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Abstract

In this paper, we study the power iteration algorithm for the spiked tensor model, as in-
troduced in [44]. We give necessary and sufficient conditions for the convergence of the power
iteration algorithm. When the power iteration algorithm converges, for the rank one spiked
tensor model, we show the estimators for the spike strength and linear functionals of the signal
are asymptotically Gaussian; for the multi-rank spiked tensor model, we show the estimators
are asymptotically mixtures of Gaussian. This new phenomenon is different from the spiked
matrix model. Using these asymptotic results of our estimators, we construct valid and efficient
confidence intervals for spike strengths and linear functionals of the signals.

1 Introduction

Modern real scientific data call for more advanced structures than matrices. High order arrays,
or tensors have been actively considered in neuroimaging analysis, topic modeling, signal processing
and recommendation system [16, 17, 21, 22, 31, 43, 45, 46, 52]. Setting the stage, imagine that the
signal is in the form of a large symmetric low-rank k-th order tensor

X∗ =

r∑

j=1

βjv
⊗k
j ∈ ⊗k

R
n, (1)

where r (r � n) represents the rank and βj are the strength of the signals. Such low-rank tensor
components appear in various applications, e.g. community detection [2], moments estimation for
latent variable models [3, 26] and hypergraph matching [19]. Suppose that we do not have access
to perfect measurements about the entries of this signal tensor. The observations X = X∗ + Z

are contaminated by a substantial amount of random noise (reflected by the random tensor Z

which has i.i.d. Gaussian entries with mean 0 and variance 1/n.). The aim is to perform reliable
estimation and inference on the unseen signal tensor X∗. In literature, this is the spiked tensor
model, introduced in [44].

In the special case, when k = 2, the above model reduces to the well-known “spiked matrix
model” [28]. In this setting it is known that there is an order 1 critical signal-to-noise ratio βc,
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such that below βc, it is information-theoretical impossible to detect the spikes, and above βc,
it is possible to detect the spikes by Principal Component Analysis (PCA). A body of work has
quantified the behavior of PCA in this setting [5–11, 18, 20, 28, 29, 34, 38, 40, 48]. We refer readers
to the review articles [30] for more discussion and references to this and related lines of work

Tensor problems are far more than an extension of matrices. Not only the more involved
structures and high-dimensionality, many concepts are not well defined [33], e.g. eigenvalues and
eigenvectors, and most tensor problems are NP-hard [23]. Despite a large body of work tackling the
spiked tensor model, there are several fundamental yet unaddressed challenges that deserve further
attention.

Computational Hardness. The same as the spiked matrix model, for spiked tensor model,
there is an order 1 critical signal-to-noise ratio βk (depending on the order k), such that below βk,
it is information-theoretical impossible to detect the spikes, and above βk, the maximum likelihood
estimator is a distinguishing statistics [12, 13, 27, 35, 42]. In the matrix setting the maximum
likelihood estimator is the top eigenvector, which can be computed in polynomial time by, e.g.,
power iteration. However, for order k > 3 tensor, computing the maximum likelihood estimator is
NP-hard in generic setting. In this setting, it is widely believed that there is a regime of signal-
to-noise ratios for which it is information theoretically possible to recover the signal but there is
no known algorithm to efficiently approximate it. In the pioneer work [44], the algorithmic aspects
of this model has been studied under the special setting when the rank r = 1. They showed that
tensor power iteration with random initialization recovers the signal provided β � n(k−1)/2, and
tensor unfolding recovers the signal provided β � n(dk/2e−1)/2. Based on heuristic arguments,
they predicted that the necessary and sufficient condition for power iteration to succeed is β �
n(k−2)/2, and for tensor unfolding is β � n(k−2)/4. Langevin dynamics and gradient descent were
studied in [4], and shown to recover the signal provided β � n(k−2)/2. Later the sharp threshold
β � n(k−2)/4 is achieved using Sum-of-Squares algorithms [24, 25, 32] and sophisticated iteration
algorithms [36, 50]. The necessary part of this threshold still remains open, and its relation with
hypergraphic planted clique problem was discussed in [37].

Statistical inferences. In many applications, it is often the case that the ultimate goal
is not to characterize the L2 or “bulk” behavior (e.g. the mean squared estimation error) of the
signals, but rather to reason about the signals along a few preconceived yet important directions.
In the example of community detecting for hypergraphs, the entries of the vector v can represent
different community memberships. The testing of whether any two nodes belong to the same
community is reduced to the hypothesis testing problem of whether the corresponding entries of v
are equal. These problems can be formulated as estimation and inference for linear functionals of
a signal, namely, quantities of the form 〈a,vj〉, 1 6 j 6 r with a prescribed vector a. A natural
starting point is to plug in an estimator v̂j of vj , i.e. the estimator 〈a, v̂j〉. However, a most
prior works [24, 25, 32, 36, 44, 50] on spiked tensor models focuses on the L2 risk analysis, which is
often too coarse to give tight uncertainty bound for the plug-in estimator. To further complicate
matters, there is often a bias issue surrounding the plug-in estimator. Addressing these issues calls
for refined risk analysis of the algorithms.

1.1 Our Contributions

We consider the power iteration algorithm given by the following recursion

u0 = u, ut+1 =
X[u

⊗(k−1)
t ]

‖X[u
⊗(k−1)
t ]‖2

(2)
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where u ∈ R
n with ‖u‖2 = 1 is the initial vector, and X[v⊗(k−1)] ∈ R

n is the vector with i-th entry
given by 〈X, ei ⊗ v⊗(k−1)〉. The estimators are given by

v̂ = uT , β̂ = 〈X, v̂⊗k〉. (3)

for some large T . Although in a worst case scenario, i.e. with random initialization, power iteration
algorithm underperforms tensor unfolding. However, if extra information about the signals vj
is available, power iteration algorithm with a warm start can be used to obtain a much better
estimator. In fact this approach is commonly used to obtain refined estimators. In this paper, we
study the convergence and statistical inference aspects of the power iteration algorithm. The main
contributions of this paper are summarized below,

Convergence criterion. We give necessary and sufficient conditions for the convergence of the
power iteration algorithm. In the rank one case r = 1, we show that the power iteration algorithm
converges to the true signal v, provided |β〈u,v〉k−2| � 1 where u is the initialization vector. In the
complementary setting, if |β〈u,v〉k−2| � 1, the output of the power iteration algorithm behaves
like random Gaussian vectors, and has no correlations with the signal. With random initialization,
i.e. u is a uniformly random vector on the unit sphere, our results assert that the power iteration
algorithm converges in finite time, if and only if β � n(k−2)/2, which verifies the prediction in [44].
This is analogous to the PCA of spiked matrix model, where power iteration recovers the top
eigenvalue. However, the multi-rank spiked tensor model, i.e. r > 2, is different from multi-rank
spiked matrix. The power iteration algorithm for multi-rank spiked tensor model is more sensitive
to the initialization, i.e. the power iteration algorithm converges if maxj |βj〈u,vj〉k−2| � 1. In this
case, it converges to vj∗ with j∗ = argmaxj |βj〈u,vj〉k−2|.

Statistical inferenceWe consider the statistical inference problem for the spiked tensor model.
We develop the limiting distributions of the above power iteration estimators. In the rank one case,
above the threshold |β〈u,v〉k−2| � 1, we show that our estimator 〈a, v̂〉 (modulo some global sign)
admits the following first order approximation

〈a, v̂〉 ≈
(
1− 1

2β2

)
〈a,v〉+ 〈a⊥, ξ〉

β
,

where a⊥ = a− 〈a,v〉v, and ξ = Z[v⊗(k−1)], is an n-dim vector, with each entry i.i.d. N (0, 1/n)
Gaussian random variables. For multi-rank spiked tensor model, the output of power iteration
algorithm depends on the angle between the initialization u and the signals vj . We consider the
case the initialization u is a uniformly random vector on the unit sphere. For such initialization,
very interestingly, our estimator 〈a, v̂〉 is asymptotically a mixture of Gaussian, with modes at
〈a,vj〉 and mixture weights depending on the signal strength βj . Using these asymptotic results
of our estimators, we construct valid and efficient confidence intervals for the linear functionals
〈a,vj〉.

1.2 Notations:

For a vector v ∈ R
n, we denote its i-th coordinate as v(i). We equate k-th order tensors in

⊗k
R
n with vectors of dimension nk, i.e. τ = (τi1i2···ik)16i1,i2,··· ,ik6n. For any two k-th order tensors

τ ,η ∈ ⊗k
R
n, we denote their inner product as 〈τ ,η〉 :=

∑
16i1,i2,··· ,ik6n τi1i2···ikηi1i2···ik . A k-th

order tensor can act on a (k− 1)-th order tensor, and return a vector: τ ∈ ⊗k
R
n and η ∈ ⊗k−1

R
n

τ [η] ∈ R
n, τ [η](i) = 〈τ , ei ⊗ η〉 =

∑

16i1,··· ,ik−16n

τii1i2···ik−1
ηi1i2···ik−1

. (4)
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We denote the L2 norm of a vector v as ‖v‖. We use
d
= for the equality in law, and

d−→ for
the convergence in law. We denote the index sets [[a, b]] = {a, a + 1, a + 2, · · · , b} and [[n]] =
{1, 2, 3, · · · , n}. We use C to represent large universal constant, and c a small universal constant,
which may be different from line by line. We write that X = O(Y ) if there exists some universal
constant such that |X| 6 CY . We write X = o(Y ) if the ratio |X|/Y → ∞ as n goes to infinity.
We write X � Y if there exist universal constants such that cY 6 |X| 6 CY . We say an event
holds with high probability, if for there exists c > 0, and n large enough, the event holds with
probability at least 1− n−c logn.

An outline of the paper is given as follows. In Section 2.1, we state our main results for the
rank-one spiked tensor model. In particular, with general initialization a distributional result for
the power iteration algorithm is developed. Section 2.2 investigates the general rank-r spiked
tensor model. A similar distributional result is established with general initialization as in Section
2.1. While with uniformly distributed initialization over the unit sphere, we obtain a multinoimal
distribution which yields a mixture Gaussian. Numerical simulations are presented in Section 3.
All proofs and technical details are deferred to the appendix.
Acknowledgement. The research collaboration was initiated when both G.C. and J.H. were
warmly hosted by IAS in the special year of Deep Learning Theory. The research of J.H. is
supported by the Simons Foundation as a Junior Fellow at the Simons Society of Fellows.

2 Main Results

2.1 Rank one spiked tensor model

In this section, we state our main results for the rank-one spiked tensor model (corresponding
to r = 1 in (1)):

X = βv⊗k +Z, (5)

where

• X ∈ ⊗k
R
n is the k-th order tensor observation.

• Z ∈ ⊗k
R
n is a noise tensor. The entries of Z are i.i.d. standard N (0, 1/n) Gaussian random

variables.

• β ∈ R is the signal size.

• v ∈ R
n is an unknown unit vector to be recovered.

We obtain a distributional result for the power iteration algorithm (2) with general initialization
u: when |β| is above certain threshold, ut converges to v, and the error is asymptotically Gaussian;
when |β| is below the same threshold, the algorithm does not converge.

Theorem 2.1. Fix the initialization u ∈ R
n with ‖u‖2 = 1 and 〈u,v〉 & 1/

√
n. If |β〈u,v〉k−2| > nε

with arbitrarily small ε > 0, the behavior of the power iteration algorithm depends on the parity of
k and the sign of β in the following sense:

1. If k is odd, and β > 0 then (X[u⊗k
t ],ut) converges to (β,v);

2. If k is odd, and β < 0 then (X[u⊗k
t ],ut) converges to (−β,−v);
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3. If k is even, and β > 0, then (X[u⊗k
t ],ut) converges to (β, sgn(〈u,v〉)v) depending on the

initialization u;

4. If k is even, and β < 0, then (X[u⊗k
t ],ut) does not converge, but instead alternates between

(β, sgn(〈u,v〉)v) and (β,− sgn(〈u,v〉)v).

In Case 1, for any fixed unit vector a ∈ R
n, and

T > 1 +
1

ε

(
1

2
+

2 log |β|
log n

)
, (6)

with probability 1−O(n−c(logn)2), the estimators v̂ = uT , and β̂ = X[v̂⊗k] satisfies

〈a, v̂〉 = 〈a,uT 〉 =
(
1− 1

2β2

)
〈a,v〉+ 〈a, ξ〉 − 〈a,v〉〈v, ξ〉

β

+O

(
log n

β2
√
n
+

(log n)3/2

β3/2n3/4
+

|〈a,v〉|
β4

)
,

(7)

where ξ = Z[v⊗(k−1)], is an n-dim vector, with each entry i.i.d. N (0, 1/n) Gaussian random
variable. And

β̂ = X[u⊗k
T ] = β + 〈ξ,v〉 − k/2− 1

β
+O

(
log n

|β|√n
+

(log n)3/2

|β|1/2n3/4
+

1

|β|3

)
. (8)

Under the same assumption, we have similar results for Cases 2, 3, 4, by simply changing (β,v)
in the righthand side of (7) and (8) to the corresponding limit.

Theorem 2.2. Fix the initialization u ∈ R
n with ‖u‖2 = 1. If |β| > nε and |β〈u,v〉k−2| 6 n−ε

with arbitrarily small ε > 0, then ut does not converge to ±v, and ut behaves like a random
Gaussian vector. For

T > 1 +
1

ε

(
1

2
− log |β|

(k − 2) log n

)
(9)

with probability 1−O(n−c(logn)2), it holds

v̂ = uT =
ξ̃

‖ξ̃‖2
+O

(
|β|
(
log n√

n

)k−1
)
, (10)

where ξ̃ is the standard Gaussian vector in R
n, the error term is a vector of length bounded by

|β|(log n/√n)k−1.

