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In this report, we characterize a spectrum of mathematical structures of real-world situations. 
Using data from teaching experiments with undergraduate STEM majors and theories from 
quantitative reasoning, covariational reasoning, and multi variational reasoning, we build 
second order accounts of modelers’ reasoning with and about conceived quantities. Through 
these accounts we illustrate four different kinds of structures as means for describing key aspects 
of how modelers develop their models. 
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Typically, mathematical modeling involves translating real world scenarios into 
mathematical representations. The mathematical representations can take the form of 
mathematical expressions, tables and graphs depicting how variables vary with one another (or 
not), and even diagrams depicting the dynamics of the scenario (e.g. stock-flow diagrams). 
While tables, graphs, and figures are useful for representing the real-world scenario, the ultimate 
goal is producing a mathematical expression that is consistent with their previous representations 
and reasonings about the scenario and also representative of the real-world scenario. 
Quantitative relations govern the mathematical model of a real-world scenario. That is, a 
mathematical representation of a real-world scenario can be understood as an expression of the 
relationships among conceived quantities. Therefore, it would make sense to view mathematical 
modeling through the lens of quantities and relations among quantities (Thompson, 2011; 
Larsen, 2013; Czocher & Hardison, 2019) in order to find ways to help guide students towards a 
mathematical expression. However, reasoning with and about quantities doesn’t necessarily yield 
a mathematical expression consistent with the modeler’s reasoning and representative of the 
scenario as an end result (Czocher & Hardison, 2019). In milieu of this, we ask: what is the 
nature of the quantitative relations students establish of real-world scenarios.  

Theoretical Orientation 
Our research lies within the cognitive perspective of mathematical modeling (Kaiser, 2017). 

In this perspective, mathematical modeling is considered to be the cognitive processes involved 
in constructing a mathematical model of real-world scenarios. We define a mathematical model 
to be the external representation of the relations among the quantities a modeler conceived as 
relevant to model a real-world scenario. We define mathematical modeling activity as the mental 
activities involved in creating a mathematical representation of a real-world situation.  

Thompson (2011) defines quantification as the “process of conceptualizing an object and an 
attribute of it so that the attribute has a unit of measure, and the attribute’s measure entails a 
proportional relationship its unit” (p. 37). In that sense, a quantity is a mental construct of a 
measurable attribute of an object. Quantitative reasoning involves conceiving and reasoning 
about conceived quantities. Reasoning about conceived quantity can entail operating on 
conceived quantities and reasoning about how the quantities can vary. Thompson (1994) defines 
quantitative operation as the “mental operation by which one conceives a new quantity in 
relation to one or more already-conceived quantities” (p.10). As a result of a quantitative 



operation a relationship is created: the quantities operated upon along with the quantitative 
operation in relation to the result of operating (Thompson, 1994).  Examples of quantitative 
operations include combining two quantities additively or multiplicatively and comparing two 
quantities additively or multiplicatively. Scholars address the following ways individuals can 
reason about how quantities vary: variational reasoning (Thompson & Carlson, 2017). Co-
variational reasoning (Carlson et al, 2002; Thompson & Carlson,2017), and multivariational 
reasoning (Jones, 2018; Jones & Jeppson, 2020, Panorkou & Germia, 2020).  

While variational reasoning involves reasoning about varying quantities independently 
(Thompson & Carlson, 2017), co-variational reasoning involves “coordinating two varying 
quantities while attending to the ways in which they change in relation to each other” (Carlson et 
al, 2002, p.354). Carlson et al (2002) contributed a framework for the mental actions involved in 
covariational reasoning. Later, Thompson and Carlson (2017) proposed six major mental 
operations involved in covariational reasoning. These mental operations are: no coordination of 
values, pre coordination of values (envisioning asynchronous changes in variables), gross 
coordination of values (envisioning the general increase/decrease in variables’ values), 
coordination of values (coordinating the amounts of change of each quantity), chunky continuous 
variation (envisioning change in variables happening simultaneously but in discrete chunks), 
smooth continuous variation (envisioning change happening simultaneously but smoothly).  

Scholars have extended the work of covariational reasoning to multivariational reasoning, 
which is reasoning about more than two quantities changing in conjunction with each other 
(Jones 2018; Jones & Jeppson,2020). Jones and Jeppson (2020) identified the following mental 
actions attendant to multivariational reasoning: recognizing dependence/independence, reduce 
into isolated covariations, covariational reasoning, switch variables/constants, imagining 
simultaneous changes in inputs, coordinating multiple simultaneous changes, coordinating 
qualitative amounts of change, coordinating numeric amounts of change, articulate the type of 
relationship, identifying the order of effect between variables, and recognize a chain of influence.   

