
tive anycast sites at the time. The event lasted about 5 hours,
but we show only the first 2.25 hours. Services and attacks
capacity today will both be much larger; we use a small attack,
scaling the attack and capacity up would show similar results.

In Figure 11a we can identity AMS site receives 100k
packets/s traffic that is more than the capacity (shown as the
maroon striped area). Our system notices the attack from
bitrate alerts. It then estimates the AMS overload by comput-
ing the offered load using observed load and access fraction.
The system maps networks to number of packets to each site
using the pre-computed playbook (Table 6). Using this map-
ping our system/operator can then select a response. From
Figure 11a, we can see the impact of the selected routing
approach—announcing only to Transit-1 using community
string. After 300 s, we can see no striped area which indicates
the attack is mitigated.

The attacker changes the query names at 4750 s, making
this attack polymorphic. Filtering on query names would need
to react, but our routing changes can still mitigate the attack
regardless of this type of change.

A 2021 variable-length polymorphic attack: We next ex-
amine an HTTP-attack launched on an enterprise network on
2021-09-05 in Figure 11b. This polymorphic attack changes
after each of three pauses. The initial attack consists of mil-
lions of HTTP GETs (15k packets/s) launched from an IoT
botnet; it terminates when the enterprise’s operator deploys IP-
based filtering. About 1000 s later, a different botnet launched
a multi-vector attack combining HTTP GETs using random
paths (to avoid caching) and spoofed TCP ACKs. We then
see a lull, brief burst, another lull, and a burst to the end.

The initial attack at time O overloads one site (AMS),
prompting our routing response. After the estimation, we be-
gin a route shift away from AMS, but the attack ends quickly
(after 90 s), while routes are still changing.

Since the normal traffic sources originate from Europe,

AMS mm— BOS
AMS overloaded =1 CNF
140.00

AMS m—— BOS BOS
AMS overloaded

SEA overloaded 0
SLC

] CNF SEA e —
T T

30.00 T

1 Polymrphic even
1 changed query
1name
'

Tonly to Transit-1]

T
Attack
started...;, Route propagation

done (simulated)

120.00

i
100.00 i
: 20.00
i

80.00

|
)
1 15.00 ! ! Route
60.00 ! |

40.00

Normal traffic

Query rate (k packets/s)
Query rate (k packets/s)

20.00 5.00

0.00 0
-4000 -2000 0 2000 4000 6000 8000 -500 0 500

Duration (seconds) relative to attack start

' '
25.00 Attack ¥ Prepenid AMS by 3
startedbm——ps 1

' '

! Propagation

& done
10.00 n ¥ (sinfurated)
'

Duration (seconds) relative to attack start

2500.00

! T T T - .
. Attack | -Ve prepend BOS by 1 T Route propagation
1

i’ done (simulated)
1Polymorphic event started

1with anothzr botnet 2000.00 -
'

i
il 1500.00

1000.00 -

500.00

Query rate (k packets/s)

0.00
1000 1500 2000 2500 -100 0 100 200 300 400 500 600

Duration (seconds) relative to attack start

(a) A polymorphic attack at B-root defended (b) An adversarial event at an enterprise miti-(c) An event captured at the Dutch National

with community strings.

gated using positive prepending.

Scrubbing Center defended using negative
prepending.

Figure 11: Different attacks with various responses.

most traffic went to AMS even after three prepends. At 1020's
the attack botnet changes, with more attack traffic from Asia
and South America (based on IP geolocation from MaxMind)
Our route changes in response to the initial attack are still in
place, and the renewed attack is successfully spread over all
three sites, allowing AMS to tolerate the new attack.

Shifting attacks like this are common with more sophisti-
cated adversaries. Any approach (including ours) that defends
with routing changes is limited by route propagation times,
so the applicability of such defenses is limited for short-lived
attacks like what occurred at 0s. However, spreading traf-
fic protects against many types of attack, as we see the re-
newed attacks after 1000 s. Varying attacks like this show the
importance of reviewing defense effectiveness as the attack
continues.

An example attack on a different anycast topology: Fi-
nally, we consider an LDAP amplification attack, at the Dutch
National Scrubbing Center on 2021-08-25.

In this case we simulate a super-site at BOS, capable of
absorbing 1500k packets/s, while the other sites (SEA and
SLC) support about half (700k packets/s). In Figure 11c, the
purple cross-hatched area shows how much the traffic will
overwhelm SEA, a smaller site, but can be handled at the
super-site. We respond with negative prepending, with the
traffic shift to BOS visible at 300s. This response mitigates
the attack (no striped area).

Other attacks: We have assessed additional attacks, and
describe them in Appendix G. The additional polymorphic
and volumetric attacks show that routing can successfully
address attacks after routes propagate.

9 Limitations and Future Work

Our playbook of routing options (§3) is effective against many
attacks (§8 and Appendix G). However, like any defense, it
is not impervious. We next describe known limitations and
areas of future work.

First, Internet routing is distributed, requiring time to con-
verge. The effects of routing defenses cannot be seen until
convergence. We do not make changes faster than 5 minutes.

Routing convergence time implies that routing changes will
have limited applicability to short-lived attacks (less than 5

minutes). Although routing changes will not hurt the service,
their benefits may not occur until routing shifts.

In addition, routing convergence means that polymorphic
attacks that shift traffic sources quickly will be more effec-
tive. Routing changes are robust to polymorphic attacks that
change method but take effect by traffic volume, they will
spread load regardless of what it is, as we show in events in
§8. However, when defending an attack where traffic shifts
locations faster than routing converges, one must provision
for the worst case volume to any site under the heaviest traffic
it sees. Rapid shifts make defense harder, but not impossible.

Finally, we assume the anycast catchments of the under-
lying service change slowly (over days). We showed in §7.3
that this assumption generally holds.

Although we change routing during an attack to balance
load across catchments, we do not explicitly attempt to locate
attack origins. As future work, we could use such information
to improve defense selection.

Attack response depends on human factors in service oper-
ators and attackers. Explicitly studying such human factors
is potential future research. Our current work focused on the
technical feasibility of our defenses.

10 Conclusions

This paper provides the first public evaluation of multiple any-
cast methods for DDoS defense. Our system estimates attack
size, selects a strategy from a pre-computed playbook, and
automatically performs traffic engineering (TE) to rebalance
load or to advise the operator. Our contributions are attack-
size estimation and playbook construction. We experimentally
evaluate TE mechanisms, showing that prepending is widely
available but offers limited control, while BGP communities
and path poisoning are the opposite.

Acknowledgments: ASM Rizvi and John Heidemann’s work on this
paper is supported, in part, by the DHS HSARPA Cyber Security Di-
vision via contract number HSHQDC-17-R-B0004-TTA.02-0006-1.
Joao Ceron and Leandro Bertholdo’s work on this paper is supported
by Netherlands Organisation for scientific research (4019020199),
and European Union’s Horizon 2020 research and innovation pro-
gram (830927). We would like to thank our anonymous reviewers
for their valuable feedback. We are also grateful to the Peering and

Tangled admins who allowed us to run measurements. We thank
Dutch National Scrubbing Center for sharing DDoS data with us.

References

(1]

(2]

3

—

[4

—

(3]

(6]

[7

—

[8

—

[9

[

[10]

(1]

(12]

(13]

(14]

[15]

AMPATH. Bgp resources. https://ampath.net/AMPATH
BGP_Policies.php. [Online; accessed 12-Oct-2021].
APNIC. BGP-stats routing table report—Japan view.
https://mailman.apnic.net/mailing-1lists/bgp-
stats/archive/2020/05/msg00001.html, May 1 2020.
Vaibhav Bajpai, Steffie Jacob Eravuchira, and Jiirgen Schon-
wilder. Lessons learned from using the ripe atlas platform for
measurement research. ACM SIGCOMM Computer Communi-
cation Review, 45(3):35-42, 2015.

Hitesh Ballani, Paul Francis, and Sylvia Ratnasamy. A
measurement-based deployment proposal for IP anycast. In
Proceedings of the 6th ACM SIGCOMM conference on Internet
measurement, pages 231-244, 2006.

Ran Ben-Basat, Gil Einziger, Roy Friedman, and Yaron Kass-
ner. Heavy hitters in streams and sliding windows. In [EEE
INFOCOM 2016 - The 35th Annual IEEE International Con-
ference on Computer Communications, pages 1-9, 2016.
Terry Benzel, Robert Braden, Dongho Kim, Cliford Neuman,
Anthony Joseph, Keith Sklower, Ron Ostrenga, and Stephen
Schwab. Experience with deter: a testbed for security research.
In 2nd International Conference on Testbeds and Research
Infrastructures for the Development of Networks and Commu-
nities, 2006. TRIDENTCOM 2006., pages 10—pp. IEEE, 2006.
Leandro M. Bertholdo, Joao M. Ceron, Wouter B. de Vries, Ri-
cardo de Oliveira Schmidt, Lisandro Zambenedetti Granville,
Roland van Rijswijk-Deij, and Aiko Pras. Tangled: A co-
operative anycast testbed. In 2021 IFIP/IEEE International
Symposium on Integrated Network Management (IM), pages
766-771, 2021.

Matthew Caesar and Jennifer Rexford. BGP routing policies in
ISP networks. IEEE Network Magazine, 19(6):5-11, Novem-
ber 2005.

