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ABSTRACT

Synthetic data generation has become an emerging tool to help improve the ad-
versarial robustness in classification tasks since robust learning requires a sig-
nificantly larger amount of training samples compared with standard classifica-
tion tasks. Among various deep generative models, the diffusion model has been
shown to produce high-quality synthetic images and has achieved good perfor-
mance in improving the adversarial robustness. However, diffusion-type methods
are typically slow in data generation as compared with other generative models.
Although different acceleration techniques have been proposed recently, it is also
of great importance to study how to improve the sample efficiency of generated
data for the downstream task. In this paper, we first analyze the optimality condi-
tion of synthetic distribution for achieving non-trivial robust accuracy. We show
that enhancing the distinguishability among the generated data is critical for im-
proving adversarial robustness. Thus, we propose the Contrastive-Guided Dif-
fusion Process (Contrastive-DP), which adopts the contrastive loss to guide the
diffusion model in data generation. We verify our theoretical results using simula-
tions and demonstrate the good performance of Contrastive-DP on image datasets.

1 INTRODUCTION

The success of most deep learning methods relies heavily on a massive amount of training data,
which can be expensive to acquire in practice. For example, in autonomous driving (O’Kelly et al.,
2018) and the medical diagnosis (Das et al., 2022) type applications, the number of rare scenes
is usually very limited in real data. Moreover, it may be expensive to label the data in supervised
learning. These challenges call for methods that can produce additional training data that satisfy two
essential properties: (i) the additional data should help improve the downstream task performance;
(ii) the additional data should be easy to generate. Synthetic data generation based on deep gener-
ative models has shown promising performance recently to tackle these challenges (Sehwag et al.,
2022; Gowal et al., 2021; Das et al., 2022).

In synthetic data generation, one aims to learn a synthetic distribution (from which we generate
synthetic data) that is close to the true date-generating distribution based on training data available,
and most importantly, can help improve the downstream task performance. Synthetic data generation
is highly related to generative models. Among various kinds of generative models, the score-based
model and diffusion type models have gained much success in image generation recently (Song &
Ermon, 2019; Song et al., 2021b; 2020; Song & Ermon, 2020; Sohl-Dickstein et al., 2015; Nichol
& Dhariwal, 2021; Bao et al., 2022; Rombach et al., 2022). As validated in image datasets, the
prototype of diffusion models, the Denoising Diffusion Probabilistic Model (DDPM) (Ho et al.,
2020), and many variants can generate high-quality image data as compared with classical generative
models such as GANs (Dhariwal & Nichol, 2021).

This paper mainly focuses on the adversarial robust classification of image data, which typically
requires more training data than standard classification tasks. In Gowal et al. (2021), 100M high-
quality synthetic images are generated by DDPM and achieve the state-of-the-art performance on
adversarial robustness on the CIFAR-10 dataset, which demonstrates the effectiveness of diffusion
models in improving adversarial robustness. However, a major drawback of diffusion-type methods
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is the slow computational speed. More specifically, DDPM is usually 1000 times slower than GAN
(Song et al., 2021a) and this drawback is more serious when generating a large number of samples,
e.g., it takes more than 99 GPU days 1 for generating 100M image data according to Gowal et al.
(2021). Moreover, the computational costs will also increase dramatically when the resolution of
images increases, which inspires a plentiful of works studying how to accelerate the diffusion models
(Song et al., 2021a; Watson et al., 2022; Ma et al., 2022; Salimans & Ho, 2022; Bao et al., 2022;
Cao et al., 2022; Yang et al., 2022). In this paper, we aim to study the aforementioned problem
from a different perspective – “how to generate effective synthetic data that are most helpful for
the downstream task?”. We analyze the optimal synthetic distribution for the downstream tasks to
improve the sample efficiency of the generative model.

We first study the theoretical insights for finding the optimal synthetic distributions for achieving
adversarial robustness. Following the setting considered in Carmon et al. (2019), we introduce
a family of synthetic distributions controlled by the distinguishability of the representation from
different classes. Our theoretical results show that the more distinguishable the representation is
for the synthetic data, the higher the classification accuracy we will get when training a model
on such synthetic data sets. Motivated by the theoretical insights, we propose the Contrastive-
Guided Diffusion Process (Contrastive-DP) for efficient synthetic data generation, incorporating the
contrastive learning loss (van den Oord et al., 2018; Chuang et al., 2020; Robinson et al., 2021)
into the diffusion process. We conduct comprehensive simulations and experiments on real image
datasets to demonstrate the effectiveness of the proposed Contrastive-DP.

The remainder of the paper is organized as follows. Section 2 presents the problem formulation and
preliminaries on diffusion models. Section 3 contains the theoretical insights of optimal synthetic
distribution under the Gaussian setting. Section 4 proposes a new type of data generation procedure
that combines contrastive learning with diffusion models, as motivated by the theoretical insights
obtained in Section 3. Finally, Section 5 conducts extensive numerical experiments to validate the
good performance of the proposed generation method on simulation and image datasets.

2 PROBLEM FORMULATION AND PRELIMINARIES

We first give a brief overview of adversarial robust classification, which is our main focus, but the
whole framework is widely applicable to other downstream tasks in general. Denote the feature
space as X , the corresponding label space as Y , and the true (joint) data distribution as D = DX×Y .
Assume we have labeled training data Dtrain := {(xi, yi)}ni=1. We aim to learn a robust classifier
fθ : X 7→ Y , parameterized by a learnable θ, that can achieve minimum adversarial loss:

min
θ
Ladv(θ) := E(x,y)∼D

(
max
δ∈∆

`(x+ δ, y, θ)

)
, (1)

where `(x, y, θ) = 1{y 6= fθ(x)} is the 0-1 loss function, 1{·} is the indicator function, and
∆ = {δ : ‖δ‖∞ ≤ ε} is the adversarial set defined using `∞-norm. Intuitively, the solution to (1) is
a robust classifier that minimizes the worst-case loss within an ε-neighborhood of the input features.

In the canonical form of adversarial training, we train the robust classifier fθ on the training set
Dtrain := {(xi, yi)}ni=1 by solving the following sample average approximation of (1):

min
θ
L̂adv(θ) :=

1

n

n∑

i=1

max
δi∈∆

`(xi + δi, yi,θ). (2)

2.1 ADVERSARIAL TRAINING USING SYNTHETIC DATA

Synthetic data generation is one way to artificially increase the size of the training set by generating
a sufficient amount of additional data, thus helping improve the learning algorithm’s performance
(Gowal et al., 2021). The mainstream generation procedures can be categorized into two types:
(i) generate the features (x) first and then assign pseudo labels to the generated features; (ii) or
perform conditional generation conditioned on the desired label. Our analysis is mainly based on
the former paradigm, which can be easily generalized to the conditional generation procedure, and

1Running on a RTX 4x2080Ti GPU cluster.
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our proposed algorithm is also flexible enough for both pipelines. Denote the distribution of the
generated features as D̃X and the generated synthetic data asDsyn := {(x̃i, ỹi)}ñi=1. Here the feature
values x̃i are generated from the synthetic distribution D̃X , and ỹi are pseudo labels assigned by a
classifier learned on the training dataDtrain. Combining the synthetic and real data, we will learn the
robust classifier using a larger training set Dall := Dtrain ∪ Dsyn which now contains n+ ñ samples:

min
θ

{
η

(
1

n

n∑

i=1

max
δi∈∆

`(xi + δi, yi,θ)

)
+ (1− η)

(
1

ñ

n∑

i=1

max
δi∈∆

`(x̃i + δi, ỹi,θ)

)}
, (3)

where η ∈ (0, 1) is a parameter controlling the weights of synthetic data.

