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Abstract

In this paper, we study the power iteration algorithm for the spiked tensor model, as in-
troduced in [44]. We give necessary and sufficient conditions for the convergence of the power
iteration algorithm. When the power iteration algorithm converges, for the rank one spiked
tensor model, we show the estimators for the spike strength and linear functionals of the signal
are asymptotically Gaussian; for the multi-rank spiked tensor model, we show the estimators
are asymptotically mixtures of Gaussian. This new phenomenon is different from the spiked
matrix model. Using these asymptotic results of our estimators, we construct valid and efficient
confidence intervals for spike strengths and linear functionals of the signals.

1 Introduction

Modern real scientific data call for more advanced structures than matrices. High order arrays,
or tensors have been actively considered in neuroimaging analysis, topic modeling, signal processing
and recommendation system [16,17,21,22,31,43,45,46,52]. Setting the stage, imagine that the
signal is in the form of a large symmetric low-rank k-th order tensor

X* — Zﬁjv]@k’ € "R, (1)
j=1

where 7 (r < n) represents the rank and f; are the strength of the signals. Such low-rank tensor
components appear in various applications, e.g. community detection [2], moments estimation for
latent variable models [3,26] and hypergraph matching [19]. Suppose that we do not have access
to perfect measurements about the entries of this signal tensor. The observations X = X* 4+ Z
are contaminated by a substantial amount of random noise (reflected by the random tensor Z
which has i.i.d. Gaussian entries with mean 0 and variance 1/n.). The aim is to perform reliable
estimation and inference on the unseen signal tensor X*. In literature, this is the spiked tensor
model, introduced in [44].

In the special case, when k = 2, the above model reduces to the well-known “spiked matrix
model” [28]. In this setting it is known that there is an order 1 critical signal-to-noise ratio g,
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such that below (., it is information-theoretical impossible to detect the spikes, and above (.,
it is possible to detect the spikes by Principal Component Analysis (PCA). A body of work has
quantified the behavior of PCA in this setting [5-11, 18,20, 28,29, 34, 38,40, 48]. We refer readers
to the review articles [30] for more discussion and references to this and related lines of work

Tensor problems are far more than an extension of matrices. Not only the more involved
structures and high-dimensionality, many concepts are not well defined [33], e.g. eigenvalues and
eigenvectors, and most tensor problems are NP-hard [23]. Despite a large body of work tackling the
spiked tensor model, there are several fundamental yet unaddressed challenges that deserve further
attention.

Computational Hardness. The same as the spiked matrix model, for spiked tensor model,
there is an order 1 critical signal-to-noise ratio 8; (depending on the order k), such that below Sy,
it is information-theoretical impossible to detect the spikes, and above £, the maximum likelihood
estimator is a distinguishing statistics [12, 13, 27, 35,42]. In the matrix setting the maximum
likelihood estimator is the top eigenvector, which can be computed in polynomial time by, e.g.,
power iteration. However, for order k > 3 tensor, computing the maximum likelihood estimator is
NP-hard in generic setting. In this setting, it is widely believed that there is a regime of signal-
to-noise ratios for which it is information theoretically possible to recover the signal but there is
no known algorithm to efficiently approximate it. In the pioneer work [44], the algorithmic aspects
of this model has been studied under the special setting when the rank » = 1. They showed that
tensor power iteration with random initialization recovers the signal provided 2 > n(*=1/2 and
tensor unfolding recovers the signal provided g > n([¥/21=1/2 Based on heuristic arguments,
they predicted that the necessary and sufficient condition for power iteration to succeed is 5 >
nk=2)/2 "and for tensor unfolding is B > n*~2/4. Langevin dynamics and gradient descent were
studied in [4], and shown to recover the signal provided S > nk=2)/2 Later the sharp threshold
B > nk=2/4 ig achieved using Sum-of-Squares algorithms [24, 25, 32] and sophisticated iteration
algorithms [36,50]. The necessary part of this threshold still remains open, and its relation with
hypergraphic planted clique problem was discussed in [37].

Statistical inferences. In many applications, it is often the case that the ultimate goal
is not to characterize the Ly or “bulk” behavior (e.g. the mean squared estimation error) of the
signals, but rather to reason about the signals along a few preconceived yet important directions.
In the example of community detecting for hypergraphs, the entries of the vector v can represent
different community memberships. The testing of whether any two nodes belong to the same
community is reduced to the hypothesis testing problem of whether the corresponding entries of v
are equal. These problems can be formulated as estimation and inference for linear functionals of
a signal, namely, quantities of the form (a,v;), 1 < j < r with a prescribed vector a. A natural
starting point is to plug in an estimator v; of w;, i.e. the estimator (a,v;). However, a most
prior works [24, 25,32, 36,44,50] on spiked tensor models focuses on the Lo risk analysis, which is
often too coarse to give tight uncertainty bound for the plug-in estimator. To further complicate
matters, there is often a bias issue surrounding the plug-in estimator. Addressing these issues calls
for refined risk analysis of the algorithms.

1.1 Our Contributions
We consider the power iteration algorithm given by the following recursion

X[uf "]

Uy =u, Uiyl = Tor @Gk—D1
1 [ * 1)1



where u € R™ with |||z = 1 is the initial vector, and X [v®(#~1] € R" is the vector with i-th entry
given by (X, e; ® v®* 1)) The estimators are given by

o =ur, fB=(X,5%") (3)

for some large T'. Although in a worst case scenario, i.e. with random initialization, power iteration
algorithm underperforms tensor unfolding. However, if extra information about the signals v;
is available, power iteration algorithm with a warm start can be used to obtain a much better
estimator. In fact this approach is commonly used to obtain refined estimators. In this paper, we
study the convergence and statistical inference aspects of the power iteration algorithm. The main
contributions of this paper are summarized below,

Convergence criterion. We give necessary and sufficient conditions for the convergence of the
power iteration algorithm. In the rank one case r = 1, we show that the power iteration algorithm
converges to the true signal v, provided |3(u, v)*~2| >> 1 where u is the initialization vector. In the
complementary setting, if |5(u,v)* 2| < 1, the output of the power iteration algorithm behaves
like random Gaussian vectors, and has no correlations with the signal. With random initialization,
i.e. uw is a uniformly random vector on the unit sphere, our results assert that the power iteration
algorithm converges in finite time, if and only if 8 > n*=2/2 which verifies the prediction in [44].
This is analogous to the PCA of spiked matrix model, where power iteration recovers the top
eigenvalue. However, the multi-rank spiked tensor model, i.e. r > 2, is different from multi-rank
spiked matrix. The power iteration algorithm for multi-rank spiked tensor model is more sensitive
to the initialization, i.e. the power iteration algorithm converges if max; |3;(u, v;)*72| > 1. In this
case, it converges to v;, with j, = argmax; |3; (u,v;)*2].

Statistical inference We consider the statistical inference problem for the spiked tensor model.
We develop the limiting distributions of the above power iteration estimators. In the rank one case,
above the threshold |3(u, v)*~2| > 1, we show that our estimator (a, ) (modulo some global sign)
admits the following first order approximation

(a,) ~ <1 _ 2162) (a,v) 1 <a;,£>7

where a* = a — (a,v)v, and € = Z[v®*~D], is an n-dim vector, with each entry i.i.d. N(0,1/n)
Gaussian random variables. For multi-rank spiked tensor model, the output of power iteration
algorithm depends on the angle between the initialization w and the signals v;. We consider the
case the initialization w is a uniformly random vector on the unit sphere. For such initialization,
very interestingly, our estimator (a,v) is asymptotically a mixture of Gaussian, with modes at
(a,v;) and mixture weights depending on the signal strength ;. Using these asymptotic results
of our estimators, we construct valid and efficient confidence intervals for the linear functionals

(a,v;).

1.2 Notations:

For a vector v € R", we denote its i-th coordinate as v(i). We equate k-th order tensors in
®FR™ with vectors of dimension n¥, i.e. T = (Ti iy.-i;)1<iy ig, - ip<n- For any two k-th order tensors
7,m € @"R", we denote their inner product as (7,n) := Zl<i17i27._.7ik<n TivigeipMiyig-ip- A k-th
order tensor can act on a (k — 1)-th order tensor, and return a vector: 7 € @*R™ and n € @*R"

T[n] €R", T[n](i) = (r,e; ®@n) = Z Tiiyig-rip_1 Mirig-ip_1- (4)

1<ig,  yig—1<n



We denote the Ls norm of a vector v as ||v||. We use 4 for the equality in law, and 9 for

the convergence in law. We denote the index sets [a,b] = {a,a + 1,a + 2,--- ,b} and [n] =
{1,2,3,--- ,n}. We use C to represent large universal constant, and ¢ a small universal constant,
which may be different from line by line. We write that X = O(Y) if there exists some universal
constant such that | X| < CY . We write X = o(Y') if the ratio | X|/Y — oo as n goes to infinity.
We write X =< Y if there exist universal constants such that ¢Y < |X| < CY. We say an event
holds with high probability, if for there exists ¢ > 0, and n large enough, the event holds with
probability at least 1 — n—clogn,

An outline of the paper is given as follows. In Section 2.1, we state our main results for the
rank-one spiked tensor model. In particular, with general initialization a distributional result for
the power iteration algorithm is developed. Section 2.2 investigates the general rank-r spiked
tensor model. A similar distributional result is established with general initialization as in Section
2.1. While with uniformly distributed initialization over the unit sphere, we obtain a multinoimal
distribution which yields a mixture Gaussian. Numerical simulations are presented in Section 3.
All proofs and technical details are deferred to the appendix.
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2 Main Results

2.1 Rank one spiked tensor model

In this section, we state our main results for the rank-one spiked tensor model (corresponding
tor=11in (1)):

X = B’U®k + Z7 (5)
where
e X € @*R" is the k-th order tensor observation.

e Z ¢ ®R" is a noise tensor. The entries of Z are i.i.d. standard A'(0,1/n) Gaussian random
variables.

e [ € R is the signal size.
e v € R™ is an unknown unit vector to be recovered.

We obtain a distributional result for the power iteration algorithm (2) with general initialization
u: when || is above certain threshold, u; converges to v, and the error is asymptotically Gaussian;
when |3] is below the same threshold, the algorithm does not converge.

Theorem 2.1. Fiz the initialization u € R™ with |ull2 = 1 and (u,v) > 1/y/n. If|3{u,v)* 2| > n®
with arbitrarily small € > 0, the behavior of the power iteration algorithm depends on the parity of
k and the sign of B in the following sense:

1. If k is odd, and 8 > 0 then (X[u?k],ut) converges to (8,v);

2. If k is odd, and B < 0 then (X [u¥],u;) converges to (—f, —v);



3. If k is even, and B > 0, then (X [uP¥],u;) converges to (B,sgn((u,v))v) depending on the
initialization w;

4. If k is even, and B < 0, then (X[u?k], ut) does not converge, but instead alternates between
(B, Sgn(<ua ’U>)’U) and (B? - sgn((u, ’U>)’U).

In Case 1, for any fized unit vector a € R", and

1 /1  2log|p|
T'>214+-|-+—"7"1, 6
+es<2+ logn (6)

with probability 1 — O(n=<1€™?) " the estimators © = ur, and B = X[5%¥] satisfies

A~ 1 <a7£> — <a’a U) <’U,€>
(@) = (a,ur) = (1 5 ) @0} + . .
logn | (logn)*”?  |(a,v)|
+0 (52\/ﬁ+ 33/2p3/4 - 34 ’
where € = Z[v®* V)], is an n-dim vector, with each entry i.i.d. N(0,1/n) Gaussian random
variable. And
~ okl B k/2—1 logn (logn)?’/2 1

Under the same assumption, we have similar results for Cases 2, 3, 4, by simply changing (3,v)
in the righthand side of (7) and (8) to the corresponding limit.