Borrowing ideas from the aforementioned theoretical underpinnings, we define establishing 
structure for a real-world scenario to be creating a network of quantitative relations among the 
quantities the modeler conceives and recognizes as relevant to modeling the scenario. By 
network of quantitative relations, we mean the system of quantitative relations that was created 
as a result of reasoning about and operating on conceived quantities. In this paper we address the 
question: What is the nature of the quantitative structures students establish for real world 
scenarios?  

Methods 
We present data from a set of three teaching experiments (Steffe & Thompson, 2000) 

conducted with undergraduate STEM majors at a large university. The overall goal of the 
teaching experiment was to investigate the role of quantitative and co/multi-variational reasoning 
in students’ conception of real-world situations as they attempted to model those scenarios.  
Baxil, Pai, and Szeth, each participated 10 interview sessions; each session was approximately 1 
hour long. Baxil and Pai were enrolled in differential equations and Szeth was repeating the 
course. During the interviews, in addition to asking students the meanings they attributed to each 
symbol they introduced, participants were also probed to unpack the reasonings behind certain 
decisions they made during their mathematical modeling activity. In this report we present data 
from the following sessions: Baxil and the Fruit Ripening Task, Szeth and the Disease 
transmission Task, and Pai and the CI8 Account task. We focus on these sessions because they 



illustrate the finding that quantitative structures established by modelers may have differing 
natures.  

• Fruit Ripening: There is a surprising effect in nature where a tree or bush will 
suddenly ripen all of its fruit or vegetables, without any visible signal. This is our first 
example of a positive biological feedback loop. If we look at an apple tree, with many 
apples, seemingly overnight they all go from unripe to ripe to overripe. This will 
begin with the first apple to ripen. Once ripe, it gives off a gas known as ethylene 
(𝐶𝐶2𝐻𝐻4) through its skin. When exposed to this gas, the apples near to it also ripen. 
Once ripe, they too produce ethylene, which continues to ripen the rest of the tree in 
an effect much like a wave. This feedback loop is often used in fruit production, with 
apples being exposed to manufactured ethylene gas to make them ripen faster. 
Develop a mathematical model that captures the dynamics of the ripeness of the fruit.  

• Disease Transmission: Suppose a disease is spread by contact between sick and well 
members of the community. If members of the community move about freely among 
each other, develop a mathematical model that informs us about the dynamics of how 
the disease would spread through the population. 

• The CI8 Account: The competing Amtrak Trust has introduced a modification to City 
bank's SI8, which they call the CI8 account. Like the SI8 account, the CI8 earns 8% 
of the "initial investment". However, at the end of each year Amtrak Trust 
recalculates the “initial investment” of the CI8 account to include all the interest that 
the customer has earned up to that point. Create an expression that gives the value of 
the CI8 account at any time t (Castillo-Garsow, 2010).  

We retrospectively analyzed the data via building second-order models (Steffe & Thompson, 
2000) of students’ reasoning. Since we did not have direct access to participants’ mental 
activities, the second-order models we constructed are inferences made from the students’ 
observable activities such as language, verbal descriptions and discourse, written work, and their 
mathematically salient gestures.  Our retrospective analysis consisted of five rounds of data 
analysis to arrive at examples that illustrate the different natures of the structures present in 
students’ conception of real-world situations. First, we watched the subset of videos without 
interruption to observe students’ ways of reasoning about conceived quantities. Second, we paid 
close attention how they transformed these reasonings into a mathematical expression, or not. 
Third, we distinguished sessions where a normatively acceptable mathematical expressions were 
created from those where it wasn’t the case. Fourth, we sought to distinguish the sessions where 
acceptable mathematical expressions weren’t created according to the level of sophistication in 
mental actions attendant to co/multivariational reasoning. Fourth, we created annotated 
transcripts of such scenarios that provided rich description of the modelers mathematical 
modeling activity. Finally, we built and refined the explanatory models of participants structural 
conception of real-world scenarios.  

Findings 

Qualitative Structure – Baxil and Fruit Ripening 
Baxil operationalized ripeness of the fruit as “readiness to eat” the fruit. He indicated that the 

ripeness of the apple is dependent on “rate and time”. By rate, Baxil meant the rate at which the 
apple will become “ready to eat,” as illustrated below: 

Baxil: What I’m assuming is the rate of the apple are ready to eat because not all the apple 
will be always ready to eat, so I assume that, and the time will be keep increasing because 



if it keep too short, it's not ready. If it's right about time, it's ready, but if it's too long, it's 
not ready, as well, so it will be the time between ready and too ready. I would say it's 
same thing because it's any... It's changing maybe every minute or hours, but I think it's 
continuously again. 