2.2 DIFFUSION MODEL FOR SYNTHETIC DATA GENERATION

We build our proposed generation procedure based on the Denoising Diffusion Probabilistic Model
(DDPM) (Ho et al., 2020) and its accelerated variant Denoising Diffusion Implicit Model (DDIM)
(Song et al., 2021a). In the following, we briefly review the key components of DDPM.

The core of DDPM is a forward Markov chain with Gaussian transitions q(xt|xt−1) to inject noise to
the original data distribution q(x0). More specifically, Ho et al. (2020) model the forward Gaussian
transition as:

q (xt|xt−1) := N (
√
αtxt−1, (1− αt) I) ,

where αt, t = 1, 2, . . . , T is a decreasing sequence to control the variance of injected noise,
and I is the identity covariance matrix. The joint likelihood for the above Markov chain can
be written as q (x0:T ) = q (x0)

∏T
t=1 q (xt|xt−1). DDPM then assumes we have pθ (x0:T ) =

pθ (xT )
∏T
t=1 pθ (xt−1|xt) for the reverse process, where pθ(xt−1|xt) is parameterized using a

neural network. The training objective is to minimize the Kullback–Leibler (KL) divergence be-
tween the forward and reverse process, DKL(q (x0:T ) , pθ (x0:T )), which can be simplified as:

min
θ

Et,x0,ε

[∥∥ε− εθ
(√
ᾱtx0 +

√
1− ᾱtε, t

)∥∥2
]
,

where x0 ∼ q(x0), ᾱt =
∏t
s=1 αs for t = 1, . . . , T , ε ∼ N (0, I), and εθ(x, t) denotes the neural

network parameterized by θ to be learned. We refer to Ho et al. (2020) for the detailed algorithms.

After learning the time-reversed process parameterized by θ, the original generation process in Ho
et al. (2020) is a time-reversed Markov chain as follows:

xt−1 =
1√
αt

(
xt −

1− αt√
1− ᾱt

εθ (xt, t)

)
+ σtzt, t = T, T − 1, . . . , 1,

where zt ∼ N (0, I) if t > 1 and zt = 0 if t = 1. DDIM (Song et al., 2021a) speeds up the above
procedure by generalizing the diffusion process to a non-Markovian process, leading to a sampling
trajectory much shorter than T . DDIM carefully designs the forward transition q(xt−1|xt,x0) such
that q (xt|x0) = N

(√
αtx0, (1− αt) I

)
for all t = 1, . . . , T . The great advantage of DDIM is that

it admits the same training objective as DDPM, which means we can adapt the pre-trained model
of DDPM and accelerate the sampling process without additional cost. The key sample-generating
step in DDIM is as follows:

xt−1 =
√
αt−1

(
xt −

√
1− αtεθ (xt, t)√

αt

)

︸ ︷︷ ︸
predicted x0

+
√

1− αt−1 · εθ (xt, t)︸ ︷︷ ︸
pointing to xt

, (4)

in which we can generatext−1 usingxt andx0. Also, the generating process becomes deterministic.

3 THEORETICAL INSIGHTS: OPTIMAL SYNTHETIC DISTRIBUTION

In this section, we consider a concrete distributional model as used in Carmon et al. (2019); Schmidt
et al. (2018), and demonstrate the advantage of refining the synthetic data generation process – using
the optimal distribution for synthetic data generation can help reduce the sample complexity needed
for robust classification. This provides theoretical insights and motivates the proposed generation
method to be introduced in Section 4.
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3.1 THEORETICAL SETUP

Consider a binary classification task where X = Rd,Y = {−1, 1}. The true data distribution
D = DX×Y is specified as follows. The marginal distribution for label y is uniform in Y , and the
conditional distribution of features is x|y ∼ N (yµ, σ2Id), where µ ∈ Rd is non-zero, and Id is the
d dimensional identity covariance matrix. Assume we generate a set of synthetic data from another
synthetic distribution D̃.

We focus on learning a robust linear classifier under such setting. The family of linear classifiers is
represented as fθ(x) = sign(θ>x). Recall that we first generate features and then assign pseudo
labels to the features. Therefore, a self-learning paradigm is adopted here (Wei et al., 2020). Given a
set of unlabeled features {x̃1, x̃2, . . . , x̃ñ}, we apply an intermediate linear classifier parameterized
by θ̂inter = 1

n

∑n
i=1 yixi, learned from real data Dtrain, to assign the pseudo-label. Then, the syn-

thetic data Dsyn = {(x̃1, ỹ1), . . . , (x̃ñ, ỹñ)}, where ỹi = sign(θ̂>interxi), i = 1, . . . , ñ. We combine
the real data and synthetic data Dall := Dtrain ∪ Dsyn = {{(xi, yi)}ni=1, {(x̃i, ỹi)}ñi=1} to obtain an
approximate optimal solution θ̂final as:

θ̂final =
1

n+ ñ
(
n∑

i=1

yixi +
ñ∑

j=1

ỹjx̃j). (5)

Note that the final linear classifier θ̂final depends on the synthetic data generated from D̃. We aim to
study which synthetic distribution D̃ can help reduce the adversarial classification error (also called
robust error) errrobust (fθ̂final

) := P(x,y)∼D(∃δ ∈ ∆, fθ̂final
(x+ δ) 6= y), where ∆ = {δ : ‖δ‖∞ ≤

ε}. And we similarly define the standard error as errstandard (fθ̂final
) := P(x,y)∼D(fθ̂final

(x) 6= y)
which will be used later.
Remark 1 (Comparison with existing literature). In Carmon et al. (2019); Deng et al. (2021),
sample complexity results are proposed based on the same Gaussian mixture setting. The major
difference is that they all assume the learned linear classifier θ̂final is only learned from synthetic
dataDsyn rather than the combination of the real and synthetic dataDall. In general, our theoretical
setup matches well with the practical algorithms.

3.2 THEORETICAL INSIGHTS FOR OPTIMAL SYNTHETIC DISTRIBUTION

We first study the desired properties of the synthetic distribution D̃ that can lead to a better adversar-
ial classification accuracy when the additional synthetic sample Dsyn is used in the training stage. In
Carmon et al. (2019), the case D̃ = D is studied, i.e., they consider the case that additional unlabeled
data from the true distributionD is available, and they characterize the usefulness of those additional
training data. Compared with from Carmon et al. (2019), we consider general distributions D̃ which
does not necessarily equal to D.

First note that by the Bayes rule, the optimal decision boundary for the true data distribution is given
by µ>x = 0. Therefore, we restrict our attention to synthetic data distributions that satisfy: (i) the
marginal distribution of the label ỹ is also uniform in Y , same as D; (ii) the conditional probability
densities p(x̃|ỹ = 1) and p(x̃|ỹ = −1) of the synthetic data distribution are symmetric around the
true optimal decision boundary µ>x = 0. More specifically, we start with a special case of the
synthetic data distribution D̃X = 0.5N (µ̃, σ2I) + 0.5N (−µ̃, σ2I) (note that when µ̃ = cµ for
some constant c, the above two conditions are all satisfied).

In the following proposition, we present several representative scenarios of synthetic distributions
in terms of how they may contribute to the downstream classification task. Figure 1 gives a pictorial
demonstration for different cases.
Proposition 1. Consider a special form of synthetic distributions D̃X = 0.5N (µ̃, σ2I) +

0.5N (−µ̃, σ2I) and assume {x̃1, . . . , x̃ñ} are samples from D̃X . We follow the self-learning
paradigm described in Section 3.1 to learn the classifier fθ̂final

, when ñ is sufficiently large we have:

Case 1: Inefficient D̃X . When 〈µ̃,µ〉 = 0, the standard error errstandard (fθ̂final
) achieves the maxi-

mum and when 〈µ̃,µ− ε1d〉 = 0, the robust error errrobust (fθ̂final
) achieves the maximum.
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Lemma 2. For any D̃ in the class of optimal distribution D̃⇤, the smaller the variance D̃ is, the
smaller sample complexity D̃ has.