Theorem 2.2. Fiz the initialization u € R™ with |ulls = 1. If |3| > n° and |B{u,v)* 2| < n~°
with arbitrarily small € > 0, then u; does not converge to v, and u; behaves like a random

1/1 log | 8|
T>1+5<2_(k—2)logn> )

Gaussian vector. For

with probability 1 — O(n_c(log")2), it holds

. B é logn kol
”_“T_\\érz+o<’5’<ﬁ> ) (10)

where é is the standard Gaussian vector in R™, the error term is a vector of length bounded by
|6](log n//n)* 1.

In Theorem 2.1, we assume that (u,v) 2 1/4/n, which is generic and is true for a random wu.
Moreover, if the initial vector w is random, then |(u,v)| < n~/2. Notably, Theorems 2.1 and 2.2
together state that power iteration recovers v if |8 > n*=2)/2 and fails if |3] < n*=2)/2. This
gives a rigorous proof of the prediction in [44] that the necessary and sufficient condition for the
convergence is given by |3| 2 nk=2)/2 " In practice, it may be possible to use domain knowledge
to choose better initialization points. For example, in the classical topic modeling applications [3],
the unknown vectors v are related to the topic word distributions, and many documents may be
primarily composed of words from just single topic. Therefore, good initialization points can be
derived from these single-topic documents.




The special case for £ = 2, i.e. the spiked matrix model, has been intensively studied since
the pioneer work of Johnstone [28]. In this setting it is known [30] that there is an order O(1)
critical signal-to-noise ratio, such that below the threshold, it is information-theoretically impossible
to recover v, and above the threshold, the PCA (partially) recovers the unseen eigenvector v
[1,14,15,39,41,47,49,51]. The special case of our results Theorem 2.1 recovers some abovementioned
results.

As a consequence of Theorem 2.1, we have the following central limit theorem for our estimators.

Corollary 2.3. (Central Limit Theorem) Fizx the initialization u € R™ with ||ul|2 = 1 and |(u,v)| 2
1/y/m. If |Blu, v)*=2| = n® with arbitrarily small € > 0, in Case 1 of Theorem 2.1, for any fived

unit vector a € R™ obeying
3
Kmvﬂ—0<ﬁ)>, (11)

vn

and time

1 /1  2log|p|
T>214-|( 2 . 12
+5 <2+ logn (12)

the estimators v = ur, and B = X[0%*] satisfies

B 1.

Vb [(1 - —)"Ya,) — (a, m] 4 N(0,1), (13)
Via, (I, —vv")a) 2p?

as n tends to infinity. We have similar results for Cases 2, 3, 4, by simply changing (5,v) in (13)

to the corresponding limit.

We remark that in Corollary 2.3, we assume that |(a,v)| = o (8%/y/n), which is generic. For
example, if v is delocalized, and a is supported on finitely many entries, we will have that |(a,v)| <
1/y/n, and (11) is satisfied.

With the central limit theorem for our estimators in Corollary 2.3, we can easily write down
the confidence interval for our estimators.

Corollary 2.4. (Prediction Interval) Given the asymptotic significance level o, and let zo, = ®(1—
«/2) where ®(-) is the CDF of a standard Gaussian. If |B{w,v)*=2| > n® with arbitrarily small
€ >0, in Case 1 of Theorem 2.1, for any fized unit vector a € R™ obeying

el =o( ). (14)

and time
1/1 2log|B|
T>1+-(= : 15
+ € <2 + logn (15)
let v = up, and B = X[9®%]. The asymptotic confidence interval of {a,v) is given by
1 A~ In —vo' A~ } In —vo'
(@.9) - A0t 0008) gy Va0 0a) ] g

1-1/(252) NG NG

We have similar results for Cases 2, 3, 4, by simply changing (B,v) in (16) to the corresponding
limit.



2.2 General Results: rank-r spiked tensor model

In this section, we state our main results for the general case, the rank-r spiked tensor model
(1). Before stating our main results, we need to introduce some more notations and assumptions.

Assumption 2.5. We assume that the initialization does not distinguish vy, v, -+ , vy, such that
there exists some large constant kK > 0

< K, (17)

forall1 <i,7<r.

If we take the uniform initialization, i.e. ug = u is a uniformly distributed vector in S*1.
Then with probability 1 — O(r/+y/k) we will have 1/\/kn < |(u,v;)| < \/k/n for 1 < i < r, and
Assumption 2.5 holds.

The same as in the rank-1 case, the quantities |3;(u,v;)*~2| play a crucial role in our power
iteration algorithm. We need to make the following technical assumption:

Assumption 2.6. Let j. = argmax; |Bj{w,v;)*~2|. We assume that there exists some large con-
stant k >0
k— k—
(1= 1/8)1Bj. (w, v.)" 2| > 185w, v;)* 2], (18)
forall1 <j<r and j # jx.

It turns out under Assumptions 2.5 and 2.6, the power iteration converges to v;,. Moreover,
if we simply take the uniform initialization, i.e. ug = w is a uniformly distributed vector in S*~.
Assumption 2.6 holds for some 1 < j, < r with probability 1 — O(1/k).

Theorem 2.7. Fix the initialization w € R™ with ||ul2 = 1 and [(u,v;)| 2 1/v/n, for 1 < j <r.
Let j. = argmax; |f; (w,v;)*72|. Under Assumptions 2.5 and 2.6, if |B;, (u,v; )72 > n® wzth
arbitrarily small € > 0, the behavior of the power iteration algorithm depends on the parity of k and
the sign of B;, :

1. If k is odd, and Bj, > 0 then (X [uP¥],u;) converges to (Bj,,v;,);
2. If k is odd, and f3;, <0 then (X[u?k],ut) converges to (—f;,, —v;,);

3. If k is even, and B, > 0, then (X [ul*), uy) converges to (Bj.,sgn((u,vj,))v;,) depending on
the initialization wu;

4. If k is even, and B, <0, then (X [u?k] uy) does not converge, but instead alternating between
(5]*7 Sgn(<u7 /v]*>)’v.]*) and (6]*7 Sgn(<u7 ’U‘7*>)'U]*)
In Case 1, for any fized unit vector a € R™, and

1 (/1  2log|p log log(v/n|A1])
> i
T/1+5 <2+ logn * log(k—1) ~’ (19)
the estimators ¥ = ur, and B = X[0%*] satisfies
1 _ . .
(a,ﬁ)z(a,uﬂ: 1_72 <a,Uj*>+ <a’7£> <a’>vj*><v]*7£>
(20)

logn( logn )k_l logn (logn)3/? 1
+0 + + + ,
’ ( Vi \VnlBi| BLPVn T [Bif32ndt T By



where £ = Z['v%(kfl)], is an n-dim vector, with each entry i.i.d. N(0,1/n) Gaussian random
variable. And
~ k/2—-1
B = Xl = .+ (6.vs) -
J*

21

logn [ logn \*' logn (logn)®/? 1 (21)

+ Op + +t e satian -
Vv \v/nl|B| Bilvn B[V 2034 B

Under the same assumption, we have similar results for Cases 2, 3, 4, by simply changing (B;,,v;,)
in the righthand side of (20) and (21) to the corresponding limit.

In Theorem 2.7, we assume that |(u,v;)| 2 1/y/n for 1 < j < r. This is generic and is true for
a random initialization wu.

We want to remark that for multi-rank spiked tensor model, the senarios for & = 2, i.e. the
spiked matrix model, and k > 3 are very different. For the spiked matrix model, in Theorem 2.7,
we always have that j. = argmax; |8j| = 1, and power iteration algorithm always converges to the
eigenvector corresponding to the largest eigenvalue. However, for rank k£ > 3, the power iteration
algorithm may converge to any vector v; provided that the initialization w is sufficiently close to v;.
As a consequence of Theorem 2.7, we have the following central limit theorem for our estimators.

Corollary 2.8. Fiz the initialization uw € R™ with ||ull2 = 1 and |(u,v;)| 2 1/y/n for 1 <j <.
We assume |B{u, 'Uj*)k_2| > nf with arbitrarily small € > 0, and Assumptions 2.5 and 2.6. In Case
1 of Theorem 2.7, for any fized unit vector a € R", for any fixed unit vector a € R™ obeying

ooyl =o (1), (22)

and time
1 /1 2log|i]
Te14- (2422280000 23
* € <2 * logn (23)
the estimators © = wr, and B = X [u*] satisfy
fgj 11, . d
- 1— — a,v) — {(a,v; )| — N(0,1). 24

We have similar results for Cases 2, 3, 4, by simply changing (5;,,v;,) in (24) to the corresponding
limit.

In the following we take uw to be a random vector uniformly distributed over the unit sphere.
The power iteration algorithm can be easily understood in this setting, thanks to Theorem 2.7.
More precisely if j. = argmax; |ﬁj<u,vj>k_2| and the initialization u satisfies Assumptions 2.5
and 2.6, then the power iteration estimator (v, 3) recovers (vj,, 3;,). From the discussions below,
for a random vector w uniformly distributed over the unit sphere, Assumptiosn 2.5 and 2.6 holds
with probability 1 — O(1/4/k). We can compute explicitly the probability that index i achieves
argmax; |8 (u, 'vj>k_2]:

pi = P(i = argmax; [ 5;(u, '>k_2|)

/ \[e—ﬂﬂ \f /24y | du, (25)

0#£i



for any 1 <7 < 7. For spiked matrix model, i.e. k = 2, we always have 1 = argmax; |3;(u, vj>k_2|,
and p; = 1,p2 = p3 = --- = 0. For spiked tensor models with k£ > 3, all those p; are nonnegative

and p1 =2 p2 >2p3 =>--->0.

Theorem 2.9. Fiz large k > 0 and recall p; as defined (25). If w is uniformly distributed over the
unit sphere, and |B1| > nk=2)/2%e with arbitrarily small € > 0, then for any 1 <i < r:

1. If k is odd, and B; > 0 then with probability p; + O(1/v/k), (X [u¥],us) converges to (B;,v;);

2. If k is odd, and B; < 0 then with probability p; + O(1/\/k), (X[uP*],us) converges to
(=B, —vi);

3. If k is even, and i > 0, then with probability p;/2 + O(1/\/k), (X[uZ*],u;) converges to
(Bi, +vi), and with probability p;/2 + O(1//k), (X [u*], us) converges to (Bi, —v;).

4. If k is even, and B; < 0, then with probability p; + O(1/y/k), (X[u?k], w;) alternates between
(Bi,vi) and (B, —v;) -

In Case 1, for any fived unit vector a € R™, and

1 <1 2loglﬁll>+loglog(\/ﬁlﬁ1l)

T>21+ -
+5 2+ logn log(k — 1)

7 (26)

with probability p; + O(1/y/k), the estimators v = ur, and B = X[u,%k] satisfy

(a,v) = (a,ur) = <1 - 2152) (a,v;) + (a,6) - <Z; vi) (vi, €)

27
L0 logn< logn >k1+ logn N (logn)3/? N 1 (27)
"\ v \Valsl] BIPVR T (B3 (B )

where £ = Z['v?(kfl)], is an n-dim vector, with each entry i.i.d. N(0,1/n) Gaussian random
variable. And

~ k/2 -1

B= Xfuf = i+ (g0) - L2

L0 logn( logn >k_1+ logn n (log n)3/? N 1 (28)
S\ v \Vnll] Bulvn T B[R (B )

Under the same assumption, we have similar results for Cases 2, 3, 4, by simply changing (3, v;)
in the righthand side of (27) and (28) to the corresponding limit.

