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Abstract

We propose a new bootstrap-based online al-
gorithm for stochastic linear bandit problems.
The key idea is to adopt residual bootstrap
exploration, in which the agent estimates the
next step reward by re-sampling the residu-
als of mean reward estimate. Our algorithm,
residual bootstrap exploration for stochastic
linear bandit (LinReBoot), estimates the lin-
ear reward from its re-sampling distribution
and pulls the arm with the highest reward es-
timate. In particular, we contribute a theoreti-
cal framework to demystify residual bootstrap-
based exploration mechanisms in stochastic
linear bandit problems. The key insight is that
the strength of bootstrap exploration is based
on collaborated optimism between the online-
learned model and the re-sampling distribu-
tion of residuals. Such observation enables us
to show that the proposed LinReBoot secure
a high-probability O(dy/n) sub-linear regret
under mild conditions. Our experiments sup-
port the easy generalizability of the ReBoot
principle in the various formulations of linear
bandit problems and show the significant com-
putational efficiency of LinReBoot.

1 INTRODUCTION

Stochastic linear bandit is an online learning problem
that the learning agent acts by pulling arms, where
each arm is associated with a feature vector, then
learning the arms information from the corresponding
random rewards. In such problems, the typical goal
of a learning agent is to maximize its cumulative re-
ward. Learning more about an arm (explore) or pulling
the arm with the highest estimated reward (exploit)

leads to the well-known ezploration- exploitation trade-
off, which is the central trade-off captured in many
decision-making applications in modern online service
industries. Consequently, the design of stochastic linear
bandit algorithms demands an easy-generalizable im-
plementation across various contextualize actions and
reward generation processes.

In the past decade of bandit literature, such demands
have invited researchers to investigate bootstrap-based
exploration-exploitation trade-offs and have drawn ris-
ing attention [Baransi et al., 2014, Eckles and Kaptein,
2014, Osband and Van Roy, 2015, Vaswani et al., 2018,
Hao et al., 2019, Kveton et al., 2019b, Wang et al., 2020].
Yet, prior works on bootstrap-based bandit algorithms
focus on provable multi-armed bandit algorithms and
only provide a limited empirical evaluation of bootstrap-
based stochastic linear bandit algorithms, and their
theoretical counterpart remains unknown. Such knowl-
edge gap of bootstrapping stochastic linear bandit per-
suades our investigation on the provable bootstrap-
based stochastic linear bandits: Can we theoretically
and empirically support the validity and easy-
generalizability of bootstrapping procedure in
stochastic linear bandit algorithms design? In
particular, we aim to deliver a generic framework to
demystify the bootstrap optimism in stochastic linear
bandit problems and validate the easy generalizability
of the bootstrap principle across various contextual
linear bandit problems.

Contributions. We introduce LinReBoot algorithms
that implement Residual Bootstrap Exploration for
stochastic linear bandit problem with sub-linear regret.
We theoretically show that LinReBoot secures O(dy/n)
regret where d is the dimension of features. This sub-
linear regret bound matches the regret bound of the
same order as those theoretical results of Linear Thomp-
son Sampling algorithms. The key to achieving such
sub-linear regret guarantee is to carefully manage and
collaborate sample and bootstrap optimism (Section
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4.1). In particular, by measuring the "sample-bootstrap
optimistic estimated discrepancy ratio” of the optimal
arm, LinReboot successfully avoids over or under explo-
ration and theoretically secures sub-linear mean regret
with high-probability. To our knowledge, this is the
first theoretical analysis to support the validity and
efficiency of the residual bootstrap-based procedure
for stochastic linear bandit problems. We empirically
show that LinReBoot rivals or exceeds competing al-
gorithms including Linear Thompson Sampling, Linear
PHE, Linear GIRO, and Linear UCB under stochastic
linear bandit problem as well as more complicated lin-
ear bandit settings. These significant results support
the easy-generalizability of proposed LinReBoot. In
summary, our contributions are as follows:

Propose LinReBoot algorithms that implement Resid-
ual Bootstrap Exploration in linear bandit problems
without boundness assumption of rewards.
Theoretically show that LinReBoot secures O(dy/n)
regret, matching the regret bound of the same order as
those theoretical results of Linear Thompson Sampling
algorithms.

Empirically show that LinReBoot rivals or exceeds
baseline algorithms and supports that LinReBoot is
easy-generalizable among linear bandit problems.

Related Works. Bootstrap-based contextual bandit
algorithms design has been actively studied in the last
half-decade and drawn a surge of interest from both
theoretical studies and industrial practice [Elmachtoub
et al., 2017, Eckles and Kaptein, 2014, Osband et al.,
2016, Kveton et al., 2019b, Hao et al., 2019]. Bootstrap-
based bandit algorithm design is a paradigm of sequen-
tial decision-making based on an exploration mecha-
nism with no pre-defined mean reward model. Such
paradigm enjoys a decisive advantage that engineers
are free to deploy any reward model of interests without
painful adaption to problem structure [Kveton et al.,
2019b,a]. ReBoot [Wang et al., 2020] provided a the-
oretical logarithmic regret guarantee for multi-armed
bandit (MAB) and empirical investigation to validate
the easy generalizability of the ReBoot principle. Our
work aims to provide a theoretical guarantee for the
bootstrap-based linear bandit algorithms and empiri-
cally investigate more general contextual linear bandit
setting to validate the ReBoot principle.

One close related work is [Kveton et al., 2020a] which
introduces perturbation of past samples for exploration
under stochastic linear bandit problem. The limitation
of [Kveton et al., 2020a] is the boundness of rewards,
indicating many broader classes of rewards such as
Gaussian rewards are not applicable with a theoretical
guarantee. In contrast, the proposed LinReBoot algo-
rithms relax the boundness reward assumption and thus
validate bootstrap-based bandit algorithms in wider

bandit environments with a broader class of reward
generation processes.

Early works about exploration in bandit problems
[Abbasi-Yadkori et al., 2011, Langford and Zhang, 2007,
Dani et al., 2008] are practical but no guarantee of the
optimality. Some works [Wang et al., 2020, Kveton
et al., 2019b,a, Thompson, 1933, Auer et al., 2002] pro-
vide well designed exploration for bandit problems and
have their own principles for adopting to more general
problems. In these works, three principles including
ReBoot[Wang et al., 2020], GIRO[Kveton et al., 2019b]
and PHE[Kveton et al., 2019a] are devising exploration
mechanism based on up-to-now history instead of on
pre-defined reward model in the other two principles
TS[Thompson, 1933] and UCB[Auer et al., 2002]. Our
work generalizes ReBoot into stochastic linear bandit
problems.

Notations. Let [n] be set {1,2,...,n}. 1 is a vector
with all ones and I is the identity matrix. For a vector
v, |lv||, is 2-norm of v and |Jv||% := VT Av for a
semidefinite matrix A. Let (-,-) be the inner product
operation. Denote F; as the history of randomness up
to round t. E¢[-] := E[-|F¢—1] is defined as the condi-
tional expectation given F;_; and Py(+) := P(+|Fe—1) is
defined as the conditional probability given F;_;. I{-}
is indicator function. For a set or event E, we denote
its complement as E. N (u,0?) is Gaussian distribution
with mean g and variance 2. We use O for big O
notation up to logarithmic factor.

2 STOCHASTIC LINEAR BANDIT

Contextualize Action Set. In stochastic lin-
ear bandit problem, we identify the actions with
d—dimensional features from A C R? and assume | A,
the size of the action set, is finite. Let K := |A| be
the number of actions (arms), x; € R? be the context
vector of the k-th arm, that is, A = {@1,..., Tk }.

Reward generating mechanism. The reward func-
tion is parameterized by @ € R? such that, at time
t the agent chooses an action I; € [K| with feature
X: =z, € A, the reward is generated by

Y = (X,0) + ¢ (1)

Specifically, the reward obtained by the agent at round
t when pulling arm I; = k is generated from a distribu-
tion with mean py := asgé’, conditioning on context xg.
The property of noise ¢; is described in Assumption 2.
Furthermore, denote the recieved reward by r;, and
the reward random variable by Y; at round t.

Regret. Without loss of generality, assume that arm
1 is the unique optimal arm, that is pu; > pg vk # 1.



The optimal gap of the k-th arm is Ay := 3 — ux > 0.
The expected n-round regret is denoted as

n

K
Ry =Y AEY I{I; = k}]. (2)
k=2

t=1

The goal of the agent is to maximize the expected
cumulative reward in n rounds, which is equivalent to
minimizing the expected regret R,,.

Assumption 1. (Boundness assumptions) True pa-
rameter @ is bounded: |0y < Ss.

Besides, we denote L as the upper bound for context
vectors: ||xll, < L for all k € [K]. Assumption 1 is
referred to the boundness assumptions in the stochastic
linear bandit literature and is to ensure the regret is
bounded if the agent pulls any sub-optimal actions (see
Section 5 in [Abbasi-Yadkori et al., 2011]).

Assumption 2. (Noise Clipping assumption) Noise
process {e:}32, described in (1) satisfies that for some
Lla L2 > 07

M SE[e | Fo] < BT W20, (3)

where Fy—1 = {e1, 1, ,ee—1, 11}

Assumption 2 implies that stochastic process {e;}2;
is conditionally sub-gaussian with constant Lo. L
contributes to the lower bound of moment generat-
ing function suggested by [Zhang and Zhou, 2020].
Note that the Assumption 2 allows heteroscedasticity
among different arms by choosing Ly as the largest
variance among arms. Such heteroscedasticity consid-
eration arises and has been identified as a challenge in
applications of Bayesian optimization [Kirschner, 2021,
Cowen-Rivers et al., 2020].

3 RESIDUAL BOOTSTRAP
EXPLORATION

3.1 REBOOT PRINCIPLE

This section presents essential proof of concepts to
implement ReBoot principle [Wang et al., 2020]. In
general, each round of interaction, the decision policy
admits four subroutines to implement ReBoot princi-
ple: 1) Learning, 2) Fitting, 3) Bootstrapping, and 4)
Exploring. Following elaborates on each subroutine:

1) Model Learning. The first subroutine outputs a
learned model based on current collected data. Our
implementation learns the parameter 6 in Eq.(1) by
some user-specified model.

2) Data Fitting. The second subroutine fits the cur-
rent data set with the learned model in the previous

subroutine and then outputs the residual set. Intu-
itively, the residuals measure the goodness of fit of the
learned model and should drop a hint on the right
amount of exploration. In other words, the residuals
should suggest a right magnitude of exploration bonus
in decision policy (8). How to manage and integrate
uncertainty behind residuals into the exploration mech-
anism of policy is the main challenge.

3) Residuals Bootstraping. The third subroutine
associates the residuals obtained the last subroutine
with a bootstrapping distribution. Instead of maintain-
ing a belief distribution on a parameter in the Bayesian
approach, ReBoot principle maintains a bootstrapping
distribution on the statistical error based on residuals.
The challenge is to justify the efficacy of residual-based
optimism construction in both theory and practice.

4) Actions Exploring. The fourth subroutines sam-
ple the exploration bonus from the bootstrapping dis-
tribution and output an index for each action. Such
bootstrap procedure is more computationally efficient
than prior efforts since this procedure only requires
drawing a sample from the bootstrapping distribution.
The challenge is to prove that such bootstrap procedure
secures sub-linear regret in theory.