CAIDA. ASrank. https://asrank.caida.org/,2020. [On-
line; accessed 12-Oct-2021].

CAIDA. CAIDA UCSD BGP community dictionary. https:
//www.caida.org/data/bgp-communities/, 2020. [On-
line; accessed 12-Oct-2021].

Matt Calder, Ashley Flavel, Ethan Katz-Bassett, Ratul Maha-
jan, and Jitendra Padhye. Analyzing the performance of an
anycast CDN. In Proceedings of the 2015 Internet Measure-
ment Conference, pages 531-537, 2015.

Mark D Carney, Jeffrey A Jackson, Andrew L Bates, and
Dante J Pacella. Method and apparatus for mitigating dis-
tributed denial of service attacks, November 24 2015. US
Patent 9,197,666.

R. Chandra, P. Traina, and T. Li. BGP communities attribute.
Technical Report 1997, RFC Editor, 1996.

Rocky KC Chang and Michael Lo. Inbound traffic engineering
for multihomed ASs using AS path prepending. IEEE network,
19(2):18-25, 2005.

Yi-Ching Chiu, Brandon Schlinker, Abhishek Balaji Radhakr-
ishnan, Ethan Katz-Bassett, and Ramesh Govindan. Are we one
hop away from a better Internet? In Proceedings of the ACM In-
ternet Measurement Conference, pages 523-529, Tokyo, Japan,
October 2015. ACM.

[16]

(7]

(18]

[19]

[20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

Danilo Cicalese, Jordan Augé, Diana Joumblatt, Timur Fried-
man, and Dario Rossi. Characterizing ipv4 anycast adoption
and deployment. In Proceedings of the 11th ACM Conference
on Emerging Networking Experiments and Technologies, pages
1-13, 2015.

Danilo Cicalese and Dario Rossi. A longitudinal study of IP
anycast. ACM SIGCOMM Computer Communication Review,
48(1):10-18, 2018.

Cloudflare. Famous DDoS attacks | the largest DDoS attacks of
all time. https://www.cloudflare.com/learning/ddos/
famous-ddos-attacks/. [Online; accessed 12-Oct-2021].
Alysha M De Livera, Rob J] Hyndman, and Ralph D Snyder.
Forecasting time series with complex seasonal patterns using
exponential smoothing. Journal of the American Statistical
Association, 106(496):1513-1527, 2011.

Wouter B. de Vries, Ricardo de O. Schmidt, Wes Hardaker,
John Heidemann, Pieter-Tjerk de Boer, and Aiko Pras. Verf-
ploeter: Broad and load-aware anycast mapping. In Proceed-
ings of the ACM Internet Measurement Conference, London,
UK, 2017.

Christoph Dietzel, Anja Feldmann, and Thomas King. Black-
holing at IXPs: On the effectiveness of DDoS mitigation in
the wild. In International Conference on Passive and Active
Network Measurement, pages 319-332. Springer, 2016.
Ramin Ali Dousti, Frank Scalzo, and Suresh Bhogavilli. Au-
tomated ddos attack mitigation via bgp messaging, March 22
2018. US Patent App. 15/273,510.

Xun Fan and John Heidemann. Selecting representative ip
addresses for internet topology studies. In Proceedings of the
10th ACM SIGCOMM conference on Internet measurement,
pages 411-423. ACM, 2010.

Xun Fan, John Heidemann, and Ramesh Govindan. Evaluating
anycast in the domain name system. In 2013 Proceedings
IEEE INFOCOM, pages 1681-1689. IEEE, 2013.

Seyed K Fayaz, Yoshiaki Tobioka, Vyas Sekar, and Michael
Bailey. Bohatei: Flexible and elastic ddos defense. In 24th
USENIX Security Symposium, pages 817-832, 2015.

Ashley Flavel, Pradeepkumar Mani, David Maltz, Nick Holt,
Jie Liu, Yingying Chen, and Oleg Surmachev. Fastroute: A
scalable load-aware anycast routing architecture for modern
CDNs. In 12th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 15), pages 381-394, 2015.
Ruomei Gao, Constantinos Dovrolis, and Ellen W Zegura. In-
terdomain ingress traffic engineering through optimized AS-
path prepending. In International Conference on Research in
Networking, pages 647-658. Springer, 2005.

Vasileios Giotsas, Georgios Smaragdakis, Christoph Dietzel,
Philipp Richter, Anja Feldmann, and Arthur Berger. Inferring
BGP blackholing activity in the internet. In Proceedings of the
Internet Measurement Conference, pages 1-14. ACM, 2017.
T. Hardie. Distributing authoritative name servers via shared
unicast addresses. Technical Report 3258, RFC Editor, 2002.
Lee Hahn Holloway, Srikanth N Rao, Matthew Browning
Prince, Matthieu Philippe Francois Tourne, lan Gerald Pye,
Ray Raymond Bejjani, and Terry Paul Rodery Jr. Mitigat-
ing a denial-of-service attack in a cloud-based proxy service,
October 7 2014. US Patent 8,856,924

Chi-Yao Hong, Subhasree Mandal, Mohammad Al-Fares, Min
Zhu, Richard Alimi, Kondapa Naidu B., Chandan Bhagat,

(32]

(33]

[34]

(35]

(36]

(37]

(38]

(39]

[40]

(41]

(42]

[43]

[44]

[45]

[46]

[47]

Sourabh Jain, Jay Kaimal, Shiyu Liang, Kirill Mendelev, Steve
Padgett, Faro Rabe, Saikat Ray, Malveeka Tewari, Matt Tierney,
Monika Zahn, Jonathan Zolla, Joon Ong, and Amin Vahdat.
B4 and after: Managing hierarchy, partitioning, and asymmetry
for availability and scale in Google’s software-defined WAN.
In Proceedings of the ACM SIGCOMM Conference, Budapest,
Hungary, August 2018. ACM.

Geoff Huston. BGP in 2017. https://labs.apnic.net/
?p=1102, Jan 8 2018. [Online; accessed 12-Oct-2021].

Team Cymru Inc. Secure Cisco IOS BGP template. https://
www . team-cymru.com/secure-bgp-template.html. [On-
line; accessed 12-Oct-2021].

Quan Jia, Huangxin Wang, Dan Fleck, Fei Li, Angelos Stavrou,
and Walter Powell. Catch me if you can: A cloud-enabled
ddos defense. In 2014 44th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, pages 264—
275.1IEEE, 2014.

Brian Krebs. Krebsonsecurity hit with record DDoS. Kreb-
sOnSecurity, Sept, 21, 2016.

Jan Harm Kuipers. Anycast for DDoS.
utwente.nl/73795/1/Kuipers_MA_EWI.pdf, 2017.
line; accessed 12-Oct-2021].

Craig Labovitz, Abha Ahuja, Abhijit Bose, and Farnam Jaha-
nian. Delayed Internet routing convergence. ACM SIGCOMM
Computer Communication Review, 30(4):175-187, 2000.
Matt Levine, Barrett Lyon, and Todd Underwood. TCP
anycast—don’t believe the FUD. Presentation at NANOG
37, June 2006.

Zhihao Li, Dave Levin, Neil Spring, and Bobby Bhattacharjee.
Internet anycast: Performance, problems, & potential. In Pro-
ceedings of the 2018 Conference of the ACM Special Interest
Group on Data Communication, pages 59-73, 2018.

Zigian Liu, Bradley Huffaker, Marina Fomenkov, Nevil Brown-
lee, et al. Two days in the life of the DNS anycast root servers.
In International Conference on Passive and Active Network
Measurement, pages 125-134. Springer, 2007.

Doug Madory and Matt Prosser. Excessive BGP AS path
prepending is a self-inflicted vulnerability. Presentation at
RIPE 79, October 2019.

Marek Majkowski. =~ Memcrashed - major amplification
attacks from UDP port 11211. https://blog.cloudflare.
com/memcrashed-major-amplification-attacks-from-
port-11211/,2018. [Online; accessed 12-Oct-2021].

Tyler McDaniel, Jared M Smith, and Max Schuchard. Flexseal-
ing bgp against route leaks: peerlock active measurement and
analysis. arXiv e-prints, pages arXiv—2006, 2020.

Stephen McQuistin, Sree Priyanka Uppu, and Marcel Flores.
Taming anycast in the wild Internet. In Proceedings of the
Internet Measurement Conference, pages 165-178, 2019.
Giovane C. M. Moura, Ricardo de O. Schmidt, John Heide-
mann, Wouter B. de Vries, Moritz Miiller, Lan Wei, and Chris-
tian Hesselman. Anycast vs DDoS: Evaluating the November
2015 root DNS event. In Proceedings of the ACM Internet
Measurement Conference, November 2016.

Priyadarsi Nanda and AJ Simmonds. A scalable architecture
supporting QoS guarantees using traffic engineering and pol-
icy based routing in the Internet. International Journal of
Communications, Network and System Sciences, 2009.

Root Server Operators. Events of 2015-11-30. https://root-

https://essay.
[On-

(48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

servers.org/media/news/events-of-20151130.txt,
2015. [Online; accessed 12-Oct-2021].

Root Server Operators. Events of 2016-06-25. https://root-
servers.org/media/news/events-of-20160625.txt,
2016. [Online; accessed 12-Oct-2021].