We want to emphasize here that the senarios for k = 2, i.e. the spiked matrix model, and k£ > 3
are very different. For spiked matrix model, i.e. k = 2, we always have that p; = 0,p2 = p3 =
.-+ = 0. The power iteration algorithm always converges to the eigenvector corresponding to the
largest eigenvalue. We can only recover (1, v1) no matter how many times we repeat the algorithm.
However, for spiked tensor models with k& > 3, all those p; are nonnegative, p; = p2 > p3 = -+ > 0.
By repeating the power iteration algorithm for sufficiently many times, it recovers (5;,v;) with
probability roughly p;.

Similar to the rank one case in Section 2.1, we are also able to establish the asymptotic dis-
tribution and confidence interval for multi-rank spiked tensor model with uniformly distributed
initialization wu.



Corollary 2.10. Fiz k > 3, assume u to be a random vector uniformly distributed over the unit
sphere and 51| > n6=2/2%e with arbitrarily small € > 0. In Case 1 of Theorem 2.9, for any fized
unit vector a € R™, and time

2 logn

rog (L 2oslBiY | loglos(valsi)
€ log(k —1)

for any 1 < i < r, with probability p; + O(1/+y/k), the estimators v = up and B = X[u%k] satisfy

N
Via, (I, —vv7)a)

~ 1 d
[(a,v) —(1- 232)(a,vi>} = N(0,1). (29)

And

'_A_k‘/Q—l d
\/71(62 5- 1% )wv(o,l). (30)

We have similar results for Cases 2, 3, 4, by simply changing (B;,v;) above to the corresponding
limit.

We want to emphasize the difference between Corollary 2.3 and Corollary 2.10. In the rank
one case, the estimators § and (a,v) are ~asymptotically Gaussian. In the multi-rank spiked ten-
sor model with k£ > 3, those estimators § and (a,v) are no longer Gaussian. Instead, they are
asymptotically a mixture Gaussian with mixture weights p1 > p2 > p3 > ---.

Corollary 2.11. Given the asymptotic significance level o, and let z, = ®(1 — «/2) where () is
the CDF of a standard Gaussian. Under the conditions in Corollary 2.10, in Case 1 of Theorem
2.9, we can find the asymptotic confidence interval of (a,v;) as

;’\ [<a7 17) — R \/<a’ (In 7/\66T)a> 9 <a, 'i\)> + Za \/<a’ (In A’b\’b\T)a>]
and the asymptotic confidence interval of B; as
) k/2 —1 Zo -~ k/2 -1 Za
|:B T == %) 6 + T %

We have similar results for Cases 2, 3, 4, by changing (B;,v;) above to the corresponding limit.

3 Numerical Study

In this section, we conduct numerical experiments on synthetic data to demonstrate our dis-
tributional results provided in Sections 2.1 and 2.2. We fix the dimension n = 600 and rank
k= 3.

3.1 Rank one spiked tensor model

We begin with numerical experiments on rank one case. This section is devoted to numerically
studying the efficiency of our estimators for the strength of signals and linear functionals of the
signals. We take the signal v a random vector sampled from the unit sphere in R™, and the vector

1
a=—(e,/3+ey/3+e, 31
T(eura+eaya ten) (31)
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Histogram for normalized E and {(a, V)

0.5 0.5
— N(0,1) — N(0,1)
0.4 0.4
0.3 0.3
0.2 0.2
0.1 0.1-
0.0 0.0
—4 -2 0 2 4 —4 -2 0 2 4

Figure 1: The empirical density of normalized 3 as in (32) (left panel), and normalized (a,d) as
in (33). The results are reported over 2000 independent trials where the initialization of our power
iteration algorithm w a random vector sampled from the unit sphere in R™, and the strength of
signal 8 = n*=2/2 ~ 24.495.

For the setting without prior information of the signal, we take the initialization of our power
iteration algorithm w a random vector sampled from the unit sphere in R™, and the strength of

signal B = n(#=2/2 x~ 24.495. We plot in Figure 1 our estimators for the strength of signals after
normalization

~ k/2—-1

R (32)

and our estimators for the linear functionals of the signals

Vla, (I\:ﬁ—ﬂﬁﬁT)a) (1- 2%2)1<a,6> —(a,v) (33)

as in Corollary 2.3.

For the setting that there is prior information of the signal, we take the initilization of our
power iteration algorithm v = (v + w)/||v + w||2, where v is a random vector sampled from the
unit sphere in R"™. We plot our estimators for the strength of signals after normalization (32) and
our estimators for the linear functionals of the signals (33) for 5 = 5 in Figure 2, and for 5 = 10 in
Figure 3. Although our Theorem 2.1 and Corollary 2.3 requires |3(u,v)*~2| > n® > 1, Figures 2
and 3 indicate that our estimators § and (a,v) are asymptotically Gaussian even with small 3, i.e.
B = 5,10. Theorem 2.1 also indicates that error term in Corollary (2.3), i.e. the error term in (13),
is of order 1/|3|. This matches with our simulation. In Figures 2 and 3, the the difference between
the Gaussian fit of our empirical density and the density of A (0,1) decreases as 3 increases from
5 to 10.

In Figure 5, we test the threshold signal-to-noise ratio for the power iteration algorithm. Our
Theorems 2.1 and 2.2 state that for |3(ug,v)¥~2| > 1 tensor power iteration recovers the signal
v, and fails when |3(ug, v)* 2| < 1. Especially for random initialization, we have that |{ug,v)| =<
1/y/n. Our Theorems state that for |3] > n(¥=2)/2 tensor power iteration recovers the signal v, and
fails when || < nk=2)/2 Take k = 3. In the left panel of Figure 5, we test tensor power iteration

11



Histogram for normalized ,§ and {a, V), B=5.

0.5 0.5
— N(0,1) — N(0,1)

0.4 - -==- Gaussian fit 0.4 - . Gaussian fit
0.3 0.3

0.2 0.2 1

0.1 0.14

0.0 - 0.0 -

-4 -2 0 2 4 -4

Figure 2: The empirical density of normalized J as in (32) (left panel), and normalized (a,v) as
in (33). The results are reported over 2000 independent trials where the initialization of our power
iteration algorithm w a random vector sampled from the unit sphere in R", and the strength of
signal § = 5.

Histogram for normalized B and (a, V), 8 = 10.
0.5

0.5
— N(0,1) — N(0,1)

0.4 - === Gaussian fit 0.4 - === Gaussian fit
0.3 A

0.2 A

0.1 A

0.0 -

—4 -2 0 2 4

Figure 3: The empirical density of normalized 3 as in (32) (left panel), and normalized (a,d) as
in (33). The results are reported over 2000 independent trials where the initialization of our power
iteration algorithm w a random vector sampled from the unit sphere in R", and the strength of
signal 5 = 10.
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1.0 1 1.0 1
0.8 4 0.8 4
0.6 1 0.6
Bl >
<i <?:
0.4 A 0.4 A
— n=200
0.2 4 —— n=300 0.2 4
- n=400
—— n=500
0.0 A —— n=600 0.0 1
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
BV B{uo, v)

Figure 4: Output of tensor power iteration with random initialization for various signal strength
B/v/n € (0,2] (left panel), and tensor power iteration with fixed small § = 3 and informative
initialization S{ug, v) € (0, 2].

with random initialization for various dimensions n € {200, 300,400, 500,600} and signal strength
B/+v/n € (0,2]. In the right panel of Figure 5, we test tensor power iteration with fixed small 5 =3
and informative initialization 3(ug,v) € (0, 2] for various dimensions n € {200, 300, 400, 500, 600}.
The outputs (v, v) are averaged over 60 independent trials.

3.2 Rank-r spiked tensor model

In this section, we conduct numerical experiments to demonstrate our distributional results for
the multi-rank spiked tensor model. We consider the simplest case that there are two spikes with
signals vy, v2, such that they are uniformly sampled from the unit sphere in R™ and orthogonal to
each other (vi,v2) = 0, and the vector

1
a=—(e,/;3+ey,/3+e). 34
T(€urs +enya ten) (34)

We test the setting that there is no prior information of the signal. We take the strength of
signals 81 = 1.2 x n(v=2/2 ~ 29.394 and By = n(*=2/2 ~ 24.495 and the initialization of our
power iteration algorithm w a random vector sampled from the unit sphere in R™. We scatter
plot in Figure 5 our estimator B for the strength of signals, and our estimator (a,v) for the linear
functionals of the signals over 5000 independent trials. As seen in the first panel of Figure 5,
our estimators (3, (a,®)) form two clusters, centered around (f1, (a,d1)) ~ (29.394,0.000) and
(B2, (@, v2)) ~ (24.495,0.039). In the second and third panels, we zoom in, and scatter plot for the

cluster corresponding to (1, (a,v1)) =~ (29.394,0.000)

\/ﬁb\l (1 _ 1
V{a, (I, - v97)a)

S kj2-1
LR2L

B B,
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Scatter plot for (normalized) ,l§ and (a, v),

0.05 4 4
0.04 - 37 37
24 2 -
0.03 - 1] 1]
0.02 - 04 |- 0
0.01 - —11 11
_2 E _2 .
0.00 - ’ 5] 5]
-0.01 . . -4 . . . -4 . . ;
24 26 28 30 -4 -2 0 2 4 -4 -2 0 2 4

~ ~

Figure 5: Scatter plot of (3, (a,v)) (first panel), the normalized (3, (a,v)) as in (35) for the cluster
corresponding to (f1, (a,v1)) (second panel), the normalized (B, (a,v)) as in (36) for the cluster
corresponding to (B2, (@, v2)). The contour plot is a standard 2-dim Gaussian distribution, at 1,2,3
standard deviation. The results are reported over 5000 independent trials where the initialization
of our power iteration algorithm w a random vector sampled from the unit sphere in R"™.

and scatter plot for the cluster corresponding to (82, (a, v2)) ~ (24.495,0.039)

VB (1- LA
Via, (I, —vvT")a) 232

As predicted by our Theorem 2.9, both clusters are asymptotically Gaussian, and the normalized
estimators matches pretty well with the contour plot of standard 2-dim Gaussian distribution, at
1,2, 3 standard deviation.

We plot in Figure 6 our estimators for the strength of signals and the linear functionals of the
signals after normalization, for the first cluster (35), and for the second cluster (36).

In Table (1), for each n € {50, 100, 200, 400, 600,800} and k = 3, we take the strength of signals
B = nh=2/2 and By = 1.2 x n*=2/2. Over 1000 independent trials for power iteration with
random initialization for each n, we estimate the percentage py of estimators converging to 81, and
the percentage py of estimators converging to fB2. Our theoretical values are

k/2—1

B+ A )" Ha, D) — (a,va) | . (36)

p1 = P(|B1(u, v1)| > [B2(u, v2)]) =~ 0.44,
p2 = P(|B1{u, v1)| < |B2(u,v2)]) ~ 0.56.

We also exam the numerical coverage rates for our 95% confidence intervals over 1000 independent
trials.
4 Proof of main theorems

4.1 Proof of Theorems 2.1 and 2.2

The following lemma on the conditioning of Gaussian tensors will be repeatedly use in the
remaining of this section.
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Histogram for normalized E and (a, V).