In Theorem 2.1, we assume that 〈u,v〉 & 1/
√
n, which is generic and is true for a random u.

Moreover, if the initial vector u is random, then |〈u,v〉| � n−1/2. Notably, Theorems 2.1 and 2.2
together state that power iteration recovers v if |β| � n(k−2)/2 and fails if |β| � n(k−2)/2. This
gives a rigorous proof of the prediction in [44] that the necessary and sufficient condition for the
convergence is given by |β| & n(k−2)/2. In practice, it may be possible to use domain knowledge
to choose better initialization points. For example, in the classical topic modeling applications [3],
the unknown vectors v are related to the topic word distributions, and many documents may be
primarily composed of words from just single topic. Therefore, good initialization points can be
derived from these single-topic documents.
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The special case for k = 2, i.e. the spiked matrix model, has been intensively studied since
the pioneer work of Johnstone [28]. In this setting it is known [30] that there is an order O(1)
critical signal-to-noise ratio, such that below the threshold, it is information-theoretically impossible
to recover v, and above the threshold, the PCA (partially) recovers the unseen eigenvector v

[1,14,15,39,41,47,49,51]. The special case of our results Theorem 2.1 recovers some abovementioned
results.

As a consequence of Theorem 2.1, we have the following central limit theorem for our estimators.

Corollary 2.3. (Central Limit Theorem) Fix the initialization u ∈ R
n with ‖u‖2 = 1 and |〈u,v〉| &

1/
√
n. If |β〈u,v〉k−2| > nε with arbitrarily small ε > 0, in Case 1 of Theorem 2.1, for any fixed

unit vector a ∈ R
n obeying

|〈a,v〉| = o

(
β3

√
n

)
, (11)

and time

T > 1 +
1

ε

(
1

2
+

2 log |β|
log n

)
. (12)

the estimators v̂ = uT , and β̂ = X[v̂⊗k] satisfies

√
nβ̂√

〈a, (In − v̂v̂>)a〉

[(
1− 1

2β̂2

)−1〈a, v̂〉 − 〈a,v〉
]

d−→ N (0, 1), (13)

as n tends to infinity. We have similar results for Cases 2, 3, 4, by simply changing (β,v) in (13)
to the corresponding limit.

We remark that in Corollary 2.3, we assume that |〈a,v〉| = o
(
β3/

√
n
)
, which is generic. For

example, if v is delocalized, and a is supported on finitely many entries, we will have that |〈a,v〉| .
1/
√
n, and (11) is satisfied.
With the central limit theorem for our estimators in Corollary 2.3, we can easily write down

the confidence interval for our estimators.

Corollary 2.4. (Prediction Interval) Given the asymptotic significance level α, and let zα = Φ(1−
α/2) where Φ(·) is the CDF of a standard Gaussian. If |β〈u,v〉k−2| > nε with arbitrarily small
ε > 0, in Case 1 of Theorem 2.1, for any fixed unit vector a ∈ R

n obeying

|〈a,v〉| = o

(
β3

√
n

)
, (14)

and time

T > 1 +
1

ε

(
1

2
+

2 log |β|
log n

)
, (15)

let v̂ = uT , and β̂ = X[v̂⊗k]. The asymptotic confidence interval of 〈a,v〉 is given by

1

1− 1/(2β̂2)

[
〈a, v̂〉 − zα

√
〈a, (In − v̂v̂>)a〉

√
nβ̂

, 〈a, v̂〉+ zα

√
〈a, (In − v̂v̂>)a〉

√
nβ̂

]
. (16)

We have similar results for Cases 2, 3, 4, by simply changing (β,v) in (16) to the corresponding
limit.
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2.2 General Results: rank-r spiked tensor model

In this section, we state our main results for the general case, the rank-r spiked tensor model
(1). Before stating our main results, we need to introduce some more notations and assumptions.

Assumption 2.5. We assume that the initialization does not distinguish v1,v2, · · · ,vr, such that
there exists some large constant κ > 0

1/κ 6

∣∣∣∣
〈u,vi〉
〈u,vj〉

∣∣∣∣ 6 κ, (17)

for all 1 6 i, j 6 r.

If we take the uniform initialization, i.e. u0 = u is a uniformly distributed vector in S
n−1.

Then with probability 1 − O(r/
√
κ) we will have 1/

√
κn 6 |〈u,vi〉| 6

√
κ/n for 1 6 i 6 r, and

Assumption 2.5 holds.
The same as in the rank-1 case, the quantities |βj〈u,vj〉k−2| play a crucial role in our power

iteration algorithm. We need to make the following technical assumption:

Assumption 2.6. Let j∗ = argmaxj |βj〈u,vj〉k−2|. We assume that there exists some large con-
stant κ > 0

(1− 1/κ)|βj∗〈u,vj∗〉k−2| > |βj〈u,vj〉k−2|, (18)

for all 1 6 j 6 r and j 6= j∗.

It turns out under Assumptions 2.5 and 2.6, the power iteration converges to vj∗ . Moreover,
if we simply take the uniform initialization, i.e. u0 = u is a uniformly distributed vector in S

n−1.
Assumption 2.6 holds for some 1 6 j∗ 6 r with probability 1−O(1/κ).

Theorem 2.7. Fix the initialization u ∈ R
n with ‖u‖2 = 1 and |〈u,vj〉| & 1/

√
n, for 1 6 j 6 r.

Let j∗ = argmaxj |βj〈u,vj〉k−2|. Under Assumptions 2.5 and 2.6, if |βj∗〈u,vj∗〉k−2| > nε with
arbitrarily small ε > 0, the behavior of the power iteration algorithm depends on the parity of k and
the sign of βj∗:

1. If k is odd, and βj∗ > 0 then (X[u⊗k
t ],ut) converges to (βj∗ ,vj∗);

2. If k is odd, and βj∗ < 0 then (X[u⊗k
t ],ut) converges to (−βj∗ ,−vj∗);

3. If k is even, and βj∗ > 0, then (X[u⊗k
t ],ut) converges to (βj∗ , sgn(〈u,vj∗〉)vj∗) depending on

the initialization u;

4. If k is even, and βj∗ < 0, then (X[u⊗k
t ],ut) does not converge, but instead alternating between

(βj∗ , sgn(〈u,vj∗〉)vj∗) and (βj∗ ,− sgn(〈u,vj∗〉)vj∗).
In Case 1, for any fixed unit vector a ∈ R

n, and

T > 1 +
1

ε

(
1

2
+

2 log |β1|
log n

)
+

log log(
√
n|β1|)

log(k − 1)
, (19)

the estimators v̂ = uT , and β̂ = X[v̂⊗k] satisfies

〈a, v̂〉 = 〈a,uT 〉 =
(
1− 1

2β2
j∗

)
〈a,vj∗〉+

〈a, ξ〉 − 〈a,vj∗〉〈vj∗ , ξ〉
βj∗

+OP

(
log n√

n

(
log n√
n|β1|

)k−1

+
log n

|β1|2
√
n
+

(log n)3/2

|β1|3/2n3/4
+

1

|β1|4

)
,

(20)
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where ξ = Z[v
⊗(k−1)
j∗

], is an n-dim vector, with each entry i.i.d. N (0, 1/n) Gaussian random
variable. And

β̂ = X[u⊗k
T ] = βj∗ + 〈ξ,vj∗〉 −

k/2− 1

βj∗

+OP

(
log n√

n

(
log n√
n|β1|

)k−1

+
log n

|β1|
√
n
+

(log n)3/2

|β1|1/2n3/4
+

1

|β1|3

)
.

(21)

Under the same assumption, we have similar results for Cases 2, 3, 4, by simply changing (βj∗ ,vj∗)
in the righthand side of (20) and (21) to the corresponding limit.

In Theorem 2.7, we assume that |〈u,vj〉| & 1/
√
n for 1 6 j 6 r. This is generic and is true for

a random initialization u.
We want to remark that for multi-rank spiked tensor model, the senarios for k = 2, i.e. the

spiked matrix model, and k > 3 are very different. For the spiked matrix model, in Theorem 2.7,
we always have that j∗ = argmaxj |βj | = 1, and power iteration algorithm always converges to the
eigenvector corresponding to the largest eigenvalue. However, for rank k > 3, the power iteration
algorithm may converge to any vector vj provided that the initialization u is sufficiently close to vj .
As a consequence of Theorem 2.7, we have the following central limit theorem for our estimators.

Corollary 2.8. Fix the initialization u ∈ R
n with ‖u‖2 = 1 and |〈u,vj〉| & 1/

√
n for 1 6 j 6 r.

We assume |β〈u,vj∗〉k−2| > nε with arbitrarily small ε > 0, and Assumptions 2.5 and 2.6. In Case
1 of Theorem 2.7, for any fixed unit vector a ∈ R

n, for any fixed unit vector a ∈ R
n obeying

|〈a,vj∗〉| = o

( |β1|3√
n

)
, (22)

and time

T > 1 +
1

ε

(
1

2
+

2 log |β1|
log n

)
, (23)

the estimators v̂ = uT , and β̂ = X[u⊗k
T ] satisfy

√
nβ̂j∗√

〈a, (In − v̂v̂>)a〉

[
(
1− 1

2β̂2
j∗

)−1〈a, v̂〉 − 〈a,vj∗〉
]

d−→ N (0, 1). (24)

We have similar results for Cases 2, 3, 4, by simply changing (βj∗ ,vj∗) in (24) to the corresponding
limit.

In the following we take u to be a random vector uniformly distributed over the unit sphere.
The power iteration algorithm can be easily understood in this setting, thanks to Theorem 2.7.
More precisely if j∗ = argmaxj |βj〈u,vj〉k−2| and the initialization u satisfies Assumptions 2.5

and 2.6, then the power iteration estimator (v̂, β̂) recovers (vj∗ , βj∗). From the discussions below,
for a random vector u uniformly distributed over the unit sphere, Assumptiosn 2.5 and 2.6 holds
with probability 1 − O(1/

√
κ). We can compute explicitly the probability that index i achieves

argmaxj |βj〈u,vj〉k−2|:

pi := P(i = argmaxj |βj〈u,vj〉k−2|)

=

∫ ∞

0

√
2

π
e−x2/2



∏

` 6=i

∫ (

|βi|

|β`|

) 1
k−2 x

0

√
2

π
e−y2/2dy


 dx,

(25)
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for any 1 6 i 6 r. For spiked matrix model, i.e. k = 2, we always have 1 = argmaxj |βj〈u,vj〉k−2|,
and p1 = 1, p2 = p3 = · · · = 0. For spiked tensor models with k > 3, all those pi are nonnegative
and p1 > p2 > p3 > · · · > 0.

Theorem 2.9. Fix large κ > 0 and recall pi as defined (25). If u is uniformly distributed over the
unit sphere, and |β1| > n(k−2)/2+ε with arbitrarily small ε > 0, then for any 1 6 i 6 r:

1. If k is odd, and βi > 0 then with probability pi+O(1/
√
κ), (X[u⊗k

t ],ut) converges to (βi,vi);

2. If k is odd, and βi < 0 then with probability pi + O(1/
√
κ), (X[u⊗k

t ],ut) converges to
(−βi,−vi);

3. If k is even, and βi > 0, then with probability pi/2 + O(1/
√
κ), (X[u⊗k

t ],ut) converges to
(βi,+vi), and with probability pi/2 + O(1/

√
κ), (X[u⊗k

t ],ut) converges to (βi,−vi).

4. If k is even, and βi < 0, then with probability pi +O(1/
√
κ), (X[u⊗k

t ],ut) alternates between
(βi,vi) and (βi,−vi) .

In Case 1, for any fixed unit vector a ∈ R
n, and

T > 1 +
1

ε

(
1

2
+

2 log |β1|
log n

)
+

log log(
√
n|β1|)

log(k − 1)
, (26)

with probability pi +O(1/
√
κ), the estimators v̂ = uT , and β̂ = X[u⊗k

T ] satisfy

〈a, v̂〉 = 〈a,uT 〉 =
(
1− 1

2β2
i

)
〈a,vi〉+

〈a, ξ〉 − 〈a,vi〉〈vi, ξ〉
βi

+OP

(
log n√

n

(
log n√
n|β1|

)k−1

+
log n

|β1|2
√
n
+

(log n)3/2

|β1|3/2n3/4
+

1

|β1|4

)
,

(27)

where ξ = Z[v
⊗(k−1)
i ], is an n-dim vector, with each entry i.i.d. N (0, 1/n) Gaussian random

variable. And

β̂ = X[u⊗k
T ] = βi + 〈ξ,vi〉 −

k/2− 1

βi

+OP

(
log n√

n

(
log n√
n|β1|

)k−1

+
log n

|β1|
√
n
+

(log n)3/2

|β1|1/2n3/4
+

1

|β1|3

)
.

(28)

Under the same assumption, we have similar results for Cases 2, 3, 4, by simply changing (βi,vi)
in the righthand side of (27) and (28) to the corresponding limit.

We want to emphasize here that the senarios for k = 2, i.e. the spiked matrix model, and k > 3
are very different. For spiked matrix model, i.e. k = 2, we always have that p1 = 0, p2 = p3 =
· · · = 0. The power iteration algorithm always converges to the eigenvector corresponding to the
largest eigenvalue. We can only recover (β1,v1) no matter how many times we repeat the algorithm.
However, for spiked tensor models with k > 3, all those pi are nonnegative, p1 > p2 > p3 > · · · > 0.
By repeating the power iteration algorithm for sufficiently many times, it recovers (βi,vi) with
probability roughly pi.

Similar to the rank one case in Section 2.1, we are also able to establish the asymptotic dis-
tribution and confidence interval for multi-rank spiked tensor model with uniformly distributed
initialization u.