3.2 LINREBOOT ALGORITHM

We propose the Linear Residual Bootstrap Exploration
algorithm (LinReBoot, Algorithm 1) for stochastic lin-
ear bandit problems. This section elaborates the four
subroutines in Section 3.1 for the proposed LinReBoot.

1) LinReBoot uses ridge regression procedure, whose
learned parameter is 6, (4b) and estimated mean re-
ward for arm k is fip; (4c). Such way to estimate
mean reward is easy to manage the confidence [Abbasi-
Yadkori et al., 2011]. Thus, we focus on confidence
management for the bootstrap-based exploration.

Ridge Regression Procedure. LinReBoot fits linear
model at round ¢ as follow,

V=X X, 1+, (4a)
0, =V X Y, (4b)
fin: = x} 0y, Yk € [K], (4c¢)

where X, 1 = (X1,..,X;_1)" € R¢-DUxd The 7
th row of X;_; is the context X for 7 € [t — 1],
Y, 1= (Y1,...,Y;_1)T is reward vector whose elements
are rewards up to round ¢ — 1. A\ denotes the regular-
ization level. V'; denotes the sample covariance matrix
up to round ¢ and 6, is the ridge estimation of target
parameter 0 in (1). fix ¢ denotes the estimated mean of
arm k based on history. Note that the first K rounds
in proposed LinReBoot is fully exploring each arm



once. In other words, I; =t when ¢ € [K], indicating
X = (z1,....,xr)" € REXI We call this X i the
context matrix with rank r < min(K, d) and singular
values a1, ..., 0. Also define 02, < 07 <02, Vi€ [r].

With these definitions, we make a mild assumption
about the shrinkage effect of ridge regression:

Assumption 3. (Validity of Ridge Regression) The
singular value decomposition of context matriz X i
is denoted as X = GXU where G € REXK
¥ € REX4 gnd U € R, Define Q == (X' +
M)7IET e REXK and Z .= GQXZU € RE*X?, Let
z1 € R? be the first row of Z. Given any X > 0,
there exists a corresponding positive scalar S1 such that
|x] 0 — 2] 0] > S, for the § in (1).

Remark 1. Assumption 8 provides a lower bound of
the absolute difference between true mean x{ 6 and
normalized mean z{ @ of the optimal arm. Note that
if \ =0, then zy — x1 and S1 — 0. Thus this scalar
S1 measures the small perturbation on the mean of
the optimal arm when the ridge regression procedure is
applied. This Z can be interpreted as a ridge shrink-
age context matriz [Goldstein and Smith, 1974]. One
important phenomenon of online ridge regression is
that even if the ridge estimator is biased, the shrinkage
effect from ridge estimation provides exploration for
the agent leading to making a correct decision. The
positive scalar S1 describes the shrinkage effect on the
context. That is, the existence of S1 indicates the ridge
procedure is valid and its shrinkage effect exists.

2) The fitting part of LinReBoot outputs the residuals
under the linear model framework,

Chitii = Thyi — [ty Vi € [Ske-1], (5)
where si ;1 = Zt;:ll I{I, = k} is the number of
times pulling arm k& by round ¢ — 1, 71 ; is the i-th
reward of arm k by round ¢ — 1. The goodness of fit of
the learned ridge regression model can be summarised

by Residual Sum of Squares(RSS) [Archdeacon, 1994]
which is defined as

Sk,t—1

RSSy. = Z €t (6)

i=1

Such measure plays an important role in the residual
bootstrap exploration mechanism.

3) The third part is Residuals Bootstrapping. This
subroutine is independent of the model which sug-
gests the power of generalizability of ReBoot prin-
ciple. ReBoot principle requires the computation of
the exploration bonus [Mammen, 1993], which is
3/;,1—1 T Wk i€k i, Where {wggi}iE Tt is resid-
ual bootstrap weights for arm & at round ¢.

Algorithm 1 LinReBoot

Require: )\, s190=..=3sgo=0
fort=1,...,n do
if t < K 41 then
I+t
else
Vi X[ X+
ét — Vlt/_lXtT_lYt_l
for k=1,..., K do
ki < Thyi — m;éta Vi€ {sp -1}

Generate {wy i }ii) "

ik < @ 0y + 31;171 ST whtiehti
end for
I; < argmax [iy,
ke[K]
end if

St S SI,,t—1 + 1 and Skt < Sk,t—1- Vk 7é 1;
Pull arm I; and get reward T s1,
X, [thl} and Y, « [YH}
Ty, T'I.,s1,
end for

Choice of Bootstrapping Weights. The bootstrap
weights considered in this work are i.i.d with zero mean
and variance o2 . They are independent of the noise pro-
cess {€:}:24. In the literature of bootstrap procedure
[Mammen, 1993] , the choices of bootstrap weights
distribution include Gaussian weights, Rademacher
weights and skew correcting weights. In LinReBoot,
we adopt the Gaussian bootstrap weights to enable an
efficient implement described at section 3.3.

4) The last subroutine is the action exploring based
on residual bootstrap. More specifically, for arm k
at round ¢, LinReBoot adds exploration bonus from
residual bootstrapping on the estimated mean fij; as
follow,

Sk,t—1

> Wikt (7)

i=1

1

Skt—1

Pkt = ke +

then agent pulls arm with the highest bootstrapped
mean,

I, = i ¢ 8
¢ = arg }?;%rg] [kt (8)

Note that the variance of bootstrapped mean fiy ; is
aislﬁilRSSm, indicating an adaptive amount of ex-

tra exploration is controlled by s;¢—1 and RSSy +.

Short Summary. Our proposed LinReBoot has fol-
lowing steps at round ¢t > K,

1) Ridge estimation: compute V', 0,.

2) Finding residuals for each arm: for arm k, compute

fine and {egri}iy "



3) Compute Bootstrapped mean for each arm: for arm
k, generate {wy ;i }:57"" and compute fiy; (7).

4) Pull arm with the highest fix ¢ then observe reward.

Algorithm 1 describes LinReBoot. The strength of
LinReBoot is its easy generalizability across different
bandit problems including linear bandits and even more
complicated structured problems (Appendix D.1).

Remark 2. (LinTS perturbs system parameter esti-
mate, LinReBoot perturbs expected reward estimates)
Compare with the LinTS in [Agrawal and Goyal, 2013b],
. . ~ LinTS
in which LinTS samples a perturbed parameter 6,

ét—l—ﬁtvt_lﬂnt with scaling By and appropriate indepen-
dent noise n, (defined in [Agrawal and Goyal, 2013b]).
Our proposed LinReBoot samples a perturbed expected
reward i 77 = (O, ) + Skiil ST Wi ik e
That is, LinReBoot is perturbing the expected reward
estimate via prediction error uncertainty, which is su-
pervised by real reward. In contrast, LinTS is perturbing
the system parameter, when can be wrong if the system
modeling is wrong.

3.3 EFFICIENT IMPLEMENTATION

By the attractive computational properties of Gaus-
sian distribution, the computational cost of LinReBoot
can be reduced significantly when Gaussian Boot-
strap weights are generated. Formally: assume wy, ¢ ; ~
N(0,02), Vk,t,i, recalling (7), for k € [K] and any
t > 1, bootstrapped mean fij ; follows a Gaussian dis-
tribution,

firet| Fi1 ~ N(fks, 0055 51 RS Sk ). (9)

Such Gaussian-distributed property of fi; indicates
that if we can update fix ¢, skt—1 and RSSy, incre-
mentally for arm k, this bootstrapped mean fij; can
be generated by Gaussian generator without inner loop
for generating weights. The first two terms, fi;+ and
Sk,t—1, are naturally updated in incremental manner.
For RSSy.+, following decomposition ensures an incre-
mental update,

Sk,t—1 Sk,t—1
2 A2 A
RSSi+ = E Thi T Skt—1f s — 2fk.t E Thi-
i=1 i=1

Then an efficient generation for iy, ¢|F;—1 is ensured by
the incremental updates for fig s, Ski—1, Yooy r,ii,
S04t . i Furthermore, since the residual bootstrap
weights are generated independently, fiy; among arms
are also independent given historical randomness and
can be sampled from one multivariate Gaussian genera-
tion simultaneously. Formally, (" = (i1, firce) "
is conditional distributed as

pD|F,_y ~ Ng(p®,50), (10)

where g = (fats---sfirce) " and ES) is a diago-
nal matrix with diagonal elements af,s,;f_lRS Sk,t. De-
tailed steps and more illustration about efficient imple-
mentation is provided in Appendix D.7.1. Moreover,
an empirical study about computational efficiency is
conducted in Appendix D.7.2 and Table.3 provides the
computational cost of our proposed LinReBoot as well

as other baseline algorithms.

4 OPTIMISM DESIGN

Optimistic Estimated Discrepancy. This section
identifies and demystifies the technical challenge of im-
plementing ReBoot principle in the stochastic linear
bandit problem. The key is to conduct a detailed investi-
gation to produce probabilistic control on the behavior
of the 'Optimistic Estimate Discrepancy (OED)’ of
the LinReBoot policy (8). In principle, the OED is
given by

OED = Optimism x Action Context Norm, (11)

where the Action Context Norm is given by Hmk”vf
and Optimism is given by c; ) for the kth action at
time ¢, defined in (14). Design of ¢, , will be elaborated
in Section 4.1.

Sufficient Explored Arms. We define the concept of
Sufficient Explore Arms to facilitate the formal regret
analysis of LinReBoot. Intuitively, an arm is sufficient
explored if its index produced by the policy (8) is less
than the mean reward of the optimal arm. Technically,
we say an arm k is sufficiently explored at time t if the
adopted OED (¢ Hwk“‘,t—l) is bounded by its optimal

gap (A).

The above notion of sufficient explored arm defines the
concept of ”set of sufficient explored arms” S;, formally

Spi={k e [K]: coplzrly <Ar},  (12)

where and c¢;j is the collaborated optimism and

ckllklly, -1 is an optimistic estimate of discrepancy
t

of policy index (8).

The key consequence of set (12) is that, any member
in &; enjoys the property

VieSN[K]: fije < pr; (13)

that is, the LinReBoot policy always avoids an index
(8) from sufficiently explored subset such that the boot-
strapped mean of this index is less than the optimal
mean reward unless all arm are sufficiently explored.
(see equation (82) in the proof of Lemma A.1 at section
B.1 for technical details).



4.1 COLLABORATE OPTIMISM

Here we elaborate on the collaborated optimism
adopted in the definition of sufficient explored arms
(12). Concretely, the collaborated optimism has a form

e = c1(t k) + ca(t, k), (14)

where ¢; (¢, k) is called sample optimism and ca(t, k) is
called bootstrap optimism for arm k at time ¢.

Sample Optimism. The sample optimism ¢ (¢, k)
serves as a control on the event that ”the realized sam-
ple estimate discrepancy (ED) is bounded by sample
OED”:

By = {|ﬂk,t -l < (tak)HwkHV[la} (15a)

K
Ey = m Et k, (15Db)
k=1

where ¢; (¢, k) is a constant which can be tuned by our
LinReBoot algorithm, making the bad event Et,;c and
E become unlikely. In fact, this E, ), is the event that
the least squared estimation is "close" to the true mean
reward for arm k at round ¢. In section 5, the probability
of the bad event E; is controlled by a parameter tuned
by users based on lemma 5.1.