Craig Partridge, Trevor Mendez, and Walter Milliken. Host
anycasting service. Technical Report 1546, RFC Editor, 1993.
The Canadian Press. Canadian communications company
voip.ms hit by cyber attack. https://www.thestar.com/
business/2021/09/21/canadian-communications-
company-voipms-hit-by-cyber-attack.html/, 09 2021.
LANDER project. Lander:b root anomaly-20170306.
https://ant.isi.edu/datasets/readmes/B_Root_
Anomaly-20170306.README. txt, 2019. [Online; accessed
12-Oct-2021].

Bruno Quoitin, Cristel Pelsser, Olivier Bonaventure, and Steve
Uhlig. A performance evaluation of BGP-based traffic en-
gineering. [International journal of network management,
15(3):177-191, 2005.

Bruno Quoitin, Cristel Pelsser, Louis Swinnen, Olivier
Bonaventure, and Steve Uhlig. Interdomain traffic engineering
with BGP. IEEE Communications magazine, 41(5):122-128,
2003.

RIPE. Measurements. https://atlas.ripe.net/
measurements/10310/. [Online; accessed 12-Oct-2021].
RIPE. Root dns observations. Measurement ID 1009 (A-Root),
1010 (B-Root), etc., 2021.

RIPE Network Coordination Centre. RIPE - Routing
Information Service (RIS). https://https://www.
ripe.net/analyse/internet-measurements/routing-
information-service-ris, 2020.

ASM Rizvi, Joao Ceron, Leandro Bertholdo, and John Hei-
demann. Anycast agility: Adaptive routing to manage ddos.
arXiv preprint arXiv:2006.14058, 2020.

ASM Rizvi, John Heidemann, and Jelena Mirkovic. Dynami-
cally selecting defenses to DDoS for DNS (extended). Tech-
nical Report ISI-TR-736, USC/Information Sciences Institute,
May 2019.

Sandeep Sarat, Vasileios Pappas, and Andreas Terzis. On
the use of anycast in DNS. In Proceedings of 15th Inter-
national Conference on Computer Communications and Net-
works, pages 71-78. IEEE, 2006.

Brandon Schlinker, Todd Arnold, Italo Cunha, and Ethan Katz-
Bassett. PEERING: Virtualizing BGP at the Edge for Research.
In Proc. ACM CoNEXT, Orlando, FL, December 2019.
Brandon Schlinker, Hyojeong Kim, Timothy Cui, Ethan Katz-
Bassett, Harsha V. Madhyastha, Italo Cunha, James Quinn,
Saif Hasan, Petr Lapukhov, and Hongyi Zeng. Engineering
egress with Edge Fabric: Steering oceans of content to the
world. In Proceedings of the ACM SIGCOMM Conference,
pages 418-431, Los Angeles, CA, USA, August 2017. ACM.
Ricardo de O. Schmidt, John Heidemann, and Jan Harm
Kuipers. Anycast latency: How many sites are enough? In
International Conference on Passive and Active Network Mea-
surement, pages 188-200, Sydney, Australia, March 2017.
Thomas Bradley Scholl. Methods and apparatus for distributed
backbone internet ddos mitigation via transit providers, Febru-
ary 3 2015. US Patent 8,949,459.

A. Shaikh, R. Tewari, and M. Agrawal. On the effectiveness of

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]
[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

DNS-based server selection. In Proceedings IEEE INFOCOM
2001. Conference on Computer Communications. Twentieth
Annual Joint Conference of the IEEE Computer and Com-
munications Society (Cat. No.0I1CH37213), volume 3, pages
1801-1810 vol.3, 2001.

AX Sharma. Phone calls disrupted by ongoing ddos
cyber attack on voip.ms. https://arstechnica.com/
gadgets/2021/09/canadian-voip-provider-hit-by-
ddos-attack-phone-calls-disrupted/, 09 2021.

AWS Shield. = Aws shield - threat landscape report —
ql 2020. https://aws-shield-tlr.s3.amazonaws.com/
2020-Q1_AWS_Shield_TLR.pdf, 08 2020.

R. B. da Silva and E. Souza Mota. A survey on approaches to
reduce BGP interdomain routing convergence delay on the In-
ternet. IEEE Communications Surveys & Tutorials, 19(4):2949—
2984, 2017.

Daniel Smith. The growth of DDoS-as-a-service: Stresser ser-
vices. https://blog.radware.com/security/2017/09/
growth-of-ddos-as-a-service-stresser-services/,
2017. [Online; accessed 12-Oct-2021].

Donald J Smith, Michael Glenn, John A Schiel, and Christo-
pher L Garner. Network traffic data scrubbing with services
offered via anycasted addresses, May 24 2016. US Patent
9,350,706.

Jared M. Smith and Max Schuchard. Routing around conges-
tion: Defeating DDoS attacks and adverse network conditions
via reactive BGP routing. In 2018 IEEE Symposium on Secu-
rity and Privacy (SP), pages 599-617. IEEE, 2018.

Job Snijders. Practical everyday bgp filtering with as_path
filters: Peer locking. NANOG-67, Chicago, June, 2016.
Oliver Spatscheck, Zakaria Al-Qudah, Seunjoon Lee, Michael
Rabinovich, and Jacobus Van Der Merwe. Multi-autonomous
system anycast content delivery network, December 10 2013.
US Patent 8,607,014.

RIPE NCC Staff. Ripe atlas: A global internet measurement
network. Internet Protocol Journal, 18(3), 2015.

One Step. BGP community guides. https://onestep.net/
communities/. [Online; accessed 12-Oct-2021].

Eric Sven-Johan Swildens, Zaide Liu, and Richard David Day.
Global traffic management system using IP anycast routing and
dynamic load-balancing, March 8 2011. US Patent 7,904,541.
Renata Teixeira, Steve Uhlig, and Christophe Diot. BGP
route propagation between neighboring domains. In Inter-
national Conference on Passive and Active Network Measure-
ment, pages 11-21. Springer, 2007.

University of Oregon. Route Views Project. http://www.
routeviews.org/routeviews/, 2021.

USC/ISI. Uscl/isi ant datasets. https://ant.isi.edu/
datasets/all.html, 2019. [Online; accessed 12-Oct-2021].
Lan Wei and John Heidemann. Does anycast hang up on you?
In 2017 Network Traffic Measurement and Analysis Conference
(TMA), pages 1-9, Dublin, Ireland, July 2017. IEEE.
Fernanda Weiden and Peter Frost. Anycast as a load balancing
feature. In Proceedings of the 24th international conference on
Large installation system administration, pages 1-6. USENIX
Association, 2010.

Curt Wilson. Attack of the Shuriken: Many hands,
many weapons. https://www.arbornetworks.com/blog/
asert/ddos-tools/, 2012. [Online; accessed 12-Oct-2021].

12.0 ; , ,
Estimated rate '
Observed rate == !

10.0 | Reported rate = - = b o fom'| -

8.0 -

6.0 [

4.0

Query rate(million query/s)

20+ Normal duration. attack duration

0.0 .
-150 -125 -100 -75 -50 -25 0 25 50 75

Duration (seconds) relative to attack start

Figure 12: Estimating real-world attack events: estimating
June 2016 event with 0.91% access fraction.

Appendix A Anycast and Verfploeter

IP anycast is a routing method used to route incoming re-
quests to different locations (sites). Each site uses the same IP
address, but at different geographic locations. Anycast then
uses Internet routing with BGP to determine how to asso-
ciate users to different sites—that is known as site’s anycast
catchment. BGP has a standard path selection algorithm that
considers routing policy and approximate distance [8].

Operators can influence the routing decisions process using
different traffic engineering techniques (TE) to manipulate
BGP. We describe TE techniques in §3.4.1 and how they can
be used to rebalance the load during a DDoS attack.

We use Verfploeter [20] to find out the client to anycast
site mapping. Using Verfploeter we build our BGP playbook
with various BGP changes (§6.4). The main intuition behind
Verfploeter is to send pings to millions of address blocks [23,
78], using an anycast prefix as source address. The replies to
these pings will be routed to the nearest anycast site by the
inter-domain routing system from which we can map address
blocks to the anycast sites.

Appendix B Operator Assistance System

To assist operators (§3.4.3), we provide an interface for de-
fense. To react and reconfigure the anycast network, the oper-
ators can use a web interface similar to an equalizer, choosing
the percentage of load to be increased or dropped at an any-
cast site. The possible ranges of slider positions are based on
the playbook alternatives or presets of routing policies. This
process hides the playbook complexity from the operator,
making the process less error-prone and more intuitive, but
still giving the operator a full control of the BGP routing.

In Figure 3 we can visualize a snapshot of this interface.
Each slider represents an anycast site and each site has pre-
determined settings indicated by “notches". The positions of
the "notches" are the results of all the measurements obtained
to create our playbook. The bar graph shows the results of
the measurement process, indicating how many networks will
be attracted to each anycast site. The operators can visual-
ize the forecasted traffic to each position and then apply the
configuration on the production network.