He conceived of the situation to be that not all apples will be ready to eat at the same time 
and the apples’ readiness to eat depends on time. From above, it is evident that Baxil was able to 
coordinate the directions of changes of time and “readiness to eat”, thus engaging in gross 
coordination of values. He reasoned that as time goes on the “readiness to eat” of the apple will 
increase and then after a certain time the “readiness to eat” will start decreasing. For Baxil, the 
“readiness to eat” will start decreasing because an overripe fruit cannot be consumed. This is 
evident in the excerpt below. He also envisioned this change happening smoothly and 
continuously (see Figure 1).  

 
Figure 1. Baxil's graph for “readiness to eat" vs. time 

Baxil: It would be negative because it's not ready to eat, so I am assuming it start at 0, and to 
here is ready to eat [B]. And if I'm here [C], it's not ready to, and that the graph will be 
from here [C] to here [D], then decreasing, I think, and it will be... because this the time 
those two... from here to here is ready to eat because one is increasing because giving 
time to ready to eat, and from here[B] to here is the time you can eat [D], I think. I'm 
going to assume, and then after you can eat, then you cannot eat anything because it's... I 
don't know what that word, but it was expired. 

Here Baxil explains how the “readiness to eat” of the fruit changes with time. He was mostly 
involved with the gross coordination of the quantities “readiness to eat” and time and did not 
produce a mathematical expression that captured the dynamics of the ripening fruit. We call 
structures of this nature – where no more than the gross coordination of quantities is involved – 
as qualitative structures.   

Emerging Quantitative Structure – Pai and Disease Transmission 
After reading the Disease Transmission task, Pai immediately reasoned that the account 

would not change at a constant rate (linear growth) because “the value of what’s going to be 
multiplied by 0.08 changes”.  This indicates that Pai envisions the amount by which the account 
grows each period changes. He then wrote down what the values of the account at the end of the 
first, second, and third year as follows: 𝑆𝑆1 = 𝑆𝑆0 + 0.08(𝑆𝑆0)(𝑡𝑡), 𝑆𝑆2 = 𝑆𝑆1 + 0.08(𝑆𝑆1)(𝑡𝑡), 𝑆𝑆3 =
𝑆𝑆2 + 0.08(𝑆𝑆2)(𝑡𝑡) , where 𝑆𝑆𝑛𝑛 is the value of the account at the end of the 𝑛𝑛th compounding period 
and 𝑡𝑡 = 1 year. Pai continued to reason as:   

Pai: Because each year grows 8% times the initial level of the account balance, which is the 
prior year ending balance. Since the prior year, S1, is greater than, essentially, S0. S2 is 
going to be taking the S1 value and adding 8% of that value to it. It will just keep 



increasing…But if you take the entire account balance over time, it's going to grow at a 
faster and faster rate.” 

As he was reasoning he drew the graph of Account balance vs time (Figure 2). Upon probing 
to discuss the numerical amounts of change, Pai started with $100.00 and used his expressions 
from above to find the accounts’ value at the end of the first and second year as $108, and 
$116.64, respectively. Thus, Pai was coordinating the numeric amounts of change to the account 
balance with time. He further articulated that the change of the account size during each 
compounding period would continue to increase. Although Pai was able to coordinate the 
amounts of change of the value of the account and time, he was uncertain how to write a 
mathematical expression that would give the value of the account at any time t. We call 
structures of this nature – where a modeler has coordinated the amounts of change of the 
conceived quantities but hasn’t translated that into a mathematical expression yet – as emerging 
quantitative structures.  

 
Figure 2. Pai's graph of account balance vs time in years 

Quantitative Structure – Szeth and Disease Transmission 
Szeth initially wrote down 𝑃𝑃(𝑡𝑡) = 𝑆𝑆(𝑡𝑡)𝐻𝐻(𝑡𝑡), where 𝑆𝑆(𝑡𝑡) is the sick people, 𝐻𝐻(𝑡𝑡), is the 

healthy people and 𝑃𝑃(𝑡𝑡) represents the population that becomes sick. After realizing that P(t) and 
𝑆𝑆(𝑡𝑡) measure the same thing, he changed his expression to be 𝑆𝑆′(𝑡𝑡) = 𝑆𝑆(𝑡𝑡)𝐻𝐻(𝑡𝑡). When asked 
why he did so, he reasoned as:  

Szeth: Yeah. The big, I guess, driving force was, like I said, these two variables felt like the 
same thing to me which then the equation doesn't make sense that way. So I was thinking 
of, well, should I try and change this one [pointing at 𝑃𝑃(𝑡𝑡)] or should I try and change 
this one [pointing at 𝑆𝑆(𝑡𝑡)]? So I quickly just look through the wording of the problem, 
and in the last sentence it says how the disease would spread through the population. So 
the spreading, that sounds like to me like a rate, how quickly it would spread out, slowly 
it spreads. So then that led me to change what the equation is equal to. It's equal to the 
spreading or how quickly people get sick, and then that's based on the interactions 
between healthy and sick.  