Proof of Lemma 2. It is a straight forward conclusion derived from equation 6 and 3.12. We can
further extend beyond Gaussian setting, like other heavy-tail distributions.

Based on the previous lemmas, below we summarize the performance guarantee for classification
errors under several representative scenarios of synthetic distributions.

Lemma 3. Consider a special form of synthetic distributions D̃X = 0.5N (µ̃,�2I) +

0.5N (�µ̃,�2I) and suppose {x̃1, x̃2, · · · x̃ñ} are samples from D̃X . We generate pseudo-labels
ỹi = sign(✓̂T

intermediatex̃i), i = 1, · · · , ñ, using the intermediate classifier ✓̂intermediate = 1
n

Pn
i=1 yixi

learned from real data. Then, we learn ✓̂final on D̃ñ = {(x̃1, ỹ1), · · · , (x̃ñ, ỹñ)} by ✓̂final =
1
ñ

Pñ
i=1 ỹix̃i. We have

• hµ̃,µi = 0, error achieves maximum ⇥
• µ̃ = cµ, error achieves minimum X c %) error%

1. When hµ̃,µi = 0, the standard error errstandard
⇣
f✓̂final

⌘
achieves the maximum and when

hµ̃,µ� "1di = 0, the robust error errrobust
⇣
f✓̂final

⌘
achieves the maximum.

2. When µ̃ = cµ, where c is a positive scalar, the standard error errstandard
⇣
f✓̂final

⌘
achieves

the minimum, while the bigger the c is, the smaller the errstandard
⇣
f✓̂final

⌘
is.

3. When µ̃ = c(µ � "1d), where c is a positive scalar, the robust error err1,"
robust

⇣
f✓̂final

⌘

achieves the minimum, while the bigger the c is, the small the err1,"
robust

⇣
f✓̂final

⌘
is.

Proof of Lemma 3. We follow the similar proof in Carmon et al. (2019). Let bi be the indicator that
the i th pseudo-label is incorrect, so that x̃i ⇠ N

�
(1� 2bi) ỹiµ̃,�

2I
�
, and let

� :=
1

ñ

n̄X

i=1

(1� 2bi) 2 [�1, 1].

We may write the final estimator as

✓̂final =
1

ñ

ñX

i=1

ỹix̃i = �µ̃+
1

ñ

ñX

i=1

ỹi"i

where "i ⇠ N
�
0,�2I

�
independent of each other. Defining �̃ := ✓̂final � �µ̃, then we have a

detailed discussion about the inverse of the term inside Gaussian error function.

1. ���✓̂final
���
2

⇣
µ>✓̂final

⌘2 =
k�̃ + �µ̃k2

⇣
�hµ, µ̃i+ µT �̃

⌘2 .

When hµ̃,µi, k✓̂final k2

(µ>✓̂final )
2 achieves its maximum and plug it in Equation 6, the standard error

errstandard

⇣
f✓̂final

⌘
achieves its maximum, which proves the first part.

2We need to assume µi is larger than ".
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Figure 1: Demonstration of Proposition 1.

Case 2: Optimal D̃X for clean accuracy. When µ̃ = cµ for c > 0, errstandard (fθ̂final
) achieves the

minimum, and the bigger the c is, the smaller the errstandard (fθ̂final
).

Case 3: Optimal D̃X for robust accuracy. When µ̃ = c(µ − ε1d) for c > 0, the robust error
errrobust (fθ̂final

) achieves the minimum, and the bigger the c is, the small the errrobust (fθ̂final
).

Remark 2 (Comparison with the existing characterization of the synthetic distribution). We briefly
comment on the main differences and similarities with Deng et al. (2021), in which a similar result
was presented in Theorem 4. In Deng et al. (2021), the optimal solution of θ∗ was given for minimiz-
ing robust error errrobust (fθ̂final

) and they provides a specific unlabeled distribution µ̃ = µ−ε1d that
achieves asymptotic optimality under certain condition. In this paper, we propose a general family
of optimal distribution controlled by a scalar c, which represents the distinguishability of the fea-
ture. The optimal θ∗ proposed in Deng et al. (2021) can be recovered when c→∞. Therefore, our
conclusion points out the optimality condition of unlabeled distribution and inspires a line of work
to improve the performance of θ̂final by making the feature of unlabeled distribution distinguishable.

Table 1: Simulation results validating findings in Proposition 1. d = 2 and d = 100 denotes the
dimension of x, representing the low-dimensional and high-dimensional cases, respectively. For
d = 2, we set ‖µ‖2 = 2, ε = 0.5, and for d = 100, we set ‖µ‖2 = 4, ε = 0.1. We use “Real”
to denote the real data distribution and n to denote the number of data from the real distribution,
while we use “c” to denote different synthetic distributions with µ̃ = cµ and use ñ to denote the
number of synthetic data. The results and the standard deviation in the bracket are averaged over 50
independent trials.

d=2 d=100
Accuracy Robust Accuracy Accuracy Robust Accuracy

Real n = 10 0.9159 (0.0099 ) 0.7541 (0.0096) n = 10 0.7562 (0.0564) 0.4611 (0.4611)
n = 100 0.9213 (0.0011) 0.7601 (0.0009) n = 100 0.9505 (0.0047) 0.7848 (0.7848)

c = 0.5
ñ = 10 0.9159 (0.0099 ) 0.7541 (0.0096) ñ = 10 0.7562 (0.0564) 0.4611 (0.4611)
ñ = 100 0.9213 (0.0011) 0.7601 (0.0009) ñ = 100 0.9505 (0.0047) 0.7848 (0.7848)

c = 1
ñ = 10 0.9133 (0.0066) 0.7502 (0.0061) ñ = 10 0.8866 (0.0273) 0.6557 (0.6557)
ñ = 100 0.9165 (0.0005) 0.7528 (0.0006) ñ = 100 0.9695 (0.0012) 0.8239 (0.8239)

c = 1.5
ñ = 10 0.9209 (0.0038) 0.7523 (0.0025) ñ = 10 0.9400 (0.0100) 0.7603 (0.7603)
ñ = 100 0.9232 (0.0003) 0.7538 (0.0005) ñ = 100 0.9743 (0.0008) 0.8343 (0.8343)

Simulation results. To verify the findings in Proposition 1, we conduct extensive simulation ex-
periments for a Gaussian example with varying data dimensions, sample sizes, and the position of
µ̃. In Table 1, we demonstrate the clean and robust accuracy learned on synthetic distribution with
the angle between µ and ε1d equals 0◦. More experiment results (with 30◦, 60◦, and 90◦) can be
found in Table 7, 8 and 9 in Appendix B. In most cases, the classifier learned from the synthetic
distribution with µ̃ = cµ with c > 1 achieves better performance even than the iid samples.
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4 DIFFUSION MODELS GUIDED BY CONTRASTIVE LOSS

Proposition 1 and the corresponding simulation results in Table 1 show that the synthetic data can
help improve the classification task especially when the representation of different classes is more
distinguishable in the synthetic distribution. Therefore, contrastive loss (van den Oord et al., 2018)
can be adopted to explicitly control the distances of the representation of different classes. Therefore,
we propose a variant of the classical diffusion model, named Contrastive-Guided Diffusion Process
(Contrastive-DP), to enhance the sample efficiency of the generative model. In this section, we
first present the overall algorithm of the proposed Contrastive-DP procedure in Section 4.1, then we
describe the detailed design of the contrastive loss in Section 4.2.

4.1 CONTRASTIVE-GUIDED DIFFUSION PROCESS

The detailed generation procedure of Contrastive-DP is given in Algorithm 1. We highlight below
some major differences between the proposed Contrastive-DP and the vanilla DDIM algorithm. In
each time step t of the generation procedure, given the current value x(i)

t , we add the gradient of the
contrastive loss `contra(x

(i)
t ,x

(i)
p ; τ) with respect to x(i)

t to the original diffusion generative process,
here x(i)

p is the positive pair of x(i)
t (will be explained in detail later), τ is the temperature for

softmax, and λ is the hyperparameter balancing the contrastive loss within the diffusion process.