AMS B BOS O CNF O

= M zo. T
g § 100 = Test prefix =—t=—
£ 5 N ® .60 LL__Production prefix
£ £ 80 =
© s c
T]
5 60 S 2050
2 5 60 H i -
< 40 3 ~ 0.40 “'N
g < 40 2
g & 5 Vs
€ 2 g £ 030 o
% o
£ 0 3 $0.20 - ud
P WA 2 9 o9 g o) L 4
RO <Y T -) < -
552 %% 7Ry 0% 8% 228855032803 0900 0005 5 pol
A P> = o Z O o G U0 2 O 20, W R e 200 < 0.10
! i a 2 © = oY v e [PR R N TR % o
P L ® “ e o v g w
2, Tier-1 ASes O 2 °
% Transits _Non " Tier-1 ASes o °© *® 0.00 L L L L L
by (with Transits 291. IXPs Non-Tier-1 0 5 10 15 20 25 30

Poisoned AS

Figure 13: Peering: Impact of path
poisoning (from AMS on 2021-04-09).

oisoned AS

Figure 14: Tangled: Impact of path
poisoning (from MIA on 2021-04-11).

No. of days after 2021-07-01

Figure 15: One month of catchment
stability in B-root.

i Ty AMS(%) BOS(%) CNF(%)
00GMT 06GMT 12GMT 18GMT | 00GMT 06GMT 12GMT I18GMT | 00GMT 06GMT 12GMT 18 GMT
Day-1load | 77 84 84 84 10 8 8 7 13 8 8 9
Baseline Day-2 load | 77 84 84 80 10 8 7 9 13 8 9 11
Catchment 68 15 17
Day-1 load | 43 49 49 58 18 20 18 13 39 32 33 29
1xPrepend AMS Day-2 load | 43 46 46 50 18 18 18 18 39 36 36 32
Catchment 37 25 38
Day-11load | 78 85 83 83 4 3 4 3 18 12 13 14
1xPrepend BOS ~ Day-2load | 78 85 83 79 4 4 4 4 18 12 13 16
Catchment 70 7 23
Day-1 load | 83 88 87 87 11 10 9 8 6 2 3 5
IxPrepend CNF Day-2 load | 83 89 87 85 11 9 10 6 2 4 5
Catchment 77 19 4
Day-11load | 88 93 92 91 5 4 5 3 6 3 4 5
Transit-1 Day-2 load | 88 93 92 90 5 4 4 5 7 2 4 6
Catchment 38 24 38

Table 8: Load distribution with Peering catchment and B-root load. Catchment: 2020-02-24, Load: 2020-02-25 and 2020-02-26
(only showing selected policies). Catchment distribution remains similar over the course of the day showing by a single value.

Appendix C Detailed Attack Size Estimation

We validate our attack estimation with both testbed experi-
ments and real-world events.

C.1 Testbed Experiment

We validate our model with experiments in a testbed (DE-
TER [6]) where we can control all factors, where actual of-
fered load is estimated and topology is fixed.

We provide the details of our testbed experiment in the
extended version of this paper [57].

C.2 Case Studies: 2016-06-25 Event

We showed real-world case studies in §4.1. Here we show
that our approach works for another event from 2016-06-25
(Figure 12). We observe our estimation (varying orange line)
is close to the reported line (dashed purple line). We can also
see that our observation is only a tiny fraction of the true
offered load (bottom blue line).

Both these results show the effectiveness of our approach
with both testbeds and real-world events.

Appendix D BGP Poisoning Granularity

With poisoning coverage limited by filters (§6.3.1), we next
examine what granularity control it provides. We expect to
see limited range since we cannot poison Tier-1 ASes, and
small ASes carry little traffic.

We test path poisoning in both Peering and Tangled using
three sites from each testbed. As expected, we observe the
same traffic distribution when we poison any Tier-1 AS—30-
35% load at AMS (Peering in Figure 13) and 1-3% load at
MIA (Tangled in Figure 14).

When we poison a non-Tier-1 AS that is more than one hop
away, we observe a small change in the traffic distribution.
In Peering, we can see that poisoning AS57866 reduces a
small fraction of traffic from AMS (Figure 13). We observe a
similar outcome in Tangled (Figure 14).

Our results prove that poisoning Tier-1 ASes is limited by
the filters, and poisoning non-Tier-1 ASes that are multi-hops
away can change only a small fraction of traffic.

Poisoning an immediate upstream is equivalent to not
announcing to them, so we do not consider that case here.

Appendix E Catchment Stability

Our insight is that we can use a playbook for several days or
weeks since the catchment remains stable over the time (§7.3).
To test this we use one month of B-root catchment mapping
with test and production prefixes. We observe the stability in
B-root catchment.

From Figure 15, we can see that the catchment remains
stable over time. In two weeks, only 0.35% prefixes, and
in one month, only 0.65% prefixes changed their catchment
when we compare the catchment with day 1 considering ~2

AMS mmmmm BOS CNF 900.00 T

90.00
80.00

TRoute Propagatio 800.00 |

Ydone:(simulated)
'

Attack TPrepend
started'AMS by 1
[y vy 700.00 -
70.00 - : i
I

60.00
50.00
40.00

30.00

600.00
500.00 -

Normal traffic

400.00
300.00

Query rate (k packets/s)
Query rate (k packets/s)

20.00 200.00

10.00

0.00

-600 -400 -200 0 200 400 600
Duration (seconds) relative to attack start

100.00 |- Normal traffic

T — AP T

Attack 1Prepend aNoW CNFy-ve WNo

<tarted 1AMS by Lioverload ;prepend overloaded
—> e

0.00
-800 -600 -400 -200 0 200 400 600 800 1000 1200 1400
Duration (seconds) relative to attack start

S m— BOS

T AM:
AMS overloaded "3 CNF

800.00

T Route propagation

4BOS by 1sites
o e e 1 done (simulated)

T T T
Route k Attack , Only to 6 Peers
propagatior 700.00 {tarted———3"

i e(end it g

g sete g atie

'
[600.00

500.00
400.00
300.00
200.00

Query rate (k packets/s)

100.00

0.00
-1

00 0

100 200 300 400 500 600 700 800
Duration (seconds) relative to attack start

(a) A 2020 event at B-root defended using pos-(b) A 2021 event at B-root defended using (c) A 2021 event at the Dutch National Scrub-

itive prepending. negative prepending

bing Center mitigated using community strings.

Figure 16: Different attacks with various responses (extended).

million prefixes. This shows only a tiny fraction of prefixes
changes the catchment even after a month irrespective of the
changes made by the ASes. Hence, building the playbook
once every week/month should be sufficient.

We also make the catchment mapping at different times of
the day. We found catchment distribution remains similar at
different times of the day.

Appendix F Load Distribution

Our playbook with catchment (§6.4) distribution gives an
adequate prediction of traffic distribution which we success-
fully apply in §8. Since services care about load, we want to
see how the load is distributed in different routing changes.
An operator can simply make the load playbook based on
the already computed catchment mapping without making
additional BGP announcements.

In Table 8, we can see different routing changes and their
impacts over load distribution in different times of the day.
Load changes over the day—fewer load at 00 GMT in AMS
site since most Europe sleeps at that time. BOS and CNF
receive more load at 00 GMT as that is a busy hour for these
two regions. We can also observe that some prefixes con-
tribute more load due to the difference in number of clients
behind each prefix. For this reason, BOS prefixes (mostly
North American prefixes) contribute less load compared to
the prefixes at other two sites. We can also see that load re-
mains stable at the same time of different days (varies within
5% most of the time).

We can also see that the relative catchment distribution fol-
lows the load distribution, however, it is not exactly the same.
Decisions will be even better when an operator considers dif-
ferent load playbooks at different times of the day. Building
multiple load playbooks is simple since we can just use the
same catchment mapping (catchment mapping remains stable
(Appendix E)).

Appendix G More Attacks And Mitigation

We evaluate more attack events captured at B-root and at
the Dutch National Scrubbing Center. We follow the same
methodology mentioned in §8. We use the same playbook
built with AMS, BOS and CNF sites (§6) from Peering.

A 2020 volumetric attack at B-root: We observed an
ephemeral volumetric event at B-root on 2020-02-14 where
the attackers used a single query name—peacecorps.gov. This
event lasted very briefly for 3 minutes. In practice, no routing
approach can work against such short-lived attacks due to
the propagation delay of BGP. We stretched the event with
similar traffic rate so that we can see the impact if the attack
continues for more time.

In this event also, AMS is overloaded with 60k packets/s
when the assumed capacity is 40k packets/s (Figure 16a). We
prepend AMS by 1 so that the traffic shifts away from AMS.
After 300 s, we can see no overloaded striped area in AMS.

These volumetric attacks are common at root servers. Rout-
ing based approaches can defend against such attacks.

A 2021 B-root event where our system iterates: We
evaluate another event at B-root occurred on 2021-05-28.
In this event, the queries were IP fragmented (large packet
size), and the common query name was pizzaseo.com (we
stretched the event since it was short-lived). When the attack
started, our system finds AMS site overloaded (Figure 16b).
Our system finds prepending from AMS is the best approach
to reduce traffic from AMS. However, after prepending AMS
by 1, CNF site gets the most redirected traffic, and becomes
overloaded. Redirected attack sources prefer CNF over BOS.
When our system finds CNF site overloaded, it deploys an
approach that will reduce traffic from CNF since it is now
overloaded. Our system deploys negative prepending to push
more traffic towards BOS site. After 900 s, we can see there
is no overloaded site. This event shows how our system can
gradually find out the best routing approach.