9



Corollary 2.10. Fix k > 3, assume u to be a random vector uniformly distributed over the unit
sphere and |β1| > n(k−2)/2+ε with arbitrarily small ε > 0. In Case 1 of Theorem 2.9, for any fixed
unit vector a ∈ R

n, and time

T > 1 +
1

ε

(
1

2
+

2 log |β1|
log n

)
+

log log(
√
n|β1|)

log(k − 1)
,

for any 1 6 i 6 r, with probability pi +O(1/
√
κ), the estimators v̂ = uT and β̂ = X[u⊗k

T ] satisfy

√
nβ̂√

〈a, (In − v̂v̂>)a〉

[
〈a, v̂〉 −

(
1− 1

2β̂2

)
〈a,vi〉

]
d−→ N (0, 1). (29)

And

√
n

(
βi − β̂ − k/2− 1

β̂

)
d−→ N (0, 1). (30)

We have similar results for Cases 2, 3, 4, by simply changing (βi,vi) above to the corresponding
limit.

We want to emphasize the difference between Corollary 2.3 and Corollary 2.10. In the rank
one case, the estimators β̂ and 〈a, v̂〉 are asymptotically Gaussian. In the multi-rank spiked ten-
sor model with k > 3, those estimators β̂ and 〈a, v̂〉 are no longer Gaussian. Instead, they are
asymptotically a mixture Gaussian with mixture weights p1 > p2 > p3 > · · · .
Corollary 2.11. Given the asymptotic significance level α, and let zα = Φ(1− α/2) where Φ(·) is
the CDF of a standard Gaussian. Under the conditions in Corollary 2.10, in Case 1 of Theorem
2.9, we can find the asymptotic confidence interval of 〈a,vi〉 as

1

1− 1/(2β̂2)

[
〈a, v̂〉 − zα

√
〈a, (In − v̂v̂>)a〉

√
nβ̂

, 〈a, v̂〉+ zα

√
〈a, (In − v̂v̂>)a〉

√
nβ̂

]

and the asymptotic confidence interval of βi as
[
β̂ +

k/2− 1

β̂
− zα√

n
, β̂ +

k/2− 1

β̂
+

zα√
n

]
.

We have similar results for Cases 2, 3, 4, by changing (βi,vi) above to the corresponding limit.

3 Numerical Study

In this section, we conduct numerical experiments on synthetic data to demonstrate our dis-
tributional results provided in Sections 2.1 and 2.2. We fix the dimension n = 600 and rank
k = 3.

3.1 Rank one spiked tensor model

We begin with numerical experiments on rank one case. This section is devoted to numerically
studying the efficiency of our estimators for the strength of signals and linear functionals of the
signals. We take the signal v a random vector sampled from the unit sphere in R

n, and the vector

a =
1√
3
(en/3 + e2n/3 + en) (31)

10



Figure 1: The empirical density of normalized β̂ as in (32) (left panel), and normalized 〈a, v̂〉 as
in (33). The results are reported over 2000 independent trials where the initialization of our power
iteration algorithm u a random vector sampled from the unit sphere in R

n, and the strength of
signal β = n(k−2)/2 ≈ 24.495.

For the setting without prior information of the signal, we take the initialization of our power
iteration algorithm u a random vector sampled from the unit sphere in R

n, and the strength of
signal β = n(k−2)/2 ≈ 24.495. We plot in Figure 1 our estimators for the strength of signals after
normalization

β̂ +
k/2− 1

β̂
− β (32)

and our estimators for the linear functionals of the signals

√
nβ̂√

〈a, (In − v̂v̂>)a〉

[(
1− 1

2β̂2

)−1〈a, v̂〉 − 〈a,v〉
]

(33)

as in Corollary 2.3.
For the setting that there is prior information of the signal, we take the initilization of our

power iteration algorithm u = (v +w)/‖v +w‖2, where v is a random vector sampled from the
unit sphere in R

n. We plot our estimators for the strength of signals after normalization (32) and
our estimators for the linear functionals of the signals (33) for β = 5 in Figure 2, and for β = 10 in
Figure 3. Although our Theorem 2.1 and Corollary 2.3 requires |β〈u,v〉k−2| > nε � 1, Figures 2
and 3 indicate that our estimators β̂ and 〈a, v̂〉 are asymptotically Gaussian even with small β, i.e.
β = 5, 10. Theorem 2.1 also indicates that error term in Corollary (2.3), i.e. the error term in (13),
is of order 1/|β|. This matches with our simulation. In Figures 2 and 3, the the difference between
the Gaussian fit of our empirical density and the density of N (0, 1) decreases as β increases from
5 to 10.

In Figure 5, we test the threshold signal-to-noise ratio for the power iteration algorithm. Our
Theorems 2.1 and 2.2 state that for |β〈u0,v〉k−2| � 1 tensor power iteration recovers the signal
v, and fails when |β〈u0,v〉k−2| � 1. Especially for random initialization, we have that |〈u0,v〉| �
1/
√
n. Our Theorems state that for |β| � n(k−2)/2 tensor power iteration recovers the signal v, and

fails when |β| � n(k−2)/2. Take k = 3. In the left panel of Figure 5, we test tensor power iteration

11



Figure 2: The empirical density of normalized β̂ as in (32) (left panel), and normalized 〈a, v̂〉 as
in (33). The results are reported over 2000 independent trials where the initialization of our power
iteration algorithm u a random vector sampled from the unit sphere in R

n, and the strength of
signal β = 5.

Figure 3: The empirical density of normalized β̂ as in (32) (left panel), and normalized 〈a, v̂〉 as
in (33). The results are reported over 2000 independent trials where the initialization of our power
iteration algorithm u a random vector sampled from the unit sphere in R

n, and the strength of
signal β = 10.

12



Figure 4: Output of tensor power iteration with random initialization for various signal strength
β/

√
n ∈ (0, 2] (left panel), and tensor power iteration with fixed small β = 3 and informative

initialization β〈u0,v〉 ∈ (0, 2].

with random initialization for various dimensions n ∈ {200, 300, 400, 500, 600} and signal strength
β/

√
n ∈ (0, 2]. In the right panel of Figure 5, we test tensor power iteration with fixed small β = 3

and informative initialization β〈u0,v〉 ∈ (0, 2] for various dimensions n ∈ {200, 300, 400, 500, 600}.
The outputs 〈v̂,v〉 are averaged over 60 independent trials.

3.2 Rank-r spiked tensor model

In this section, we conduct numerical experiments to demonstrate our distributional results for
the multi-rank spiked tensor model. We consider the simplest case that there are two spikes with
signals v1,v2, such that they are uniformly sampled from the unit sphere in R

n and orthogonal to
each other 〈v1,v2〉 = 0, and the vector

a =
1√
3
(en/3 + e2n/3 + en). (34)

We test the setting that there is no prior information of the signal. We take the strength of
signals β1 = 1.2 × n(k−2)/2 ≈ 29.394 and β2 = n(k−2)/2 ≈ 24.495 and the initialization of our
power iteration algorithm u a random vector sampled from the unit sphere in R

n. We scatter
plot in Figure 5 our estimator β̂ for the strength of signals, and our estimator 〈a, v̂〉 for the linear
functionals of the signals over 5000 independent trials. As seen in the first panel of Figure 5,
our estimators (β̂, 〈a, v̂〉) form two clusters, centered around (β1, 〈a, v̂1〉) ≈ (29.394, 0.000) and
(β2, 〈a, v̂2〉) ≈ (24.495, 0.039). In the second and third panels, we zoom in, and scatter plot for the
cluster corresponding to (β1, 〈a, v̂1〉) ≈ (29.394, 0.000)

β̂ +
k/2− 1

β̂
− β,

√
nβ̂1√

〈a, (In − v̂v̂>)a〉

[(
1− 1

2β̂2

)−1〈a, v̂〉 − 〈a,v1〉
]
, (35)

13



Figure 5: Scatter plot of (β̂, 〈a, v̂〉) (first panel), the normalized (β̂, 〈a, v̂〉) as in (35) for the cluster
corresponding to (β1, 〈a,v1〉) (second panel), the normalized (β̂, 〈a, v̂〉) as in (36) for the cluster
corresponding to (β2, 〈a,v2〉). The contour plot is a standard 2-dim Gaussian distribution, at 1, 2, 3
standard deviation. The results are reported over 5000 independent trials where the initialization
of our power iteration algorithm u a random vector sampled from the unit sphere in R

n.

and scatter plot for the cluster corresponding to (β2, 〈a, v̂2〉) ≈ (24.495, 0.039)

β̂ +
k/2− 1

β̂
− β2,

√
nβ̂√

〈a, (In − v̂v̂>)a〉

[(
1− 1

2β̂2

)−1〈a, v̂〉 − 〈a,v2〉
]
. (36)

As predicted by our Theorem 2.9, both clusters are asymptotically Gaussian, and the normalized
estimators matches pretty well with the contour plot of standard 2-dim Gaussian distribution, at
1, 2, 3 standard deviation.

We plot in Figure 6 our estimators for the strength of signals and the linear functionals of the
signals after normalization, for the first cluster (35), and for the second cluster (36).

In Table (1), for each n ∈ {50, 100, 200, 400, 600, 800} and k = 3, we take the strength of signals
β1 = n(k−2)/2 and β2 = 1.2 × n(k−2)/2. Over 1000 independent trials for power iteration with
random initialization for each n, we estimate the percentage p̂1 of estimators converging to β1, and
the percentage p̂2 of estimators converging to β2. Our theoretical values are

p1 = P(|β1〈u,v1〉| > |β2〈u,v2〉|) ≈ 0.44,

p2 = P(|β1〈u,v1〉| < |β2〈u,v2〉|) ≈ 0.56.

We also exam the numerical coverage rates for our 95% confidence intervals over 1000 independent
trials.

4 Proof of main theorems

4.1 Proof of Theorems 2.1 and 2.2

The following lemma on the conditioning of Gaussian tensors will be repeatedly use in the
remaining of this section.

14



Figure 6: The empirical density of the normalized (β̂, 〈a, v̂〉) as in (35) for the cluster corresponding
to (β1, 〈a,v1〉) (second panel), the normalized (β̂, 〈a, v̂〉) as in (36) for the cluster corresponding to
(β2, 〈a,v2〉). The results are reported over 5000 independent trials where the initialization of our
power iteration algorithm u a random vector sampled from the unit sphere in R

n.

n = 50 n = 100 n = 200 n = 400 n = 600 n = 800

p̂1 0.405 0.399 0.421 0.381 0.422 0.401

p̂2 0.595 0.579 0.601 0.619 0.578 0.599

signal β1 0.9136 0.9223 0.9596 0.9291 0.9313 0.9551

linear form 〈a,v1〉 0.9680 0.9499 0.9572 0.9580 0.9668 0.9526

signal β2 0.9462 0.9334 0.9430 0.9612 0.9602 0.9599

linear form 〈a,v2〉 0.9445 0.9434 0.94819 0.9677 0.9533 0.9549

Table 1: Estimated p̂1, p̂2 over 1000 independent trials for dimension n ∈ {50, 100, 200, 400, 600, 800}
(top two rows), and numerical coverage rates for our 95% confidence intervals over 1000 independent
trials for dimension n ∈ {50, 100, 200, 400, 600, 800} (last four rows).
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Lemma 4.1. Let Z ∈ ⊗k
R
n be a random Gaussian tensor. The entries of Z are i.i.d. stan-

dard N (0, 1/n) Gaussian random variables. Fix τ1, τ2, · · · , τt ∈ ⊗k−1
R
n orthonormal (k − 1)-th

order tensors, i.e. 〈τi, τj〉 = δij, and vectors ξ1, ξ2, · · · , ξt ∈ R
n. Then the distribution of Z[τ ]

conditioned on Z[τs] = ξs for 1 6 s 6 t is

Z[τ ]
d
=

t∑

s=1

〈τs, τ 〉ξs + Z̃

[
τ −

t∑

s=1

〈τs, τ 〉τs
]
,

where Z̃ is an independent copy of Z.

Proof of Lemma 4.1. For any (k − 1)-th order tensor τ , viewed as a vector in R
nk−1

, we can de-
compose it as the projection on the span of τ1, τ2, · · · , τt and the orthogonal part

τ =

t∑

s=1

〈τs, τ 〉τs +
(
τ −

t∑

s=1

〈τs, τ 〉τs
)
. (37)

Using the above decomposition and Z[τs] = ξs, we can write Z[τ ] as

Z[τ ]
d
=

t∑

s=1

〈τs, τ 〉ξs +Z

[
τ −

t∑

s=1

〈τs, τ 〉τs
]
, (38)

and the first sum and the second term on the righthand side of (38) are independent. The claim
(37) follows.