This modification ensures that the generated data will be distinguishable among data in the same
batch. The construction of the contrastive loss `contra(·) is very flexible – we can adopt multiple
forms of contrastive loss together with different selection strategies of positive and negative pairs,
which will be discussed in detail in the following.

4.2 CONTRASTIVE LOSS FOR DIFFUSION PROCESS

Algorithm 1 Generation in Contrastive-guided Diffusion Process (Contrastive-DP)

1: XT = {x(i)
T }mi=1 ∼ N (0, I)

2: t = T
3: while t 6= 1 do
4: for i = 1:m do
5: Choosing x(i)

p as the positive pair of x(i)
t

6: ∆x
(i)
t = λ · ∇

x
(i)
t
`contra(x

(i)
t ,x

(i)
p ; τ) + εθ(x

(i)
t , t)

7: x
(i)
t−1 =

√
αt−1(

x
(i)
t −

√
1−αt∆x(i)

t√
αt

) +
√

1− αt−1 ·∆x(i)
t

8: t = t− 1
9: end for

10: end while
11: return X0 = {x(i)

0 }mi=1

Let X = x1, ...,xm be a minibatch of training data. We apply the contrastive loss to the embedding
space. Assume f(·) is the feature extractor that maps the input data in X onto the embedding space.
In general, we adopt two forms of the contrastive loss `contra(x

(i)
t ,x

(i)
p ; τ) used in Algorithm 1.

First is the InfoNCE loss: `InfoNCE (xa,xp; τ) = − log(gτ (xa,xp)/
∑m
k=1 1k6=agτ (xa,xk)), where

m is the batch size, τ is the temperature for softmax, xa, xp denote the anchor and the positive
pair, respectively, gτ (x,x′) = exp(f(x)>f(x′)/τ), and all images except the anchor xa in the
minibatch X is negative pairs. InfoNCE loss is an unsupervised learning metric and does not explic-
itly distinguish the representation from different classes, which implicitly regards the representation
from the same class as negative pair.

Second is the hard negative mining loss: `HNM (xa,xp; τ) = − log(gτ (xa,xp)/(gτ (xa,xp) +
m/τ−(Exn∼qβ [(gτ (xa,xn)] − τ+Ev∼q+β [(gτ (xa,v)]))), where m denotes the batch size, τ− =

1 − τ+ denotes the probability of observing any different class with xa and qβ is an unnormalized
von Mises–Fisher distribution (Jammalamadaka, 2011), with mean direction f(x) and “concentra-
tion parameter” β to control the hardness of negative mining; qβ and q+

β can be easily approximated
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by Monte-Carlo importance sampling techniques. We refer to Chuang et al. (2020); Robinson et al.
(2021) for detailed descriptions of hard negative mining contrastive loss. Compared with the In-
foNCE loss that does not consider class/label information, the hard negative mining (HNM) loss
enhances the discriminative ability of different classes in the feature space.

It is worth mentioning that the Contrastive-DP enjoys the plugin-type property – it does not modify
the original training procedure of diffusion processes and can be easily adopted to various kinds of
diffusion models.

Numerical Validations. We first demonstrate the effectiveness of contrastive-DP in Figure 2 using
a simulation example. Consider the binary classification problem as in Section 3.1, and the real data
for each class are generated from a Gaussian distribution. Figure 2(a) demonstrates the synthetic
data generated by the vanilla diffusion model, which recovers the ground-truth Gaussian distribution
well. When using the contrastive-DP procedure with HNM loss, we obtain the generated synthetic
data as shown in Figure 2(b), which is more distinguishable with a much smaller variance.

(a) DDPM (b) Contrastive-DP

Figure 2: An illustration of the effectiveness of synthetic distribution guided by contrastive loss.

In addition, Figure 3 and Figure 4 in Appendix C.2 demonstrate the synthetic data distribution guided
by different kinds of contrastive loss mentioned above. It can be shown that InfoNCE loss and hard
negative mining method cannot explicitly distinguish the data within the same class and thus form a
circle within each class to maximize the distance between samples, while the conditional version of
contrastive loss (given the oracle class information) can make two classes more separable.

5 REAL-WORLD IMAGE DATASETS

In this section, we demonstrate the effectiveness of the proposed contrastive guided diffusion process
for synthetic data generation in adversarial classification tasks. We first compare the performance of
Contrastive-DP with the vanilla DDIM methods in Section 5.1. Then, we present a comprehensive
ablation study on the performance of Contrastive-DP to shed insights on how to adopt the contrastive
loss functions on the diffusion model in Section 5.2, especially on which contrastive loss gives the
best performance on the diffusion process and how to choose the hyperparameter λ to control the
strength of the guidance of the contrastive loss.

5.1 EXPERIMENTAL RESULTS

We test the contrastive-DP algorithm on two image datasets, the CIFAR-10 dataset (Krizhevsky,
2009) and Traffic Signs dataset (Houben et al., 2013). CIFAR-10 dataset contains 50k training
images in 10 classes and 10K images for testing, while Traffic signs dataset contains 39252 training
images in 43 classes and 12629 images for testing. For CIFAR-10 dataset, we generate 50K, 200K,
and 1M additional images together with the original training images for adversarial training, while
for Traffic signs dataset, we synthetic 50k images. To demonstrate our Contrastive-DP algorithm
is flexible to be adopted to various kinds of diffusion models and make use of the existing pre-
trained models, we establish our Contrastive-DP algorithm on the unconditional DDIM for CIFAR-
10 datasets and on the conditional DDPM for Traffic signs dataset. The detailed description of the
pipeline for generating data and the corresponding hyperparameter can be found in Appendix D.2.

Table 2 demonstrates the effectiveness of our contrastive-DP algorithm on the CIFAR-10 dataset 2,
which achieves better robust accuracy on all data regimes than the vanilla DDIM. All of the results

2Since the Pytorch Implementation of Gowal et al. (2021) is not open source, we utilize the best unoffical
implementation to reconduct all the experiments for a fair comparison.
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are higher than the baseline result without synthetic data by a large margin (+4.37% in 50K setting
and +7.3% in 1M setting). Table 3 demonstrates the effectiveness of our contrastive-DP algorithm
on the Traffic Signs dataset. Our contrastive-DP achieves better clean and robust accuracy than the
vanilla DDPM model and is also higher than the baseline result without synthetic data by a large
margin (+9.96%).

Table 2: The clean and adversarial accuracy on the CIFAR-10 dataset. The robust accuracy is
reported by the worst accuracy obtained by either AUTOATTACK (Croce & Hein, 2020) or AA+MT
(Gowal et al., 2020) with ε∞ = 8/255 and WRN-28-10. 50k, 200k, and 1M denote the number of
synthetic used for adversarial training.

No additional data 50K 200K 1M
clean acc rob acc clean acc rob acc clean acc rob acc clean acc rob acc

WRN-28-10 (DDIM) 81.09% 49.54% 84.65% 52.46% 85.86% 54.99% 85.37% 56.61%
WRN-28-10 (Contrastive-DP) 83.66% 53.91% 85.71% 55.79% 86.30% 56.84%

Table 3: The clean and adversarial accuracy on the Traffic Signs dataset.
clean acc rob acc

No additional data 78.41% 46.03%
DDPM 86.87% 56.11%
Contrastive-DP 86.94% 56.27%

5.2 ABLATION STUDIES

Sensitivity of λ. Table 4 shows the influence of the strength of the contrastive loss. λ = 100k
gives consistently better results than a smaller λ = 50k or a larger λ = 200k on robust accuracy on
all settings. Moreover, we find the larger the λ is, the better performance we get on clean accuracy
when the additional data is small (50K case), while the smaller the λ is, the better performance we
get on clean accuracy when the additional data is large (1M case).