0.5 0.5
— N(0,1) — N(0,1)
= = Gaussian fit == Gaussian fit
0.4 A 0.4+
0.3 1 0.3 A
0.2 4 0.2 -
0.1 A 0.1+
0.0 - 0.0 -
-4 -2 2 4 -4 -2 2 4
0.5 0.5
— N(0,1) — N(0,1)
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0.4 - 0.4
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0.2 A 0.2+
0.1 A 0.1+
0.0 T 0.0 T T
-4 =2 0 4 —4 =2 0

Figure 6: The empirical density of the normalized (83, (a,v)) as in (35) for the cluster corresponding
to (51, (@, v1)) (second panel), the normalized (5, (a,v)) as in (36) for the cluster corresponding to
(B2, {@,v2)). The results are reported over 5000 independent trials where the initialization of our

~

power iteration algorithm w a random vector sampled from the unit sphere in R”.

n=2>50|n=100 | n=200 | n =400 | n =600 | n =800

D1 0.405 0.399 0.421 0.381 0.422 0.401

D2 0.595 0.579 0.601 0.619 0.578 0.599

signal 1 0.9136 | 0.9223 | 0.9596 | 0.9291 0.9313 | 0.9551
linear form (a,v1) | 0.9680 | 0.9499 | 0.9572 | 0.9580 | 0.9668 | 0.9526
signal [39 0.9462 | 0.9334 | 0.9430 | 0.9612 | 0.9602 | 0.9599
linear form (a,wvq) | 0.9445 | 0.9434 | 0.94819 | 0.9677 | 0.9533 | 0.9549

Table 1: Estimated p1, p2 over 1000 independent trials for dimension n € {50, 100, 200, 400, 600, 800}
(top two rows), and numerical coverage rates for our 95% confidence intervals over 1000 independent

trials for dimension n € {50, 100,200, 400,600, 800} (last four rows).
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Lemma 4.1. Let Z € ®FR"™ be a random Gaussian tensor. The entries of Z are i.i.d. stan-
dard N'(0,1/n) Gaussian random variables. Fiz 71,72, - , 7t € @ IR™ orthonormal (k — 1)-th
order tensors, i.e. (T;,Tj) = 0;j, and vectors £1,&2,--- ,& € R™. Then the distribution of Z[T|
conditioned on Z[1s] = &5 for 1 < s <t is

t

Z[r) L2 (r, e+ Z

s=1

t
T — Z(TS,T>’TS] ,

s=1
where Z is an independent copy of Z.

Proof of Lemma 4.1. For any (k — 1)-th order tensor 7, viewed as a vector in R"k_l, we can de-

compose it as the projection on the span of 7,79, -+, 7 and the orthogonal part
¢ ¢
T = Z<Ts, T)Ts + (T - Z<Ts, T>Ts> . (37)
s=1 s=1

Using the above decomposition and Z[1s] = £,, we can write Z[7] as

t

Zr) £ (1) + Z

s=1

T — Z(TS, T>T5] , (38)

s=1

and the first sum and the second term on the righthand side of (38) are independent. The claim
(37) follows. O

Proof of Theorem 2.1. We define an auxiliary iteration, yo = u and
k—1
yerr = X[y ") (39)

Then with y;, our original power iteration (2) is given by u; = y;/||yel|2-
Let & = Z[v®(k*1)] € R™. Then the entries of € are given by

£(i) = 2w D)) = (Z,e; ® v¥*FY) = > Ziiyig-iy V(1) (i2) - v(ig-1). (40)
il,iQ,m,ik_lE[[l,n]]

From the expression, £(i) is a linear combination of Gaussian random variables, itself is also a
Gaussian. Moreover, these entries £(i) are i.i.d. Gaussian variables with mean zero and variance
1/n:

1

E[¢(i)?] = > E[Z7 i, 0, Jv(i1)*0(i2)* - v(ip_1)? = = (41)
i1,02, ik —1€[1,n]
We can compute vy, iteratively: y; is given by
k—1 - k—1
v = X[yg V) = Blyo, v) o+ Z[y Y], (42)
For the last term on the righthand side of (42), we can decompose y? *=1) a5 a projection on
v®@* =1 and its orthogonal part:
ug "7 = (o, o) 102D 41— (g, 02600, (43)
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where 75 € @~ DR” and (v®* =1 15) = 0, (79, 70) = 1. Thanks to Lemma 4.1, conditioning on
€ = Z[w®*-D] ¢ = Z[r] has the same law as Z[Tg], where Z is an independent copy of Z.
Since (19, 70) = 1, & is a Gaussian vector with each entry N'(0,1/n). With those notations we can
rewrite the expression (42) of y; as

y1 = B{yo, v)" v + (yo,v) ¢ + \/1 — (yo, v)2(E-Dgy | (44)

In the following we show that:

Claim 4.2. We can compute y1,Y2,Ys, - ,Y; inductively. The Gram-Schmidt orthonormalization
procedure gives an orthogonal base of v®(k_1),y?(k71),yi®(k71), e ,yfi(ffl) as:
,U®(k71)7 TO, T1, " 5 Tt—1- (45)

Let €g41 = Z[75] for 0 < s < t — 1. Conditioning on &€ = Z[v®* V] and &1 = Z[r] for
0<s<t—2, & = Z[1_1] is an independent Gaussian vector, with each entry N'(0,1/n). Then
y; s in the following form

Yt = atv + bwy + &y, brwe = b€ + b + -+ bu—1&4-1, (46)
where ||wl|2 = 1.
Proof of Claim 4.2. The Claim 4.2 for ¢t = 1 follows from (44). In the following, assuming Claim
4.2 holds for t, we prove it for ¢t + 1.
Let v®# =D 7 7, , 7 be an orthogonal base for v®*—1), yi@(k_l), e ,yf@(k_l), ob-

tained by the Gram-Schmidt orthonormalization procedure. More precisely, given those tensors
v®E=D) 0 - 11, we denote

y?(k—l)

I

k—1 - k—1
b(t+1)0 = <yf§( )a’v®(k 1)>, Ct+1 = <yf§( ),Tt>, (47)
k—
bit+1)(s+1) = (yi@( 1),Ts>, 0<s<t—1.
then b(t+1)0v®(k_l) + b(t41)170 + b 41)2T1 + - b(s41)¢Te—1 is the projection of y?(k_l) on the span
of v®(k_1),y?(k71),yi®(k71), e ,ygffl). With those notations, we can write yf@(k*l) as
k— _
y?( V= b(t+1)ov®(lC Yt bt+1)170 + bg41)2T1 + -+ - bg1)eTe—1 + c1 T, (48)

Using (46) and (48), we notice that

(B0 ) = Blar + biwr,v) + el o) o, (49)
and the iteration (39) implies that

Yes1 = Blar + bp(wy, v) + cp (€, v)" v + bpiwi + 12T, (50)
where
brrwir1 = Z by 1ov®F Y + by mo + b2y - by Ti—1]
(51)
= b(1+1)0€ + b+1)1€1 + bg1)2€2 + - bt 1)i&e-
Since 7; is orthogonal to v®*=1 7y 7 ... 7_;, Lemma 4.1 implies that conditioning on & =

Z[v®* D] and &,11 = Z[1] for 0 < s <t —1, &1 = Z[7] is an independent Gaussian vector,
with each entry N (0,1/n). The above discussion gives us that

Yir1 = Q10 + bepiwie + c1€p1, e = Blar + by{wy, v) + ¢ (€, v)) L (52)

In this way, for any ¢ > 0, y; is given in the form (46). O
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In the following, We study the case that (u,v) > 0. The case (u,v) < 0 can be proven in
exactly the same way, by simply changing (3, v) with ((—1)¥3, —v). We prove by induction

Claim 4.3. For any fixed time t, with probability at least 1 — O(e_c(log N)2) the following holds: for
any s < t,
|as| 2 1B](1bso] 4 [bsi] + - - - + [bs(s—1)]);

las] 2 nf max{1(k > 3)[ca/ BV, o/l (59)

and

€1, 1€5ll2 = 1+ O(logn/v/n),  |(v,€)], Ka, &)l [{a, &), (54)

Proof of Claim 4.3. From (44), y1 = B(u,v)* v + (u,v)* 1€ + /1 — (u,v)2k-Dg,. We have
ar = Blu,v)F 1 by = (u,v) 1, biw = (u,v) 1€ and ¢ = /1 — (u,v)2*-D. Since £ is a
Gaussian vector with each entry mean zero and variance 1/n, the concentration for chi-square
distribution implies that

1€ll2 =

Zsu)? =1+ O(logn/v/n) (55)

with probability 1—e“1°8™*  We can check that |a1| = |8bio|, |3Y *Day| = |8(uw, v)F—2|(k=1/(k=2) >
nk=De/(k=2) > pe|cy |, and |v/nai| = |B(w, v)*2||\/nlu, v)| > n® > nc|ci|. Moreover, conditioning
on Z[v®*-D] = ¢, Lemma 4.1 implies that & = Z[7] is an independent Gaussian random vector
with each entry N'(0,1/n). By the standard concentration inequality, it holds that with probability
1 — eclosm)® g 11|y = 14 O(logn//n), |(a,&1)] and the projection of & on the span of {v, £} is
bounded by logn//n. So far we have proved that (53) and (54) for t = 1.
In the following, we assume that (53) holds for ¢, and prove it for ¢ + 1. We recall from (46)

and (52) that

arr1 = Blag + by(we, v) + (€, v bywy = b€ + b€y -+ by—1&-1 (56)

By our induction hypothesis, we have that

[be{wy, v)| S [beo(§, v)| + [bea (€1, 0)] + -+ + [by—1) (-1, V)| S (logn/v/n)lal /18], (57)

and

|ce(&r, v)| S (logn/v/n)le| S (logn)la| /n®. (58)

It follows from plugging (57) and (58) into (56), we get

a1 = Blay + O(log nlay| /n))* ! = (1 + Olog n/n%))Ba; . (59)
We recall from (48), the coefficients b(;41)0, bt+1)1,*+ » b41)¢ are determined from the projec-
tion of yt@)(k_l) on v®FD e Ty
k— _
7" = banyov® Y 4 by mo + b e o brnyeTiet + ca T (60)
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We also recall that v®*=1) 7. 7, , 7_1 are obtained from v®* 1) y?(kfl), yfwﬁ*l), cee ygffl)

by the Gram-Schmidt orthonormalization procedure. So we have that the span of vectors (viewed as

_ k— k— k—
(k 1))982)( 1)’yi®( 1)’.“7%187(1 1)

which is contained in the span of {v, w;, o, -, yi—1 }2* =Y. Moreover from the relation (46), one
can see that the span of {v,w, yo, - ,yi—1} is the same as the span of {v,& &1, , &1} It
follows that

vectors) v®F—1) 7y ... 7,1 is the same as the span of tensors v®

\/b renj0 T 00y + e T+ 0y

= ||PrOJSpan{v®<k*1),7—077-17... 77-15_1}(017{0 + bpwy + Ct&t)®(k71) ”2

< IPrOjspan v we o, o1 pete- (a0 + brawy + cr&)®F D

X
. k—1
< ||PrOJSpan{’u,'wt,yo,--- ,yt,l}(a’tv + btwt + Ct&t)“g

. k—
= ||at'v + bt'wt + CtPrOJSpan{v,&,ﬁl,-" 7,5,571}>(£7f)||2 !

log nfes| \ "™ k-1
< (la b < la Sla
< (lal o+ 222 St S anal/ 18,
where in the last line we used our induction hypothesis that ||[Projspanfuv.e ¢, & 13 (&) ll2 S logn/y/n.
Finally we estimate ¢;r1. We recall from (48), the coefficient c¢;41 is the remainder of yf@ (k=1)
after projecting on v®*—Y 7y 7. 1 _1. It is bounded by the remainder of y?(k_l) after pro-
jecting on v®k—1),
k—1 - _ _ _ _
era| <l = af 1o D]l = [l(aw + bawy + ) *F Y —af o D (62)

The difference (a;v + bywy + c:&;)2*F 1 — aF1o®(F=1) is a sum of terms in the following form,

MOIMN K- N1, (63)

where vectors n1,m2, -+ ,Mk—1 € {aw,byw; + ¢&}, and at least one of them is byw; + ¢;&. We
notice that by our induction hypothesis, ||byw: + c:&ll2 S |bell|well2 + |cel||€tll2 S |be] + |et|. For the
Ly norm of (63), each copy of a;v contributes a; and each copy of byw; + ¢;& contributes a factor
|be| + |ct|. We conclude that

k—1
1] < Ilaro + bewy + ) D — a0l 3 Tar Tl - Jel)”. (64)
r=1

Combining the above estimate with (59) that |asy1]| =< |B|jas|*~!, we divide both sides of (64) by

‘5Ha’t‘k717
lc] <\bt ’Ct|> < \Ct>
acn| ~ wz adl " Jad rmz BN (65)

where we used our induction hypothesis that |a;| = |3||bs|. There are three cases:

1. If |ct\/|at| > 1, then

|| ( !Ct!> <|Ct|>k_1
jasi1] ~ 18] & Z Bl ladl )~ 18] \adl
If k = 2, then our assumption |5(u, v)*~2| = || = n¢, implies that |ciy1|/|arr1] < (Jee|/]a])/ne.