Proof of Theorem 2.1. We define an auxiliary iteration, y0 = u and

yt+1 = X[y
⊗(k−1)
t ]. (39)

Then with yt, our original power iteration (2) is given by ut = yt/‖yt‖2.
Let ξ = Z[v⊗(k−1)] ∈ R

n. Then the entries of ξ are given by

ξ(i) = Z[v⊗(k−1)](i) = 〈Z, ei ⊗ v⊗(k−1)〉 =
∑

i1,i2,··· ,ik−1∈[[1,n]]

Zii1i2···ik−1
v(i1)v(i2) · · ·v(ik−1). (40)

From the expression, ξ(i) is a linear combination of Gaussian random variables, itself is also a
Gaussian. Moreover, these entries ξ(i) are i.i.d. Gaussian variables with mean zero and variance
1/n:

E[ξ(i)2] =
∑

i1,i2,··· ,ik−1∈[[1,n]]

E[Z2
ii1i2···ik−1

]v(i1)
2v(i2)

2 · · ·v(ik−1)
2 =

1

n
. (41)

We can compute yt iteratively: y1 is given by

y1 = X[y
⊗(k−1)
0 ] = β〈y0,v〉k−1v +Z[y

⊗(k−1)
0 ]. (42)

For the last term on the righthand side of (42), we can decompose y
⊗(k−1)
0 as a projection on

v⊗(k−1) and its orthogonal part:

y
⊗(k−1)
0 = 〈y0,v〉k−1v⊗(k−1) +

√
1− 〈y0,v〉2(k−1)τ0, (43)
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where τ0 ∈ ⊗(k−1)
R
n and 〈v⊗(k−1), τ0〉 = 0, 〈τ0, τ0〉 = 1. Thanks to Lemma 4.1, conditioning on

ξ = Z[v⊗(k−1)], ξ1 = Z[τ0] has the same law as Z̃[τ0], where Z̃ is an independent copy of Z.
Since 〈τ0, τ0〉 = 1, ξ1 is a Gaussian vector with each entry N (0, 1/n). With those notations we can
rewrite the expression (42) of y1 as

y1 = β〈y0,v〉k−1v + 〈y0,v〉k−1ξ +
√
1− 〈y0,v〉2(k−1)ξ1. (44)

In the following we show that:

Claim 4.2. We can compute y1,y2,y3, · · · ,yt inductively. The Gram-Schmidt orthonormalization

procedure gives an orthogonal base of v⊗(k−1),y
⊗(k−1)
0 ,y

⊗(k−1)
1 , · · · ,y⊗(k−1)

t−1 as:

v⊗(k−1), τ0, τ1, · · · , τt−1. (45)

Let ξs+1 = Z[τs] for 0 6 s 6 t − 1. Conditioning on ξ = Z[v⊗(k−1)] and ξs+1 = Z[τs] for
0 6 s 6 t − 2, ξt = Z[τt−1] is an independent Gaussian vector, with each entry N (0, 1/n). Then
yt is in the following form

yt = atv + btwt + ctξt, btwt = bt0ξ + bt1ξ1 + · · ·+ btt−1ξt−1, (46)

where ‖wt‖2 = 1.

Proof of Claim 4.2. The Claim 4.2 for t = 1 follows from (44). In the following, assuming Claim
4.2 holds for t, we prove it for t+ 1.

Let v⊗(k−1), τ0, τ1, · · · , τt be an orthogonal base for v⊗(k−1),y
⊗(k−1)
0 ,y

⊗(k−1)
1 , · · · ,y⊗(k−1)

t , ob-
tained by the Gram-Schmidt orthonormalization procedure. More precisely, given those tensors
v⊗(k−1), τ0, τ1, · · · , τt−1, we denote

b(t+1)0 = 〈y⊗(k−1)
t ,v⊗(k−1)〉, ct+1 = 〈y⊗(k−1)

t , τt〉,
b(t+1)(s+1) = 〈y⊗(k−1)

t , τs〉, 0 6 s 6 t− 1.
(47)

then b(t+1)0v
⊗(k−1) + b(t+1)1τ0 + b(t+1)2τ1 + · · · b(t+1)tτt−1 is the projection of y

⊗(k−1)
t on the span

of v⊗(k−1),y
⊗(k−1)
0 ,y

⊗(k−1)
1 , · · · ,y⊗(k−1)

t−1 . With those notations, we can write y
⊗(k−1)
t as

y
⊗(k−1)
t = b(t+1)0v

⊗(k−1) + b(t+1)1τ0 + b(t+1)2τ1 + · · · b(t+1)tτt−1 + ct+1τt, (48)

Using (46) and (48), we notice that

〈βv⊗k−1,y
⊗(k−1)
t 〉 = β(at + bt〈wt,v〉+ ct〈ξt,v〉)k−1v, (49)

and the iteration (39) implies that

yt+1 = β(at + bt〈wt,v〉+ ct〈ξt,v〉)k−1v + bt+1wt+1 + ct+1Z[τt], (50)

where

bt+1wt+1 = Z[b(t+1)0v
⊗(k−1) + b(t+1)1τ0 + b(t+1)2τ1 + · · · b(t+1)tτt−1]

= b(t+1)0ξ + b(t+1)1ξ1 + b(t+1)2ξ2 + · · · b(t+1)tξt.
(51)

Since τt is orthogonal to v⊗(k−1), τ0, τ1, · · · , τt−1, Lemma 4.1 implies that conditioning on ξ =
Z[v⊗(k−1)] and ξs+1 = Z[τs] for 0 6 s 6 t − 1, ξt+1 = Z[τt] is an independent Gaussian vector,
with each entry N (0, 1/n). The above discussion gives us that

yt+1 = at+1v + bt+1wt+1 + ct+1ξt+1, at+1 = β(at + bt〈wt,v〉+ ct〈ξt,v〉)k−1. (52)

In this way, for any t > 0, yt is given in the form (46).
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In the following, We study the case that 〈u,v〉 > 0. The case 〈u,v〉 < 0 can be proven in
exactly the same way, by simply changing (β,v) with ((−1)kβ,−v). We prove by induction

Claim 4.3. For any fixed time t, with probability at least 1−O(e−c(logN)2) the following holds: for
any s 6 t,

|as| & |β|(|bs0|+ |bs1|+ · · ·+ |bs(s−1)|),
|as| & nεmax{1(k > 3)|cs/β1/(k−2)|, |cs/

√
n|}.

(53)

and

‖ξ‖, ‖ξs‖2 = 1 + O(log n/
√
n), |〈v, ξ〉|, |〈a, ξ〉|, |〈a, ξs〉|,

‖ProjSpan{v,ξ,ξ1,··· ,··· ,ξs−1}(ξs)‖2 . log n/
√
n.

(54)

Proof of Claim 4.3. From (44), y1 = β〈u,v〉k−1v + 〈u,v〉k−1ξ +
√

1− 〈u,v〉2(k−1)ξ1. We have
a1 = β〈u,v〉k−1, b10 = 〈u,v〉k−1, b1w1 = 〈u,v〉k−1ξ and c1 =

√
1− 〈u,v〉2(k−1). Since ξ is a

Gaussian vector with each entry mean zero and variance 1/n, the concentration for chi-square
distribution implies that

‖ξ‖2 =

√√√√
n∑

i=1

ξ(i)2 = 1 + O(log n/
√
n) (55)

with probability 1−ec(logn)
2
. We can check that |a1| = |βb10|, |β1/(k−2)a1| = |β〈u,v〉k−2|(k−1)/(k−2) &

n(k−1)ε/(k−2) > nε|c1|, and |√na1| = |β〈u,v〉k−2||√n〈u,v〉| & nε > nε|c1|. Moreover, conditioning
on Z[v⊗(k−1)] = ξ, Lemma 4.1 implies that ξ1 = Z[τ0] is an independent Gaussian random vector
with each entry N (0, 1/n). By the standard concentration inequality, it holds that with probability
1 − ec(logn)

2
, ‖ξ1‖2 = 1 + O(log n/

√
n), |〈a, ξ1〉| and the projection of ξ1 on the span of {v, ξ} is

bounded by log n/
√
n. So far we have proved that (53) and (54) for t = 1.

In the following, we assume that (53) holds for t, and prove it for t + 1. We recall from (46)
and (52) that

at+1 = β(at + bt〈wt,v〉+ ct〈ξt,v〉)k−1, btwt = bt0ξ + bt1ξ1 + · · ·+ btt−1ξt−1 (56)

By our induction hypothesis, we have that

|bt〈wt,v〉| . |bt0〈ξ,v〉|+ |bt1〈ξ1,v〉|+ · · ·+ |bt(t−1)〈ξt−1,v〉| . (log n/
√
n)|at|/|β|, (57)

and

|ct〈ξt,v〉| . (log n/
√
n)|ct| . (log n)|at|/nε. (58)

It follows from plugging (57) and (58) into (56), we get

at+1 = β(at +O(log n|at|/nε))k−1 = (1 + O(log n/nε))βak−1
t . (59)

We recall from (48), the coefficients b(t+1)0, b(t+1)1, · · · , b(t+1)t are determined from the projec-

tion of y
⊗(k−1)
t on v⊗(k−1), τ0, τ1, · · · , τt−1

y
⊗(k−1)
t = b(t+1)0v

⊗(k−1) + b(t+1)1τ0 + b(t+1)2τ1 + · · · b(t+1)tτt−1 + ct+1τt. (60)
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We also recall that v⊗(k−1), τ0, τ1, · · · , τt−1 are obtained from v⊗(k−1),y
⊗(k−1)
0 ,y

⊗(k−1)
1 , · · · ,y⊗(k−1)

t−1

by the Gram-Schmidt orthonormalization procedure. So we have that the span of vectors (viewed as

vectors) v⊗(k−1), τ0, τ1, · · · , τt−1 is the same as the span of tensors v⊗(k−1),y
⊗(k−1)
0 ,y

⊗(k−1)
1 , · · · ,y⊗(k−1)

t−1 ,

which is contained in the span of {v,wt,y0, · · · ,yt−1}⊗(k−1). Moreover from the relation (46), one
can see that the span of {v,wt,y0, · · · ,yt−1} is the same as the span of {v, ξ, ξ1, · · · , ξt−1}. It
follows that

√
b2(t+1)0 + b2(t+1)1 + b2(t+1)2 + · · ·+ b2(t+1)t

= ‖ProjSpan{v⊗(k−1),τ0,τ1,··· ,τt−1}
(atv + btwt + ctξt)

⊗(k−1)‖2
6 ‖ProjSpan{v,wt,y0,··· ,yt−1}⊗(k−1)(atv + btwt + ctξt)

⊗(k−1)‖2
6 ‖ProjSpan{v,wt,y0,··· ,yt−1}(atv + btwt + ctξt)‖k−1

2

= ‖atv + btwt + ctProjSpan{v,ξ,ξ1,··· ,ξt−1}(ξt)‖k−1
2

.

(
|at|+ |bt|+

log n|ct|√
n

)k−1

. |at|k−1 . |at+1|/|β|,

(61)

where in the last line we used our induction hypothesis that ‖ProjSpan{v,ξ,ξ1,··· ,ξt−1}(ξt)‖2 . log n/
√
n.

Finally we estimate ct+1. We recall from (48), the coefficient ct+1 is the remainder of y
⊗(k−1)
t

after projecting on v⊗(k−1), τ0, τ1, · · · , τt−1. It is bounded by the remainder of y
⊗(k−1)
t after pro-

jecting on v⊗(k−1),

|ct+1| 6 ‖y⊗(k−1)
t − ak−1

t v⊗(k−1)‖2 = ‖(atv + btwt + ctξt)
⊗(k−1) − ak−1

t v⊗(k−1)‖2. (62)

The difference (atv + btwt + ctξt)
⊗(k−1) − ak−1

t v⊗(k−1) is a sum of terms in the following form,

η1 ⊗ η2 ⊗ · · · ⊗ ηk−1, (63)

where vectors η1,η2, · · · ,ηk−1 ∈ {atv, btwt + ctξt}, and at least one of them is btwt + ctξt. We
notice that by our induction hypothesis, ‖btwt + ctξt‖2 . |bt|‖wt‖2 + |ct|‖ξt‖2 . |bt|+ |ct|. For the
L2 norm of (63), each copy of atv contributes at and each copy of btwt + ctξt contributes a factor
|bt|+ |ct|. We conclude that

|ct+1| 6 ‖(atv + btwt + ctξt)
⊗(k−1) − ak−1

t v⊗(k−1)‖2 .
k−1∑

r=1

|at|k−1−r(|bt|+ |ct|)r. (64)

Combining the above estimate with (59) that |at+1| � |β||at|k−1, we divide both sides of (64) by
|β||at|k−1,

|ct+1|
|at+1|

.
1

|β|
k−1∑

r=1

( |bt|
|at|

+
|ct|
|at|

)r

.
1

|β|
k−1∑

r=1

(
1

|β| +
|ct|
|at|

)r

, (65)

where we used our induction hypothesis that |at| & |β||bt|. There are three cases:

1. If |ct|/|at| > 1, then

|ct+1|
|at+1|

.
1

|β|
k−1∑

r=1

(
1

|β| +
|ct|
|at|

)r

.
1

|β|

( |ct|
|at|

)k−1

. (66)

If k = 2, then our assumption |β〈u,v〉k−2| = |β| > nε, implies that |ct+1|/|at+1| . (|ct|/|at|)/nε.
If k > 2, by our induction hypothesis |ct|/|at| . β1/(k−2)/nε. This implies (|ct|/|at|)k−2/|β| .
1/nε, and we still get that |ct+1|/|at+1| . (|ct|/|at|)/nε.
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2. If 1/|β| . |ct|/|at| 6 1, then

|ct+1|
|at+1|

.
1

|β|
k−1∑

r=1

(
1

|β| +
|ct|
|at|

)r

.
1

|β|

( |ct|
|at|

)
.

1

nε

( |ct|
|at|

)
, (67)

where we used that |β| > |β〈u,v〉k−2| > nε.

3. Finally for |ct|/|at| . 1/|β|, we will have

|ct+1|
|at+1|

.
1

|β|
k−1∑

r=1

(
1

|β| +
|ct|
|at|

)r

.
1

|β|

(
1

|β|

)
.

1

|β|2 . (68)

In all these cases if |ct|/|at| . min{√n,1(k > 3)|β|1/(k−2)}/nε, we have |ct+1|/|at+1| . min{√n,1(k >

3)|β|1/(k−2)}/nε. This finishes the proof of the induction (53).
For (54), since τt is orthogonal to v⊗(k−1), τ0, τ1, · · · , τt−1, Lemma 4.1 implies that conditioning

on ξ = Z[v⊗(k−1)] and ξs+1 = Z[τs] for 0 6 s 6 t − 1, ξt+1 = Z[τt] is an independent Gaussian
vector, with each entry N (0, 1/n). By the standard concentration inequality, it holds that with
probability 1 − ec(logn)

2
, ‖ξt+1‖2 = 1 + O(log n/

√
n), |〈a, ξt+1〉| and the projection of ξt+1 on the

span of {v, ξ, ξ1, · · · , ξt} is bounded by log n/
√
n. This finishes the proof of the induction (54).