Defending with community strings: We next consider an
attack observed at the Dutch National Scrubbing Center on
2021-08-27. This attack was a volumetric DNS amplification.

In this attack, AMS is overloaded. Consulting the playbook,
we select a response using community strings to shift traffic,
retaining six IXP peers at AMS, while dropping all other peers
and transits. The impact of this change is visible at 300 s in
Figure 16c, as the attack is successfully spread across all sites.

This example shows how different community strings pro-
vide control over traffic distribution. We show more events in
the extended version of this paper [57].

H Artifact Appendix
H.1 Abstract

In this artifact, we provide datasets and software tools related
to our paper “Anycast Agility: Network Playbooks to Fight
DDoS” [9]. Our artifact contains several datasets generated
from our anycast experiments and analysis. Our datasets pro-
vide a snapshot of the results that we generated during our
experiments. Some of our experimental results are dependent
on the current state of the network interconnections and poli-
cies. However, due to the anycast stability, we expect to get
similar results if we redo the experiments now. Our published
datasets support our key results and are publicly available.
We also provide tools and scripts that can be useful for other
researchers.

H.2 Artifact check-list (meta-information)

* Algorithm: We provide an algorithm to select the best routing
option from a BGP playbook containing multiple routing op-
tions and their impacts over traffic distribution (Section 3.4.2
of the paper [9]). We provide a working Python script for this
selection algorithm. We include instructions about this tool in
our anygility tool page [10].

* Compilation: We use shell/python script and java program
for our tools. One needs to install Python and Java to run our
tools. We depend on Verfploeter software, and we mention a
series of other dependencies in the software README:s [10].

* Binary: Some of our tools require extra binary files. We in-
clude those binary files with our software package, and provide
instructions.

* Data set: We provide several datasets generated from our
experiments and analysis [11]. Some software tools require
extra datasets to run (e.g. IP hitlist). We include a sample
dataset file with the software tool.

However, we do not include large data files with our software
tools. But these datasets can be downloaded separately (we
provide the instruction in §H.3.1).

* Run-time environment: We tested our tools in Linux oper-
ating system. Peering toolbox on Fedora 34, and Tangled on
Ubuntu 18.04 LTS and macOS 12. In some cases, our tools
require root access. Our tools notify the users when it needs
root access.

* Run-time state: Our key idea related to network playbook
(Section 3.1 and 6.4 of the paper [9]) is dependent on the
network interconnections and policies. We include the dates of
experiments in our datasets. Since anycast is stable, we expect
a similar outcome if we rerun the experiment.

* Execution: Some of our tools might need a long time to
run. For example, our automated playbook builder announces
different routing configurations, runs Verfploeter, and captures
traces after a fixed interval. If we consider the whole process
from measurement to playbook for 7 sites, it takes around 27-
35hours. For 3 sites it was around 17-24 hours. If we have
more sites, or more routing policies, it would take even more
time.

Security, privacy, and ethical concerns: In the required cases,
we anonymize IP addresses to prevent IP disclosure. As an ex-
ample, we anonymize [P addresses in the DDoS attack datasets.
For privacy reasons, we restrain ourselves from sharing certain
attack data from Dutch national scrubbing center, and from an
enterprise.

¢ Metrics: We provide datasets related to anycast catchments
and DDoS attacks. Each dataset reports different metrics. We
provide the details of these metrics in our README files. Our
READMEE files are included with the dataset packages.

e Output: We provide experimental outputs from Tangled and
Peering testbeds. Tangled provides the measurement output in
csv format while Peering provides raw captured traces in pcap
format. These data files are parsed to generate output files in
human-readable formats or graphs. The graphs are built using
jupyter notebook and gnuplot scripts. We provide these scripts
in our dataset webpage [11].

« Experiments: We provide scripts to automatically announce
different routing configurations in both Peering and Tangled
testbeds. We provide our generated datasets from these experi-
ments. We provide some sample data to test our route selection
process independent from running the whole measurement
process.

¢ How much disk space required (approximately)?: Software
tarballs are about S00KB. Our datasets related to the anycast
experiments require around 100 GB disk space. Our attack
datasets are large since we provide the whole day traffic cap-
tures (around 500 GB each). As our datasets are large, a user
can download a portion of the datasets.

¢ How much time is needed to complete experiments (approx-
imately)?: Some of the experiments may take a whole day
(building a playbook with all routing options). Measurement
process can take days depending the chosen measurement. Our
decision maker can take decision within seconds. Parsing tools
may need different times depending on the data size.

¢ Publicly available (explicitly provide evolving version
reference)?: Our evolving datasets and software tools
are publicly available at https://ant.isi.edu/datasets/
anycast/anycast_against_ddos/index.html.

* Code licenses (if publicly available)?: Our tools are free; so
anyone can redistribute it and/or modify it under the terms of
the GNU General Public License, version 2, as published by
the Free Software Foundation. We include this license notice
with every tools that we make publicly available.

¢ Data licenses (if publicly available)?: We follow the data
sharing policy through the participation of the LACREND
project in the DHS IMPACT program [5].

Archived (explicitly provide DOI or stable reference)?: Our
stable reference for this artifact is here: https://zenodo.
org/record/6473023 with DOI 10.5281/zenodo.6473023.

H.3 Description

We provide datasets and tools for measuring anycast agility against
DDoS. Our datasets are available upon request [5]. We provide
datasets about the traffic distribution after BGP changes in testbeds,
attack data from a DNS root server and from a national scrubbing

Software Software Software Dataset Dataset
tools dependencies source dependencies source
Traffic Java openjdk-11.0.13 pcap traces With dataset
Estimator tshark Wireshark RIPE IPs Included
Required
Access to
pla)jbook Peering Testbed Hitlitst With dataset
builder access
. Provided +
Pinger
open source
playbook Playbook Included
tuner Python Python 3.10.2 Load Included
load_parser+ shell+Java openjdk-11.0.13 Da}taset dir. With dataset
. with pcaps
Parsingload Provided T
pingextract Load file With dataset
open source
Python . e
BGPTuner . Python 3.8 Playbook with specific site list Included
bgptuner-requirements.txt
PBf‘}f(l:n Bash 4.4
measurement scripts y Python 3.8
. Verfploter — —
+ tangler-cli Verfploter 0.1.42
ExaBGP ExaBGP 4.1.2
Access to Tangled o
vp-cli Python Python 3.8 Verfploter 0.1.42 files Included
make-playbook Python Python 3.8 stats files Included
Python
Python 3.8 .
run-playbook ExaBGP ExaBGP 4.1.2 Routing Playbook Included

Access to Tangled

Table 1: Software tools dependencies.

center, other data related to anycast catchment stability, and other
supporting data for our software tools. We provide codes for traffic
estimation, for reproducing experiments, and for parsing the col-
lected data.

H.3.1 How to access

Our datasets are available from the institutional storage system [6].
We provide the datasets based on requests [5]. After getting a request,
we provide the download instructions. Our software tools will be
available to download from its own webpage [10].

H.3.2 Hardware dependencies

Our whole uncompressed datasets size is over 1 TB. However, a user
can download the partial datasets [6]. An interested user may want
to look over the meta data of each dataset (using the README files),
and keep the required amount of free storage.

H.3.3 Software dependencies

We provide several tools for different purposes [10]. We tested our
software tools in Linux operating system. Some of our tools are
dependent on external data sources and binaries. In most cases,
we provide a sample data source with the package, and for other
cases one can download the datasets with our released dataset. We
provide the required binaries with our tools. One might need to
install dependencies like Python or Java. We detail dependencies on
(Table 1).

H.3.4 Data sets

We provide a full list of datasets in our web page [11].

We release datasets related to catchment distribution after routing
configuration changes. We announce different BGP options, run Verf-
ploeter to ping millions of responsive targets, and then capture the
responses at every site. Our dataset includes raw pcap files captured
from these measurements, and parsed data files in human-readable
format.

We also provide DDoS attack data collected from B-root and
Dutch national scrubbing center from 2015 to 2021.

Within other datasets, we provide datasets for anycast stability,
and other supporting datasets to run our software tools.

The READMEs for these datasets are available with the dataset
package.

H.3.5 Models
N/A

H.3.6 Security, privacy, and ethical concerns

We see no privacy concerns with our shared datasets. In cases like
the DDoS attack data, we only share the /24 prefixes to hide the
exact IP.

H.4 Installation

Instructions for running the tools are available in the webpages [10].

H.5 Evaluation and expected results

We provide the key results of the paper by mentioning the figures and
tables, and list the corresponding datasets and tools in Table 2. Next,
we list the key results, then we describe how can one get these results,
and possible variations in the results. Please check the detailed steps
to regenerate the graphs from the provided datasets.

H.5.1 Results with traffic estimation:

We propose a new technique to estimate the true offered load when
we have loss in the upstreams (Section 3.3 and 4 [9]). We show our
traffic estimation technique works well with the real world-attack
events. For traffic estimation, we provide a tool named TrafficEsti-
mator [14]. Using our traffic estimation tool, we show that we can
correctly estimate the true offered load for real-world DDoS events.