If k > 2, by our induction hypothesis |¢;|/|a;| < BY*=2) /ns. This implies (|c¢|/]az])*=2/|8] <
1/n%, and we still get that |ci1]/|ai+1] S (el /|ae])/nc.
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2. 1t 1/|8] < |erl/|ae| < 1, then

et o 1 ( ‘Ct’>r <1 <|Ct|> <1 (’cﬂ) 67
|at+1r~|mz B lal) S 78 el ) = Ul ) (67)

where we used that |3| > |B({u, v)¥~2| > ne.

3. Finally for |c|/|a] < 1/|5], we will have

lce| ( \Ct\) <1(1><1
lara] ~ \mz 5 ) 1 \is) S e (68)

In all these cases if || /|a¢| < min{y/n, 1(k = 3)|8|Y/*=2)}/n?, we have |ciq1|/|ars1| < min{y/n, 1(k >
3)|8|*/*=2)} /ns. This finishes the proof of the induction (53).

For (54), since 7 is orthogonal to v®*=1 7 7 .-+ 71, Lemma 4.1 implies that conditioning
on £ = Z[v®* V] and €,,1 = Z[1,] for 0 < s <t —1, &1 = Z[7] is an independent Gaussian
vector, with each entry N(0,1/n). By the standard concentration inequality, it holds that with
probability 1 — ¢1°8™)° ||&,,1]la = 1+ O(logn//n), |(a,&1)| and the projection of &1 on the
span of {v,&, &, - ,£t} is bounded by logn/+/n. This finishes the proof of the induction (54). [

Next, using (53) and (54) in Claim 4.3 as input, we prove that for

1 /1  2logl|s|
t>14 ==+ 2=
+5<2+ logn (69)

with probability 1 — ec(o8 ")? we have

Y = a0 + byo& + b &1 + -+ by—1&—1 + s, (70)
such that
o log n|ay| (logn)1/2|at| 9
bt0—6+0( NG [be ;s [beals - -+, [bei—1)] SW, AV (71)
Let z; = |ci/as| < |B|Y/* =2, then (65) implies
. <1kzl<1+x>r (72)
ST AN

from the discussion after (65), we have that either z;yq < 1/82, or @411 < a¢/n°. Since z; =
ler/ay| < n'/?7¢, we conclude that it holds

1 /1 2lo
= |Ct/at’ S ]_/,62, when ¢ > g <2 + 10§7|’1,5|> . (73)

To derive the upper bound of b1, by2, - - -, byt—1), we use (61).

b%t+1) +b%t+1)1 +b%t+1)2 "'+b%t+1)

(k—1
||atv + byw; + CtPrOJSpan{v,ﬁ &1, ,E— 1}(515) ”2 )

k—1
(a2 . . logn . logn
—<t+0<! t|(|bt|+|t|>\/ﬁ (’bt’+|t|f)>> :

20
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where we used our induction (54) that [(€,v)[, [(&1,v)], -, (&, v)| < logn/+/n and the projection
|Projspaniv, & &1, , &—1}(&)l2 S logn/y/n. Moreover, the first term by, 1yo is the projection of
®(k—1) (k—1)

t

y on v® ,
_ log n(|b:] + |c el
biet1yo = (arv + bywy + by, v) ! = (at +0 ( & “\;% | tD)) ; (75)
where we used (54) that [(€,v)], [(&1,0)],- -, [(&,v)| < logn/y/n. Now we can take difference of

(74) and (75), and use that |b;| < |a¢|/|B] from (53) and |c¢| < |a¢|/|B] from (73),

- _1 logn 2(k—1) logn
bt =a; "+ O <|atk 1’ﬁ\\/ﬁ> ; b%t+1)1 + b%t+1)2 +-- b%tJrl)t S at( )|5|\/ﬁ- (76)

From (56) and (59), we have that
ai+1 = By < Bay ' (77)
Using the above relation, we can simplify (76) as

Gt41 log n|az41| (log ”)1/2|at+1|
bet1y0 = B +0 <W> o byl b n2ls - byl S W- (78)

This finishes the proof of (71).
With the expression (71), we can process to prove our main results (7) and (8). Thanks to (54),
for t satisfies (69), we have that with probability at least 1 — O(e—¢(osN)?)

1 2 1 1 321
el = a2 (1 tot <"; £ .0 (6(;%/% + |(BT§/Z;3/4 + ,34>> . (79)

By rearranging it we get

llyll2 = = (1 S LIS ( logn (log n)*/% 41 )) : (80)

w \' 7275 PO\ Byn tiapre
We can take the inner product (a,y;) using (70) and (71), and multiply (80)
_ <CL, yt) o << o 1) <a’7£> — <a7’v><’07£>>
<(I,Ut> - Hyt”? - Sgn(at) 1 252 <a’a ’U> + B
. ( logn__ (logn)?_|{a. v>|> | )

52\/5 + \5|3/2n3/4 + 54

where we used (54) that with high probability [(a,§)[, |(a,&s)| for 1 < s < ¢ are bounded by
logn/+/n. This finishes the proof of (7). For /5 in (8), we have

Xpueh = X X ) ), (52)

H?Jt”’zg a ||ytHl§ ||ytH§

Thanks to (73), (52) and (54), for ¢ satisfies (69), with probability at least 1 — O(e—c(los N)?*),
we have

Yir1 = G410 + b 1yo€ + by1)1§r + -+ b e + crr&ias (83)
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where |ci1| < |a*71/ B2,

at+1 = Bar + b€, v) + b (€1, v) + -+ + byp—1)(&t—1,v) + e, )t
_ 6%];_1 <1 n (&, v) 40 ( logn N (logn)3/2>>k17 (84)

/3 62\/ﬁ ‘5‘3/2713/4

and

logn log n)1/2
b(i1y0 = a5 (1 +0 (W)) s bl byl + - A by S af” 1|(ﬁ|1/27)zl/4‘ (85)

From the discussion above, combining with (70) and (71) with straightforward computation, we
have
1 (E+1)(&v) logn  (logn)3/?
— A,k ’
ey = (1 fE s O\ e T ) ) (86)

By plugging (80) and (86) into (82), we get

k/2—1 logn log n)3/2 1
X [uf™] = sgn(ay) (ﬁ + (&, v) — /ﬂ> +0 <|ﬁo‘g;F ,(ﬂo1g/27)13/4 - W’) (87)

Since by our assumption, in Case 1 we have that § > 0. Thanks to (84) a;11 = Baf 1(1 + o(1)),
especially a;;1 and a; are of the same sign. In the case (u,v) > 0, we have a; = f{u,v)*~1 > 0.
We conclude that a; > 0. Therefore sgn(X [uP¥]) = sgn(as)* = +, and it follows that

k/2 —1 logn  (logn)3/? 1
METS L0 7
gt (wa MR

This finishes the proof of (8). The Cases 2, 3, 4 follow by simply changing (5, v) in the righthand
side of (7) and (8) to the corresponding limit. O

X([uf*] =B+ (& v) - (88)

Proof of Theorem 2.2. We use the same notations as in the proof of Theorem 2.1. If |3| > n® and
|B(u, v)*2| < n~%, then we first prove by induction that for any fixed time ¢, with probability at
least 1 — O(e~¢1°8N)?) the following holds: for any s < t,

[Bs0s 1Bt -~ Ibss—y| S max{]es] /8] %D/ 572, (log n)* e, | /D72, (89)
les| = n* B ay),
and
€l €.l = 1+ Ollog n/ ), )
|<U €>| ”PrOJSpan{v,E £, s 1}(€S)H2 S logn/f
From (44), a1 = B{u,v)*"1, by = (w,v)* ! and ¢; = /1 — (u,v)2¢=1 . Since || >
and |B{u,v)F~ 2\ < n-¢, we have that |(u,v)| < n=2/=2) <« 1 and therefore |¢;| < 1. We
can check that |8Y/* 2| = |8(u,v)F~ |(k D/k=2) < n=e < n=¢fley| and |byo| = |ar/B] <

n=¢|ey/ B/ +=2)| Moreover, conditioning on Z[v®*~D] = ¢, Lemma 4.1 implies that & = Z[7o]
is an independent Gaussian random vector with each entry A/(0,1/n). By the standard concen-
tration inequality, it holds that with probability 1 — e<1°8™? |I&|ly = 1 4+ O(logn/\/n), and the
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projection of &1 on the span of {v, £} is bounded by logn/y/n. So far we have proved (89) and (90)
for t = 1.