Bootstrap Optimism.

The bootstrap optimism ¢y (¢, k) serves as a control on
the event that ”the realized bootstrap ED is bounded
by bootstrap OED”:

Ep g o= {lfne — Pt (16a)

K
/. /
E}:= () Ei
k=1

< co(t, k) [[@klly 1},

(16b)

where ¢a(t, k) is also a constant controlling the condi-
tional probability of the bad event Ef. This co(t, k) can
be tuned by our LinReBoot algorithm as well. Similar
to By, this E{,k is the event that the residual boot-
strap based estimation is "close" to the least squared
estimate [i ; for arm k at round ¢. In section 5, the
probability of bad event Ej is controlled by a parameter
tuned by users based on lemma 5.2.

4.2 OPTIMISM DESIGN

Choice of sample optimism («). The goal of this
part is to illustrate how to pick the sample OED such
that the event (15) holds with probability at least
1—« for a given confidence budget a € (0,1). Formally,
the goal is to find a sample OED function ¢ (t, k) :

[n] x [K] + R such that the event (15a) holds with
probability at least 1 — a,. To meet the purpose of the
risk control, we specify the sample OED function with
form

c1(t, k) == Ryr/dlog((1 + tL2/X\) /o) + A/2S,. (17)

Lemma 5.1 gives the formal result on why such choice
has confidence budget at most ay. For regret analysis,
define i, = min ap and a = (aq,...,ar) .

ke[K]

Choice of bootstrap optimism (5). The goal of
this part is to pick bootstrapped OED such that the
event (16) holds with probability at least 1—§ for given
confidence budget § € (0,1). Formally, the goal is to
find a sample OED function ca(t, k) : [n] x [K] — R
such that the event (16a) holds with probability at
least 1 — Bx. To meet the purpose of the risk control,
we specify the bootstrapped OED function with form

es(t, k) = \/ (202 RS Sk 10(2/Bi)) /57, oy a3+
(18)

Lemma 5.2 gives the formal result on why such choice
has a confidence budget at most §;. For regret anal-
ysis, let Bmin be the smallest By, Vk € [K] and 8 =

(617 "'aﬂK)T'

4.3 OPTIMISM FOR OPTIMAL ARM

Sample-Bootstrap OED ratio of the optimal
arm (b). Indicated by the regret analysis in [Kve-
ton et al., 2020a], instead of controlling the exploration
independently, the relation between two sources of ex-
plorations needs to be considered because this relation
is critical for finding the optimal action. To meet such
observation, we define a good event,

E! = {14 — fire > it 1)”331”‘/;1}' (19)

Given the good event E}, the policy index fi1; of the
optimal arm enjoys further positive bias, hence the
agent will have better chance to make optimal action.

In particular, we highlight a constant b used to measure
the ratio of the sample optimism (17) to the bootstrap
optimism (18); formally, we require b satisfies

c(t,1)/ea(t, 1) 2 b-\/2log (2/f1). (20)

Intuitively, the constant b measures the relation be-
tween sample OED and bootstrap OED of the optimal
arm. This b plays an important role of the probability
lower bound of event (19) (See Lemma 5.3). Note that,
if (20) holds, we have the lower bound (26) ; otherwise,
we have the lower bound (27). In both cases, we have
a lower bound for the event (19).



Notation Definition
Lo+ | dlog  LEnL2/A +AY28,)%
. d) ( 2\/ og( F— ) 2)
V2(n — K)dlog(1 + 321, 07 /d))
202log(72—) x
CQ(TL, d) -
V2(n — K)dlog(1+ 371, 07 /d))
3(n) 2K\/4L20u2) log(ﬁm%)(logn +1)
Ca(n) 285 L((n — K)(a+B) + K — 1)

Table 1: Notations in Regret Analysis

Good event for optimal arm (). Here we intro-
duce the event that over exploration and under explo-
ration of the optimal arm have been avoided simultane-
ously. Formally, the constant v is the probability that
the bandit index (8) is not over-exploration (Event F})
and also not under-exploration (Event E})

{ar(t, 1) < (e = o)/l < et D)} (21)

Technically, we can show that the probability of the
event (21) is lower bounded by the term

Py(EY) — Pi(Ey), (22)

with probability at least 1 —~ (Lemma 5.4). Such lower
bound is translated into an upper bound in regret
analysis.

5 FORMAL RESULTS

5.1 REGRET BOUND FOR LINREBOOT

Theorem 5.1. Under Assumptions 1, 2, 8 and tech-
nical conditions (32) and (74), with probability at least
1—(0+7), the expected regret of Algorithm 1 is bounded
as,
Rn SCI (041, /87 7> b)Cl (’I’L, d)

+C2(a71837aba 6)C2(n7d) (23)

+Cl (ala /87 Vs b)<3(n) + C4(n)7
where (1, (2, (3 and (4 are defined in Table.1 and C1,
Cy, My, My are described in Table.2.

Proof. See Appendix A.1.
O

Corollary 5.2. Let a = 8 = ﬁl, the order of high

probability upper bound in Theorem 5.1 is O(d\/n).

Proof. See Appendix A.2.
O

Corollary 5.2 shows that our regret bound scales as the
regret bound of Linear Thompson sampling [Agrawal
and Goyal, 2013b] and Linear PHE [Kveton et al.,
2020a).

5.2 VALIDATE SAMPLE OPTIMISM

Lemma 5.1. Under Assumptions 1, 2, 8 and choose
c1(t k) as (17), P(Eyy), the probability of bad event
corresponded to least squared estimation described in
(15), is controlled. Formally, Yk € [K|, Vay, > 0, Vt >
1

J

P(| ke — pl < er(t, B)llelly-1) 21— ap. (24)

Consequently, we have P(F;) < a := Zle Q.

Proof. See Appendix A.3.
O

Lemma 5.1 supports that the choice of ¢; (¢, k) at (17)
for the sample optimism event (15) is valid with confi-
dence budget «.

5.3 VALIDATE BOOTSTRAP OPTIMISM

Lemma 5.2. Suppose bootstrap weights are Gaussian.
Pick ca(t, k) as (18). The conditional probability of
bad event corresponding to residual bootstrap explo-

ration described in (16), Pi(Ej , ), is controlled. For-
mally, Vk € [K], VB >0, Vt > 1

Pr(lfine = kol < calt, R)ll@rlly 1) > 1= Br. (25)

Consequently, we have ]P’t(Eé) < B:= 215;1 B
Proof. See Appendix A.4. O

Lemma 5.2 supports that the choice of ca(t, k) at (18)
for the sample optimism event (16) is valid with confi-
dence budget 5.
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Lemma 5.3. Under Assumptions 1, 2, 3. Suppose
bootstrap weights are Gaussian. The conditional proba-
bility of anti-concentration for optimal arm described in
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Figure 1: Comparison of LinReBoot with Gaussian Bootstrap weights to baselines under three linear bandit
problems and three different context dimension d. First row referred to the setting in Section 6.1, second row is
for Section 6.2 and the last row is for Section 6.3. Three columns refer to d = 5, d = 10 and d = 20 respectively.

(19), P,(E!), has lower bound. Formally, if b satisfies

(20),

1 b
Py(E)) = o exp <—
(26)

Otherwise,

2
33(t.1)s, @[

20'(%RSSL,§

Py(E)) > ®(-b), (27)

where ® is the CDF of standard normal distribution.

Proof. See Appendix A.5.
O

Lemma 5.3 provides the lower bound result for good
event E}'. The result indicates that, if the bootstrap op-
timism is not too large’, then the LinReBoot procedure
can enjoy additional regret reduction.

5.5 VALIDATE GOOD EVENT

Lemma 5.4. Under Assumptions 1, 2, 3 and suppose
Bootstrap weights are Gaussian. Assume b satisfies a
technical condition (74). Then, with probability at least

1 — 7, Py(E)) —P(E}) has lower bound,

N B (U ) 1 P
v2m 2 1 M 7
803} (Umin + A) Mo log(l,;)
(28)
where My and My are defined in Table.2.
Proof. See Appendix A.6.
O

Lemma 5.4 provided the a high probability lower bound
for the difference between probability of the event for
anti-concentration Fj’ and probability of bad event
discussed in bootstrap optimism in Section 4.1. This
lower bound is also for probability of ‘not under and
not over exploration’ event (21). Lemma 5.4 links the
sample optimism and bootstrap optimism and holds a
right amount of exploration of the optimal arm.

6 EXPERIMENTS

In this section, we conduct empirical studies under
three settings: Stochastic Linear Bandit, Contextual



Linear Bandit and Linear Bandit with Covariates. Our
LinReBoot is compared to several baselines including
LinTS-G [Agrawal and Goyal, 2013b, Lattimore and
Szepesvéri, 2020], LinTS-IG [Honda and Takemura,
2014, Riquelme et al., 2018], LinPHE [Kveton et al.,
2020a], LinGIRO [Kveton et al., 2019b] and LinUCB
[Abbasi-Yadkori et al., 2011, Lattimore and Szepesvri,
2020] . More details about baselines can be found in
Appendix D.6.

6.1 STOCHASTIC LINEAR BANDIT

We compare LinReBoot to other linear bandit algo-
rithms under stochastic linear bandit described in Sec-
tion 2. We experiment with several dimensions d in-
cluding 5, 10 and 20. K is chosen as 100. Synthetic
data generation for this setting is deferred to Appendix
D.2 in the supplementary material. Results. The first
row of Figure 1 reports the results for Stochastic Lin-
ear Bandit setting. Our LinReBoot rivals LinTS-G and
LinTS-IG while substantially exceeds LinGIR0, LinPHE
and LinUCB. When d increases, the performance of
LinReBoot rivals and exceeds the best of other meth-
ods.

6.2 CONTEXTUAL LINEAR BANDIT

In the second experiment, we compare LinReBoot to
other linear bandit algorithms under Contextual Linear
Bandit where the contexts are generated from some dis-
tributions by arms. Note that this setting matches pre-
vious work [Chu et al., 2011]. Linear bandit algorithms
can also be applied under this kind of environment.
In our experiment, the LinReBoot is implemented as
Algorithm 2 in Appendix D.1. Like the setting in Sec-
tion 6.1, the dimension of d is chosen as 5 or 10 or 20
and the synthetic data generation for this setting is
described in Appendix D.2. Results. The second row
of Figure 1 reports the results for Contextual Linear
Bandit. Our LinReBoot rival LinTS-G and substan-
tially exceed LinTS-IG, LinGIRO, LinPHE and LinUCB.
When d increases, the performance of LinReBoot rivals
LinTS-IG and exceeds others.

6.3 BANDIT WITH COVARIATES

Our last experiment is conducted under the setting of
linear bandit with covariates, which is also called linear
parametrized bandit by [Rusmevichientong and Tsitsik-
lis, 2010]. This problem is significantly different from
the previous two problems in the following ways. Each
arm has its true parameter 0. That is, each arm has
its estimate 0 from the ridge regression procedure in
Section 3.2. Also, unlike the setting in Section 6.2, the

contexts are generated from a distribution that is inde-
pendent of arms. Thus the overall task in this setting
is not only the estimation of the target parameter 6,
but also the detection of which arm a context belongs
to. This case is also referred to as the online decision-
making under covariates [Bastani and Bayati, 2020].
For the LinReBoot in this setting, detailed algorithm is
provided as Algorithm 3 in Appendix D.1. d is chosen
as b or 10 or 20 and K = 10. Synthetic data generation
for this setting is described in Appendix D.2. Results.
The third row of Figure 1 reports the results for Lin-
ear Bandit with Covariates. Our LinReBoot exceeds
all competing algorithms LinTS-G, LinTS-IG, LinGIRO,
LinPHE and LinUCB.