To reproduce the same result, one needs to feed the attack traces
to our program (provided as attack data in peering dataset [12]). One
needs to have the pcap traces that we used, and needs to install tshark
(with Wireshark) to feed the traffic content to our program. We used
tracefiles for 2015-11-30 and 2016-06-25 events. A user needs to
know the attack start time to use the right pcap files to observe the
estimation outputs. The provided README tells the attack start
time. We also need to provide a list of RIPE IPs that our program
will use (already provided with the tool). We provide the instructions
for running this tool in our webpage [14].

If running correctly, one can regenerate the same results that we
showed in the paper. Depending on the start and end time of the
attack trace, we might get a slightly different estimation. But on
average we expect to get the same results.

Detailed steps:

‘We show the results generated for 2015 and 2016 events. This cov-
ers Figure 4, Figure 12, and Table 1. We use the following datasets:

1. Non-attack traffic 2015: B_Root_Anomaly-20151130/29/2015
1129-065024-00175689.pcap.xz,

2. Non-attack traffic 2016: B_Root_Anomaly-20160625/24/2016
0624-200008-00356777.pcap.xz,

3. Attack traffic 2015: B_Root_Anomaly-20151130/30/2015113
0-065209-00177422.pcap.xz,

4. Attack traffic 2016: B_Root_Anomaly-20160625/25/2016062
5-221823-00357641.pcap.xz,

5. RIPE IPs 2015: ripe-ips-2015-11-30.txt (provided with the
tool),

6. RIPE IPs 2016: ripe-ips-2016-06-25.txt (provided with the
tool).

The first step is to calculate the RIPE traffic rate during normal
period (known-good traffic - normal column of Table 1). To get this
value, we feed non-attack traffic to our estimator to get the RIPE
traffic rate during normal period. We use the following command to
get this:

For 2015 event: xzcat B_Root_Anomaly-20151130/29/2015
1129-065024-00175689.pcap.xz | sudo tshark -r - -T fields -e
frame.time_epoch -e ip.src | java -jar TrafficEstimator.jar ripe-ip
s-2015-11-30.txt 192.228.79.131,2001:500:84::9077:f4£0

For 2016 event: xzcat B_Root_Anomaly-20160625/24/2016
0624-200008-00356777.pcap.xz | sudo tshark -r - -T fields -e
frame.time_epoch -e ip.src | java -jar TrafficEstimator.jar ripe-ip
$-2016-06-25.txt 192.228.79.62,2001:500:84::ad9b:d590

Please wait for some time to see the generated output in
the command prompt. The given addresses (192.228.79.* and
2001:500:84::*) are the B root server addresses (different because
of the different anonymization keys). This command will generate
an output like:

2015: “Time diff: 5.01 Counter-packets: 193 Rate: 38.47” 2016:
“Time diff: 5.06 Counter-packets: 195 Rate: 38.52”

Key results [9,11] Shared datasets Related tools
. sample dataset tangled tools [15]
Figure 3 provided with the tool bgp-tuner

Figure 4, Table 1, Figure 12

peering and root DNS dataset [12]
B_Root_Anomaly-20151130
B_Root_Anomaly-20160625

TrafficEstimator and selection tools [14]
TrafficEstimator

peering and root DNS dataset [12]

peering tools [15]
playbook_builder

Figure 5 anycast_catchment_distribution-20200224: Joad_parser
prepending (3 sites) 2020-02-24 Parsi;lgLoa d
tangled tools [15]
Fioure 6 tangled dataset [13] measurement scripts
gure Usenix_anygility_5_sites_2022-03-24_NEW tangler-cli, vp-cli
Anygility-Tangled-Catchment-load-distribution.ipynb
peering and root DNS dataset [12] P Tzrllz)go;oobfzi{éf:r]
Figure 7 anycast_catchment_distribution-20200224, play -
community (3 sites) 2020-02-25 load_parser
Parsingload
. tangled dataset [13] tangled tools [].5]
Figure 8 measurement scripts

community dataset (3 sites)

tangler-cli, vp-cli

peering and root DNS dataset [12]

anycast_catchment_distribution-20200224: peering tools [15]
Table 5, Table 6 prepending (3 sites) 2020-02-24, load_parser
community strings (3 sites) 2020-02-25, Parsingload
poisoning (3 sites) 2021-04-09
peering tools [15]

peering and root DNS dataset [12]

playbook_builder

Figure 9 anycast_catchment_distribution-20200224: Joad_parser
prepending (3 sites) 2020-02-28 Parsi;lgLoa d
peering and root DNS dataset [12] .
anycast_catchment_distribution-20200224: P Tzrgfoflzziﬁjr]
Figure 10 prepending (3,5,7 sites) 2020-02-24, p 1yoa P _arser
2020-04-07, 2020-04-08 P
Community (3, 5, 7 sites) 2020-02-25 and 2020-04-19 &
peering and root DNS dataset [12] .
anycast_catchment_distribution-20200224: peering tools [15]
Table 7 . . load_parser
baseline (3 sites) 2020-02, Parsineload
2020-04, and 2020-06 Sne
peering tools [15]
Ficure 11 peering and root DNS dataset [12] Parsingload
£ B_Root_Anomaly_message_question-20170306 TimeBasedPrefixLoad
AnycastSiteLoad
peering and root DNS dataset [12] peering tools [15]
Figure 13 anycast_catchment_distribution-20200224: load_parser
poisoning (3 sites) 2021-04-09 Parsingload
. tangled dataset [13] peering tools [].6 /
Figure 14 L2 . measurement scripts
poisoning dataset (3 sites) . .
tangler-cli, vp-cli
. peering and root DNS dataset [12] i
Figure 15 anycast_catchment_stability-20210701
peering and root DNS dataset [12] P eerzng fools [15]
. . Parsingload
Figure 16 B_Root_Anomaly_message_question-20200214 .
B_Root_Anomaly_message_question-20210528 TimeBasedPrefixLoad
- - Y- £e-4 AnycastSiteLoad

Table 2: Paper key results with datasets and tools. We provide the scripts to generate the graphs for our key results in our

webpage [11].

We waited until 5 s to fix the final rate of the RIPE IPs. This rate
is the cumulative rate measured from the start time. known-good
traffic - normal column from Table 1 has a similar value.

The second step is to run the same TrafficEstimation java utility
to find the estimated rate. We run the following commands for this:

2015 event: xzcat B_Root_Anomaly-20151130/30/201511
30-065209-00177422.pcap.xz | sudo tshark -r - -T fields -e
frame.time_epoch -e ip.src | java -jar TrafficEstimator.jar ripe-ip
s-2015-11-30.txt 192.228.79.131,2001:500:84::9077:f4£0 38.47

2016 event: xzcat B_Root_Anomaly-20160625/25/201606
25-221823-00357641.pcap.xz | sudo tshark -r - -T fields -e
frame.time_epoch -e ip.src | java -jar TrafficEstimator.jar ripe-ip
s-2016-06-25.txt 192.228.79.62,2001:500:84::ad9b:d590 38.52.

Please note that this command has an extra parameter (38.47
and 38.52) which we got from the previous command outputs. This
command will generate two types of output lines. For 2015 event,
we are showing a snapshot after 20s, and for 2016 event we are
showing a snapshot after 42 s.

2015 event output:

Time diff: 19.99 Counter-packets: 37 Rate: 1.85 1448866349.106
Count-packets: 1604914 Observed rate: 320982.8 Estimated:
6674713.88

2016 event outptut:

Time diff: 41.98 Counter-packets: 14 Rate: 0.33

1466893148.1316 Count-packets: 451957 Observed rate:
90370.72 Estimated: 11186300

Our program shows the RIPE rate when it finds new RIPE IPs
in DNS traffic (starting after 1 minute). The observed rate line is
printed at every 5s. So, the users normally observe more number of
first line.

The first line for 2015 event indicates that after 20 s during the
attack period, our program receives 37 RIPE packets at a rate of
1.85 RIPE packets/s. This value corresponds to the known good
traffic - observed column value from Table 1. Dividing by the prior
normal rate of 38.47, we get the access fraction value, a. The first
line for 2016 event indicates that the program gets 14 RIPE packets
within 41.98 s with a rate of 0.33 RIPE packets/s. This value indi-
cates the known good traffic - observed column value from Table
1. Dividing by the prior rate of 38.52 RIPE packets/s, we get the
value of access fraction, o in Table 1. Please note that, because of a
different RIPE IP list and measurement start time (using different
pcap files), we are getting a slightly different value than what we
have in the table.

Our program generates the second line at every 5s. This line
indicates the timestamp at every 5 s, packet count within that 5 s, the
observed rate (packet count / 5.0), and the estimated traffic rate (ob-
served rate / o). This observed rate corresponds to the offered load
during attack - observed rate column of Table 1. For 2015 event, the
sample output value is close to 0.32M packets/s, and for 2016 event
this value is 0.09M packets/s. These two values are similar to what
we have in Table 1 (0.37 and 0.10). A user will observe variable rates
at different times. This observed rate is then divided by the calculated
access fraction (o) to get the estimated offered load—offered load
during attack - estimated column (~6.6M queries/second for 2015
event and ~11M queries/second for 2016 event), which is close the
reported rate of SM queries/second and 10M queries/second, respec-
tively [7, 8]. We use the estimated values from our TrafficEstimation
program to generate the graphs—Figure 4 and Figure 12. Depending
on the attack start time and RIPE IPs, the estimated values may vary

slightly but we expect to get a similar trend. The offered load during
attack - normal column indicates the normal traffic rate at a given
time which we can measure from B root traffic (TrafficEstimator
tool can measure this; we just need to feed the normal traffic with the
known RIPE rate parameter) but we are skipping this detail since it is
not directly related to the key outcomes. & is calculated by dividing
observed rate by the reported rate.