In the following, assuming the statements (89) and (90) hold for ¢, we prove them for ¢ + 1.
From (56), using (56) and (57), we have

lagy1] = ‘B(at + by {wy, v) +Ct<€t,v>)k*1‘
1 b + b —|— ...+ b _ 1 k—1
< 18] (’at|+ og n(|bro| + [be | |bee—1)l) N Ogn\ct\)

Vvn Vn
log e \F~! o log e\ F~! (91)
S 1Bl lael + T S 1Al e B/ F2) + NG

< /B k—1 1 +10gn k71< ’Ct|k_1
S |Blled ne| B/ k-2 T/ ~ ne| g1/ (R-2)

where in the third line we used our induction hypothesis that [by| 4 [be1| 4 - - - + [bye—1)| S |, and
n=e > |B](u, v)[F2 2 |B] /2,

For bt 41)0, be4+1)15 "+ > D(¢+1)e, from (61) we have
2 2 log n|cy| w
\/b 1130 T 0041 T 002 ot b(t+1 t e (’at‘ + [be| + \/ﬁ>
< log n|cy| k=l |l log n|cy Rl
< (la+ 2 s <n€|m1/<’f2> ) 2

1 logn k=1
S el + :
ne B2 "

Finally we estimate ¢;y;. We recall from (48), the coefficient ¢4 is the remainder of yt®
after projecting on 'v®(k_1), T0,T1, " , Tt—1. We have the following lower bound for ¢4

(k=1)

leer1]? = [[(arv + brwy + i) *F VN3 — (01190 + By + Vfsngz + -+ + Blgay)

2(k—1) (93)
(k; ]_ 2k—1 ]. logn
> |lawv + bawy + &l (!Ct| (=1 <na’/3‘1/(k—2) * Jn ) > ‘

For the first term on the righthand side of (93), using our induction hypothesis (89) and (90) that
|az| < leif, we have

Hat'v + btwt + Ctﬁt”% = af + bt + Cy H£t||2 + 2atbt<v wt> + 2atct<fv Et) + 2btct<fwt, €t>

_ (1 +0 (kz%t + n26521/(k—2)>> . 6
We get the following lower for ¢;41 by plugging (94) into (93), and rearranging
logn 1 b1
lct] 2 <1 +0 ( NG + ngsﬁz/(km)) |ct] (95)
The claim that [bey1y0l, (bl byl S max{|er|/[81*D/F2), (logn)* e | /nED72)

follows from combining (92) and (95). The claim that |c;q| > n°8Y* =2 |a; 4| follows from com-
bining (91) and (95).
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For (90), since 7 is orthogonal to v®*=1 7 7 -+ 71, Lemma 4.1 implies that conditioning
on £ = Z[v®* D] and €,.1 = Z[1,] for 0 < s <t — 1, &1 = Z[r] is an independent Gaussian
vector, with each entry N'(0,1/n). By the standard concentration inequality, it holds that with
probability 1 — ec(log”)Q, |€i+1]l2 = 1 4+ O(logn/+/n), and the projection of &1 on the span of
{v,€,&,--- ,&} is bounded by logn//n. This finishes the proof of the induction (90).

Next, using (53) and (54) as input, we prove that for

1/1 log | A
t>14+-(>—-—2" )
+ € (2 (k—2)logn (96)

we have
Yt = av + b€ + b + -+ by 1)&—1 + b, (97)
such that
logn k=1
al ol ol b S lallg] (52) (98)

Let oy = |a¢/c¢|, then (89) implies that z; < 1/(n°|G|"/*=2)). By taking the ratio of (91) and
(95), we get

logn bl
s 101 (2 ) (99)

there are two cases,
1. if logn/v/n < < 1/(nf|B)Y*=2), then

zer1 S Bl = 2y (181Y F Py < 3y (100)

2. If zy <logn/v/n, then |z 1| < |Bl(logn/y/n)k—1L.

Since x1 = |a1/c1| < 1/(nf|B|Y#=2), we conclude that

- 171 log ||
- <18/0 B=L whent> - (- — 2Pl ) 101
o1 = laefa] 18\ fogn/ Vi)Y, whent > 1 (5 - A (101)
In this regime, (92) implies that
< w1 (lad] | logn) 7
bes1)0ls 1Dl Pgny2ls -+ 5 bty S 18]let] — +
<l () g aaal (2E2)
~Y t \/ﬁ ~ t+1 \/ﬁ bl
where we used (95) in the last inequality. This finishes the proof of (98). Using (98), we can
compute ug,
k-1
Yt & logn
w == & os (161 (E1) ). (103)
gl 11€ell2 ( vn

where the error term is a vector of length bounded by |3|(logn/+/n)*~1. This finishes the proof of
Theorem 2.1.
O
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4.2 Proof of Corollarys 2.3 and 2.4

Proof of Corollary 2.3. According to the definition of £ in (7) of Theorem 2.1, i.e. £ = Z[v®(k_1)],
is an n-dim vector, with each entry i.i.d. N'(0,1/n) Gaussian random variable. We see that

(€ v) LN(0,1/n).

Especially with high probability we will have that |(£, v)| < logn/y/n. Then we conclude from (8),
with high probability it holds

= 1  logn
ﬁ—ﬁ+0<ﬁ+\/ﬁ>. (104)

With the bound (180), we can replace (a,v)/(262) on the righthand side of (7) by (a,v)/(252),

which gives an error
1 logn >>
=0([{a, V)| =+—=F—]]- 105
(oo (G35 + e o)

Combining the above discussion together, we can rewrite (7) as

-~ 1 (a,§) — (a,v)(v,§) logn  (logn)*? |(a,v)]
(a,v)—(1—2BQ> (a,v) = 3 +O<52\/ﬁ+ 3372374 + 5 > (106)

(a,v) (a,v)
262 o2

with high probability.
Again thanks to the definition of &€ in (7) of Theorem 2.1, i.e. &€ = Z[v®*~ Y] is an n-dim
vector, with each entry i.i.d. N(0,1/n) Gaussian random variable, we see that

(a,8) — (a,v)(v,§) = (a - (a,v)v,§), (107)
is a Gaussian random variable, with mean zero and variance
Bl{a — (@, 0)0,€ = ~lla— (o, 0)0l3 = @, (L~ w0 )a) = W a (1, ~55T)a). (108)
This together with (180), (182) as well as our assumption (11)
Vb (1- ) Na,8) — (av)| % A(0,1), (109)

Via, (I, —voNa) | 25

Under the same assumption, we have similar results for Cases 2, 3, 4, by simply changing (3, v)
in the righthand side of (7) and (8) to the corresponding expression. O

Proof of Corollary 2.4. Given the significance level «, the asymptotic confidence intervals in Corol-
lary 2.4 can be calculated from Corollary 2.3 by bounding the absolute values of the left hand sides
of (13) at z,. O
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4.3 Proof of Theorem 2.7

Proof of Theorem 2.7. We define an auxiliary iteration, yo = u and
k—1
yer = X[y V). (110)

Then we have that w; = y¢/||y¢]|2.
For index § = (j1,j2, -+, jk—1) € [1,7]*7L. Let & = Z[vj, ® vj, ® --- @ vj,_,]. Its entries
§j (i) = Z Ziiyig-ip 1 Vj (il)vjz (i2) - "V (ik-1), (111)
1,02, ik—1€[1,n]

are linear combination of Gaussian random variables, which is also Gaussian. These entries are
i.i.d. Gaussian variables with mean zero and variance 1/n,

E[EJ (1)2] = Z E[Zl?iliz---ikﬂ]vh (il)ZUjQ (i2)2 T ’Ujk—1(ik*1)2 = % (112)

i1,02, ig—1€[1,n]

We can compute y; iteratively:

T
k—1 _ k—1
y1= X[y ") =3 8o, 0)* My + Zlyg ) (113)
j=1
For the last term on the righthand side of (113), we can decompose y? *=1) a5 a projection on

vj, ®vj, - @wj,_, for j € [1,7]*7L, and its orthogonal part:

(k—1)
k—1 r
k—1
uo V=3 T o vidvn @v @ @ v+ 1= [ (w0, v5)? 7o, (114)
j s=1

J=1

where the sum is over j € [1,7]*7!, 7y € ®@*R™ and ||m0||2 = 1. Let & = Z[r]. By our construction
vj, ®Vj, ® - @vj,_, for any j € [1,7]¥~1 and 7 are othorgonal to each other. Thanks to Lemma
4.1, conditioning on &; := Z[v;, ® vj, ® --- @ v, .| for index j = (j1,J2, - ,jk—1) € [1,r]*1,
&1 = Z]|1| has the same law as Z[Tg], where Z is an independent copy of Z. Since (79, ) =1&
is a Gaussian vector with each entry A/(0,1/n). With those notations we can rewrite y; as

(k=1)

T

r k—1
yi=> Biwov) o+ ) [[wovi)& + |1 | D (w0, v;)? &1 (115)
j=1 j s=1

j=1
In the following we show that:

Claim 4.4. We can compute yo2,ys, - ,y; inductively. The Gram-Schmidt orthonormalization
procedure gives an orthogonal base of vj, Qvj,®- - -Quj;, _, forg € [1, r]*=1 and yg@(kfl), y?(kfl), ‘e

as:

)

{vjl QVj, ®-Q vjkﬁ}je[[l,r]]k*laTOv T1 s Te—1- (116)

Let & = Zvj, @ vj, ® -+~ @ v, _,] for § = (j1,j2.+ ,je—1) € [Lr]*7L, and &1 = Z[7] for
0 < s <t—1. Conditioning on §§ = Z[vj, Qvj, @ ---Qwj,_,] for j = (j1,j2, - ,jk—1) € [1, 7]kt
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and Es41 = Z[1g] for 0 < s < t — 2, & = Z[1—1] is an independent Gaussian vector, with each
entry N'(0,1/n). Then y; is in the following form

Yt = arvr + brwy + iy, (117)
where
vy = Ay V1 + U2 + -0+ vy, bwy = Z bij€; +bp&r + -+ by—1&-1, (118)
J
and ||lvi(2, [lvz2ll2, - -, [[orll2; [[wel]2 = 1.

Proof of Claim 4.4. The Claim 4.4 for ¢t = 1 follows from (115). In the following, assuming Claim
4.4 holds for t, we prove it for ¢ 4 1.

Conditioning on & = Z[vj, ® v, ® -+ @ v, ] for index § = (ji,j2, -+, jr—1) € [1,7]*"" and
Z|1s] = €s41 for 0 < s <t — 2, Lemma 4.1 implies that & = Z[r;—1] has the same law as Z[Tt,l],
where Z is an independent copy of Z. Since 7;_; is orthogonal to vj, ® v;, ® --- @ vj,_, for index

3 =1, J2, - ,rk—1) € [1,7]* and Z[1s] = &s41 for 0 < s <t —2, & is an independent Gaussian
random vector with each entry N (0,1/n).

Let {vj, ®v;,®- - ®@vj,_, }icqi, k-1, T0s T1, * + -, Tt be an orthogonal base for vj, ®v), ®- - -®@v;,
for j € [1,7]*! and y?(k_l), y?(k_l), e ,yf@(k_l), obtained by the Gram-Schmidt orthonormaliza-
tion procedure. More precisely, given those tensors {vj, ®vj, @ - ®@vj,_, b ;61> T0s 1, *+ 5 Te—1,
we denote

(k-1 . . . —_
b = W v v, @ @), G = (e deer) € LR (119)
_ ®(k—1
buens = WEF V), 1<s<t, e =y " m)
and Zj b(t41)jV @ Vjy @ -+ @ V5, + byy1)170 + bs1)2T1 + - b(441)¢Te—1 is the projection of
®(k—1 ®(k—1)  ®(k-1 ®(k—1
Y, *=1 50 the span of {v;, ® v, ® -+ ® ’Ujkil}je[[l,,,‘]]kfl,yo( ),y1 ( ), fe ,yt_(1 ). Then we
can write yt®(k71) in terms of the base (116)
®(k—1
y T = b v @0 @ @i+ b1 o + DTy - BeanyTio1 + cera i (120)
J
The recursion (110) implies that
'
Yot = Bilag + bylwr, v5) + (€, v;)F oj + bipawig + crp1 [ (121)

Jj=1
where

beriwesr = 21 bugn)jvi ©vj @ - @ v, + b1 7o + et + - bipayTe-1]

’ (122)
= Z be+1)5€5 + be+1)1€1 + bry1)2€2 + - bg1)e&e-
J
Since 7, is orthogonal to {vj, ® vj, ® --- @ vj,_, }jep 515 T0, T15 -+, Te—1, Lemma 4.1 implies

that conditioning on §; = Z[v;, ® vj, ® --- @ vj,_,] for 3 = (1,42, ,jk—1) € [[1,7"]]";_1 and
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€11 = Z|1s]) for 0 < s <t —1, &41 = Z[1] is an independent Gaussian vector, with each entry
N(0,1/n). The above discussion gives us that

Yt+1 = Q41041 + bep1wer + 141, Qe = \/a%t+1)1 + a%t+1)2 +oot a/%t+1)r' (123)

and
aq+1)j = Bjla; + bi{we, vj) + el o)t 1<i<r (124)
O

We recall that by our Assumption 2.5, that

1/k < ' <R, (125)

for all 1 <i,j <r. If j. = argmax; 3; <u,'vj)k_2, it is necessary that §;, 2 (1, where the implicit
constant depends on k.