Table 4: The performance of Contrastive-DP under different λ values.
50K 200K 1M

clean acc rob acc clean acc rob acc clean acc rob acc
λ = 50k 84.41% 53.78% 85.45% 55.24% 86.35% 56.83%
λ = 100k 83.66% 53.91% 85.71% 55.79% 86.30% 56.84%
λ = 200k 84.51% 53.55% 85.51% 55.33% 85.98% 56.69%

The effectiveness of different contrastive losses. Table 5 demonstrates the performance of dif-
ferent design of the contrastive loss. We find out that applying the hard negative mining together
with the embedding network achieves better clean and robust accuracy when the additional data is
small (50K and 200K setting), while the infoNCE loss achieves better clean and robust accuracy
when the additional data is large (1M setting). This result shows that we can improve the sample
efficiency of the generative model by carefully designing the contrastive loss.

Table 5: The performance of Contrastive-DP under different contrastive loss: infoNCE and HNM
losses, and w/wo embedding denote with/without an embedding network.

50K 200K 1M

clean acc rob acc clean acc rob acc clean acc rob acc
DDIM+infoNCE 83.40% 52.74% 84.18% 54.75% 85.64% 56.28%
DDIM+HNM(w embedding) 84.20% 53.19% 85.71% 54.92% 85.29% 56.12%
DDIM+HNM(wo embedding) 83.97% 52.89% 85.65% 54.83% 85.38% 55.95%

Data selection for synthetic data. Data selection methods are worthy of study since, in practice,
we would like to know whether we can achieve better performance by generating a large number
of samples and applying some selection criteria to filter out some samples. Therefore, we propose
several data selection criterion and evaluate corresponding effectiveness in Table 6. All of the se-
lection methods on Contrastive-DP are higher than vanilla DDIM plus selection methods, which
demonstrates the superiority of using the contrastive learning loss as the guidance rather than using
selection methods on the images generated by the vanilla diffusion model.
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Table 6: Comparison of different data selection criteria. The detailed explanation of each selection
method can be found in Append D.3.

.
50K 200K 1M

clean acc rob acc clean acc rob acc clean acc rob acc
DDIM (Separability) 79.93% 49.49% 85.09% 54.90% 84.87% 56.08%
Contrastive-DP (Gradient norm) 83.92% 55.09% 84.64% 55.17% 86.36% 57.11%
Contrastive-DP (Gradient norm-rob) 83.91% 55.23% 84.78% 55.42% 85.93% 57.18%
Contrastive-DP (Entropy) 84.17% 55.08% 85.71% 55.79% 86.30% 56.84%

6 RELATED WORK

Using generative models to improve adversarial robustness has attracted increasing attention re-
cently. Gowal et al. (2021) uses 100M high-quality images generated by DDPM together with the
original training set to achieve state-of-the-art performance on the CIFAR-10 dataset. They propose
to use Complementary as an important metric for measuring the efficacy of the synthetic data. In
Sehwag et al. (2022), it was claimed that the transferability of adversarial robustness between two
data distributions is measured by conditional Wasserstein distance, which inspires us to use it as a
criterion for selecting samples. Our work follows the same line, but we investigate how to generate
the samples with high information rather than applying the selection to the data generated by the
vanilla diffusion model. Below we also summarize some closely related work in different lines.

Sample-efficient generation. We can view the sample-efficient generation problem as a Bi-level
optimization problem. We can regard how to synthesize data as the meta objective and the perfor-
mance of the model trained on the synthetic data as the inner objective. For data-augmentation based
methods, Ruiz et al. (2019) adopt a reinforcement learning based method for optimizing the genera-
tor in order to maximize the training accuracy. For active learning based methods, Tran et al. (2019)
use an Auto-Encoder to generate new samples based on the informative training data selected by
the acquisition function. Besides, Kim et al. (2020) combines the active learning criterion with data
augmentation methods. They use the gradient of acquisition function after one-step augmentation
as guidance for training the augmentation policy network.

Theoretical analysis of adversarial robustness. In Schmidt et al. (2018), the sample complexity
of adversarial robustness has been shown to be substantially larger than standard classification tasks
in the Gaussian setting. Carmon et al. (2019) bridges this gap by using the self-training paradigm
and corresponding unlabeled data. Deng et al. (2021) further extends the aforementioned conclusion
by leveraging out-of-domain unlabeled data. None of the works mentioned above investigates the
optimal distribution for unlabeled synthetic data.

Contrastive learning. Contrastive learning algorithms have been widely used for representation
learning (Chen et al., 2020; He et al., 2020; Grill et al., 2020). The vanilla contrastive learning loss,
InfoNCE (van den Oord et al., 2018), aims to draw the distance between positive pairs and push the
negative pairs away. To mitigate the problem that not all negative pairs may be true negatives, the
negative hard mining criterion was proposed in (Chuang et al., 2020; Robinson et al., 2021).

7 CONCLUSION

In this paper, we delve into which kind of synthetic distribution is optimal for the downstream task,
especially for achieving adversarial robustness in image data classification. We derive the opti-
mality condition under the Gaussian setting and propose the Contrastive-guided Diffusion Process
(Contrastive-DP), a plug-in algorithm suitable for various types of diffusion models. We verify our
theorem on the Gaussian simulation and demonstrate the superiority of the Contrastive-DP algorithm
on the image datasets.
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Aäron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. ArXiv, abs/1807.03748, 2018.

Linnan Wang, Saining Xie, Teng Li, Rodrigo Fonseca, and Yuandong Tian. Sample-efficient neural
architecture search by learning action space. ArXiv, abs/1906.06832, 2019.

Daniel Watson, William Chan, Jonathan Ho, and Mohammad Norouzi. Learning fast samplers for
diffusion models by differentiating through sample quality. In ICLR, 2022.

11



Colin Wei, Kendrick Shen, Yining Chen, and Tengyu Ma. Theoretical analysis of self-training
with deep networks on unlabeled data. In International Conference on Learning Representations,
2020.

Ling Yang, Zhilong Zhang, and Shenda Hong. Diffusion models: A comprehensive survey of
methods and applications. arXiv preprint arXiv:2209.00796, 2022.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. ArXiv, abs/1605.07146, 2016.

Hongyang R. Zhang, Yaodong Yu, Jiantao Jiao, Eric P. Xing, Laurent El Ghaoui, and Michael I. Jor-
dan. Theoretically principled trade-off between robustness and accuracy. ArXiv, abs/1901.08573,
2019.

12



A THEORETICAL DETAILS

A.1 ERROR PROBABILITIES IN CLOSED FORM.

Here, we briefly recapitulate the closed form formulation for the standard and robust error probabil-
ities as detailed in Carmon et al. (2019); Deng et al. (2021).