Our outcomes for known-traffic measurement, and estimated rate
measurement may vary depending on the RIPE IPs we used and the
traffic data we are using. We tried 5 s of traffic to find out the known
traffic rate. This choice is arbitrary, a user can wait for some more
time. Given the RIPE IPs that we provided, a user may expect to see
25-50 RIPE queries per second. Please note that, we used a subset
of RIPE IPs. A larger RIPE IP set along with their consistent signal
would ensure more stable RIPE query rate. We also provided some
snapshots for the estimated rate measurement. Please note that, they
are just snapshots. Estimated rates are dependent on the observed
traffic rates (always varying), and the access fraction.

H.5.2 Building BGP playbook:

We propose a BGP playbook to fight against DDoS attacks. We build
the BGP playbook with different routing options and their impacts
over traffic distribution (Section 6 and 7 [9]). We show that BGP
playbook can help the operators to select the right routing option
during an attack event, and a playbook can provide a granular control
over traffic distribution.

To reproduce the result, a user needs to announce different BGP
configurations, and then run Verfploeter/pinger [3] to learn the pre-
fixes to anycast site catchment. We provide scripts (playbook_builder
in Peering and tangler-cli in Tangled) for our testbeds to makes these
announcements automatically [15, 16]. One needs to have access
to the testbeds to run this experiment. We used Peering [17] and
Tangled [2] testbeds. These testbeds authorize an anycast prefix
for a specific time period. One needs to ask for permission with a
proposal to use these testbeds [1, 18]. Our script is dependent on verf-
ploeter/pinger tool which is available online [3], and we provide a
binary. This tool needs a target hitlist of IPs which we provided with
our dataset (search for internet_address_history_it88w20191127 [6]).
We provide a tool named getting_hitlist_ips to parse this raw hitlist
file to get the list of responsive IPs. The instruction to run these tools
is available in our webpage [15, 16].

To validate our results, we also provide the datasets that we got
from our experiments. We include captured pcap files, and data
in human-readable format for Peering [12], and in csv format for
Tangled [13]. To reproduce results from the collected data, we also
provide tools called load_parser and ParsingLoad in Peering [15],
and measurement scripts in Tangled [16].

Our result is dependent on the stability of the network state. Since
anycast catchment is fairly stable, we expect to get a slight variation
but similar results if we rerun the experiment.

Detailed steps: We provide an example here to reproduce Fig-
ure 5 from our paper. Other similar graphs and tables like Figure
5—Figue 7, Figure 8, Table 5, Table 6, Figure 9, Figure 10, Table
7, Figure 13, Figure 14 can be generated using the similar process.
Please note that figures for community strings and path poisoning
(Figure 7, Figure 10, and Figure 13) for Peering utilizes only Pars-
ingload utility alone (we provide the details later in this subsection).

At first, one needs to run playbook_builder tool to make BGP
announcements for every prepending option. This step is dependent

on getting access from the Peering testbed. Also, Internet routing

changes, and we will not get the same outputs that we received while

doing the experiment. As a result, we provide the collected data in

pcap form to skip this step. Please find this dataset in peering and root

DNS dataset—prepending (3 sites) 2020-02-24. The other datasets

for other figures mentioned in prior paragraph are also provided.
To recreate Figure 5, we provide the following datasets:

1. The pcap files in peering and root DNS dataset: anycast_catch
ment_distribution-20200224/Path_Prepending_ AMS,BOS,C
NF-20200224,

2. The IP hitlist internet_address_hitlist_it88w-20191127/interne
t_address_hitlist_it88w-20191127.fsdb.bz2,

3. Some "load" data, provided with the software tool (we consider
catchment in this figure so a full load data is not important).

After having these data, one needs to run anygility-
peering/src/getting_histlist_ips/getting_hitlist_ips on the hitlist:

bzcat /data/internet_address_hitlist_it88w-20191127/internet_a
ddress_hitlist_it88w-20191127.fsdb.bz2 | python3 ./getting_hitlist i
ps/data/ip_list_20191127.txt.

This will create a text file, ip_list_20191127.txt, containing one
responsive IP address per line.

Then one needs to run anygility-peering/src/load_parser/load_par
ser.sh on the pcaps with the generated IP hitlist and sample load-file,
and its corresponding load-date (e.g. —load=. —ldate=2022-02-01 to
use the one provided with the tool):

bash load_parser.sh --numbers=3 --sites=AMS,BOS,CNF --date
=2020-02-24 --dir=/data/anycast_catchment_distribution-2020022
4/Path_Prepending_ AMS,BOS,CNF-20200224/ --load=.--1date=2
022-02-01 --hitlist=/data/ip_list_20191127.txt Please note that the
trailing / in the —dir argument is necessary.

This will run the Parsingload java utility for each announcement
configuration, which will

» generate .dat files with ping responses from the .pcap files
using pingextract utility.

* compute catchment data, both in terms of /24-blocks and “load”
and store these as .txt files inside the data directory. For each
announcement configuration, two files <DATE>-catchment-
percentage.txt and <DATE>-load-percentage.txt are created.
In addition, a combined all-<DATE>-load-<LOAD-DATE>.txt
file is created in the data root directory.

The content of all-<DATE>-load-<LOAD-DATE>.txt consists of
multiple blocks of this form:

<routing-configuration-path>

- <missing /24 count> <missing /24 relative>

site_1 <site_1 /24 count> <site_1 /24 relative> <site_1 /24 relative
received>

[...]

site_n <site_n /24 count> <site_n /24 relative> <site_n /24 relative
received>

multiple <multiple /24 count> <multiple /24 relative> <multiple
/24 relative received>

- <missing load count> <missing load relative>

site_1 <site_1 load count> <site_1 load relative> <site_1 load
relative received>

L]

site_n <site_n load count> <site_n load relative> <site_n load
relative received>

multiple <multiple load count> <multiple load relative> <multiple
load relative received>

Figure 5 then shows bar-graphs created from the <site_x /24
relative received> values.

Using ParsingLoad alone: The script load_parser utilizes Pars-
ingLoad for each of the path prepending configurations. When we
are not parsing path prepending configurations, we can just utilize
Parsingload utility alone. We utilize Parsingl.oad alone for commu-
nity strings and path poisoning (Figure 7 and Figure 13). We run
Parsingload for each of these routing configuration separately.

java -jar Parsingload.jar 3 AMS,BOS,CNF anycast_catchment_
distribution-20200224/Community_Strings_ AMS,BOS,CNF-2020
0225/2020-02-25-AMS,BOS,CNF-AMS-ALL-PEERS/ /nfs/lander
/traces/verfploeter/broot_verfploeter/Peering/Peering Mapping/20
20/community_strings/2020-02-25-AMS,BOS,CNF-AMS-ONLY-
PEERS/ 2020-02-25 loads/ 2020-02-22

The output has the same format like all-<DATE>-load-<LOA
D-DATE>.txt as we mentioned above. We combine these gener-
ated files to build Figure 7 and Figure 13. We use Parsingl.oad
separately for each routing configuration with community strings
and path poisoning. But a script for all the community string and
path poisoning options is also possible. For path poisoning, we used
poisoning datasets (inside anycast_catchment_distribution-2020022
4) for AS174 (Tier-1), AS8283 (Transit-2), and AS12859 (Transit-1).

H.5.3 Selection from the playbook:

We provide a tool [14] to select the right routing configuration from
the BGP playbook (Section 3.4.2 [9]). Using this tool, we show
that an automated approach can be useful to select the right routing
approach.

Our selection tool provides output based on the current playbook,
and offered load. To show how the selection tool works, we provide
a sample playbook (based on Table 5 [9]), and a load file. When the
users run the tool with the given inputs, they can see the selection
output. We also include a tool named bgp-tuner for showing the
graphical interface [16].

Depending on the playbook and offered load, one can observe a
different output, which can be a complete different policy selection.

Detailed steps: We provided a sample playbook and offered load
file with the playbook_tuner tool. Please run the following command
to see the outputs from this program:

cat load.txt | ./playbook_tuner —setup "playbook.txt"

This will result the following output:

Overloaded site: AMS

Suggested config: 1AMS, Estimated load distribution: 41292.64
29494.75 41292.64

Other configs: Poison-Tier-1, Estimated load distribution:
41292.64 29494.75 41292.64

Other configs: Poison-Tier-2, Estimated load distribution:
41292.64 29494.75 41292.64

This tells that prepending AMS by 1 would provide the best
possible load distribution. Some other options are also possible.

H.5.4 Attack mitigation:
We show that BGP playbook is helpful to mitigate the real-world
DDoS events.

To reproduce the same result, we provide the B-root attack traces
in pcap and in message question formats [12]. Due to privacy reason,

we cannot share the attack data from the Enterprise and Dutch Na-
tional Scrubbing Center. We also provide the catchment distribution
for different BGP changes [12, 13]. Matching the attack prefixes and
attack loads to the prefix-wise catchment gives us the traffic distri-
bution at different sites. If one wants to test the B-root event, they
need to run TimeBasedPrefixLoad tool to get the per prefix attack
load [15]. Then one needs to run AnycastSiteLoad program to get
the per anycast site load [15].