In the following, we study the case that (w,v;,) > 0. The case (u,v;,) < 0 can be proven in
exactly the same way, by simply changing (3, v;,) with ((—1)*3, —v;,). We prove by induction

Claim 4.5. For any fized time t, with probability at least 1 — O(e_c(log”)2) the following holds: for
any s < t,
’a8j*| > ‘QSJ"? las| 2 |51|(Z ’bsg" + |bst| + - + ’bs(s—l)Da
J (126)
> € 1/(k—2)
las| 2 n® max{1(k > 3)|cs/ B, | les/v/nl},

and fOT’j = (jlan,' o 3jk:—1) € [[137.]]]9—1

16511 [1€sll2 = 1 + O(ogn/vn),  [(v;,&5)], {a. ). [(@, &s)| < logn/v/n.

. 127
PO panar ono(es )1 ps e 11 (E) 2 S log /v 127
Proof of Claim 4.5. From (115), we have
r k—1 r (k=1)
yi=> Bilyo.v;) o+ ) [[{wovi)& + [ 1- | D (w0, v;)? & (128)
j=1 § sl j=1
= Zaljvj +Zb1j€j + 1€, (129)

Jj=1 J
_ k—1 : Tkl
where a1; = f(u,vj) for 1 <j<r by =1l

(k—1)
and ¢ = 1/1— (Z§:1<u,vj>2> . Since &; are independent Gaussian vectors with each entry

(u,vj,) for any index j = (j1,72, -, Jr—1)

mean zero and variance 1/n, the concentration for chi-square distribution implies that ||&;]l2 =
1+ O(log n/+/n) with probability 1 — e<(1°8™* Since j, = argmax; | 3;(u, v;)*~2|, combining with
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our Assumption 2.5, it gives that |a1;,| > |a1j|/k. As a consequence, we also have that |a| =
Va3 + a3y + - +a}, < |ay;|. Again using our Assumption 2.5

k—1
Dolbil S D K, vy)] S Hw,v) [ S /85, S laal/ B (130)
J i=1 =
We can check that \,81/ *=2 g, | < |B]1.*/(k_2)a1j*| = |Bj. (u,vj YF72|F=D/(E=2) > pg > pfley, and

lvnai| < |vnaij,| = |Bj, (u,v;,)*2||v/n(u,v;,)| = n° > nf|e1|. Moreover, conditioning on &; =
Z[’Ujl RUj, & - '®,Ujk71} for 5 = (41,72, - ,Jrk—1) € [1, Tﬂkil, Lemma 4.1 implies that &, = Z[1p] is
an independent Gaussian random vector with each entry N(0,1/n). By the standard concentration
inequality, it holds that with probability 1 — e¢(1°8™? ||& |l = 1 4+ O(logn/\/n), |(a,&)| and the
projection of & on the span of {vy,ve, - , vy, {EJ}JGHLT -1} is bounded by logn/y/n. So far we
have proved that (53) and (54) hold for ¢ = 1.

In the following, we assume that (126) and (127) hold for ¢, and prove it for ¢t + 1. We recall
from (118) and (124) that

ag1); = Bjlas; + be(wy,vg) + co(€n o) biwe =D big&s +buéi 4+ bu1&1. (131)

By our induction hypothesis, we have

br{we, v3)| £ [0 (€5 v5)] + [ber (€1, v5) |+ -+ + byy (€e-1,03)| S (logn/vn)lael /|1, (132)

J
and
et (&, v5)| < (logn/v/n)ler] S (logn)lag|/n®. (133)

It follows from plugging (132) and (133) into (131), we get

gy = Bjlay + be(wy, v;) + e (€, v5)) 1 = Bj(ar; + O(log nlag| /n))* < Bjlas|*™t,  (134)

and especially

a4y, = Bi.(atj. + O(lognlag,|/n%)* = (1+ O(logn/n®))Bj.ar; " (135)

Therefore, we conclude that

lase1s.| = 18;.al 1 = a1, (136)
and

lagr1y;] S Bila" ™ < Bjlag "1 S lagsas. . (137)
We recall from (119), Z ; b(t+1 jU1 QU Q- QU +b(t+1)1To+b(t+1)2T1 +-- b(t+1)t7't 1 is the

. ®(k—1 ®(k-1)  @(k-1 ®(k—1
pl"OJeCtIOHOfyt( )onthespanof{vjl®v32® SRV, 1}36[17,]]k 1,y0( ),yl( ),---,yt (1 ),

We also recall that {vj, ® vj, ® --- ® vj,_, }jepqs-1,T0, 71, , Te—1 are obtained from {v;, ®

Vj, @ '®'Ujk71}je[[17r]]k71, ,ygg(k_l), y?(k_l), e ,y?_(f_l) by the Gram-Schmidt orthonormalization

procedure. So we have that the span of vectors {v;, ®v;,®- - -Quj, , }je[[u]]k_l ,T0,T1," -, Tt—1 is the

same as the span of vectors {v; ®v;,®- - ~®vjk71}je[[1,r]]k71, . y(?(k_l), y?(k_l), e ,y?_(f_l), which is
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contained in the span of {vi, v, - ,v,, W, Yo, - , Y 1}® . Moreover from the relation (117)

and (118), one can see that the span of {vy,va, -+, vy, ws, Yo, - ,Ys—1} is the same as the span of
{v1,v9, -+, vy, {ﬁj}jeﬂl’rﬂk—l,gl, &1} Tt follows that
2 2 2
beg1] S \/Z Branys + V0t T brnye T F bty
. k—
— ”Pro']span{{vjl®v]'2®m®v.7'k—1}je[[l,r]]k—l77—0’7-1"“ 7.,-til}(at'vt + btwt + Ctgt)®( 1) H2

< ”PrOjSpaH{Ulwzw' Ve WY, Ye—1 pORD) (atvt + btwt + CtEt)®(k_1) ||2 (138)
. k—1
< [IProjspan{v,we,yo, ye_1} (@0t + biwy + i)l

. k—1
— flarty -+ by + POl pangon e ), s re ) €IS

log nley

k—1
S (lal+ ol + 2270 S b S sl o,

where in the first line we used (122), and in the last line of (138) we used our induction hypothesis
that HPI‘OjSpan{UMUQF” 7'U’Fa{£j}j€[[17r]]k71 7517"' 7£t71}(£t) ||2 S log n/\/ﬁ

Finally we estimate c;1. We recall from (119), the coefficient ¢;41 is the remainder of y®( b
after projecting on {v;, ®v;, ®- - ‘®’Ujk_1}j€|117r]]k 1,70, T1, -, Tt—1. It is bounded by the remainder

®(k—1)

of y, after projecting on {vj, ® vj, ® -+ @ Vj_, b -1

k—1 kl _ _ k—1
leen] < uf® Y — al P |y = [|(arvr + brwy + &) 2F D — b eF D0 (139)

The difference (a;v; + bywy + ct.ft)‘g’(k_l) — afflv?(kfl) is a sum of terms in the following form,

MM @ - @ N—1, (140)

where 1, m2, -+, Mr—1 € {avy, byw; + &}, and at least one of them is byw; + ¢;&;. We notice that
by our induction hypothesis, ||byw; + ci&ll2 S [bel||wel2 + [ee|||€ell2 S |be| + |et|. For the Lo norm of
(140), each copy of a;v; contributes a; and each copy of byw; + ¢;&; contributes a factor |b;| + |c|.
We conclude that

k—
ler1] < (e + beawe + ) * 5 —af oV S 3T (b el (141)
Combining with (136) that |asv1| < |B1||a¢|*~!, we divide both sides of (141) by |B1|a¢|*~1,

e i’f <|bt |ct\)r<1’“‘<1 \cﬂ)’
501 2 el 1al) S 187 22 B (142)

|&t+1|

—_

There are three cases:

1. If \ct]/]at\ = 1, then

let+1] <1’§< 1 +M>T< 1 (W)’H (143)
|are1] 7 [Br] = \ Bl ad] 161] \Jae] '

If £ =2, then |cir1|/|ae+1] S ([e]/|ae])/nc. If k > 2, by our induction hypothesis |¢;|/|a:] <
B/ n?. Bspecially, (el /[ac])*2/|81] S 1/n. We still get that |cy41]/|acsr] S (lerl/ac]) /.
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2. 1t 1/|81| < |erl/]ae| < 1, then

o
leen| o LZ ( 4 el )T < L <|Ct|> <L (M) , (144)
|ace1] ™ [Br] = \ B Tadd) ~ T80 ad ) = 7 \Jad

3. Finally for |¢|/|a:] < 1/|51], we will have

L1 e\ 1 (1)_ 1
a2 () <m0 (E) < e (145

In all these cases we have |ci1]|/|ars1| < min{y/n, 1(k > 3)|61|"/*~2)} /n®. This finishes the proof
of the induction (126).
For (127), since 7 is orthogonal to {vj, ®vj, ®- - ®@vj,_, bicpiJs-15T0, T15*++ 5 Te—1, Lemma 4.1

’Ct+1|

N

\at+1|

implies that conditioning on &; = Z[v;, ®v;,®- - ®uj, ] for index j = (j1,jo, -+ , jr—1) € [1,7]*?
and €541 = Z[1g) for 0 < s < t—1, &41 = Z[r] is an independent Gaussian vector, with
each entry N(0,1/n). By the standard concentration inequality, it holds that with probability
1 — eo8m? g, 1]l = 1+ O(logn/v/n), |(a,&41)| and the projection of &1 on the span of
{v1,v9, -+ , vy, {gj}je[[lﬂ,,]]k—l,gl, -+ ,&—1} is bounded by logn/y/n. This finishes the proof of the
induction (127). O

Next, using (126) and (127) as input, we prove that for

v (o ) e "
we have
Zat]'v] meég + b1+ 4 by—1&—1 + i, (147)
=1
such that
jay] < (10%‘;1‘)“ asz.l, 3 #
Ot(iu G i) = ng* +0 G;ig%) bzl S \/lg‘gﬁrf‘g’atj* o v = eoJan oo 5 0x),  (148)
kol ool € SR ) < a2

Let z; = |ei/ag] < n~¢|B|Y* =2, and r; = max#j*(5;/(1672)@”)/(5;!(1672)atj*). For t = 1, our
Assumption 2.6 implies that

ﬁ;/(kq)alj < (B (u, v;)F~2)B=D/(+=2)

(149)
< (1= 1/R)B;. (w0, )72 62 < (1= 1/ 8/ Py
Thus we have that r; < (1 —1/k). We recall from (131)
_ k—1
B/ Pag i) = (5 72 (0t + brfawr, vj) +Ct<€t,’vj>)>
_ 150
(5520, + 0 o RO+ ) |\ (150)
j tj t \/ﬁ 5
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where we used (126) and (127). Thus it follows that

k-1

( 8% (ar; + O (Ja|log n(1/|B1] + 1) /v/m) )
P41 = WAX |~
i#i- \ B/ ags. + O (Jaul logn(1/|B1] + 20) [v/m) (151)