The standard error probability can be written as

errstandard (fθ) = P
(
y · x>θ < 0

)
= P

(
N
(
µ>θ
σ‖θ‖ , 1

)
< 0

)
= Q

(
µ>θ
σ‖θ‖

)
, (6)

where

Q(x) =
1√
2π

∫ ∞

x

e−t
2/2dt

is the Gaussian error function and is non-increasing. Clearly the standard error probability is mini-
mized when θ

‖θ‖ = µ
‖µ‖ , i.e., θ = cµ for some scalar c > 0. We may impost ‖θ‖2 = 1 to ensure

the unique solution θ = µ/ ‖µ‖.
The robust error probability under the `∞ adversarial set ∆ = {δ : ‖δ‖∞ ≤ ε} is

err∞,εrobust (fθ) = P
(

inf
‖ν‖∞≤ε

{
y · (x+ ν)>θ

}
< 0

)

= P
(
y · x>θ − ε‖θ‖1 < 0

)
= P

(
N
(
µ>θ, σ2‖θ‖2

)
< ε‖θ‖1

)

= Q

(
µ>θ
σ‖θ‖ −

ε‖θ‖1
σ‖θ‖

)
. (7)

In the following part, we use a simpler notation errrobust (fθ) for the robust error err∞,εrobust (fθ) without
ambiguity. The closed-form of the optimal θ∗ that minimizes the above robust error errrobust can be
shown to be (Deng et al., 2021):

θ∗ =
Tε(µ)

‖Tε(µ)‖ ,

where Tε(µ) is the hard-thresholding operator with (Tε(µ))j = sign (µj) · max {|µj | − ε, 0}.
Under the mild assumption µj > ε, ∀j ∈ {1, 2, . . . , d}, the optimal solution can be simplified as:

θ∗ =
µ− ε1
‖µ− ε1‖ .

Remark 3. Note that when µ = c1 for some constant c > ε, the optimal solution θ∗ = µ−ε1
‖µ−ε1‖

for minimizing the robust error is the same as the optimal solution µ
‖µ‖ for minimizing the standard

error. Otherwise, these two solutions are different, representing a trade-off between robustness and
accuracy.

A.2 DETAILS FOR THE THEORETICAL ANALYSIS IN SECTION 3

Overall, we would like to design an appropriate synthetic distribution D̃ that can help optimize the
adversarial classification accuracy in the downstream task. First note that by Bayes rule, the optimal
decision boundary for the true distribution x|y ∼ N (yµ, σ2I) is given by µ>x = 0. Therefore, we
restrict our attention to synthetic data distributions that satisfy the following two conditions:

1. The marginal probability density p(ỹ) of the synthetic distribution matches p(y) of the real data
distribution well.

2. The conditional probability densities p(x̃|ỹ = 1) and p(x̃|ỹ = −1) of the synthetic data distri-
bution are symmetric around the true optimal decision boundary µ>x = 0.

More specifically, we consider a special case of the synthetic data distribution D̃X =
0.5N (µ̃, σ2I) + 0.5N (−µ̃, σ2I).
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Proof of Proposition 1. We follow the proof strategy in Carmon et al. (2019). Let bi be the
indicator that the i-th pseudo-label ỹi assigned to x̃i is incorrect, so that we have x̃i ∼
N
(
(1− 2bi) ỹiµ̃, σ

2I
)
. Let γ := 1

ñ

∑n̄
i=1 (1− 2bi) ∈ [−1, 1] and α := ñ

ñ+n . Note that the
true data samples xi ∼ N

(
yiµ, σ

2I
)
, thus we may write the final estimator as

θ̂final =
1

n+ ñ
(
ñ∑

j=1

ỹjx̃j +
n∑

i=1

yixi)

= αγµ̃+
1

n+ ñ

ñ∑

i=1

ỹiε̃i + (1− α)µ+
1

n+ ñ

n∑

i=1

yiεi

= αγµ̃+ (1− α)µ+
1

n+ ñ
(
n∑

i=1

yiεi +
ñ∑

i=1

ỹiε̃i),

where εi, ε̃i ∼ N
(
0, σ2I

)
independent of each other, and the marginal probability density p(ỹ)

matches p(y) well. Defining δ̃ := θ̂final − αγµ̃− (1− α)µ. Note that δ̃ ∼ N (0, 1
n+ñσ

2).

By (6), we have that the standard error of fθ̂final
is a non-increasing function of µ>θ̂final

σ‖θ̂final ‖
. Note that

when ñ is large enough, we have the direction of θ̂final approach the direction of µ̃. Therefore, the
statement in Case 1 holds as a consequence, and similarly for the robust error according to (7).

The remaining proof on Case 2 and Case 3 is based on a detailed discussion for the squared inverse
of the term µ>θ̂final

σ‖θ̂final ‖
:

‖θ̂final ‖2
(µ>θ̂final )2

=
‖δ̃ + αγµ̃+ (1− α)µ‖2

(αγ〈µ, µ̃〉+ µ>δ̃ + (1− α)‖µ‖2)2
. (8)

Note that the larger the quantity in (8) is, the larger the standard error of fθ̂final
.

Case 2. Assume µ̃ = cµ. Then we have (8) reduces to:
‖θ̂final ‖2

(µ>θ̂final )2
=

‖δ̃ + (1− α+ cγα)µ‖2
(

(1− α+ cγα)‖µ‖2 + µ>δ̃
)2 (9)

=
1

‖µ‖2 +
‖δ̃ + (1− α+ cγα)µ‖2 − 1

‖µ‖2
(

(1− α+ cγα)‖µ‖2 + µ>δ̃
)2

(
(1− α+ cγα)‖µ‖2 + µ>δ̃

)2

=
1

‖µ‖2 +
‖δ̃‖2 − 1

‖µ‖2 (µ>δ̃)2

(
(1− α+ cγα)‖µ‖2 + µ>δ̃

)2 , (10)

which demonstrates that the bigger the c is, the smaller the standard error errstandard (fθ̂final
) is, which

verifies the second part of Case 2.

Case 3. Assume µ̃ = cµ. Similar to Case 2, we rewrite the term inside the robust error function (7)
as:

‖θ̂final ‖2(
(µ− ε1d)>θ̂final

)2 =
‖δ̃ + (1− α+ cγα)(µ− ε1d)‖2(

(1− α+ cγα)‖µ− ε1d‖2 + (µ− ε1d)>δ̃
)2

=
1

‖µ− ε1d‖2
+

‖δ̃‖2 − 1
‖µ−ε1d‖2

(
(µ− ε1d)>δ̃

)2

(
(1− α+ cγα)‖µ− ε1d‖2 + (µ− ε1d)>δ̃

)2 , (11)

which demonstrates the bigger the c is, the smaller the robust error errrobust (fθ̂final
) is, which proves

the second part of Case 3.
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B MORE SIMULATION RESULTS UNDER GAUSSIAN SETTING IN SECTION 3

In this section, we present more detailed simulation results under the Gaussian setting in Section 3
to demonstrate different scenarios in Proposition 1. Table 7 and Table 8 show the clean and robust
accuracy learned on synthetic distribution with different angles between µ and ε1d. Recall that µ
is (one of) the optimal linear classifier that maximize the clean accuracy under the true distribution
considered in Section 3, similarly µ − ε1d is the optimal solution for robust accuracy. Therefore,
different angles between µ and ε1d represent different trade-offs between the clean and robust accu-
racy. For example, when the angle between µ and ε1d is 0 degrees, i.e., µ = c1d, we have that the
optimal solution for clean accuracy and robust accuracy are the same. In most cases, the classifier
learned from the synthetic distribution that is most separable achieves better performance even than
the iid samples, which verifies Proposition 1.

Table 7: The clean and robust accuracy learned on synthetic distribution when d = 2 and the angle
between µ and ε is 0 degrees and 90 degrees. “Real” denotes the real data distribution, and n
denotes the number of data from the real distribution, while we use “c” to denote different synthetic
distributions and use ñ to denote the number of synthetic data. The results and the standard deviation
in the bracket are the results of 50 independent trials.