Next, using (53) and (54) in Claim 4.3 as input, we prove that for

t > 1 +
1

ε

(
1

2
+

2 log |β|
log n

)
, (69)

with probability 1− ec(logn)
2
we have

yt = atv + bt0ξ + bt1ξ1 + · · ·+ btt−1ξt−1 + ctξt, (70)

such that

bt0 =
at
β

+O

(
log n|at|
|β|2√n

)
|bt1|, |bt2|, · · · , |bt(t−1)| .

(log n)1/2|at|
|β|3/2n1/4

, |ct| . |at|/β2. (71)

Let xt = |ct/at| � |β|1/(k−2), then (65) implies

xt+1 .
1

|β|
k−1∑

r=1

(
1

|β| + xt

)r

, (72)

from the discussion after (65), we have that either xt+1 . 1/β2, or xt+1 . xt/n
ε. Since x1 =

|c1/a1| . n1/2−ε, we conclude that it holds

xt = |ct/at| . 1/β2, when t >
1

ε

(
1

2
+

2 log |β|
log n

)
. (73)

To derive the upper bound of bt1, bt2, · · · , bt(t−1), we use (61).

b2(t+1)0 + b2(t+1)1 + b2(t+1)2 + · · ·+ b2(t+1)t

6 ‖atv + btwt + ctProjSpan{v,ξ,ξ1,··· ,ξt−1}(ξt)‖
2(k−1)
2

=

(
a2t +O

(
|at| (|bt|+ |ct|)

log n√
n

+

(
|bt|+ |ct|

log n√
n

)2
))k−1

,

(74)
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where we used our induction (54) that |〈ξ,v〉|, |〈ξ1,v〉|, · · · , |〈ξt,v〉| . log n/
√
n and the projection

‖ProjSpan{v, ξ, ξ1, · · · , ξt−1}(ξt)‖2 . log n/
√
n. Moreover, the first term b(t+1)0 is the projection of

y
⊗(k−1)
t on v⊗(k−1),

b(t+1)0 = 〈atv + btwt + ctξt,v〉k−1 =

(
at +O

(
log n(|bt|+ |ct|)√

n

))k−1

, (75)

where we used (54) that |〈ξ,v〉|, |〈ξ1,v〉|, · · · , |〈ξt,v〉| . log n/
√
n. Now we can take difference of

(74) and (75), and use that |bt| . |at|/|β| from (53) and |ct| . |at|/|β| from (73),

b(t+1)0 = ak−1
t +O

(
|at|k−1 log n

|β|√n

)
, b2(t+1)1 + b2(t+1)2 + · · ·+ b2(t+1)t . a

2(k−1)
t

log n

|β|√n
. (76)

From (56) and (59), we have that

at+1 = βb(t+1)0 � βak−1
t . (77)

Using the above relation, we can simplify (76) as

b(t+1)0 =
at+1

β
+O

(
log n|at+1|
|β|2√n

)
, |b(t+1)1|, |b(t+1)2|, · · · |b(t+1)t| .

(log n)1/2|at+1|
|β|3/2n1/4

. (78)

This finishes the proof of (71).
With the expression (71), we can process to prove our main results (7) and (8). Thanks to (54),

for t satisfies (69), we have that with probability at least 1−O(e−c(logN)2)

‖yt‖22 = a2t

(
1 +

1

β2
+

2〈v, ξ〉
β

+O

(
log n

β2
√
n
+

(log n)3/2

|β|3/2n3/4
+

1

β4

))
. (79)

By rearranging it we get

1/‖yt‖2 =
1

|at|

(
1− 1

2β2
− 〈v, ξ〉

β
+O

(
log n

β2
√
n
+

(log n)3/2

|β|3/2n3/4
+

1

β4

))
. (80)

We can take the inner product 〈a,yt〉 using (70) and (71), and multiply (80)

〈a,ut〉 =
〈a,yt〉
‖yt‖2

= sgn(at)

((
1− 1

2β2

)
〈a,v〉+ 〈a, ξ〉 − 〈a,v〉〈v, ξ〉

β

)

+OP

(
log n

β2
√
n
+

(log n)3/2

|β|3/2n3/4
+

|〈a,v〉|
β4

)
,

(81)

where we used (54) that with high probability |〈a, ξ〉|, |〈a, ξs〉| for 1 6 s 6 t are bounded by
log n/

√
n. This finishes the proof of (7). For β̂ in (8), we have

X[u⊗k
t ] =

X[y⊗k
t ]

‖yt‖k2
=

〈yt,X[y
⊗(k−1)
t ]〉

‖yt‖k2
=

〈yt,yt+1〉
‖yt‖k2

. (82)

Thanks to (73), (52) and (54), for t satisfies (69), with probability at least 1 − O(e−c(logN)2),
we have

yt+1 = at+1v + b(t+1)0ξ + b(t+1)1ξ1 + · · ·+ b(t+1)tξt + ct+1ξt+1, (83)
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where |ct+1| . |at|k−1/β2,

at+1 = β(at + bt0〈ξ,v〉+ bt1〈ξ1,v〉+ · · ·+ bt(t−1)〈ξt−1,v〉+ ct〈ξt,v〉)k−1

= βak−1
t

(
1 +

〈ξ,v〉
β

+O

(
log n

β2
√
n
+

(log n)3/2

|β|3/2n3/4

))k−1

,
(84)

and

b(t+1)0 = ak−1
t

(
1 + O

(
log n

|β|√n

))
, |b(t+1)1|, |b(t+1)2|+ · · ·+ |b(t+1)t| . ak−1

t

(log n)1/2

|β|1/2n1/4
. (85)

From the discussion above, combining with (70) and (71) with straightforward computation, we
have

〈yt,yt+1〉 = βakt

(
1 +

1

β2
+

(k + 1)〈ξ,v〉
β

+O

(
log n

β2
√
n
+

(log n)3/2

|β|3/2n3/4

))
. (86)

By plugging (80) and (86) into (82), we get

X[u⊗k
t ] = sgn(at)

k

(
β + 〈ξ,v〉 − k/2− 1

β

)
+O

(
log n

|β|√n
+

(log n)3/2

|β|1/2n3/4
+

1

|β|3

)
(87)

Since by our assumption, in Case 1 we have that β > 0. Thanks to (84) at+1 = βak−1
t (1 + o(1)),

especially at+1 and at are of the same sign. In the case 〈u,v〉 > 0, we have a1 = β〈u,v〉k−1 > 0.
We conclude that at > 0. Therefore sgn(X[u⊗k

t ]) = sgn(at)
k = +, and it follows that

X[u⊗k
t ] = β + 〈ξ,v〉 − k/2− 1

β
+O

(
log n

|β|√n
+

(log n)3/2

|β|1/2n3/4
+

1

|β|3

)
(88)

This finishes the proof of (8). The Cases 2, 3, 4 follow by simply changing (β,v) in the righthand
side of (7) and (8) to the corresponding limit.

Proof of Theorem 2.2. We use the same notations as in the proof of Theorem 2.1. If |β| > nε and
|β〈u,v〉k−2| 6 n−ε, then we first prove by induction that for any fixed time t, with probability at
least 1−O(e−c(logN)2) the following holds: for any s 6 t,

|bs0|, |bs1|, · · · , |bs(s−1)| . max{|cs|/|β|(k−1)/(k−2), (log n)k−1|cs|/n(k−1)/2},
|cs| > nεβ1/(k−2)|as|,

(89)

and

‖ξ‖, ‖ξs‖2 = 1 + O(log n/
√
n),

|〈v, ξ〉|, ‖ProjSpan{v,ξ,ξ1,··· ,··· ,ξs−1}(ξs)‖2 . log n/
√
n.

(90)

From (44), a1 = β〈u,v〉k−1, b10 = 〈u,v〉k−1 and c1 =
√
1− 〈u,v〉2(k−1). Since |β| > nε

and |β〈u,v〉k−2| 6 n−ε, we have that |〈u,v〉| 6 n−2ε/(k−2) � 1 and therefore |c1| � 1. We
can check that |β1/(k−2)a1| = |β〈u,v〉k−2|(k−1)/(k−2) 6 n−ε . n−ε|c1| and |b10| = |a1/β| .

n−ε|c1/β(k−1)/(k−2)|. Moreover, conditioning on Z[v⊗(k−1)] = ξ, Lemma 4.1 implies that ξ1 = Z[τ0]
is an independent Gaussian random vector with each entry N (0, 1/n). By the standard concen-
tration inequality, it holds that with probability 1 − ec(logn)

2
, ‖ξ1‖2 = 1 + O(log n/

√
n), and the
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projection of ξ1 on the span of {v, ξ} is bounded by log n/
√
n. So far we have proved (89) and (90)

for t = 1.
In the following, assuming the statements (89) and (90) hold for t, we prove them for t + 1.

From (56), using (56) and (57), we have

|at+1| =
∣∣∣β(at + bt〈wt,v〉+ ct〈ξt,v〉)k−1

∣∣∣

. |β|
(
|at|+

log n(|bt0|+ |bt1|+ · · ·+ |bt(t−1)|)√
n

+
log n|ct|√

n

)k−1

. |β|
(
|at|+

log n|ct|√
n

)k−1

. |β|
( |ct|
nε|β|1/(k−2)

+
log n|ct|√

n

)k−1

. |β||ct|k−1

(
1

nε|β|1/(k−2)
+

log n√
n

)k−1

.
|ct|k−1

nε|β|1/(k−2)
,

(91)

where in the third line we used our induction hypothesis that |bt0|+ |bt1|+ · · ·+ |bt(t−1)| . |ct|, and
n−ε > |β||〈u,v〉|k−2 & |β|/n(k−2)/2.

For b(t+1)0, b(t+1)1, · · · , b(t+1)t, from (61) we have

√
b2(t+1)0 + b2(t+1)1 + b2(t+1)2 + · · ·+ b2(t+1)t .

(
|at|+ |bt|+

log n|ct|√
n

)k−1

.

(
|at|+

log n|ct|√
n

)k−1

.

( |ct|
nε|β|1/(k−2)

+
log n|ct|√

n

)k−1

. |ct|k−1

(
1

nε|β|1/(k−2)
+

log n√
n

)k−1

.

(92)

Finally we estimate ct+1. We recall from (48), the coefficient ct+1 is the remainder of y
⊗(k−1)
t

after projecting on v⊗(k−1), τ0, τ1, · · · , τt−1. We have the following lower bound for ct+1

|ct+1|2 = ‖(atv + btwt + ctξt)
⊗(k−1)‖22 − (b2(t+1)0 + b2(t+1)1 + b2(t+1)2 + · · ·+ b2(t+1)t)

> ‖atv + btwt + ctξt‖2(k−1)
2 −O

(
|ct|2(k−1)

(
1

nε|β|1/(k−2)
+

log n√
n

)2(k−1)
)
.

(93)

For the first term on the righthand side of (93), using our induction hypothesis (89) and (90) that
|at| . |ct|, we have

‖atv + btwt + ctξt‖22 = a2t + b2t + c2t ‖ξt‖22 + 2atbt〈v,wt〉+ 2atct〈v, ξt〉+ 2btct〈wt, ξt〉

=

(
1 + O

(
log n√

n
+

1

n2εβ2/(k−2)

))
c2t .

(94)

We get the following lower for ct+1 by plugging (94) into (93), and rearranging

|ct+1| >
(
1 + O

(
log n√

n
+

1

n2εβ2/(k−2)

))
|ct|k−1 (95)

The claim that |b(t+1)0|, |b(t+1)1|, · · · , |b(t+1)t| . max{|ct+1|/|β|(k−1)/(k−2), (log n)k−1|ct+1|/n(k−1)/2}
follows from combining (92) and (95). The claim that |ct+1| > nεβ1/(k−2)|at+1| follows from com-
bining (91) and (95).
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For (90), since τt is orthogonal to v⊗(k−1), τ0, τ1, · · · , τt−1, Lemma 4.1 implies that conditioning
on ξ = Z[v⊗(k−1)] and ξs+1 = Z[τs] for 0 6 s 6 t − 1, ξt+1 = Z[τt] is an independent Gaussian
vector, with each entry N (0, 1/n). By the standard concentration inequality, it holds that with
probability 1 − ec(logn)

2
, ‖ξt+1‖2 = 1 + O(log n/

√
n), and the projection of ξt+1 on the span of

{v, ξ, ξ1, · · · , ξt} is bounded by log n/
√
n. This finishes the proof of the induction (90).

Next, using (53) and (54) as input, we prove that for

t > 1 +
1

ε

(
1

2
− log |β|

(k − 2) log n

)
, (96)

we have

yt = atv + bt0ξ + bt1ξ1 + · · ·+ bt(t−1)ξt−1 + ctξt, (97)

such that

|at|, |bt0|, |bt1|, · · · , |bt(t−1)| . |ct||β|
(
log n√

n

)k−1

. (98)

Let xt = |at/ct|, then (89) implies that xt 6 1/(nε|β|1/(k−2)). By taking the ratio of (91) and
(95), we get

xt+1 . |β|
(
log n√

n
+ xt

)k−1

. (99)

there are two cases,

1. if log n/
√
n . xt 6 1/(nε|β|1/(k−2)), then

xt+1 . |β|xk−1
t = xt(|β|1/(k−2)xt)

k−2 6 xt/n
ε; (100)

2. If xt . log n/
√
n, then |xt+1| . |β|(log n/√n)k−1.

Since x1 = |a1/c1| . 1/(nε|β|1/(k−2)), we conclude that

xt = |at/ct| . |β|(log n/√n)k−1, when t >
1

ε

(
1

2
− log |β|

(k − 2) log n

)
. (101)

In this regime, (92) implies that

|b(t+1)0|, |b(t+1)1|, |b(t+1)2|, · · · , |b(t+1)t| . |β||ct|k−1

( |at|
|ct|

+
log n√

n

)k−1

. |β||ct|k−1

(
log n√

n

)k−1

. |ct+1||β|
(
log n√

n

)k−1

,

(102)

where we used (95) in the last inequality. This finishes the proof of (98). Using (98), we can
compute ut,

ut =
yt

‖yt‖
=

ξt

‖ξt‖2
+OP

(
|β|
(
log n√

n

)k−1
)
, (103)

where the error term is a vector of length bounded by |β|(log n/√n)k−1. This finishes the proof of
Theorem 2.1.
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4.2 Proof of Corollarys 2.3 and 2.4

Proof of Corollary 2.3. According to the definition of ξ in (7) of Theorem 2.1, i.e. ξ = Z[v⊗(k−1)],
is an n-dim vector, with each entry i.i.d. N (0, 1/n) Gaussian random variable. We see that

〈ξ,v〉 d
= N (0, 1/n) .