Summary. From Figure 1, the proposed LinReBoot
is always the top 3 algorithms under all settings and
all choice of dimension d. More specifically, LinReBoot
is clearly comparable to the state-of-the-art Linear
Thompson Sampling algorithms(LinTS-G, LinTS-IG)
or even outperforms them in many cases. Regard-
ing the computational cost, from Table.3, our pro-
posed LinReBoot is consistently computational efficient
among all settings compared to LinTS-G, LinTS-IG and
LinUCB under all three settings.

7 CONCLUSION

We propose LinReBoot algorithm for stochastic linear
bandit problems. In theory, we prove LinReBoot that
secures O(dy/n) high probability expected regret. Em-
pirically, we show LinReBoot rivals LinTS-G, LinTS-IG
and exceeds LinPHE, LinGIRO and LinUCB, which sup-
ports the easy-generalizability of ReBoot principle in
[Wang et al., 2020] under various contextual bandit set-
tings including Stochastic Linear Bandit, Contextual
Linear Bandit, and Linear Bandit with Covariates.
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A PROOFS OF MAIN RESULTS

A.1 PROOF OF THEOREM 5.1

Proof. The regret bound analysis of algorithm 1 involves several key Lemmas and conditions. Inspired by the
definition of expected regret, one key Lemma is providing the upper bound for expected optimal gap given the
history F;_1 at round ¢, E;[Ay,]. This is similar to the proof in other linear bandit algorithms such as LinPHE
[Kveton et al., 2020a] and LinUCB [Abbasi-Yadkori et al., 2011]. Lemma A.1 in the following part gives this result.
The other important Lemma is bounding sum of expected ‘square root of normalized RSS’ which is described in
Lemma A.2. The Third key result, Lemma A.3, is an algebra result from [Abbasi-Yadkori et al., 2011] which
bounds the sum of action context norms. Moreover, Lemmas in Section 5 play essential roles in regret bound
analysis. Lemma 5.1 and Lemma 5.2 control the sample optimism and bootstrap optimism respectively. Lemma
5.3 gives lower bound for the event of anti-concentration, which is necessary lower bound for analyzing exploration
in linear bandit algorithms. Another key step is carefully evaluating anti-concentration and its connection to
concentration, which is summarised by lemma 5.4. An technical condition about tuning parameter o2, which will
be discussed later in this proof is also needed for regret analysis. We start from listing the Lemmas and condition
and main proof of Theorem 5.1 will be given later.

Lemma A.1. Assume the same as Theorem 5.1. Suppose M > gn:[a%] Ay. When cq(t k), ca(t,k) > 1 and
€

P(E)) —Py(E}) > 0 for Vt > K and ¥k € [K], then on event E;, almost surely,

2

ElAn < g @D

+1)(ex(t o) + ea(t, 1))Eel|l2r, ||y 2] + MP(E]) (29)

Proof. See appendix B.1 O

Remark 3. Lemma A.1 provides the upper bound for expected optimal gap given the latest history. This result

directly impacts the upper bound of expected regret of LinReBoot, which means that each terms in the upper

bound given by Lemma A.1 need to be further bounded. As we expect, sample optimism (cy(t, I)Eq[||x1,||y,-1) and
t

Bootstrap optimism (ca(t, I)Ei[|| 1, ||y,~1) require further bounding. An interesting observation is the appearance
- t

of term Py(E}) — P:(E}) which is the lower bound of probability of Ei defined in (21). Intuitively, this event

connects the exploration from ridge estimation and the exploration from residual Bootstrapping and iF' the lower

bound Py (E}') — Py (E}) is too small, then this upper bound in Lemma A.1 becomes trivial, which means our regret

analysis become meaningless.

Accepted for the 38" Conference on Uncertainty in Artificial Intelligence (UAI 2022).



Lemma A.2. Assume the same as Theorem 5.1. With probability at least 1 — 0,

n

& RSS 1
> El| = I*’t]§\/ﬁ(Lg\/rlog(lJro?nax/)\)+2109(6)+/\1/252) > Elll1,|ly 1]+ 2vV2K+/La(logn + 1)

s
t=K+1 Tet—1 t=K+1

(30)

Proof. See appendix B.2 O

Remark 4. Lemma A.2 is bounding sum of expected ‘square root of normalized RSS’, that is, RSSImt/Si,t—l'

As discussed in Section 4, the RSS contributes additional exploration. As a matter of fact, the ‘square root of
normalized RSS’ is proportional to the variance of Bootstrapped mean. Consequently, this Lemma assists bounding
of the magnitude of extra exploration from residual Bootstrapping.

Lemma A.3. Assume the same as Theorem 5.1. Then

n

T 0'2
M lenllyr < \/2(71 = K)dlog(l + Z;;) (31)

t=K+1

Proof. See appendix B.3 O

Remark 5. Lemma A.3 bounds the sum of action context norms which is also bounded in regret analysis of most
contextual bandit algorithms.

Technical Condition. Suppose for any K < t < n and some p > 0 such that p = O(l) with respect to n and d.
Then

1 M
S 01) < oot + N o 1) (52)

Remark 6. This condition indicates that there is a lower bound for o2, which means the extra exploration

contributes to bounding of expected regret. This lower bound strongly supports the necessity of residual Bootstrap
exploration. Another observation is that the lower bound is related to the time t and the number of pulling of
optimal arm, which means that this hyperparameter for exploration o2 should depend on decision round t. However,
since o2 is also related to some fived constant related to environment and p which is a order of logarithm terms

of n and t, it remains hard to determine what is the exact relation between o2 and n. This lower bound is only
providing the conservative guarantee that the regret bound is sub-linear.

Main proof of Theorem 5.1.



Following part is the main proof of Theorem 5.1, starting from decomposing regret by events,
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Where (34) is upper bound of optimal gap, that is, Vk € [K]
Ak = 0T<CL‘1 - iL'k)
< 0lsllzr — il
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< 10llyy/2l21 2 + 2l
< 255L

By lemma 5.4 and the technical condition (32),
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Define the following notations for simplicity, note that the following constants are independent of n and d,

2
Cl(a17137’y7b) = b +]‘

ex -3 T 2 )—
T (=Rl lzp) - 8

1
Cale, ,7,b,8) := Ci(ar, B,7.b) x ﬂ(LQ\/r log(1 + 02,0,/A) + 2log<5) +A25)

Then, with probability at least 1 — ~,

R, < Ci(ar,B.7,0) Y El(er(t, L) + ea(t, L)l ||y ]
t=K+1
+ 28 L((n— K)(a+B) + K —1)
=Ci(a1,8,7,0) Y Elei(t, 1)E |21, |y ]

t=K+1
n

+Ci(ar, B,7,0) Y Elea(t, L)Efl|lzr, |y 1]
t=K+1

+25L((n— K)(a+8)+ K —1)

n

)+ 2280 S Ellely ]

t=K+1

1+nL2/X\

amm

n $ ZUiRSSImtlog(ﬂzlt)]

< Cl(al,ﬁ,’)’, b)(LQ\/dlog(

+Cl(0417ﬁ7%b) Z E[ 2

STit—1
t=K+1 2
+25L((n— K)(a+8)+ K —1)
1+nL2/\ -
< Ci(a, B,7, b)(LZ\/dIOg(a_/) + A1) Z E[Hmltnv;l]
min t=K+1

2 - RSS
+Cl(0&1”37"y7b) 203) 10g</@ : ) Z E[ 5 It7t]
min t

=K1 Slt,t—l
428, L((n = K)(a+ 8) + K — 1)

Further define,

Ci(n,d) == (Lo \/d 1og(1+"m> + A1/252)$ 2(n — K)dlog <1 + Z a?/dA)

Qi
min i=1

)$2(n—K)dlog<1 +i:0i2/d/\>

i=1

Ca(n,d) = 4[202 log(

min

(3(n) == 2K, /4L203}log(ﬂ2_ )(logn + 1)

By lemma A.2, with probability at least 1 — (6 + ),
Rn S C'1 (a17 /Ba v, b)CI (na d) + 02(07 ﬂ7 v b7 5)(2(”, d) + C11 (0417 ﬂa v, b)Cg(?’L, d) + C4(n7 d)

The (1, (2, (3 and {4 can also be found in Table.1 and C; and Cs are summarised in the Table.2.

(38a)

(38b)

(39a)

(39D)

(39¢)

(39d)



Notation Definition

maxSZL2
M (e 1) exp(/\ZS2L1/( max + )‘) 6)
3L — 20292 Ly (02,00 + )2

(A2SFL1/(0Fax + A)?)?

b -1
& 2(\/%@(13(—8501”20) —5> +1
Co Clﬁ(L2\/T10g(1+o—r2nax/>\)+210g(%) +>\1/252>

M2 max

Table 2: Constants in Analysis

A.2 PROOF OF COROLLARY 5.2

Proof. We will analyze terms C7, Cy and (1, (a2, (3, (4 one by one in terms of the rate in the big O notation with
respect to n and d. Also recall that the notation O is the big O notation up to logarithmic factor with respect to
n and d. Following steps include the first step for C; and Cs, the second step for (7, (2, (3 and {4 and the last
one for combining results.

Step 1 As B is chosen as a vector with elements T’ the term C is actually O(p) which is assumed to be O(1).
Under stochastic linear bandit that contexts and subgaussian constant Lo are given, C5 is also O(l) Note that,
other parameters such as §, A\ and b are viewed as constants.

Step 2. From Table.1, as « is chosen as a vector with elements %, we can conclude that (i (n,d) = O(v/dlogn x

vndlogd), (a(n,d) = O(y/logn x v/ndlogd), (3(n) = O(logny/logn) and (4(n) = O(y/n). By the notation of 0,
it can be summarised as (1(n,d) = O(dy/n), (2(n,d) = O(v/dn), (s(n) = O(1) and (4(n) = O(\/n).