_ ( +0 (logn(1/|51| +xt>/\/ﬁ>>’“‘1
S 1+ 0 (logn(1/[B1] + ) /v/m)

For x;, (142) implies

e S g 2 E <wl ) (152)

from the discussion after (142) we have that either x;11 < 1/|81]%, or w441 < a¢/n®. Since

= |e1/ar] <nt/?7¢, and r; < (1 — 1/k) we conclude from (151) and (152) that
= ler/ad] S1/B%, 7 S (ogn/(1Bivn)* Y, (153)
when
1 /1  2log|Bi]\ | loglog(v/n|fil)
t>- (= . 154
€ <2 + logn + log(k — 1) (154)
To derive the upper bound of b, bia, -+ -, by(;—1), We use (138).
Zb (403 + Ve + Dernz o+ By
||a'v + bywy + ¢ Proj &)l 2(k-1)
Lot te t Span{vi, vz, vr {&5} oy pp—1615 §e—1} ST/ 12 (155)
| | o\ \ A1
o ogn
- (2 +0 <rat\ (1l + ) 52+ (1 + 125 )) ,
where we used (127). The first term by 1); is the projection of yfz)(k_l) on vj; ®vj, @+ Quj,_,,
k-1 k—1
log n(|bs| + |c
b(t+1)j = H(atvt +btwt + ctEt,'ij> = H <atj5 + O < & (|\;,|7L | t|)>) y (156)
s=1 s=1
and
k—1 k
Z V1) = < [{arve + brws + ¢y, vj,) !2>
s=1
1 | - (157)
o ogn
- (2 +0 (rat\ (1l + ) 52 (1 + 25 )) ,
where we used (54) that [(§5,v;)|, (&1, v5)],- -, (&, v5)| S logn/y/n. Now we can take difference
of (155) and (157), and use that |bs| < |ag|/|B1| from (126) and |c| < |ag|/|B1]? from (153),
2(k—1) logn
B+ Bewny + oo+ By St 1B]v/n (158)
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Using (156) and (153), we get that

logn . . .
b(t+1) Gt]* <1 +0 (M)) o e = JeoJan oo 5 %)
159
< logn 1 o (159)
’bt-i-]. ’NI|B|’ 17 ) J%J*

From (131), (136) and (153), we have that

logn
Vn|p
logn k-l (160)
a 1< | —=— a s G F Jee
| a+nJ|N (Vﬁ”5ﬂ> | u+nh| JF7J
Using the above relation, we can simplify (158) and (159) as
(log )" /?|ay11)|
b1l (b2l - byl < TIBPPaA (161)
and
A(t41)j. logn
b@+nj*_'A<1*‘O (>>,
BJ* \/ﬁ‘/B].’ (162)

logn

|b(t+1)j| N WW(HU;‘J’ J # Jx

This finishes the proof of (148).
With the expression (148), we can process to prove our main results (20) and (21). Thanks to
(127) and (147), for ¢ satisfies (146), we have that with probability at least 1 — O(e~¢(os™)?)

1 2(vj,,&;,) logn [ logn \*' logn (logn)3/? 1
2 _ 42 1+7+M+O + + + —
||?Jt||2 1]+ 5]2* ,Bj* \f f‘ﬁl‘ ﬁ%\/ﬁ |Bl|3/2n3/4 ﬁil

(163)
where j. = (j«, Jx, -+, J«). By rearranging it we get
1 2(vj,,&;,) logn [ logn \*' logn (logn)3/? 1
1 =ay. [ 1- Y + + +—
/yell2 1] ( 26]2* ,Bj* NG \/ﬁwl‘ B%\/ﬁ |B1|3/2n3/4 B%
(164)
We can take the inner product (a,y;), and multiply (164)
<(1, ut> _ <a'a yt> _ Sgl’l(atj*) 1 — 5 <G,, ’U]*> + <CL, £J*> <a’7 v]*)(”]wéh)
[yl 267, P
(165)

logn< logn )k_l logn (logn)3/? 1
+0 + + +—
P(ﬁ NGEn BV B33 T B

where we used (54) that with high probability [(a,&;)|, [(a,&s)| for 1 < s < ¢ are bounded by
logn/y/n. This finishes the proof of (20). For § in (21), we have that

Xy _ e X" ) o)

X[U,@k] = = —
! lyells lyells lyells

(166)

33



Thanks to (153), (160) and (127), for ¢ satisfies (146), with probability at least 1—O(e—c(logm)?),
we can write the first term on the righthand side of (82), we have

Yit1 = Z a(t41)j05 + Z bt+1)5&5 + b+1)1€1 + -+ byt + a1, (167)
J J

where |ceq1] S Ja|*1 /8%,

_ logn
agi)j. = Bibasng, = By (1 +0 <g>> ;
VB (168)
| < logn k=1 L.
a(t+1)j| ~ \/ﬁlﬂlf |a(t+1)j*|, J # J
and
A(t41)j. ( ( logn ))
b .= 1+0 ,
(t+1)7« /8]* \/ﬁ|ﬂl|
logn .
b41)i] S W‘a(t—kl)j*L J # I (169)

k-1 (logn)'/
D)1 ls [berny2] + -+ + (bl < a 18[1/2n1/4°

From the discussion above, combining with (147) and (148) with straightforward computation, we
have

1 k+1)(&; v, 1 1 k=1 ] 3/2
<yt7yt+1> :BJ*afj* <1++ ( )<£]* 'Uj*> +O ( ogn < ogn ) n ogn n (Ogn) '

B, Bi. Vv \vnlB] Biy/n - |Bu[3/2n3/4
(170)
By plugging (164) and (170) into (166), we get

k/2 —

X[uf*] = sgn(ay;,) </Bj* + (€., v5.) — /2‘ 1> (171)
G

logn [ logn \*'  logn (logn)3/? 1
O 172
" (ﬁ (850) R i * B (72)

Since by our assumption, in Case 1 we have that 3;+ > 0. Thanks to (160) a;y1;, = Ba@:l(l +
o(1)), especially a¢y1;, and a¢j, are of the same sign. In the case (u,v;,) > 0, we have aij, =
Blu,v;,)*1 > 0. We conclude that a;, > 0. Therefore sgn(X [uP¥]) = sgn(as;,)* = +, and it
follows that

k/2—1

X[ = Bj. + (&j.,v5.) — 5; (173)
logn [ logn k=1 logn (logn)3/? 1
0 ( Vi <ﬁzrﬂlr> AN AT (74)

This finishes the proof of (21). The Cases 2, 3, 4, by simply changing (8;,,v;,) in the righthand
side of (20) and (21) to the corresponding limit.
]
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4.4 Proof of Theorem 2.9

Proof of Theorem 2.9. We first prove (25). If w is uniformly distributed over the unit sphere, then
it has the same law as n/||n||2, where n is an n-dim standard Gaussian vector, with each entry
N(0,1). With this notation

185 (w, v7)" % = 18;¢m,v)" 1 /I3, (175)
and we can rewrite P(i = argmax; |3;(u, v;)*72|) as
P(i = argmax; |6;(u, v;)"?|) = P(i = argmax; |B;(n, v;)* 7). (176)

Since vy, v9, - -+ , v, are orthonormal vectors, (v1,n), (v2,n), -+, (v,,n) are independent standard
Gaussian random variables. Then we have

pi = P(i = argmax; |8;(n, v;)"?|) = P(|8;/ 8" (m,03)| = |(m,vg)], for all i # ¢)

1
50 18] mx
- [ e (T () 2y | an ar)
0 T i 0 T

This gives (25). Using the fact we can rewrite u as n/||n||2, we have that with probability 1 —

O(1/Vk),

1/vVEn < |(u,v;)| < v/k/n, (178)

for all 1 < i < r. Thus Assumption (2.5) holds, and especially,
max |5 (u, v3)" 7| 2 |Br{u, 01)" ] > 1B/ VRn)TE| 20t (179)
Theorem 2.9 then follows directly from Theorem 2.7. O

4.5 Proof of Corollaries 2.8, 2.10 and 2.11

Proof of Corollary 2.8. According to the definition of £ in (20) of Theorem 2.7, i.e. & = Z[’Uﬁ(k_l)],

is an n-dim vector, with each entry i.i.d. AM'(0,1/n) Gaussian random variable. We see that

(€ v) L N(0,1/n).

Especially with high probability we will have that |(§,v)| < logn/y/n. Then we conclude from
(21), with high probability it holds

B=p;.+0 <ﬁi+kz§;>' (180)

With the bound (180), we can replace (a,v)/(2/3?) on the righthand side of (20) by <a,v>/(2§2),

which gives an error

(a,v) (a,v)

287, 2B

-0 (““’”” (!5;*I4 * |ﬁio|g3nﬁ)> | (181)
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Combining the above discussion together, we can rewrite (20) as
1 — . .
(a, D) — <1 — A> (a,v) = (a.§) <0; v;.) (95, €)
»

182
L0 logn< logn >k1+ logn N (logn)3/? N 1 (182)
"\ v \Valsi] BIPVR T (B3 B )

with high probability, where we used that |3;,| 2 |51].
Again thanks to the definition of £ in (20) of Theorem 2.1, i.e. & = Z[v®* V], is an n-dim
vector, with each entry i.i.d. N(0,1/n) Gaussian random variable, we see that

(CL, £> - <Cl,, 'Uj*></vj*7£> = <a’ - <a’7 vj*)”j*?&% (183)

is a Gaussian random variable, with mean zero and variance

El(a — (a,0;.)05, 6% = o~ (a0, )0, 3 = (o, (I, ~ v;.0] )a) (184)
=W 0 (1, 5,5 )a). (155)

This together with (180), (182) as well as our assumption (22)
~ L
\/ﬁﬁAA (1-—=) Ya, ) — (a,vj,) 4 N(0,1). (186)
Via, (I, —v07)a) 2p?

Under the same assumption, we have similar results for Cases 2, 3, 4, by simply changing (5;, ,vj,)
in the righthand side of (7) and (8) to the corresponding expression. O

Proof of Corollary 2.10. For k > 3 and |51]| > n(k=2)/2+¢ the assumption 22 holds trivially. The
claim (29) follows from (24). For (30), we recall that in (28), & = Z['v?(k*l)], is an n-dim vector,
with each entry i.i.d. N(0,1/n) Gaussian random variable. We see that

d

(&, v;) =N (0,1/n).

Especially with high probability we will have that (&, v)| < logn/y/n. Then we conclude from
(28), with high probability it holds

5. 1 logn
5—BZ+O<&+\/H). (187)

With the bound (187), we can replace (k/2 —1)/8; on the righthand side of (28) by (k/2 — 1)/3,

which gives an error

k‘/2—1_k/2—1‘: <1 logn>
’ 5 7=\ BE Ve (188)

where we used that |§;| 2 |51]. Combining the above discussion together, we can rewrite (28) as

= k/2—1_ ‘ logn [ logn kol logn (logn)3/? 1
Pi=p+ 3 <§>U2>+O]P’<\/ﬁ (ﬁ\ﬁﬂ) T B T imeen T TEE ) (189)

36



Il

Since (&, v;)
from (189)

N (0,1/n), and the error term in (189) is much smaller than 1/y/n. We conclude

3 k/2 -1\ a
\/r’z(@ B+ 3 >—>N(0,1). (190)

This finishes the proof of (30).
O

Proof of Corollary 2.11. Given the significance level a, the asymptotic confidence intervals in Corol-
lary 2.11 can be calculated from Corollary 2.10 by bounding the absolute values of the left hand
sides of (29) and (30) at z4. O
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