Especially with high probability we will have that |〈ξ,v〉| . log n/
√
n. Then we conclude from (8),

with high probability it holds

β̂ = β +O

(
1

β
+

log n√
n

)
. (104)

With the bound (180), we can replace 〈a,v〉/(2β2) on the righthand side of (7) by 〈a,v〉/(2β̂2),
which gives an error

∣∣∣∣
〈a,v〉
2β2

− 〈a,v〉
2β̂2

∣∣∣∣ = O

(
|〈a,v〉|

(
1

|β|4 +
log n

|β|3√n

))
. (105)

Combining the above discussion together, we can rewrite (7) as

〈a, v̂〉 −
(
1− 1

2β̂2

)
〈a,v〉 = 〈a, ξ〉 − 〈a,v〉〈v, ξ〉

β
+O

(
log n

β2
√
n
+

(log n)3/2

β3/2n3/4
+

|〈a,v〉|
β4

)
(106)

with high probability.
Again thanks to the definition of ξ in (7) of Theorem 2.1, i.e. ξ = Z[v⊗(k−1)], is an n-dim

vector, with each entry i.i.d. N (0, 1/n) Gaussian random variable, we see that

〈a, ξ〉 − 〈a,v〉〈v, ξ〉 = 〈a− 〈a,v〉v, ξ〉, (107)

is a Gaussian random variable, with mean zero and variance

E[〈a− 〈a,v〉v, ξ〉2] = 1

n
‖a− 〈a,v〉v‖22 =

1

n
〈a, (In − vv>)a〉 = 1 + o(1)

n
〈a, (In − v̂v̂>)a〉. (108)

This together with (180), (182) as well as our assumption (11)

√
nβ̂√

〈a, (In − v̂v̂>)a〉

[(
1− 1

2β̂2

)−1〈a, v̂〉 − 〈a,v〉
]

d−→ N (0, 1). (109)

Under the same assumption, we have similar results for Cases 2, 3, 4, by simply changing (β,v)
in the righthand side of (7) and (8) to the corresponding expression.

Proof of Corollary 2.4. Given the significance level α, the asymptotic confidence intervals in Corol-
lary 2.4 can be calculated from Corollary 2.3 by bounding the absolute values of the left hand sides
of (13) at zα.
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4.3 Proof of Theorem 2.7

Proof of Theorem 2.7. We define an auxiliary iteration, y0 = u and

yt+1 = X[y
⊗(k−1)
t ]. (110)

Then we have that ut = yt/‖yt‖2.
For index j = (j1, j2, · · · , jk−1) ∈ [[1, r]]k−1. Let ξj = Z[vj1 ⊗ vj2 ⊗ · · · ⊗ vjk−1

]. Its entries

ξj(i) =
∑

i1,i2,··· ,ik−1∈[[1,n]]

Zii1i2···ik−1
vj1(i1)vj2(i2) · · ·vjk−1

(ik−1), (111)

are linear combination of Gaussian random variables, which is also Gaussian. These entries are
i.i.d. Gaussian variables with mean zero and variance 1/n,

E[ξj(i)
2] =

∑

i1,i2,··· ,ik−1∈[[1,n]]

E[Z2
ii1i2···ik−1

]vj1(i1)
2vj2(i2)

2 · · ·vjk−1
(ik−1)

2 =
1

n
. (112)

We can compute yt iteratively:

y1 = X[y
⊗(k−1)
0 ] =

r∑

j=1

βj〈y0,vj〉k−1vj +Z[y
⊗(k−1)
0 ]. (113)

For the last term on the righthand side of (113), we can decompose y
⊗(k−1)
0 as a projection on

vj1 ⊗ vj2 · · · ⊗ vjk−1
for j ∈ [[1, r]]k−1, and its orthogonal part:

y
⊗(k−1)
0 =

∑

j

k−1∏

s=1

〈y0,vjs〉vj1 ⊗ vj2 ⊗ · · · ⊗ vjk−1
+

√√√√√1−




r∑

j=1

〈y0,vj〉2



(k−1)

τ0, (114)

where the sum is over j ∈ [[1, r]]k−1, τ0 ∈ ⊗k
R
n and ‖τ0‖2 = 1. Let ξ1 = Z[τ0]. By our construction

vj1 ⊗vj2 ⊗ · · ·⊗vjk−1
for any j ∈ [[1, r]]k−1 and τ0 are othorgonal to each other. Thanks to Lemma

4.1, conditioning on ξj := Z[vj1 ⊗ vj2 ⊗ · · · ⊗ vjk−1
] for index j = (j1, j2, · · · , jk−1) ∈ [[1, r]]k−1,

ξ1 = Z[τ0] has the same law as Z̃[τ0], where Z̃ is an independent copy of Z. Since 〈τ0, τ0〉 = 1, ξ1
is a Gaussian vector with each entry N (0, 1/n). With those notations we can rewrite y1 as

y1 =
r∑

j=1

βj〈y0,vj〉k−1vj +
∑

j

k−1∏

s=1

〈y0,vjs〉ξj +

√√√√√1−




r∑

j=1

〈y0,vj〉2



(k−1)

ξ1. (115)

In the following we show that:

Claim 4.4. We can compute y2,y3, · · · ,yt inductively. The Gram-Schmidt orthonormalization

procedure gives an orthogonal base of vj1⊗vj2⊗· · ·⊗vjk−1
for j ∈ [[1, r]]k−1 and y

⊗(k−1)
0 ,y

⊗(k−1)
1 , · · · ,y⊗(k−1)

t−1

as:

{vj1 ⊗ vj2 ⊗ · · · ⊗ vjk−1
}j∈[[1,r]]k−1 , τ0, τ1, · · · , τt−1. (116)

Let ξj = Z[vj1 ⊗ vj2 ⊗ · · · ⊗ vjk−1
] for j = (j1, j2, · · · , jk−1) ∈ [[1, r]]k−1, and ξs+1 = Z[τs] for

0 6 s 6 t− 1. Conditioning on ξj = Z[vj1 ⊗ vj2 ⊗ · · · ⊗ vjk−1
] for j = (j1, j2, · · · , jk−1) ∈ [[1, r]]k−1

26



and ξs+1 = Z[τs] for 0 6 s 6 t − 2, ξt = Z[τt−1] is an independent Gaussian vector, with each
entry N (0, 1/n). Then yt is in the following form

yt = atvt + btwt + ctξt, (117)

where

atvt = at1v1 + at2v2 + · · ·+ atrvr, btwt =
∑

j

btjξj + bt1ξ1 + · · ·+ btt−1ξt−1, (118)

and ‖v1‖2, ‖v2‖2, · · · , ‖vr‖2, ‖wt‖2 = 1.

Proof of Claim 4.4. The Claim 4.4 for t = 1 follows from (115). In the following, assuming Claim
4.4 holds for t, we prove it for t+ 1.

Conditioning on ξj = Z[vj1 ⊗ vj2 ⊗ · · · ⊗ vjk−1
] for index j = (j1, j2, · · · , jk−1) ∈ [[1, r]]k−1 and

Z[τs] = ξs+1 for 0 6 s 6 t− 2, Lemma 4.1 implies that ξt = Z[τt−1] has the same law as Z̃[τt−1],
where Z̃ is an independent copy of Z. Since τt−1 is orthogonal to vj1 ⊗ vj2 ⊗ · · · ⊗ vjk−1

for index
j = (j1, j2, · · · , jk−1) ∈ [[1, r]]k−1 and Z[τs] = ξs+1 for 0 6 s 6 t− 2, ξt is an independent Gaussian
random vector with each entry N (0, 1/n).

Let {vj1⊗vj2⊗· · ·⊗vjk−1
}j∈[[1,r]]k−1 , τ0, τ1, · · · , τt be an orthogonal base for vj1⊗vj2⊗· · ·⊗vjk−1

for j ∈ [[1, r]]k−1 and y
⊗(k−1)
0 ,y

⊗(k−1)
1 , · · · ,y⊗(k−1)

t , obtained by the Gram-Schmidt orthonormaliza-
tion procedure. More precisely, given those tensors {vj1⊗vj2⊗· · ·⊗vjk−1

}j∈[[1,r]]k−1 , τ0, τ1, · · · , τt−1,
we denote

b(t+1)j = 〈y⊗(k−1)
t ,vj1 ⊗ vj2 ⊗ · · · ⊗ vjk−1

〉, j = (j1, j2, · · · , jk−1) ∈ [[1, r]]k−1,

b(t+1)s = 〈y⊗(k−1)
s , τs−1〉, 1 6 s 6 t, ct+1 = 〈y⊗(k−1)

t , τt〉
(119)

and
∑

j b(t+1)jvj1 ⊗ vj2 ⊗ · · · ⊗ vjk−1
+ b(t+1)1τ0 + b(t+1)2τ1 + · · · b(t+1)tτt−1 is the projection of

y
⊗(k−1)
t on the span of {vj1 ⊗ vj2 ⊗ · · · ⊗ vjk−1

}j∈[[1,r]]k−1 ,y
⊗(k−1)
0 ,y

⊗(k−1)
1 , · · · ,y⊗(k−1)

t−1 . Then we

can write y
⊗(k−1)
t in terms of the base (116)

y
⊗(k−1)
t =

∑

j

b(t+1)jvj1 ⊗ vj2 ⊗ · · · ⊗ vjk−1
+ b(t+1)1τ0 + b(t+1)2τ1 + · · · b(t+1)tτt−1 + ct+1τt. (120)

The recursion (110) implies that

yt+1 =
r∑

j=1

βj(atj + bt〈wt,vj〉+ ct〈ξt,vj〉)k−1vj + bt+1wt+1 + ct+1Z[τt] (121)

where

bt+1wt+1 = Z[
∑

j

b(t+1)jvj1 ⊗ vj2 ⊗ · · · ⊗ vjk−1
+ b(t+1)1τ0 + b(t+1)2τ1 + · · · b(t+1)tτt−1]

=
∑

j

b(t+1)jξj + b(t+1)1ξ1 + b(t+1)2ξ2 + · · · b(t+1)tξt.
(122)

Since τt is orthogonal to {vj1 ⊗ vj2 ⊗ · · · ⊗ vjk−1
}j∈[[1,r]]k−1 , τ0, τ1, · · · , τt−1, Lemma 4.1 implies

that conditioning on ξj = Z[vj1 ⊗ vj2 ⊗ · · · ⊗ vjk−1
] for j = (j1, j2, · · · , jk−1) ∈ [[1, r]]k−1 and
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ξs+1 = Z[τs] for 0 6 s 6 t − 1, ξt+1 = Z[τt] is an independent Gaussian vector, with each entry
N (0, 1/n). The above discussion gives us that

yt+1 = at+1vt+1 + bt+1wt+1 + ct+1ξt+1, at+1 =
√

a2(t+1)1 + a2(t+1)2 + · · ·+ a2(t+1)r. (123)

and

a(t+1)j = βj(atj + bt〈wt,vj〉+ ct〈ξt,vj〉)k−1, 1 6 j 6 r. (124)

We recall that by our Assumption 2.5, that

1/κ 6

∣∣∣∣
〈u,vi〉
〈u,vj〉

∣∣∣∣ 6 κ, (125)

for all 1 6 i, j 6 r. If j∗ = argmaxj βj〈u,vj〉k−2, it is necessary that βj∗ & β1, where the implicit
constant depends on κ.

In the following, we study the case that 〈u,vj∗〉 > 0. The case 〈u,vj∗〉 < 0 can be proven in
exactly the same way, by simply changing (β,vj∗) with ((−1)kβ,−vj∗). We prove by induction

Claim 4.5. For any fixed time t, with probability at least 1−O(e−c(logn)2) the following holds: for
any s 6 t,

|asj∗ | > |asj |, |as| & |β1|(
∑

j

|bsj |+ |bs1|+ · · ·+ |bs(s−1)|),

|as| & nεmax{1(k > 3)|cs/β1/(k−2)
1 |, |cs/

√
n|},

(126)

and for j = (j1, j2, · · · , jk−1) ∈ [[1, r]]k−1

‖ξj‖, ‖ξs‖2 = 1 + O(log n/
√
n), |〈vj , ξj〉|, |〈a, ξj〉|, |〈a, ξs〉| . log n/

√
n.

‖ProjSpan{v1,v2,··· ,vr,{ξj}j∈[[1,r]]k−1 ,ξ1,··· ,··· ,ξs−1}(ξs)‖2 . log n/
√
n.