Step 3. As a result, expected regret of our LinReBoot in Theorem 5.1 under the choice of tuning parameter
mentioned in Corollary 5.2, has high probability upper bound with the order O(dv/n)+O(Vdn)+O(1)+O(y/n) =

O(dy/n). O

A.3 PROOF OF LEMMA 5.1

Proof. Based on Theorem 2 in [Abbasi-Yadkori et al., 2011] which is Lemma C.1, for all a € (0, 1),

A 1 L2
P(HO—OtHV SLQ\/dlog<+ta/>\> FAY28,)>1—a (45)

Thus, Vay, € (0,1), with probability at least 1 — a,

i — | = |27 (8 — )] (46a)
< lwklly 1|00 = oHvt (46b)
14 tL2/A
LQ\/dlog<+a/> + )\1/252)||wk||‘,:1 (lemma C.1) (46¢)
That is, let ¢ (¢, k) := Lo dlog(%) 4 Al2g,
P(Et’k) 2 1-— (677 (47)
Therefore,
B K B K
P(E) =P(|J Eer) <Y (48)
k=1 k=1



A.4 PROOF OF LEMMA 5.2

Proof. Recall the our definition of event E; . and RSSy ¢,

Ep g = {like — fnel < ca(t, B)|@elly -1}
Sk,t—1

RSSi+ = Z eim

i=1

Then control the probability of the bad event E; » Which indicates a "large" deviation between estimated mean

and Bootstrapped mean of the k-th arm at round t. That is, Vt > K + 1,Vk € [K],

Pe(E; 1) = Py(|fig,e — fun,

(t, k)|l ||V;1)

Sk,t—1
1 ,
=P iek,t,i| > ca(t, k -
t(‘Sk,tq ; Wr.t.i€k.til > ca(t k) |klly 1)
0_2 Z‘?kt 1 k
= Py(] —”Z|>02(t’k)\\wkllvfl)
Skt 1 k

ea(t. ks e [y

A/ UEJRSSkﬂg

ealt, B)si [y

\/ UU%RSSk7t

2
2 R)sk e llzxlly
< 2exp (— . Vi (Z is subgaussian with constant 1)

=P(|Z] > ) (Define Z ~ N(0,1))

<P(Z| > )

O'g,RSSk,t

C%(tvk)Si,tflllwka,_l
Now let B :=2exp| — TRSS then

203RSSk,t log(%)
C2 (t, k) =

2
S%,t—l Hmk”v;1

Therefore,

Pl ke = firel < ca(t, K)|@plly—1) 2 1= By

A.5 PROOF OF LEMMA 5.3

Proof. Follow the same notations in A.4,

Sk,t—1

RSSkii= Y €. Z~N(0,1)

i=1

(49a)

(49b)

(49¢)

(49d)

(49e¢)

(49£)



Similar to lemma 10 in [Wang et al., 2020], the vanilla Gaussian tail lower bound, lemma C.2, is used. That is, Vt,
Vb >0

Py(Ef) = Pi(fine — fng > ea(t, D@ lly 1) (52a)
1 S1,t—1
= Pi( > wiiersi > et 1)l ]ly-) (52b)
1t-1 5 t
ci(t, sy i-flefy -
=P(Z > £ (52¢)
\/O"%RSSLt
3ct(t,1)s7 _qlleall? _y ci1(t,1)s1 e—1le1|l -1
b ’ 2 . ’ v
= exp| — ST RS if >b
> V2r ( 202 1.t ) \/02RSS1 (52d)
- 01(75,1)81,7:71||w1\|v—1
O(—b) if0< L

\/o2RSS1

Where b is the constant chosen by us. This b controlling the sharpness of the lower bound of Gaussian tail. Notice

c1(t,1)s1,e—1lleally,—1 o
T > b by the definition (17) and (18), the above lower

that (20) is equivalent to the condition

bound can be writed as,

, 3cf(t,1)sf7,,,1\|m1|\ff_l o ocr(t,1) 2
1 Var P T 202 RS54 if c2(t,1) = by 2log <E)
Pi(EY) > i
¢ a(tl) 2
o(—b) if e < by/2log (E)

O
A.6 PROOF OF LEMMA 5.4
Proof. Recall our true model:
Yt = XtO + €
Further define matrix @, which indicates the RSS decomposition for the k-th arm at time ¢:
1 i=jand ; =k , .
Q. ilij = . Vi, j € [t] (54)
0 otherwise

In this proof, we will start from stating lemmas and technical condition, then give main proof which has three
steps.

Lemma A.4. By (54), which is definition of Q. RSS: can be decomposed by arms,

RSS, = HYt ~ X0,

K
2
= RSSi, (55)
Rt
L2
And RS Sk = HQk,t(Yt - tht)Hz can be re-writed as:
2
RS5Sk.s :HQ’”*(I - Xt—th_lXtT—1)Xt—19H2

2
+HQk,t—1(I - Xt—1V;1XtT_1)€t—1H2 (56)
+20" X, (I - X VX[ Q) 1 Qe (I - X0V X[ e

Proof. See appendix B.4. O



Remark. Lemma A.4 provides a decomposition of RSS for arm k at round ¢.

Lemma A.5. Stochastic process {€;}i2, satisfies that for some Ry, Ry > 0,
e’ < Ele"|Fi—1] < ey >0

Singular value decomposition of X k and definition of ridge shrinkage context matrix Z are

XK = GXU
Q=22+ A) DT
Z .= GQXU

Let zy be the vector of the first row of matriz Z and suppose (x{ — z{ 8)?> > S?. Then¥n >0, Vt > K +1,

2

exp(meLﬂf) < E[e"] < exp(0maS3 Lan®) (57)
max

Where & := \/sf‘ﬁeTX;r—l(I* Xt—lv;lx;r—l)QIt—lQl,tfl(I* Xt—lv;lX;r—l)et—l

Proof. See appendix B.5. O

Remark. Lemma A.5 indicates that the random variable & which is based on noise process {e, }:_} also has the
clipping noise property. Thus this random variable is also subgaussian. This result supports our application of
Lemma A.6 which is given in the next part.

Lemma A.6. Suppose X is a random variable such that IRy, Ry > 0

exp(R1t?) < E[e'*] < exp(Rat?) VE>0 (58)
Then
P(X >2)>C exp(—C’Qa:Z) (59)
Where Cy := (e — 1)26%76 and Cy := 4}%21%;22&‘1
Proof. See appendix B.6 O

Remark. This Lemma is inspired by the Theorem 1 and its proof in [Zhang and Zhou, 2020]. This Lemma gives
the lovver2 tail bound of random variable X and the only condition is that there is upper and lower bound of the
form e“*” for the moment generating function of X.

Technical Condition. The difference between P;(E/) and P;(E}) plays a key role in bounding regret when
applying the stochastic exploration on least squared framework. The following part is the probabilistic analysis of

lower bound of this difference, which will be denoted as D < P¢(E}) — P,(E}) in this proof. First impose some
requirements on the tuning parameters 3, D, b:

D + B < min(®(—b), ——e3"") (60)

This requirement indicates three results:

D+ 38 < ®(-b) (61)

(—
D+8< b

[\
- 3

210g(Y2=(D + ) =

-

Main proof of lemma 5.4 -
Step 1: Express event {P,(E}') —P,(E}) > D} as an inequality of RSS,



The idea in this step is starting from decomposing our target event {P;(Et") —P;(E}) > D} by the condition

mentioned in lemma 5.3. That is,

P(P(E)) — P,(E]) > D) (642)
>P(Py(E}) > D+ ) (by lemma 5.2) (64Db)
c1(t, 1)s1 i1z ]y
=P({P.(E)) > D + N - >b
CB(RUE) > D+ gy (e ey (640)
> — < C
e o2RSS,,
2
b 382’ At D)@y, c1(t, 1)s1 -1y
>P({—a= oxp | ———— Vi | >D+8}n{ Vi
V2r 202RSS1 Vo2RSS
BB > D4y PV )y e 53) (64d)
—0) > — < emma o.
JoZRSS,, Y
Then we apply the technical condition described in 60,
P(P,(E;') — P:(E}) > D) (65a)
3¢ (t, 1)s3 oy [l ||y At )83yl |y
SP{RSS > —— Ve v (RSS < Vs
202 log(YZ2(D + ) )
3152,y 2[5
+P(RSS,, > — 1;2 b12 Vi) (by (61) and (62)) (65b)
3¢2(t,1)s2, ||z |3
—P(RSS), > ——— LT Ve ) by (63)) (65¢)
202 loa(ZE(D + )
Step 2: Apply lemmas to give lower bounds
In this step, three lemmas are used.
33 (t,1)s7 |13
P(RSS), > — LTV, (66a)
202 log (Y2 (D + 5))
<P X, ,(I- Xt—lvletT—1)Q1T,t—1Q1,t—1(I* X, 4V X[ e
3¢ (t,1)s3 1 1|3,
; ) (by (67)) (66b)
so2 108 ( 75t
Where (67) is derived directly from lemma A .4,
RSS1, >40" X \(I- X, 1V X )Q[, Q1 (I - X1V, ' X/ e (67)
Denote & := —L GTXll(I—Xt71V;1X:,1)QIt,1Q1,t,1(I—thV;lX;r,l)th- By lemma A.5, moment

AV/S1,t—1
generating function of random variable & has upper bound and lower bound,

2

max

exp(m

max

STLin?) < Ele] < exp(0p.95 Lan?)



Then applying lemma A.6,

2
331, 1)s2, @[

P(Py(E}) — Py(Ey) > D) >P(RSS1 > — (68a)
202 1og(@(D +5)
3c3(t, 1)8 1|3,

>P(& > AN (68D)

2 _

802 log(f (D+B))
3¢2(t,1)s>/2 |||z || -
> M exp | —My(—— 1 - Ve y2 (68¢)
2 _
80, log ( \/ﬂ(mm)
Where
2L
My = (61)2exp<"ms : 6) (69)
T S

402, S3Lo — 75%1/1

M2 = (70)
(WS Ll)
3¢ (6, 1)y a2,y
Let 1 —:= Mjexp| —Ma(—; ——+—)? |, then
8as log( JE<D+B))

3c3(t,1 33/27 x|

Do b exo | 1( )1,t 1l 1||Vt _ 3 (71)

P
var 8024/ M2 log( )

Thus the connection between concentration and anti-concentration can be described as the following high
probability lower bound,

3/2 2
b 3e2(t, 1)/ [ |3
Woraad i -B)=1-v (72)

P(P,(E}) — Pi(Ey) >
802 M log(1 A{)

2
Notice that ||z 31 < U'LLHJFQ/\, then Vt > K + 1, with probability at least 1 — 7,
t min

353/2 ci(t,1)||x
exp | — 1,t—1 1( )” 1”2 _5 (73)

802(0% + M)y 717 los (2 )

_ b
P.(E]) —Py(E}) > —
t( t) t( t) \/ﬂ

Where M, M, are defined as (69) and (70).