0 degree 90 degree
acc (std) rob acc (std) acc (std) rob acc (std)

Real

n = 10 0.9201 (0.0012) 0.7593 (0.0020) 0.9171 (0.0046) 0.7552 (0.0040)
n = 20 0.9204 (0.0007) 0.7598 (0.0016) 0.9186 (0.0017) 0.7563 (0.0012)
n = 50 0.9206 (0.0004) 0.7605 (0.0007) 0.9196 (0.0009) 0.7566 (0.0006)
n = 100 0.9205 (0.0004) 0.7608 (0.0006) 0.9199 (0.0006) 0.7565 (0.0007)

c = 0.5

ñ = 10 0.9159 (0.0099 ) 0.7541 (0.0096) 0.9104 (0.0121) 0.7492 (0.0122)
ñ = 20 0.9179 (0.0047) 0.7562 (0.0050) 0.9161 (0.0052) 0.7546 (0.0054)
ñ = 50 0.9200 (0.0023) 0.7586 (0.0024) 0.9183 (0.0022) 0.7570 (0.0022)
ñ = 100 0.9213 (0.0011) 0.7601 (0.0009) 0.9193 (0.0012) 0.7576 (0.0010)

c = 1

ñ = 10 0.9133 (0.0066) 0.7502 (0.0061) 0.9161 (0.0048) 0.7598 (0.0048)
ñ = 20 0.9155 (0.0020) 0.7516 (0.0019) 0.9180 (0.0017) 0.7612 (0.0020)
ñ = 50 0.9161 (0.0009) 0.7525 (0.0006) 0.9186 (0.0010) 0.7620 (0.0006)
ñ = 100 0.9165 (0.0005) 0.7528 (0.0006) 0.9189 (0.0005) 0.7622 (0.0003)

c = 1.5

ñ = 10 0.9209 (0.0038) 0.7523 (0.0025) 0.9221 (0.0017) 0.7583 (0.0015)
ñ = 20 0.9228 (0.0010) 0.7536 (0.0006 ) 0.9226 (0.0013) 0.7588 (0.0013)
ñ = 50 0.9229 (0.0008) 0.7538 (0.0005) 0.9232 (0.0005) 0.7594 (0.0006)
ñ = 100 0.9232 (0.0003) 0.7538 (0.0005) 0.9233 (0.0005) 0.7595 (0.0005)
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Table 8: The clean and robust accuracy learned on synthetic distribution when d = 2 and the angle
between µ and ε is 30 degrees and 60 degrees. “Real” denotes the real data distribution, and n
denotes the number of data from the real distribution, while we use “c” to denote different synthetic
distributions and use ñ to denote the number of synthetic data. The results and the standard deviation
in the bracket are the results of 50 independent trials.

30 degree 60 degree
acc (std) rob acc (std) acc (std) rob acc (std)

Real

n = 10 0.8307 (0.0123) 0.6343 (0.0283) 0.8348 (0.0117) 0.6378 (0.0293)
n = 20 0.8353 (0.0055) 0.6404 (0.0234) 0.8391 (0.005) 0.6433 (0.0222)
n = 50 0.8371 (0.0022) 0.6450 (0.0168) 0.8410 (0.0017) 0.6494 (0.0134)
n = 100 0.8385 (0.0010) 0.6461 (0.0097) 0.8413 (0.0013) 0.6522 (0.0102)

c = 0.5

ñ = 10 0.8265 (0.0184 ) 0.6282 (0.0418 ) 0.8338 (0.0132 ) 0.6303 (0.0335 )
ñ = 20 0.8299 (0.0129) 0.6352 (0.0325) 0.8365 (0.0132) 0.6393 (0.0316)
ñ = 50 0.8372 (0.0046) 0.6483 (0.0215) 0.8414 (0.0034) 0.6489 (0.0199)
ñ = 100 0.8402 (0.0015) 0.6466 (0.0110) 0.8431 (0.0012) 0.6510 (0.0135)

c = 1

ñ = 10 0.8383 (0.0158) 0.6439 (0.0319) 0.8377 (0.0074) 0.6396 (0.0267)
ñ = 20 0.8425 (0.0060) 0.6480 (0.0218) 0.8416 (0.0034) 0.6513 (0.0178)
ñ = 50 0.8455 (0.0023) 0.6553 (0.0128) 0.8432 (0.0020) 0.6503 (0.0122)
ñ = 100 0.8457 (0.0021) 0.6535 (0.0100) 0.8435 (0.0014) 0.65011 (0.0096)

c = 1.5

ñ = 10 0.8431 (0.0045) 0.6542 (0.0173) 0.8368 (0.0073) 0.6446 (0.0213)
ñ = 20 0.8447 (0.0021) 0.6542 (0.0142) 0.8393 (0.0022) 0.6479 (0.0150)
ñ = 50 0.8455 (0.0006) 0.6556 (0.0082) 0.8404 (0.0005) 0.6488 (0.0089)
ñ = 100 0.8457 (0.0004) 0.6547 (0.0057) 0.8404 (0.0007) 0.6486 (0.0082)

Table 9: The clean and robust accuracy learned on synthetic distribution when d = 100 and the angle
between µ and ε is 0 degrees. “Real” denotes the real data distribution, and n denotes the number of
data from the real distribution, while we use “c” to denote different synthetic distributions and use
ñ to denote the number of synthetic data. The results and the standard deviation in the bracket are
the results of 50 independent trials.

acc (std) rob acc (std)

Real

n = 10 0.9023 (0.0192) 0.6843 (0.6843)
n = 20 0.9341 (0.0128) 0.7519 (0.7519)
n = 50 0.9599 (0.0028) 0.8078 (0.8078)
n = 100 0.9682 (0.0014) 0.8239 (0.8239)

c = 0.5

ñ = 10 0.7562 (0.0564) 0.4611 (0.4611)
ñ = 20 0.8566 (0.0307) 0.6047 (0.6047)
ñ = 50 0.9261 (0.0117) 0.7328 (0.7328)
ñ = 100 0.9505 (0.0047) 0.7848 (0.7848)

c = 1

ñ = 10 0.8866 (0.0273) 0.6557 (0.6557)
ñ = 20 0.9371 (0.0091) 0.7555 (0.7555)
ñ = 50 0.9620 (0.0028) 0.8085 (0.8085)
ñ = 100 0.9695 (0.0012) 0.8239 (0.8239)

c = 1.5

ñ = 10 0.9400 (0.0100) 0.7603 (0.7603)
ñ = 20 0.9591 (0.0037) 0.8031 (0.8031)
ñ = 50 0.9710 (0.0013) 0.8280 (0.8280)
ñ = 100 0.9743 (0.0008) 0.8343 (0.8343)
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C THE DETAILED CONSTRUCTION OF THE CONTRASTIVE LOSS

In this section, we first give a detailed description of several possible ways to design contrastive loss,
especially in constructing positive and negative pairs. Then, we give a visualization of the synthetic
data distributions generated under different contrastive losses.

C.1 POSITIVE AND NEGATIVE PAIR SELECTION STRATEGY.

In this subsection, we give several possible ways to construct positive and negative pairs.

1. Vanilla version: Using all the samples in the minibatch is the common strategy for contrastive
learning. In the diffusion process, since for each time step t, we want to distinguish each image
from other images in the minibatch at the same time step, a straight-forward strategy is to use all
the samples in the minibatch other than xit at time step t to be the negative pairs. For the positive
pairs, we can simply adopt xit+1 to be the positive pairs rather than augmentation of xit.

2. Real data as positive pairs: A possible improvement upon the vanilla version is considering we
aim to generate images similar to real data. Therefore, we can directly adopt the real data as the
positive pairs.

3. Real data as negative pairs: Another improvement upon the vanilla version is considering the
other images in time step t in the minibatch is not as high quality as the real data. Therefore, we
can directly adopt the real data as the negative pairs.

4. Class conditional version: When we use conditional diffusion, and the class label of xt in the
minibatch is available, a further improvement can be adopted is to use all the samples with dif-
ferent class label y in the minibatch at time step t to be the negative pairs.