(127)

Proof of Claim 4.5. From (115), we have

y1 =

r∑

j=1

βj〈y0,vj〉k−1vj +
∑

j

k−1∏

s=1

〈y0,vjs〉ξj +

√√√√√1−




r∑

j=1

〈y0,vj〉2



(k−1)

ξ1 (128)

=

r∑

j=1

a1jvj +
∑

j

b1jξj + c1ξ1, (129)

where a1j = βj〈u,vj〉k−1 for 1 6 j 6 r, b1j =
∏k−1

s=1〈u,vjs〉 for any index j = (j1, j2, · · · , jk−1)

and c1 =

√
1−

(∑r
j=1〈u,vj〉2

)(k−1)
. Since ξj are independent Gaussian vectors with each entry

mean zero and variance 1/n, the concentration for chi-square distribution implies that ‖ξj‖2 =

1 + O(log n/
√
n) with probability 1− ec(logn)

2
. Since j∗ = argmaxj |βj〈u,vj〉k−2|, combining with
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our Assumption 2.5, it gives that |a1j∗ | > |a1j |/κ. As a consequence, we also have that |a1| =√
a211 + a212 + · · ·+ a21r � |a1j∗ |. Again using our Assumption 2.5

∑

j

|b1j | .




r∑

j=1

|〈u,vj〉|




k−1

.

r∑

j=1

|〈u,vj〉|k−1 . |a1j∗ |/βj∗ . |a1|/β1. (130)

We can check that |β1/(k−2)
1 a1| � |β1/(k−2)

j∗
a1j∗ | = |βj∗〈u,vj∗〉k−2|(k−1)/(k−2) > nε > nε|c1|, and

|√na1| � |√na1j∗ | = |βj∗〈u,vj∗〉k−2||√n〈u,vj∗〉| & nε > nε|c1|. Moreover, conditioning on ξj =
Z[vj1 ⊗vj2 ⊗· · ·⊗vjk−1

] for j = (j1, j2, · · · , jk−1) ∈ [[1, r]]k−1, Lemma 4.1 implies that ξ1 = Z[τ0] is
an independent Gaussian random vector with each entry N (0, 1/n). By the standard concentration
inequality, it holds that with probability 1 − ec(logn)

2
, ‖ξ1‖2 = 1 + O(log n/

√
n), |〈a, ξ1〉| and the

projection of ξ1 on the span of {v1,v2, · · · ,vr, {ξj}j∈[[1,r]]k−1} is bounded by log n/
√
n. So far we

have proved that (53) and (54) hold for t = 1.
In the following, we assume that (126) and (127) hold for t, and prove it for t + 1. We recall

from (118) and (124) that

a(t+1)j = βj(atj + bt〈wt,vj〉+ ct〈ξt,vj〉)k−1, btwt =
∑

j

btjξj + bt1ξ1 + · · ·+ btt−1ξt−1. (131)

By our induction hypothesis, we have

|bt〈wt,vj〉| .
∑

j

|btj〈ξj ,vj〉|+ |bt1〈ξ1,vj〉|+ · · ·+ |bt(t−1)〈ξt−1,vj〉| . (log n/
√
n)|at|/|β1|, (132)

and

|ct〈ξt,vj〉| . (log n/
√
n)|ct| . (log n)|at|/nε. (133)

It follows from plugging (132) and (133) into (131), we get

a(t+1)j = βj(atj + bt〈wt,vj〉+ ct〈ξt,vj〉)k−1 = βj(atj +O(log n|at|/nε))k . βj |at|k−1, (134)

and especially

a(t+1)j∗ = βj∗(atj∗ +O(log n|atj∗ |/nε))k = (1 + O(log n/nε))βj∗a
k−1
tj∗

. (135)

Therefore, we conclude that

|at+1j∗ | � |βj∗ak−1
tj∗

| � |βak−1
t |, (136)

and

|a(t+1)j | . βj |at|k−1 . βj∗ |atj∗ |k−1 . |at+1j∗ |. (137)

We recall from (119),
∑

j b(t+1)jvj1⊗vj2⊗· · ·⊗vjk−1
+b(t+1)1τ0+b(t+1)2τ1+ · · · b(t+1)tτt−1 is the

projection of y
⊗(k−1)
t on the span of {vj1 ⊗vj2 ⊗· · ·⊗vjk−1

}j∈[[1,r]]k−1 ,y
⊗(k−1)
0 ,y

⊗(k−1)
1 , · · · ,y⊗(k−1)

t−1 .
We also recall that {vj1 ⊗ vj2 ⊗ · · · ⊗ vjk−1

}j∈[[1,r]]k−1 , τ0, τ1, · · · , τt−1 are obtained from {vj1 ⊗
vj2 ⊗· · ·⊗vjk−1

}j∈[[1,r]]k−1 , ,y
⊗(k−1)
0 ,y

⊗(k−1)
1 , · · · ,y⊗(k−1)

t−1 by the Gram-Schmidt orthonormalization
procedure. So we have that the span of vectors {vj1⊗vj2⊗· · ·⊗vjk−1

}j∈[[1,r]]k−1 , τ0, τ1, · · · , τt−1 is the

same as the span of vectors {vj1⊗vj2⊗· · ·⊗vjk−1
}j∈[[1,r]]k−1 , ,y

⊗(k−1)
0 ,y

⊗(k−1)
1 , · · · ,y⊗(k−1)

t−1 , which is
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contained in the span of {v1,v2, · · · ,vr,wt,y0, · · · ,yt−1}⊗(k−1). Moreover from the relation (117)
and (118), one can see that the span of {v1,v2, · · · ,vr,wt,y0, · · · ,yt−1} is the same as the span of
{v1,v2, · · · ,vr, {ξj}j∈[[1,r]]k−1 , ξ1, · · · , ξt−1}. It follows that

|bt+1| .
√∑

j

b2(t+1)j + b2(t+1)1 + b2(t+1)2 + · · ·+ b2(t+1)t

= ‖ProjSpan{{vj1
⊗vj2

⊗···⊗vjk−1
}
j∈[[1,r]]k−1 ,τ0,τ1,··· ,τt−1}(atvt + btwt + ctξt)

⊗(k−1)‖2
6 ‖ProjSpan{v1,v2,··· ,vr,wt,y0,··· ,yt−1}⊗(k−1)(atvt + btwt + ctξt)

⊗(k−1)‖2
6 ‖ProjSpan{v,wt,y0,··· ,yt−1}(atvt + btwt + ctξt)‖k−1

2

= ‖atvt + btwt + ctProjSpan{v1,v2,··· ,vr,{ξj}j∈[[1,r]]k−1 ,ξ1,··· ,ξt−1}(ξt)‖k−1
2

.

(
|at|+ |bt|+

log n|ct|√
n

)k−1

. |at|k−1 . |at+1|/β1,

(138)

where in the first line we used (122), and in the last line of (138) we used our induction hypothesis
that ‖ProjSpan{v1,v2,··· ,vr,{ξj}j∈[[1,r]]k−1 ,ξ1,··· ,ξt−1}(ξt)‖2 . log n/

√
n.

Finally we estimate ct+1. We recall from (119), the coefficient ct+1 is the remainder of y
⊗(k−1)
t

after projecting on {vj1⊗vj2⊗· · ·⊗vjk−1
}j∈[[1,r]]k−1 , τ0, τ1, · · · , τt−1. It is bounded by the remainder

of y
⊗(k−1)
t after projecting on {vj1 ⊗ vj2 ⊗ · · · ⊗ vjk−1

}j∈[[1,r]]k−1 ,

|ct+1| 6 ‖y⊗(k−1)
t − ak−1

t v
⊗(k−1)
t ‖2 = ‖(atvt + btwt + ctξt)

⊗(k−1) − ak−1
t v

⊗(k−1)
t ‖2. (139)

The difference (atvt + btwt + ctξt)
⊗(k−1) − ak−1

t v
⊗(k−1)
t is a sum of terms in the following form,

η1 ⊗ η2 ⊗ · · · ⊗ ηk−1, (140)

where η1,η2, · · · ,ηk−1 ∈ {atvt, btwt+ ctξt}, and at least one of them is btwt+ ctξt. We notice that
by our induction hypothesis, ‖btwt + ctξt‖2 . |bt|‖wt‖2 + |ct|‖ξt‖2 . |bt|+ |ct|. For the L2 norm of
(140), each copy of atvt contributes at and each copy of btwt + ctξt contributes a factor |bt|+ |ct|.
We conclude that

|ct+1| 6 ‖(atvt + btwt + ctξt)
⊗(k−1) − ak−1

t v
⊗(k−1)
t ‖2 .

k−1∑

r=1

|at|k−1−r(|bt|+ |ct|)r. (141)

Combining with (136) that |at+1| � |β1||at|k−1, we divide both sides of (141) by |β1||at|k−1,

|ct+1|
|at+1|

.
1

|β1|
k−1∑

r=1

( |bt|
|at|

+
|ct|
|at|

)r

.
1

|β1|
k−1∑

r=1

(
1

|β1|
+

|ct|
|at|

)r

(142)

There are three cases:

1. If |ct|/|at| > 1, then

|ct+1|
|at+1|

.
1

|β1|
k−1∑

r=1

(
1

|β1|
+

|ct|
|at|

)r

.
1

|β1|

( |ct|
|at|

)k−1

. (143)

If k = 2, then |ct+1|/|at+1| . (|ct|/|at|)/nε. If k > 2, by our induction hypothesis |ct|/|at| .
β
1/(k−2)
1 /nε. Especially, (|ct|/|at|)k−2/|β1| . 1/nε. We still get that |ct+1|/|at+1| . (|ct|/|at|)/nε.
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2. If 1/|β1| . |ct|/|at| 6 1, then

|ct+1|
|at+1|

.
1

|β1|
k−1∑

r=1

(
1

|β1|
+

|ct|
|at|

)r

.
1

|β1|

( |ct|
|at|

)
.

1

nε

( |ct|
|at|

)
. (144)

3. Finally for |ct|/|at| . 1/|β1|, we will have

|ct+1|
|at+1|

.
1

|β1|
k−1∑

r=1

(
1

|β1|
+

|ct|
|at|

)r

.
1

|β1|

(
1

|β1|

)
.

1

|β1|2
. (145)

In all these cases we have |ct+1|/|at+1| . min{√n,1(k > 3)|β1|1/(k−2)}/nε. This finishes the proof
of the induction (126).

For (127), since τt is orthogonal to {vj1 ⊗vj2 ⊗· · ·⊗vjk−1
}j∈[[1,r]]k−1 , τ0, τ1, · · · , τt−1, Lemma 4.1

implies that conditioning on ξj = Z[vj1⊗vj2⊗· · ·⊗vjk−1
] for index j = (j1, j2, · · · , jk−1) ∈ [[1, r]]k−1

and ξs+1 = Z[τs] for 0 6 s 6 t − 1, ξt+1 = Z[τt] is an independent Gaussian vector, with
each entry N (0, 1/n). By the standard concentration inequality, it holds that with probability
1 − ec(logn)

2
, ‖ξt+1‖2 = 1 + O(log n/

√
n), |〈a, ξt+1〉| and the projection of ξt+1 on the span of

{v1,v2, · · · ,vr, {ξj}j∈[[1,r]]k−1 , ξ1, · · · , ξt−1} is bounded by log n/
√
n. This finishes the proof of the

induction (127).

Next, using (126) and (127) as input, we prove that for

t > 1 +
1

ε

(
1

2
+

2 log |β1|
log n

)
+

log log(
√
n|β1|)

log(k − 1)
(146)

we have

yt =

r∑

j=1

atjvj +
∑

j

btjξj + bt1ξ1 + · · ·+ btt−1ξt−1 + ctξt, (147)

such that

|atj | .
(
log n√

n

1

|β1|

)k−1

|atj∗ |, j 6= j∗,

bt(j∗,j∗,··· ,j∗) =
atj∗
βj∗

+O

(
log n|at|
|β1|2

√
n

)
, |b(t+1)j∗ | .

log n√
n|β1|2

|atj∗ |, j∗ = (j∗, j∗, · · · , j∗),

|bt1|, |bt2|, · · · , |bt(t−1)| .
(log n)1/2|at|
|β1|3/2n1/4

, |ct| . |at|/β2
1

(148)

Let xt = |ct/at| 6 n−ε|β|1/(k−2), and rt = maxj 6=j∗(β
1/(k−2)
j atj)/(β

1/(k−2)
j∗

atj∗). For t = 1, our
Assumption 2.6 implies that

β
1/(k−2)
j a1j 6 (βj〈u,vj〉k−2)(k−1)/(k−2)

6 ((1− 1/κ)βj∗〈u,vj∗〉k−2)(k−1)/(k−2) 6 (1− 1/κ)β
1/(k−2)
j∗

a1j∗ .
(149)

Thus we have that r1 6 (1− 1/κ). We recall from (131)

β
1/(k−2)
j a(t+1)j =

(
β
1/k−2
j (atj + bt〈wt,vj〉+ ct〈ξt,vj〉)

)k−1

=

(
β
1/k−2
j (atj +O

(
|at|

log n(1/|β1|+ xt)√
n

))k−1

,

(150)
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where we used (126) and (127). Thus it follows that

rt+1 = max
j 6=j∗

(
β
1/k−2
j (atj +O(|at| log n(1/|β1|+ xt)/

√
n)

β
1/k−2
j∗

(atj∗ +O(|at| log n(1/|β1|+ xt)/
√
n)

)k−1

6

(
rt +O(log n(1/|β1|+ xt)/

√
n)

1 + O (log n(1/|β1|+ xt)/
√
n)

)k−1
(151)

For xt, (142) implies

xt+1 .
1

|β1|
k−1∑

r=1

(
1

|β1|
+ xt

)r

, (152)

from the discussion after (142), we have that either xt+1 . 1/|β1|2, or xt+1 . xt/n
ε. Since

x1 = |c1/a1| . n1/2−ε, and r1 6 (1− 1/κ) we conclude from (151) and (152) that

xt = |ct/at| . 1/β2
1 , rt . (log n/(|β1|

√
n))k−1, (153)

when

t >
1

ε

(
1

2
+

2 log |β1|
log n

)
+

log log(
√
n|β1|)

log(k − 1)
. (154)

To derive the upper bound of bt1, bt2, · · · , bt(t−1), we use (138).