Technical condition on b becomes,

333/2 3t x .
exp| — Ve—rci (D)l 1 < min(®(—b), b _%bZ)

V2T 802 (02, + ) log( My ) V2T

(74)



B PROOFS OF TECHNICAL LEMMAS

B.1 PROOF OF LEMMA A.1

Proof. This proof is mainly adapted from proof of lemma 2 in [Kveton et al., 2020a]. The main extension is to
redefine the concept of "least uncertain undersampled” arm to meet the need of residual bootstrap exploration.
First define 'under sampled’ arms,

Sii={kec[K]: cerllzlly- = Ak} (75)

Where c; i := c1(t, k) + c2(t, k) and the set of "sufficiently sampled" arms is S; := [K] \ S;. Also define the "least
uncertain" arm at round ¢,

Jt = argmln Ct k||ack||v 1 (76)
keS,
Then when event E; occurs,

Ap, = = pr, + g, — B, (77a)
= AJt Rl D (77b)
= Ay, + g, = g+ g, — e+ e — (77¢)
< AJt +CtJt”mJt,”V;l +Ct71t||mItHV;1 +:[1“Jt7t 7ﬂlt7t (Et OE;) (77d)
S AJt + Ct,J, ||:BJ£ ||Vt_1 + Ct.I, ||:13]t HV:1 ([LJt7t < ﬂlt,t) (776)
< 2Ct>Jt||th||V;1 +Ct71t||w1tHV;1 (Jt € St) (77f)

Thus conditional expected gap can be bounding by the norms of two special arms I; and J; at round ¢,
Ed[An) = EdAr{E] + EAI{E}}] (78a)
< Et[2ct7Jt H:I:Jt ||V;1 + Ct,I, wat ||V;1] + M]Pt(Eé) (78b)

Now we need to bound the norm of J; by the norm of I;. The key observation to find the relation between I; and
Jt is

Edlce, e lly-1] 2 Edenr, e |y o111 € SIP(L € Si) 2 co @]y 1Pl € St) (79)
s Edeus o,y
t1Ct, I LT[y —1
c T 1 < —t 80
sl € (50)
Now we need to give lower bound of Py(I; € S;),
Pi(I; € St) =Pi(Fk € Sy 5.t figs > max fjit) (81a)
J t
> ]Pt(ﬂl t > max ,U,J t) (1 € gt) (81b)
> Py({fi1,e >maX fje} N EY) (81c)
> Pi({fin,e > ﬂl} NE;)  (by (82)) (81d)
> Py(fir,e > 1) — Po(EY) (81e)
> Py(EY) —P.(Ey) (by (83)) (81f)

Where (82), (83) are
VieS e <pyteillaglly-r <pg+ A5 =p

) (82)
=>{fire > p1} C{fine > fije Vi€ St}
{f1— p1e > alt, 1)||ac1||V:1} C{fie>m} (since E; occurs) (83)
Therefore,
2 _
EJAL] < (m—————=— +1 t, )+ co(t, I;))E 1] + MP(E; 4
80) = (s + (a0 + ot Ty 2+ MP(E e



B.2 PROOF OF LEMMA A.2

Proof. First define {Ejt ;}o157" for the noise of arm I; at round ¢. Note that these {er, ;};2'" is a subset of
the noise vector €;_1 = (e1,...,¢;_1) ' at round t. Also define F1,,i, the randomness history until the noise
€r,,i is generated and let Zj, ; be the set of time stamps when arm I; is pulled up to round ¢. For example,
suppose arm 1 is pulled at round 1,11,21,25 up to round 26, then 7 56 = {1,11,21,25} and noise set is
{e1:};23° = {e11,€1,2,€1.3,€1.4}. For one of these noises such as € 3, F13 = Fao since e 3 = ea1, indicating
Elene1:3| Fyo] < eR"‘"z, Vn > 0. As a result, other expressions of residuals and RSS of the arm pulled at round
t> K +1 are

T ThH
er,ti = €r,0 +er, i —x7 0, (85)
SIy,t—1 SIp,t—1
2 T TH\2
RSS1 = Z €Tt = Z (7,0 + €1, —x,6) (86)
i=1 i=1

Starting from ridge estimate ét,

A

0, =V X (X_10+¢_1) (87a)
=V'X X, 10+ V' X] e (87b)
VX e +VHX] X\ +ADO -2V 10 (87c)
=VIX] &1 - AV 0+ 0 (87d)
Thus,
] 0-2]0,=2[0 -z V,'X &1+ Xz V'0-z]0 (88a)
= <m1t7X:—16t—1>V;1 - )\<x1t50>V;1 (88b)

So RSS becomes,

SIy,t—1

RSS]mt = Z (chte w}r,ét +€It7i)2
=1

SIp,t—1

< QSIt,tl((il"It»XtTletﬁvtl - Mz, 0 vtl) +2 Z €1,

Therefore,

a /Rss,t, ?
Z E[ Z E 2( w]t,X:,16t71>V:1 - )\<w1t70>vt1> g2 Z €T, ] (9()&)
t=K+1 Ttvt 1 t=K+1 Iit=1 =1
<v2 Y EV+v2 Y EY (90D)

t=K+1 t=K+1
where
EY —E x| = Nz, 0) 91
1 (@1, X q€1)y -1 = M, 0)y 1] (91)
1 SIy,t—1
EY) =K Yool (92)
Sft,t—l i=1

The following part is bounding )" ., E ) and > K41 E(t) respectively.
Bounding ;" ., Egt).



By Cauchy-Schwarz inequality,

2
X seia], 4 Aol 1 (934)

2
(@i X serndyos = M@0y ) < (enly,

2

< (bonly oo [XDse], .+ ol 0252)) by (00)

(93b)
2
= (||$]t|vt—1 (|‘X:71€t,1||vt_1 —+ )\1/252)> (93C)
where (94) is
2 —1 2 1 2 1 2

HOHV;l < Anaz(Vy )H9”2 = X||0||2 < XS2 (94)

By lemma C.3, with probability at least 1 —§,

2
<<$It’X;r—1€t_1>Vt1 - )\<wlt’0>vtl> < ||$ItH%/;1(L2

1/2 —1/2
2log (det(Vt) set(u)

) +A1/255)2  (95a)

()\d—r HT: (02 + /\))1/2)\—d/2
= ||l [3 - (L2 2log< i=117;

5 ) + A1/28,)?

(95b)

1
< ||aszt|2vt1<L2\/rzog<1 # Ol + 2008 (3 ) £ A5 (950)

Therefore, with probability at least 1 — ¢,

n 1 n
> E&“s<L2¢rlog<1+o,%m/x>+zlog(5)+A1/252> > Ellws, ] (961)
t=K+1 t=K+1

Bounding ;" ., EY.
First separate Z?:KH E;t) by arms,

S EY = Y E — 2 . (97a)

(97D)

e (97¢)




For each arm,

1
E[ Y j—2(e§,1 +ot et )] (98a)

j=1
Sk,n—1 1

SB[ Y B[+ e ) (98D)
j=1
Sk,n—1 1

<E[ Y. (B, oo+ ) (95¢)
j=1
Sk,n—1 1

<E[ > F(ez’l ot e+ 4L2 +2y/Ly] (by lemma C.4) (98d)
j=2
Sk,n—1 1 1 1

=FE (2. 4+ V+ ——4Lo +2¢/L 98
L2 \[Grapda ) T Gt 2V 5l

Conditioning on appropriate historical randomness F, ; again,

Sk,n—1
’ 1
BLY e+ +ed) (99a)
j=1
Skyn—1—1 1 1
=E[ ) E[\/(j 1) (@ ++e,)+ TESIE 5 4Lo| Fi j] + 21/ Lo (99b)
j=1
Skn—1—1 1
Z ) (6%71 + -+ 6%7]») + (_j n 1)2 4L2|‘/—"]€,j] + 2\/ Lg] (99(})
Sk,n—1—" 1 2 2
Z g (G 4+, )+ mzu;z + ﬁ\/L72+ 2\/Ls] (by lemma C.4)  (99d)
Sk,n—1—2 1 9
Z 7(j+2)2(6z’1+m+€%’j)+m4h+ 1+ ) % 2¢/La] (99¢)

Applying conditional expectation given historical randomness until there is no randomness from noise,

Sk,n—1
’ 1 1 1
2 2
B | lehato I <2VEB gt o) (1000)
< 2V LyE[log(sk,n—1) + 1] (by (101)) (100D)
< 24/ Ly(logn+1) (100c)
where (101) is
Skt Skon—1 |
-<1+ / —du =log(sgn—1) +1 (101)
= " L v
Consequently,
S° EY <2Kv/Ly(logn +1) (102)
—K+1

Therefore, with probability at least 1 — ¢,

n RSS -
3 E[F ]<m@wbguﬂgm/x)+zlog( §) A28 3 Bllenly, ]+ 2VEK VIalogn + 1)
If t—1

t=K+1 t=K+1
(103)

O




B.3 PROOF OF LEMMA A.3

Proof. Similar version of this lemma is proven by [Abbasi-Yadkori et al., 2011] and [Lattimore and Szepesvéri,
2020], following part is adapted version based on the notations in this paper. The main adaptation is using
the eigenvalues of context matrix X g under stochastic linear bandit setting. This proof requires proof of two
elementary algebraic results,

det(Vn) " 2
log———"—~ = log(1+ ||z, |51 104
det(VK+1) t:;rl ( Vt ) ( )
det(V ) A+nd_ o2/d
log —2tWn) ) i=1 7 105
B det(Vier) — 0 ° ( det(V g1 )1/ (105)
Step 1: Proof of (104).
Starting from the determinant of V,,,
det(Vy,) = det(Voo1 + 1, 2] ) (106a)
= det(V,2 (T4 VW, af, VIV (106b)
= det(Vp1)(1 + ||z, Hi,_il) (106¢)
- 2
=det(Viy) [] O+, ) (106d)

t=K+1

Then take logarithm on both side and (104) is obtained.

Step 2: Proof of (105).

By inequality between trace and determinant and notice that eigenvalues of V', are 02 + ), ...,02 4+ X and d —r A,
then,

1 d\ T o2
det(V,) < (oar(v, )t = (A 2z Py (107
Thus,
det(V,,) 1 d\+ Y07, A+ >0 02/d
<1 i=1%iyd) = glog( 2L ai=t %70 108
o gy < 8 g () = e (i (108)

Step 3: Provide upper bound of sum of norms
By (104) and (105), using a analytic result « < 2log(1 + z)Vz > 0,then sum of the context norm under matrix
V! can be bounded,

> llenlly < Y 2log(1+ lanly ) (1092)
t=K+1 ' t=K+1
det(Vy,)

=2log ———
& det(V r41)

(by (104)) (109b)

A+ndl_ o?/d
< 2dlog| ——=i=1 "L~ by (105 109
< 2atog 2L RI==E) by (109) (109¢)
A+ > 02/d
= 2d1 =171 109d
oo G e S (1094)
T 2
< 9dlog(1+ M2mi=1 % (109¢)
dX
Therefore, from Cauchy-Schwarz inequality,
- - > 2107
> sy < | (0= K) > s, [y, <4 [2(n — K)dlog( 1+ S50 (110)
t=K+1 t=K+1



B.4 PROOF OF LEMMA A.4

Proof. For simplicity, focuses on the k-th arm at time ¢,

Q = Qk,tfla X =X; 1,Y =Y 1,e=¢_1, V=V,

Therefore,

RSSi: =||Q(Y — X6,) Z (111a)
- Q(Y—XV;1XTY)H2 (111b)
- Q(I—XV[lXT)YHz (111c)
QU - xVv;'Xx")Xx0+Q(I - XVt_lXT)eHz (by Y = X0+ ¢) (111d)
- Q(I—XVt‘lXT)XHHz + HQ(I— XV;lXT)eHz

+20' XTI -XV;'X"H)Q'QUI - XV 'X e (111e)

B.5 PROOF OF LEMMA A.5

Proof. Follow the same simplified notations in B.4,
Qi=Qp; 1, X=X 1,Y =Y 1,e=¢1, V=V,

In the following part of proof, we overload the notations for singular value decomposition of matrices X;_ 1 and
X ki, note that this notations are only used in this proof for lemma A.5,

X=X, 1=GXU and M :=T- XV 'XxT

Further denote s := s; ;1 and

1
a:= ﬁMQTQMXH = (a1, ...,at,l)—r

Step 1: Two sided bounds given a
The key observation is that random vector a is deterministic given history F; o U {{wk+—1:}i07 "

SEHE L Recalling
that noise e, is independent of wy, +; for V7, k,t,4, by conditioning on F;_»,