Since the attack and catchment mapping are fixed, we expect to
get the same results that we showed in the paper.

Detailed steps: We show the detailed steps to generate Figure
11(a) here. All other subfigures of Figure 11 and Figure 16 can be
generated using the similar process.

To generate Figure 11(a), we need the following datasets:

1. peering and root DNS dataset: B_Root_Anomaly_message_q
uestion-20170306/: Figure 11(a) shows 10000 s of traffic. To
make the data processing faster, we recommend to use a subset
of this whole timeframe. We recommend the user to download
the datasets from 06:40:00 AM to 06:50:00 AM to reproduce
a fraction of the whole timeframe combining both attack and
non-attack period. The file names represent the dates and times
(format: YYYYMMDD-HHMMSS-*).

2. peering and root DNS dataset: anycast_catchment_distribution
-20200224/Path_Prepending_ AMS,BOS,CNF-20200224/202
0-02-24-AMS,BOS,CNF/

3. peering and root DNS dataset: /anycast_catchment_distrib
ution-20200224/Community_Strings_ AMS,BOS,CNF-202
00225/2020-02-25-AMS,BOS,CNF-AMS-Transit-1-Trial-2
/(update: this Trial-2 dataset is newly added. We also provided
Trial-1 dataset for 2020-02-25-AMS,BOS,CNF-AMS-Transit-
1 which will give a similar output, but we did not use that in
the paper).

At first, run the TimeBasedPrefixLoad java utility on the down-
loaded message_question format data. We only need time, source
IP and message length for our measurement. message_question for-
matted files have several attributes/columns. We used fsdb tool to
retrieve the times, source IPs, and message length [4]. Please follow
the instruction to install FSDB from here: https://www.isi.edu/
~johnh/SOFTWARE/FSDB/perl-Fsdb-2.74_README.html. Next,
use the following command to run TimeBasedPrefixLoad jar to
generate the prefix-wise load for each 5s:

xzcat B_Root_Anomaly_message_question-2017
0306/06/20170306-044* | dbcol time srcip msglen |
java -jar TimeBasedPrefixLoad.java output-20170306/
192.228.79.64,2001:500:84::bb26:87a2.

Here, dbcol is a utility from FSDB to select the right column
from the message_question format dataset. output-20170306 will
have multiple txt files named with a number indicating the time
segment. This command will generate prefix-wise load at every 5s
in output-20170306 directory: <network_prefix> <number_load>
<bytes>.

Then we run AnycastSiteLoad java utility to find out the per site
load at every 5. We run this utility for two routing configurations—
one without any routing change and one with announcing only to
Transit-1.

java -jar AnycastSiteLoad.jar 3 AMS,BOS,CNF anycast_catchm
ent_distribution-20200224/Path_Prepending_ AMS,BOS,CNF-202

00224/2020-02-24-AMS,BOS,CNF/ 2020-02-24 output-20170306/
2017-03-06,

java -jar AnycastSiteLoad.jar 3 AMS,BOS,CNF anycast_catch
ment_distribution-20200224/Community_Strings_ AMS,BOS,CN
F-20200225/2020-02-25-AMS,BOS,CNF-AMS-Transit-1-Trial-2/
2020-02-25 output-20170306/ 2017-03-06.

Please note that these two commands utilize output-20170306
that we generated in our previous step. These two commands gen-
erate two files in the corresponding catchment directory named
as <CATCHMENT-DATE>-load-<ATTCK-DATE>-ingress.txt. The
output format inside the file: <time> <site-1> <count-site-1> <bit-
site-1> <...> <site-n> <count-site-n> <bit-site-n>. The first file con-
tains load without any routing change, the second file contains load
after announcing only to Transit-1. We combine these two files to
show non-attack period (no policy deployed), and period when the
route propagation is done (when we deployed Transit-1).

To match the results with the Figure 11(a), the first output file will
contain (<count-site-n> column) traffic load during normal period
(before O's from the graph with around 20k packets/s). The first out-
put file also contains the attack traffic (AMS load over 60k packets/s
after 160 s of the first file). This is similar to the traffic from O's to
300 of Figure 11(a). After that we announce only to Transit-1 (after
300 s of Figure 11(a)). The second output file contains this data (after
160 s from the file).

H.6 Notes

Considering the real datasets are big, and time expensive to run, we
include smaller datasets collected using a small hitlist fraction (0.1%
of original size) in experiments with Tangled. While the produced
playbook will differ from paper results, we believe it can help for
testing purpose. For Peering tools, we sometimes include smaller
sample supporting data files.

If desired, we can provide access to the Tangled testbed. Access to
Peering testbed is dependent on the approval from Peering admins.

H.7 Version
Based on the LaTeX template for Artifact Evaluation V20220119.

References

[1] Tangled admins. Tangled anycast testbed. https://
anycast-testbed.nl/, 2019. [Online; accessed 15-Feb-
2022].

[2] Leandro M Bertholdo, Joao M Ceron, Wouter B de Vries, Ri-
cardo de Oliveira Schmidt, Lisandro Zambenedetti Granville,
Roland van Rijswijk-Deij, and Aiko Pras. Tangled: A co-
operative anycast testbed. In 2021 IFIP/IEEE International
Symposium on Integrated Network Management (IM), pages
766-771. IEEE, 2021.

[3] Wouter De Vries. Verfploeter/pinger: Active measurement
of anycast catchements. https://ant.isi.edu/software/
verfploeter/pinger/index.html,2019. [Online; accessed
15-Feb-2022].

[4] John Heidemann. John heidemann / software / fsdb. https:
//www.isi.edu/~johnh/SOFTWARE/FSDB//, 1991. [Online;
accessed 19-Mar-2022].

[5] Analysis of Network Traffic (ANT) group. Ant dataset re-
quests. https://ant.isi.edu/datasets/requests.html,
2022. [Online; accessed 15-Feb-2022].

(6]

(7]

(8]

(91

(10]

(1]

(12]

(13]

[14]

(15]

(16]

(7]

(18]

Analysis of Network Traffic (ANT) group. Ant datasets.
https://ant.isi.edu/datasets/index.html, 2022. [On-
line; accessed 15-Feb-2022].

Root Server Operators. Events of 2015-11-
30. https://root-servers.org/media/news/
events-0f-20151130.txt, 2015. [Online; accessed
12-Oct-2021].

Root Server Operators. Events of 2016-06-
25. https://root-servers.org/media/news/
events-o0f-20160625.txt, 2016. [Online; accessed

12-Oct-2021].

A S M Rizvi, Leandro Bertholdo, Jodao Ceron, and John Heide-
mann. Anycast agility: Network playbooks to fight DDoS. In
Proceedings of the 31st USENIX Security Symposium, page to
appear. USENIX, August 2022.

A S M Rizvi, Leandro Bertholdo, Joao Ceron, and John Hei-
demann. anygility - anycast agility tools: playbook builder
and decision maker. https://ant.isi.edu/software/
anygility/index.html, 2022. [Online; accessed 2-Mar-
2022].

A S M Rizvi, Leandro Bertholdo, Joao Ceron, and John
Heidemann. Artifacts about anycast agility against ddos.
https://ant.isi.edu/datasets/anycast/anycast_
against_ddos/index.html, 2022. [Online; accessed
2-Mar-2022].

A S M Rizvi, Leandro Bertholdo, Joao Ceron, and John Heide-
mann. Datasets about anycast agility against ddos in peer-
ing testbed. https://ant.isi.edu/datasets/anycast/
anycast_against_ddos/peering/index.html, 2022. [On-
line; accessed 2-Mar-2022].

A S M Rizvi, Leandro Bertholdo, Joao Ceron, and John Hei-
demann. Datasets about anycast agility against ddos in tan-
gled testbed. https://ant.isi.edu/datasets/anycast/
anycast_against_ddos/tangled/index.html, 2022. [On-
line; accessed 15-Feb-2022].

A S M Rizvi, Leandro Bertholdo, Joao Ceron, and
John Heidemann. Tools about anycast agility against
ddos. https://ant.isi.edu/software/anygility/
system/index.html, 2022. [Online; accessed 2-Mar-2022].
A S M Rizvi, Leandro Bertholdo, Joao Ceron, and John Hei-
demann. Tools about anycast agility against ddos in peer-
ing testbed. https://ant.isi.edu/software/anygility/
peering/index.html, 2022. [Online; accessed 2-Mar-2022].
A S M Rizvi, Leandro Bertholdo, Joao Ceron, and John Heide-
mann. Tools about anycast agility against ddos in tangled
testbed. https://ant.isi.edu/software/anygility/
tangled/index.html, 2022. [Online; accessed 2-Mar-2022].
Brandon Schlinker, Todd Arnold, Italo Cunha, and Ethan Katz-
Bassett. PEERING: Virtualizing BGP at the Edge for Research.
In Proc. ACM CoNEXT, Orlando, FL, December 2019.
Peering The BGP Testbed. Peering the bgp testbed. https:
//peering.ee.columbia.edu/, 2019. [Online; accessed 15-
Feb-2022].