∑

j

b2(t+1)j + b2(t+1)1 + b2(t+1)2 + · · ·+ b2(t+1)t

6 ‖atvt + btwt + ctProjSpan{v1,v2,··· ,vr,{ξj}j∈[[1,r]]k−1 ,ξ1,··· ,ξt−1}(ξt)‖
2(k−1)
2

=

(
a2t +O

(
|at| (|bt|+ |ct|)

log n√
n

+

(
|bt|+ |ct|

log n√
n

)2
))k−1

,

(155)

where we used (127). The first term b(t+1)j is the projection of y
⊗(k−1)
t on vj1 ⊗ vj2 ⊗ · · · ⊗ vjk−1

,

b(t+1)j =

k−1∏

s=1

〈atvt + btwt + ctξt,vjs〉 =
k−1∏

s=1

(
atjs +O

(
log n(|bt|+ |ct|)√

n

))
, (156)

and

∑

j

b2(t+1)j =

(
k−1∑

s=1

|〈atvt + btwt + ctξt,vjs〉|2
)k

=

(
a2t +O

(
|at| (|bt|+ |ct|)

log n√
n

+

(
|bt|+ |ct|

log n√
n

)2
))k−1

,

(157)

where we used (54) that |〈ξj ,vj〉|, |〈ξ1,vj〉|, · · · , |〈ξt,vj〉| . log n/
√
n. Now we can take difference

of (155) and (157), and use that |bt| . |at|/|β1| from (126) and |ct| . |at|/|β1|2 from (153),

b2(t+1)1 + b2(t+1)2 + · · ·+ b2(t+1)t . a
2(k−1)
t

log n

|β|√n
. (158)
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Using (156) and (153), we get that

b(t+1)j∗ = ak−1
tj∗

(
1 + O

(
log n√
n|β1|

))
, j∗ = (j∗, j∗, · · · , j∗)

|b(t+1)j | .
log n√
n|β1|

|atj∗ |k−1, j 6= j∗.

(159)

From (131), (136) and (153), we have that

a(t+1)j∗ = βj∗b(t+1)j∗ = βj∗a
k−1
tj∗

(
1 + O

(
log n√
n|β1|

))
,

|a(t+1)j | .
(

log n√
n|β1|

)k−1

|a(t+1)j∗ |, j 6= j∗.

(160)

Using the above relation, we can simplify (158) and (159) as

|b(t+1)1|, |b(t+1)2|, · · · |b(t+1)t| .
(log n)1/2|at+1|
|β1|3/2n1/4

. (161)

and

b(t+1)j∗ =
a(t+1)j∗

βj∗

(
1 + O

(
log n√
n|β1|

))
,

|b(t+1)j | .
log n√
n|β1|2

|a(t+1)j∗ |, j 6= j∗.

(162)

This finishes the proof of (148).
With the expression (148), we can process to prove our main results (20) and (21). Thanks to

(127) and (147), for t satisfies (146), we have that with probability at least 1−O(e−c(logn)2)

‖yt‖22 = a2tj∗

(
1 +

1

β2
j∗

+
2〈vj∗ , ξj∗〉

βj∗
+O

(
log n√

n

(
log n√
n|β1|

)k−1

+
log n

β2
1

√
n
+

(log n)3/2

|β1|3/2n3/4
+

1

β4
1

))

(163)

where j∗ = (j∗, j∗, · · · , j∗). By rearranging it we get

1/‖yt‖2 = a2tj∗

(
1− 1

2β2
j∗

− 2〈vj∗ , ξj∗〉
βj∗

+O

(
log n√

n

(
log n√
n|β1|

)k−1

+
log n

β2
1

√
n
+

(log n)3/2

|β1|3/2n3/4
+

1

β4
1

))

(164)

We can take the inner product 〈a,yt〉, and multiply (164)

〈a,ut〉 =
〈a,yt〉
‖yt‖2

= sgn(atj∗)

((
1− 1

2β2
j∗

)
〈a,vj∗〉+

〈a, ξj∗〉 − 〈a,vj∗〉〈vj∗ , ξj∗〉
β

)

+OP

(
log n√

n

(
log n√
n|β1|

)k−1

+
log n

β2
1

√
n
+

(log n)3/2

|β1|3/2n3/4
+

1

β4
1

)
,

(165)

where we used (54) that with high probability |〈a, ξj〉|, |〈a, ξs〉| for 1 6 s 6 t are bounded by

log n/
√
n. This finishes the proof of (20). For β̂ in (21), we have that

X[u⊗k
t ] =

X[y⊗k
t ]

‖yt‖k2
=

〈yt,X[y
⊗(k−1)
t ]〉

‖yt‖k2
=

〈yt,yt+1〉
‖yt‖k2

. (166)
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Thanks to (153), (160) and (127), for t satisfies (146), with probability at least 1−O(e−c(logn)2),
we can write the first term on the righthand side of (82), we have

yt+1 =
∑

j

a(t+1)jvj +
∑

j

b(t+1)jξj + b(t+1)1ξ1 + · · ·+ b(t+1)tξt + ct+1ξt+1, (167)

where |ct+1| . |at|k−1/β2,

a(t+1)j∗ = βj∗b(t+1)j∗ = βj∗a
k−1
tj∗

(
1 + O

(
log n√
n|β1|

))
,

|a(t+1)j | .
(

log n√
n|β1|

)k−1

|a(t+1)j∗ |, j 6= j∗

(168)

and

b(t+1)j∗ =
a(t+1)j∗

βj∗

(
1 + O

(
log n√
n|β1|

))
,

|b(t+1)j | .
log n√
n|β1|2

|a(t+1)j∗ |, j 6= j∗,

|b(t+1)1|, |b(t+1)2|+ · · ·+ |b(t+1)t| . ak−1
t

(log n)1/2

|β|1/2n1/4
.

(169)

From the discussion above, combining with (147) and (148) with straightforward computation, we
have

〈yt,yt+1〉 = βj∗a
k
tj∗

(
1 +

1

β2
j∗

+
(k + 1)〈ξj∗ ,vj∗〉

βj∗
+O

(
log n√

n

(
log n√
n|β1|

)k−1

+
log n

β2
1

√
n
+

(log n)3/2

|β1|3/2n3/4

))
.

(170)

By plugging (164) and (170) into (166), we get

X[u⊗k
t ] = sgn(aktj∗)

(
βj∗ + 〈ξj∗ ,vj∗〉 −

k/2− 1

βj∗

)
(171)

+ O

(
log n√

n

(
log n√
n|β1|

)k−1

+
log n

|β1|
√
n
+

(log n)3/2

|β1|1/2n3/4
+

1

|β1|3

)
(172)

Since by our assumption, in Case 1 we have that βj∗ > 0. Thanks to (160) at+1j∗ = βak−1
tj∗

(1 +
o(1)), especially at+1j∗ and atj∗ are of the same sign. In the case 〈u,vj∗〉 > 0, we have a1j∗ =
β〈u,vj∗〉k−1 > 0. We conclude that atj∗ > 0. Therefore sgn(X[u⊗k

t ]) = sgn(atj∗)
k = +, and it

follows that

X[u⊗k
t ] = βj∗ + 〈ξj∗ ,vj∗〉 −

k/2− 1

βj∗
(173)

+ O

(
log n√

n

(
log n√
n|β1|

)k−1

+
log n

|β1|
√
n
+

(log n)3/2

|β1|1/2n3/4
+

1

|β1|3

)
(174)

This finishes the proof of (21). The Cases 2, 3, 4, by simply changing (βj∗ ,vj∗) in the righthand
side of (20) and (21) to the corresponding limit.
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4.4 Proof of Theorem 2.9

Proof of Theorem 2.9. We first prove (25). If u is uniformly distributed over the unit sphere, then
it has the same law as η/‖η‖2, where η is an n-dim standard Gaussian vector, with each entry
N (0, 1). With this notation

|βj〈u,vj〉k−2| = |βj〈η,vj〉k−2|/‖η‖k−2
2 , (175)

and we can rewrite P(i = argmaxj |βj〈u,vj〉k−2|) as

P(i = argmaxj |βj〈u,vj〉k−2|) = P(i = argmaxj |βj〈η,vj〉k−2|). (176)

Since v1,v2, · · · ,vr are orthonormal vectors, 〈v1,η〉, 〈v2,η〉, · · · , 〈vr,η〉 are independent standard
Gaussian random variables. Then we have

pi = P(i = argmaxj |βj〈η,vj〉k−2|) = P(|βi/β`|1/k−2〈η,vi〉| > |〈η,v`〉|, for all i 6= `)

=

∫ ∞

0

√
2

π
e−x2/2



∏

` 6=i

∫ (

|βi|

|β`|

) 1
k−2 x

0

√
2

π
e−y2/2dy


 dx.

(177)

This gives (25). Using the fact we can rewrite u as η/‖η‖2, we have that with probability 1 −
O(1/

√
κ),

1/
√
κn 6 |〈u,vi〉| 6

√
κ/n, (178)

for all 1 6 i 6 r. Thus Assumption (2.5) holds, and especially,

max
j

|βj〈u,vj〉k−2| > |β1〈u,v1〉k−2| > |β1(1/
√
κn)k−2| & nε. (179)

Theorem 2.9 then follows directly from Theorem 2.7.

4.5 Proof of Corollaries 2.8, 2.10 and 2.11

Proof of Corollary 2.8. According to the definition of ξ in (20) of Theorem 2.7, i.e. ξ = Z[v
⊗(k−1)
j∗

],
is an n-dim vector, with each entry i.i.d. N (0, 1/n) Gaussian random variable. We see that

〈ξ,v〉 d
= N (0, 1/n) .

Especially with high probability we will have that |〈ξ,v〉| . log n/
√
n. Then we conclude from

(21), with high probability it holds

β̂ = βj∗ +O

(
1

βj∗
+

log n√
n

)
. (180)

With the bound (180), we can replace 〈a,v〉/(2β2) on the righthand side of (20) by 〈a,v〉/(2β̂2),
which gives an error

∣∣∣∣∣
〈a,v〉
2β2

j∗

− 〈a,v〉
2β̂2

∣∣∣∣∣ = O

(
|〈a,v〉|

(
1

|βj∗ |4
+

log n

|βj∗ |3
√
n

))
. (181)
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Combining the above discussion together, we can rewrite (20) as

〈a, v̂〉 −
(
1− 1

2β̂2

)
〈a,v〉 = 〈a, ξ〉 − 〈a,vj∗〉〈vj∗ , ξ〉

βj∗

+OP

(
log n√

n

(
log n√
n|β1|

)k−1

+
log n

|β1|2
√
n
+

(log n)3/2

|β1|3/2n3/4
+

1

|β1|4

)
,

(182)

with high probability, where we used that |βj∗ | & |β1|.
Again thanks to the definition of ξ in (20) of Theorem 2.1, i.e. ξ = Z[v⊗(k−1)], is an n-dim

vector, with each entry i.i.d. N (0, 1/n) Gaussian random variable, we see that

〈a, ξ〉 − 〈a,vj∗〉〈vj∗ , ξ〉 = 〈a− 〈a,vj∗〉vj∗ , ξ〉, (183)

is a Gaussian random variable, with mean zero and variance

E[〈a− 〈a,vj∗〉vj∗ , ξ〉2] =
1

n
‖a− 〈a,vj∗〉vj∗‖22 =

1

n
〈a, (In − vj∗v

>
j∗)a〉 (184)

=
1 + o(1)

n
〈a, (In − v̂j∗ v̂

>
j∗)a〉. (185)

This together with (180), (182) as well as our assumption (22)

√
nβ̂√

〈a, (In − v̂v̂>)a〉

[(
1− 1

2β̂2

)−1〈a, v̂〉 − 〈a,vj∗〉
]

d−→ N (0, 1). (186)

Under the same assumption, we have similar results for Cases 2, 3, 4, by simply changing (βj∗ ,vj∗)
in the righthand side of (7) and (8) to the corresponding expression.

Proof of Corollary 2.10. For k > 3 and |β1| > n(k−2)/2+ε, the assumption 22 holds trivially. The

claim (29) follows from (24). For (30), we recall that in (28), ξ = Z[v
⊗(k−1)
i ], is an n-dim vector,

with each entry i.i.d. N (0, 1/n) Gaussian random variable. We see that

〈ξ,vi〉 d
= N (0, 1/n) .

Especially with high probability we will have that |〈ξ,v〉| . log n/
√
n. Then we conclude from

(28), with high probability it holds

β̂ = βi +O

(
1

βi
+

log n√
n

)
. (187)

With the bound (187), we can replace (k/2 − 1)/βi on the righthand side of (28) by (k/2 − 1)/β̂,
which gives an error

∣∣∣∣
k/2− 1

βi
− k/2− 1

β̂

∣∣∣∣ = O

(
1

|β1|2
+

log n

|β1|
√
n

)
, (188)

where we used that |βi| & |β1|. Combining the above discussion together, we can rewrite (28) as

βi = β̂ +
k/2− 1

β̂
− 〈ξ,vi〉+OP

(
log n√

n

(
log n√
n|β1|

)k−1

+
log n

|β1|
√
n
+

(log n)3/2

|β1|1/2n3/4
+

1

|β1|2

)
. (189)
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Since 〈ξ,vi〉 d
= N (0, 1/n), and the error term in (189) is much smaller than 1/

√
n. We conclude

from (189)

√
n

(
βi − β̂ +

k/2− 1

β̂

)
d−→ N (0, 1). (190)

This finishes the proof of (30).

Proof of Corollary 2.11. Given the significance level α, the asymptotic confidence intervals in Corol-
lary 2.11 can be calculated from Corollary 2.10 by bounding the absolute values of the left hand
sides of (29) and (30) at zα.
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