; =2 e at—1€
E[e"] = B[E[e" | Fy 5 U {{wke1,ib5t H]) = Ele” 2m “OR[et11 |, ] (112)
which indicates s 2
E[enz E%:l ai€; en2af_1L1] < E[engt] < E[efﬂ Z;:l ae; e?ﬂa?—le] (113)

Therefore, by conditioning on F;_o, F;_3, ..., F1 consecutively, the partial randomness from vector a is left to
integrated by the outside expectation E and

Ele1e30] < E[en] < Elem Iel35] (114)

Step 2: Two sided bounds for HaHg

Another key observation is from eigenvalues of XV ' X T under the ridge regression procedure. It can be shown
2

that the eigenvalues of matrix XV 1X | are U%’ﬁ, . %

matrix M is, M = G(I — Q)GT and I — € is diagonal matrix with with diagonal elements U%H, o 02—1/\ and
1 s

and t — 1 — r zeros. Thus, spectral decomposition of



t — 1 —r ones. We use Apax(A) to denote the maximum eigenvalue of a matrix A.
Thus,

a3 = éaTXTMQTQMMQTQMXH (115a)
= éaTXTG(I - Q)G'QG(I - Q)G "G - Q)G 'QG(I - Q)G X6 (115b)
= éOTXTG(I - Q)G'QG(I - Q)’G'QG(I - Q)G X0 (115¢)

For upper bound,

lal2<0"XTGI - )GTQGI - Q)°G QG - Q)G X0 (s>1) (116a)
< Amax (I — ' XTGI - Q)G QG - Q)G X6 (116b)
=0'U'S(I-Q)G"QG(I - Q)TUO (X := GZU and Mpax (I — 2)?) = 1) (116c¢)
<OU'S (I-Q)°ZU0 (Mnax(Q) =1) (116d)
<0'U'="sU# (116¢)
<2, 0'U'U0 Max(Z'E)=02,) (116f)
= omax 0113 (116g)
< OmaxS3 (116h)
For lower bound,
1
a3 > “min((1 = 20U (I-0)G QG(I - Q)xU8 (117a)
_ 1 A 2pT77 T T T 2y _ A 2
= s(iaﬁm n )0 U E (I-2)G QGUI - NIV (uin((I - 2)7) = (UIQMx n 7)) (117b)
Ll A T T B ._
= S(U?nax )0 (X -2 QX -2 (Z:=GaxU) (117c)
A
= (m)20—r($1 — zl)(wl — zl)TB (117(‘1)
A 2 Tp\2
= (m) (1 —21) 0) (117e)
/\ 2qQ2
>(—2— 117f
_(grznaXJrA) Si (117f)
Therefore, Vn > 0,
)\2
eXP(WS%LWQ) < E[e™] < eXP(UrQnaXSSLWQ) (118)
0

B.6 PROOF OF LEMMA A.6

Proof. This proof is inspired by the Theorem 1 and its proof in [Zhang and Zhou, 2020]. Also, an important
lemma, lemma C.5, which is called Paley-Zygmund inequality is used. Since ¢ = 0 is the trivial case, in the
following part, we assume ¢ > 0. Take

1
vi=Rit—- V>0 (119)



Then

P(X > Ryt — %) =P(etX > Mt~ (120a)
> P(e"* > e 'E[e"Y]) (120Db)
> (1—eh)? 2 (E % 2”](); (by lemma C.5) (120c)
> (1— e*1)2(22%22 (120d)
=(1—e ") exp(—(4Ry — 2R1)t?) (120e)

By (119), t satisfies a quadratic equation Rit> — xt — 1 = 0. Since t > 0,

2
P e e 10 (121)
2R,
Therefore,
VaT TR
P(X >2)>(1—eYexp (-(432 - 231)(“2”;;1)2) (122a)
1

2Ry — R

=(1-eY)%exp (—;R21(4x2 + 8R1)> (122b)
ARy — 2

—(e—1)% Gexp< % 2> (122¢)



C SUPPORTING LEMMAS
C.1 CONFIDENCE ELLIPSOID UNDER LEAST SQUARED ESTIMATION

Lemma C.1. Under assumptions 1 and 2 and notations from (4), Yo > 0, with probability at least 1 — «, for all
t > 1, 0 lies in the following confidence ellipsoid,

R 2
c;>{eeR%Hemw,sza¢m%(l+“”“)+xﬂ&} (123)
t «
C.2 LOWER BOUND OF GAUSSIAN TAIL
Lemma C.2. Set Z ~ N(0,1). Then, Yc > 0
—=exp(—35t?) ift>b
P(Z >t)>Q V2w exp(-3t) itz (124)
®(—c) if0<t<b

C.3 SELF-NORMALIZED BOUND FOR MARTINGALES

Lemma C.3. Let {F:}32, be a filtration and {e:}52, be a real-valued stochastic process such that:
(i) € is Fi-measurable
(ii) €; is conditionally subgaussian with constant R, that is, for some R and ¥t > 0

A2R

E[e*|Fi_1]<e T VAER

Let {X:}52, be a R%-valued stochastic process such that X, is F;_1-measurable and assume V is d by d positive
definite matriz. For any t, define

t t
Vi=V4+> XX 5= eaX,
s=1

s=1

Then for any § > 0 and any t > 0, with probability at least 1 — 0,

det(V )Y/ 2det(V)~1/2 )

IS+ < leog( ‘

C.4 SECOND MOMENT BOUND FOR SUBGAUSSIAN RANDOM VARIABLES

Lemma C.4. Suppose random variable X is subgaussian with constant R, that is, E[e!X] < eRY it e R, then

E[X?] < 4R (125)

C.5 PALEY-ZYGMUND INEQUALITY

Lemma C.5. Suppose X be a random variable, then when V6 € [0,1] and Vt > 0,

2 (E[e])?

Méxzewaﬂ>zu—ehqﬁ@yT

(126)



D SUPPLEMENT TO EXPERIMENTS
D.1 ALGORITHMS FOR LINREBOOT

In the paper, Algorithm 1 implements LinReBoot for the stochastic bandit problems. In our experiments, there
are two other additional setting with linear reward function for linear bandit problem. We provide other two
implementations of LinReBoot. The first one is LinReBoot for linear contextualized bandit, which is given in
Algorithm 2. Another one is LinReBoot for linear bandit with covariates, which is given in Algorithm 3.

Algorithm 2 LinReBoot in Contextual Linear Bandit

Require: )\, 51,0 = ... = SK,0 = 0
fort=1,...,ndo
if t < K 41 then
It —t
else
Get new contexts 1, ..., Lx
Vie XX+ M
0,V X Y,
for k=1,..., K do .
€k ti < Thki — wl@t, Vi € {Sk,t—l}
Generate {wy ¢} "
ik < ] 01 + 51:,1—1 ST whrieht
end for
I; < argmax jiy,
ke[K]
end if
S, 4 Sr,t—1+1and sg¢ < spr—1. Vk # I
Pull arm I; and get reward 7y, 5,
X [Xt{l} and Y, <+ [Yt_l}
wlt rlt,s“
end for

D.2 EXPERIMENTAL SETTING

This part provides the detailed description of the experimental setting in Section 6. There are three settings in
our experiment: Stochastic Linear Bandit, Contextual Linear Bandit and Linear Bandit with Covariates. Each of
them has own synthetic data generation procedure which is described in the following parts.

Stochastic Linear Bandit. In the first experiment, we compare LinReBoot to other linear bandit algorithms
under stochastic linear bandit described in Section 2. The LinReBoot is implemented as the efficient version of
algorithm 1. Our experiment is conducted under three choice of dimension d including 5, 10 and 20. The number
of arm in this setting is 100. True parameter € has norm 1 and is generated from uniform distribution by entries.
In other word, generate §; ~ U(—0.5,0.5),Vi € [d] and then shrink |0, = 1. Context features x1,...,xx are
generated by x;x ~ U(0,1),Vi € [d], k € [K] and normalized to |zx||, = 1. By the normalization of 8 and {z) }1_ |,
the true mean of reward is bounded by 1, making LinPHE and LinGIRO become easier to choose a reasonable
bounds for reward. Noise ¢; is generated from N(0,0.1). At each choice of d, our results are averaged over 100
randomly chosen environment and we evaluate all algorithms under the exact same environment with horizon
length 10000. Regularization parameter A is chosen as 0.1 through out the experiments. Tuning parameters for
each algorithms are described in Appendix D.6.

Contextual Linear Bandit. In the second experiment, we compare LinReBoot to other linear bandit algorithms
under linear bandit with uncertain/random context. We experiment with several dimensions d including 5, 10
and 20. The number of arm is 100. True parameter is generated by the same way as stochastic linear bandit
setting in Section 6.1. Contexts of arm k has distribution Ng(vg,1/(2K)I) where vy, is generated by following:



Algorithm 3 LinReBoot in Linear Bandit wit Covariates

Require: )\, s190=..=3sgo=0
fort=1,...,n do
if t < K 41 then
I+t
else
Get new context x;
for k=1,..., K do
Vit < Xpyo1 X o1 + A
Okt Vi XY
Chiti < Thi— T} O, Vi € {sp1-1}

S —
Generate {wy ¢} "

~ TA -1 Sk,t—1
fik <= @y O + 8311 D5 WhiiCko

end for
I; < argmax jiy
k€E[K]
end if
S, 4 Sr,t—1+ 1 and sg¢ < sge—1. Vk # I
Pull arm I; and get reward ry, s L
X - Y -
Xlt,t < |: ;ﬁé 1:| and YIt,t < |: It 1:|

t Ii,sp,
end for

v, ~U(0,1),Vi € [d] k € [K] and normalized to ||v||, = 1. Note that v}, are predefined before the simulation.
Noise €; is generated from N(0,0.5). Remaining environment setting is designed as the same in Section 6.1:
number of simulation is 100, horizon length is 10000, regularization parameter A = 0.1. Most hyperparameters
are chosen as the same as Section 6.1 except for the reward bounds in LinPHE and LinGIRO. Detailed description
is provided in Appendix D.6.

Linear Bandit with Covariates Our last experiment is conducted under the setting of linear bandit with
covariates. Again, we experiment with several dimensions d including 5, 10 and 20 while the number of arms is 10
in this setting. True parameter 01, ..., 0k are generated one by one and each of them is generated in the following
way: (1) Choose an integer n_ < d by n_ ~ Binomial(d,1/2) and randomly sample n_ integers from 1 to d,
these n_ integers indicates the entries that has negative direction in 6. (2) generate a d-dimensional vector with
n_j entries are —1 and remaining ny := d — n_ entries are 1 by the n_ integers sampled in the previous step. (3)
Each entries will add a random perturbation from U(—0.95,0.95) to make the magnitude of the each entry is
spread between 0.05 to 1. (4) The resulting vector will be normalized by ||| = £, indicating the norm of the
true parameters 01, ...,0 g are designed as %, ..., 1. Contexts are sampled from N(0, I) which is independent of
arms. Noise ¢; is generated from N(0,0.1). Remaining environment setting is designed as the same in Section 6.1
or Section 6.2: number of repetition is 100 and horizon length is 10000 as well as A = 0.1. Reward bounds in
LinPHE and LinGIRO are chosen based on the noise variance and other algorithms are designed as the same as
the previous two settings. More specific description is provided in Appendix D.6.