C.2 VISUALIZATION OF THE SYNTHETIC DATA DISTRIBUTION GENERATED BY DIFFERENT
DESIGNS OF THE CONTRASTIVE LOSS

In this subsection, we demonstrate the synthetic distributions generated by different designs of the
contrastive loss mentioned in Section C.1 on the Gaussian setting mentioned in Section 3.1. Fig-
ure 3 shows the synthetic distribution generated by using N (0, I) as initialization, while Figure 4
shows the synthetic distribution generated by using N (0, 4I) as initialization. In all figures, all
of the contrastive loss except for conditional hard negative mining form a circle within each class,
which means these algorithms cannot explicitly distinguish the data within the same class and thus
maximize the distance within each class, while the guidance from conditional hard negative mining
can generate samples that are more distinguishable.
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(a) InfoNCE (b) Hard negative mining

(c) Hard negative mining (real data as positive
pair)

(d) Hard negative mining (real data as negative
pair)

(e) Conditional inforNCE (f) Conditional hard negative mining

Figure 3: A comparison of the synthetic distribution guided by different contrastive loss with initial-
ization N (0, I). Real data as positive pair means using the mixture of oracle distribution N (±1, I)
and the data in the same batch as negative pair, while real data as negative pair means using the data
in the same batch as positive pair and using the mixture of oracle distribution as negative pair.
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(a) Diffusion (b) InfoNCE

(c) Hard negative mining (d) Hard negative mining (true data as positive
pair)

(e) Hard negative mining (true data as negative
pair)

(f) Conditional hard negative mining

Figure 4: A comparison of the synthetic distribution guided by different contrastive loss with initial-
ization N (0, 4I).
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D THE EXPERIMENTAL RESULTS IN THE REAL-WORLD SETTING

D.1 EXPERIMENTAL SETUP FOR CIFAR-10 DATASET

We describe the pipeline of synthetic data generation for adversarial robustness and a corresponding
setting for the CIFAR-10 dataset in this subsection.

Dataset. CIFAR-10 dataset Krizhevsky (2009) contains 50K 32x32 color training images in 10
classes and 10K images for testing.

Synthetic data generation by the diffusion model. Considering the advantage of DDIM on gen-
eration speed, we base on the official implementation of the DDIM model (Song et al., 2021a) and
add the guidance of the contrastive loss. We generate images with 200 steps with batchsize=512,
and use the quadratic version of sub-sequence selection 3. For the guidance of the contrastive loss,
we try different designs of the contrastive loss mentioned in Section 4.2. We set the temperature
τ = 0.1 and the strength of guidance of the contrastive loss λ = 20k in the InfoNCE loss, while
τ = 10, the strength of guidance of the contrastive loss λ = 100k, the probability of the same class
in the minibatch τ+ = 0.1 and the hardness of negative mining β = 1 in hard negative mining
loss. These corresponding hyperparameters are chosen based on some preliminary experiments on
image generation. The detailed ablation studies can be found in Section 5.2. Moreover, we also
delve into the representation used by contrastive loss. The default setting is to use the pre-trained
Wide ResNet-28-10 model Gowal et al. (2021) to get the representation for applying the contrastive
loss, which is named as (without embedding) in Section 5.2. A further improvement is to apply a
2-layer feed-forward neural network to encode the representation after the pre-trained model, which
is named as (with embedding). The advantage of the latter design is we can adopt the contrastive
loss to optimize the encoding network rather than a fixed encoder.

LaNet for assigning pseudo-label. Since the DDIM is an unconditional generator, we need to
assign the pseudo-label to the generated sample. We follow the same choice adopted by Sehwag
et al. (2022), i.e., using state-of-the-art LaNet Wang et al. (2019) network for assigning the pseudo-
label for the synthetic data.

Adversarial Training. We follow the same setting as Gowal et al. (2021), i.e., we use Wide
ResNet-28-10 Zagoruyko & Komodakis (2016) with Swish activation function Hendrycks & Gim-
pel (2016), adopt stochastic weight averaging Izmailov et al. (2018) with decay rate 0.995 and use
TRADES Zhang et al. (2019) with 10 Projected Gradient Descent steps and ε∞ = 8/255 for 400
epochs with batch size 10244.

D.2 EXPERIMENTAL SETUP FOR TRAFFIC SIGNS DATASET

We describe the pipeline of synthetic data generation for adversarial robustness and a corresponding
setting for the Traffic Signs dataset in this subsection.

Dataset. Traffic Signs dataset Houben et al. (2013) contains 39252 training images in 43 classes
and 12629 images for testing, and the image sizes vary between 15x15 to 250x250 pixels.

Synthetic data generation by the diffusion model. To utilize the pre-trained diffusion model 5,
we use a conditional DDPM for generating samples for Traffic Signs dataset. We adopt the hard
negative mining loss with τ = 10, the strength of guidance of the contrastive loss λ = 5k, the
probability of the same class in the minibatch τ+ = 0.1 and the hardness of negative mining β = 1.
We also use the pre-trained Wide ResNet-28-10 model to get the representation for applying the
contrastive loss and use a 2-layer feed-forward neural network to encode the representation after the
pre-trained model.

3We refer to Appendix D.2 for a detailed explanation of the quadratic version.
4For Table 5 in the ablation studies subsection, we use batch size with 256.
5https://github.com/VSehwag/minimal-diffusion
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(a) DDIM (b) Contrasrive-DP

Figure 5: Comparison of the Contrastive-GP with the vanilla DDIM. The image in the same position
on subfigures (a) and (b) has the same initialization. With the guidance of the contrastive loss, the
category of the synthetic images changes, or the synthetic images become more realistic (colorful),
which demonstrates the effectiveness of our Contrastive-DP algorithm.

Adversarial Training. We follow the same setting as the CIFAR-10 dataset, except the training
epochs are reduced to 50. We also extend the training epochs to 400 but do not find significant
improvement.

D.3 THE DETAILED EXPLANATION OF THE DATA SELECTION METHODS

Below we summarize different data selection methods:

• DDIM (Separability): We adopt the separability of the data as a criterion to make the selection of
the data generated by vanilla DDIM. For each data, we use a pre-trained WRN-28-10 model to
encode them into the embedding space. Then, we compute the L2 distance between each sample
and the centroid of all classes (which is easily computed as the mean of all samples in this class)
and add them together. To select a subset of samples that are most distinguishable, we choose the
top K samples that have the smallest distance in each class.

• Contrastive-DP (Gradient norm): We use the gradient norm with respect to a pre-trained WRN-
28-10 model as a criterion to make the selection on the data generated by Contrastive-DP. The
larger the gradient norm is, the more informative the sample is for learning a downstream model.
Therefore, we select the top K samples that have the largest gradient norm in each class.

• Contrastive-DP (Gradient norm-rob): Similar to Contrastive-DP (Gradient norm), we use the gra-
dient norm of the robust loss rather than standard classification loss as a criterion to make the
selection on the data generated by Contrastive-DP. Therefore, we select the top K samples that
have the largest gradient norm in each class.

• Contrastive-DP (Entropy): We use the entropy of each sample with respect to LaNet as a criterion
to make the selection on the data generated by Contrastive-DP. The smaller the entropy is, the
higher likelihood this image has good quality. Therefore, we select the top K samples that have
the smallest entropy in each class.

D.4 COMPARISON OF THE IMAGE GENERATED BY CONTRASTIVE-GP WITH THE VANILLA
DDIM

In this subsection, we visualize the image generated by Contrastive-GP and the vanilla DDIM on the
CIFAR-10 dataset. We find the guidance of the contrastive loss changes the category of the synthetic
images or makes the synthetic images realistic (colorful).

D.5 T-SNE ON THE CLASSIFIER LEARNED ON SYNTHETIC DATA.

In this subsection, we visualize the t-SNE of the finial classifier learned on different synthetic data.
We find with the guidance of the contrastive loss, the finial classifier learns a better representation
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that makes the feature of the images from different classes more separable than the finial classifier
learned on the images generated by the vanilla DDIM.
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(a) DDIM
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(b) Contrastive-DP

Figure 6: A comparison of the T-SNE of the finial classifier learned on different synthetic data on
the CIFAR-10 dataset.
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