D.3 LINREBOOT IN STOCHASTIC LINEAR BANDIT

The algorithm of LinReBoot is described in Algorithm 1 and steps of our LinReBoot and its efficient implementation
under Gaussian bootstrap weights are summarized in Section 3. For the parameter tuning of LinReBoot, our
first step candidate set for o, in LinReBoot is {0.05,0.1,0.2,0.5,1.0}. The following result, figure 2, shows that
the values 0.05, 0.1, 0.2 are not enough for resampling exploration under all three choice of context dimension.
However, we notice that too large o, leads to slow convergence even if it is indeed sub-linear. Thus 0.5 is the best
result under our stochastic linear bandit setting. We decide to do the further fined tuning, using the candidate set
{0.3,0.4,0.6,0.7} and the result is shown in figure 3. It is clear that o, = 0.3 is the best choice when d = 5 while
o, = 0.4 is the best choice under the setting of d = 10. When d = 20, we conclude that o, = 0.5 is better than
other candidates. As a result, our experiment in Section 6 choose o, = 0.3 for d = 5, choose o, = 0.4 for d = 10



and choose o,, = 0.5 for d = 20.
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Figure 2: First Step Tuning for LinReBoot-G under Stochastic Linear Bandit. The x axis is round ¢ and y axis
is cumulative regret. The candidate set for o, is {0.05,0.1,0.2,0.5,1.0} and these three plots from left to right
corresponds to d = 5, d = 10 and d = 20 respectively.
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Figure 3: Second Step Tuning for LinReBoot-G under Stochastic Linear Bandit. The z axis is round ¢t and y
axis is cumulative regret. The candidate set for o, is {0.3,0.4,0.6,0.7} and these three plots from left to right
corresponds to d = 5, d = 10 and d = 20 respectively.

D.4 LINREBOOT IN CONTEXTUAL LINEAR BANDIT

The algorithm 2 is LinReBoot under Contextual Linear Bandit. It is almost the same as algorithm 1 while
the algorithm new requires the random contexts from each arm at each round ¢. For the parameter tuning of
LinReBoot, our candidate set is designed as {0.05,0.1,0.2,0.5,1.0} and the following result shows that o,, = 0.05
is the best choice for all three design of context dimension d. Thus our experiment choose o, = 0.05 for three
possible d under this setting of Contextual Linear Bandit.

D.5 LINREBOOT IN LINEAR BANDIT WITH COVARIATES

The last version of LinReBoot is LinReBoot under Linear Bandit with Covariates which is provided as algorithm
3. This algorithm is different from the previous two version due to the different task under linear bandit with
covariates which requires the algorithm not only the estimation of the target parameter 8, but also detection
of which arm a context belongs to. For the parameter tuning of LinReBoot, our candidate set is designed as
{0.05,0.1,0.2,0.5,1.0} and the following result shows that o,, = 1 is the best choice for the cases including d = 5
and d = 10. When d = 20, o, = 1 is still acceptable while o, = 0.5 might be preferred one. In fact, it must
be pointed out that when d becomes larger, the performances among difference choice of o,, becomes smaller
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and larger o, might be worse for larger d. At the end, our experiment choose o, =1 for d =5 and d = 10 and
o, = 0.5 for d = 20.
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Figure 5: Tuning for LinReBoot-G under Linear Bandit with Covariates. The x axis is round ¢ and y axis is
cumulative regret. The candidate set for oy, is {0.05,0.1,0.2,0.5,1.0} and these three plots from left to right
corresponds to d = 5, d = 10 and d = 20 respectively.

D.6 OTHER LINEAR BANDIT ALGORITHMS

Linear Thompson Sampling with Gaussian Prior (LinTS-G). Thompson Sampling is a classic algorithm
[Thompson, 1933] which requires only that one can sample from the posterior distribution over plausible problem
instances (for example, values or rewards). Linear Thompson sampling is a Bayesian linear bandit algorithm
which has studied by lots of previous works such as [Agrawal and Goyal, 2013a,b, Riquelme et al., 2018, Russo
et al., 2018]. In our experiment, we mainly depends on [Agrawal and Goyal, 2013b, Lattimore and Szepesvéri,
2020] for implementing Linear Thompson sampling with Gaussian prior. There is almost the same among three
different settings in our work. The only difference is that stochastic linear bandit and Contextual Linear Bandit
is estimating/sampling parameter shared among arms while parameters are estimated/sampled using the rewards
and contexts from only one arm in the setting of linear bandit with covariates. As mentioned in section 6, the
Gaussian prior variance is chosed as % = 10 by Bayesian perspective of ridge regression model.

Linear Thompson Sampling with Inverse Gamma Prior (LinTS-IG). Another version of Thompson
sampling under linear bandit is adding inverse gamma prior [Honda and Takemura, 2014, Riquelme et al., 2018,
Bishop, 2006]. We implement this inverse gamma version based on the detail suggested as [Riquelme et al., 2018].
Similar to LinTS-G, three settings share almost the same LinTS-IG and only difference is the parameters in linear



bandit with covariates setting are estimated /sampled using the data from one arm. Moreover, Gaussian prior
parameter is designed as 11—0 which match our overall design for regularization A = 0.1 and the inverse gamma
prior parameters is suggest by [Riquelme et al., 2018]. More specifically, by 02 ~ a/(a — 1) where o372 = 10 is
the initial variance on diagonal for sampling our target parameter 8, 72 = 5 is Gaussian prior parameter and
«a = 2 is the prior parameter for inverse gamma.

Linear Perturbed-History Exploration (LinPHE). A well designed algorithm for stochastic linear bandit under
bounded reward is LinPHE [Kveton et al., 2020a]. The idea is also inspired from successfully adding exploration
under Multi-armed bandit setting [Kveton et al., 2019a]. Our experiments use the suggested hyperparameter
a = 0.5. However, since the original work is only designed for stochastic linear bandit with bounded rewards, we
extended it to more general settings with Gaussian rewards. The detail is provided as follow. In stochastic linear
bandit setting, based on our experimental design, true mean of each arm is bounded by 1 and noise variance
is set as 0.1, indicating that we have high probability that the reward will be bounded by 1 + 3/1/10 on both
sides. In the setting of Contextual Linear Bandit, the original efficient implementation from [Kveton et al., 2020a]
can not be used. But we modified by drawing a number from Binomial distribution Binomial([a(t —1)],1/2) at
round t and divided this number into ¢ — 1 parts randomly which are added as perturbation of rewards. The
reward is bounded by 1 + 3/v/2. For the last setting, linear bandit with covariates, similar to previous setting, we
modify by using Binomial distribution to adapt the non-integer value of a but this time we need to apply the
perturbed history by arm, that is using Binomial([askt—1],1/2) for all k € [K]. The reward is bounded by 1.3.

Linear Garbage In Reward Out (LinGIR0). Garbage In, Reward Out(GIRO) is a bootstrapping based algorithm
designed for multi-armed bandit with bounded reward [Kveton et al., 2019b]. Since its idea of bootstrapping
and perturbation on mean estimation is highly related to our residual bootstrapping exploration, it is worthy to
compare with this classical bootstrapping based algorithm. But like PHE, it is originally designed for multi-armed
bandit and we need to extend it to linear bandit setting with unbounded reward and then apply it to three
settings in our experiment. Previous work [Kveton et al., 2019b, Wang et al., 2020] suggest the conservative
choice of a is 1, indicating adding one high pseudo reward and one low pseudo reward at each round. The detail,
which is almost the same as previous modification for LinPHE, is provided as follow. In stochastic linear bandit
and linear bandti with random context settings, we bootstrapping the previous reward-context pair and use the
new sample to do least squared estimation. After pulling arm, 2a pseudo reward-context pairs are added: one is
current context with reward upper bound and the other one is current context with reward lower bound. For the
last setting, linear bandit with covariates, the only difference is that the bootstrapping is conducted by arm and
the pseudo reward-context pairs are added to one arm at each round. The reward bound is chosen as 1 4 3//10
for stochastic linear bandit and 1+ 3/ V/2 for the setting of Contextual Linear Bandit while 1.3 is chosen for linear
bandit with covariates setting.

Linear Upper Confidence Bound (LinUCB). Upper Confidence Bound(UCB) is a important type of bandit
algorithms which is widely used. LinUCB is the version extended to linear bandit setting [Abbasi-Yadkori et al.,
2011, Chu et al., 2011]. Since its popularity and usage, we believe it should be involved in our experiment and
we implement LinUCB mainly relying on [Abbasi-Yadkori et al., 2011, Lattimore and Szepesvari, 2020]. The
confidence level is chosen as 95% which matches the traditional statistical sense. Moreover, LinUCB is almost the
same among three different setting. The only difference is stochastic linear bandit and Contextual Linear Bandit
are using the rewards and contexts to estimate one target parameter, like (4) in our paper while the last setting,
linear bandit with covariates, requires the least squared estimation to be done by arms.

D.7 COMPUTATION EFFICIENCY
D.7.1 Efficient Implementation of LinReBoot-G

Section 3.3 discusses about why LinReBoot-G can be implemented efficiently. This section provides a further
illustration and implementation in practice. First recall it = (fts- - fik,e) " is conditional distributed as

i Fior ~ Ng(,30) (127)



where g = (fagy- s fice) | = X k0, and Efj) is a diagonal matrix with diagonal elements o2s; 7 | RSSj ;.
Note that 3 can be computed by ﬂ(t) and vectors,

S1,t—1 SK,t—1
t) . T
=) i > rea)
i=1 i=1
S1,t—1 SK,t—1
() ._ 2 2 \T
ry’ = ( E TR TK’I-) ,
i=1 i=1
t) . T
s = (Sl,t—h <o SKt—1) -

These vectors can be updated incrementally by the above illustration. To sum up, when bootstrap weights are
Gaussian, the efficient implementation for computing fi; + at round ¢ has steps as follow,

e Compute Vy, ét and ﬂ(t) = XKét

« Compute ) using g, rgt), rgt) and s(*)

o Sample g ~ N (", £®)

o Pull arm I; and get its corresponding reward ry,
o Update r(1t+1), rgtﬂ) and s(tt1)

D.7.2 Computational Cost

The computation cost of linear bandit algorithms involved in our experiment are listed in the following table.
Each running time is for one horizon with length 10000. The settings are also provided in Appendix D.2 and the
description of algorithms are provided in Appendix D.6.

Model Run time (seconds)
Setting d LinReBoot LinTS-G LinTS-IG LinGIRO LinPHE LinUCB
Stochastic Linear Bandit 5 3.2 1.8 2.2 6.5 4.0 6.2
Stochastic Linear Bandit 10 | 3.5 2.1 2.5 10.3 4.7 6.6
Stochastic Linear Bandit 20 | 4.8 3.9 3.8 24.6 5.6 7.4
Contextualized Linear Bandit 5 3.3 1.8 2.2 6.5 4.0 6.3
Contextualized Linear Bandit 10 | 3.5 2.1 2.5 10.2 4.7 6.6
Contextualized Linear Bandit 20 | 3.8 3.1 3.6 24.1 5.2 6.9
Linear Bandit with Covariates 5 1.4 7.8 12.9 10.3 5.2 1.2
Linear Bandit with Covariates 10 | 1.5 94 14.1 11.5 5.9 1.4
Linear Bandit with Covariates 20 | 1.6 14.2 18.9 15.2 7.4 1.5

Table 3: Computational Cost for Linear Bandit Algorithms
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