As in the except above, Szeth was trying to determine if he should be changing 𝑃𝑃(𝑡𝑡) or 𝑆𝑆(𝑡𝑡) 
since having them as is doesn’t make any sense”. When re-reading the task, he realized that since 
he wants to know how the disease spreads, the left-hand side of the equation should be a rate 
rather than an amount. He then changed 𝑃𝑃(𝑡𝑡) to be 𝑆𝑆’(𝑡𝑡) because the spread of the disease is 
dependent upon the interactions between healthy and sick people. So, Szeth’s final answer was 
𝑆𝑆’(𝑡𝑡) = 𝑆𝑆(𝑡𝑡)𝐻𝐻(𝑡𝑡). When probed, he indicated that his model assumes that all healthy people who 
come in contact with the sick people, get sick. When the interviewer asked him how he would 



modify it to account for only a portion of healthy people who come in contact with the sick 
people will get sick, Szeth wrote 𝑆𝑆’(𝑡𝑡) = 𝛼𝛼𝛼𝛼(𝑡𝑡)𝐻𝐻(𝑡𝑡) where α is the percentage of interactions 
that lead to people getting sick.  In this scenario, Szeth was able to construct the quantity the 
spread of disease through operating on the quantities 𝑆𝑆(𝑡𝑡), 𝐻𝐻(𝑡𝑡), and α, under two different 
assumptions. Not only was he able to recognize the dependence among the quantities 𝑆𝑆’(𝑡𝑡), 
𝐻𝐻(𝑡𝑡), 𝑆𝑆(𝑡𝑡), P(t), and α, but he was also able to translate this dependence into a mathematical 
expression. We call structures of this nature – where the network of quantitative relations is 
translated into a mathematical expression – as quantitative structures.  

Pseudo Quantitative Structure: Baxil and Fruit Ripening 
Baxil was asked to draw a graph of the gas produced vs time. Baxil, while drawing his graph 

(Figure 3), reasoned as “I would say increasing slowly at the beginning, then increasing faster as 
they are ready to eat because after you're ready to eat, it will produce more instead it didn't ripe 
yet.” The interviewer probed his rationale for why the ethelyne gas production would be faster as 
the fruit ripens. Baxil explained “When you're not ready to eat, it's just like a little bit amount of 
the gas, I would think, but after it's ready, it goes faster because everywhere have the gas”. Baxil 
engaged in coordination of three interdependent quantities (amount of ethelyne gas produced, 
gas production, and time), while maintaining pairwise coordination between amount of gas vs. 
time and gas production vs. time, and production of gas vs. amount of gas. We can say that Baxil 
has established a qualitative structure of the situation.  

 
Figure 3. Baxil's graph for ethelyn production vs time 

The interviewer then asked Baxil to write an expression for the amount of ethelyne gas 
produced. He wrote down two expressions and was trying to figure which suited the situation 
most.  

i. Amount of gas produced by the apple which is ready to eat = 𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑜𝑜𝑜𝑜 𝑔𝑔𝑔𝑔𝑔𝑔∗ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 
ii. Amount of gas produced by the apple which is ready to eat = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

In expression (i), Baxil conceived of rate of gas to be the “percentage of gas inside the 
apple”. By that, Baxil meant the ripeness to ethylene conversion rate. Whereas in the second 
expression, he indicated that rate would be “the rate of gas that affect the (ripeness of the 
apple)”. Baxil further indicated that the amount of gas, as represented in the first expression, 
would be increasing slowly. Whereas in the second expression, the amount of gas would increase 
quickly. This interpretation was evident in his following explanation: 

Baxil: May I make an example like the raw apple there is a little bit of gas like I say 10% of 
them I guess, so it might be a 20% of them and the next there is something like that and 
there is a 40% then a 60% it doesn't add to 100% that's the second equation thinking and 
for the first equation I was thinking if it is 10% the rate won’t be changing... I mean not 



the rate the like the amount then I say like its 10% it might be and depend on the tense it 
will be increasing by one-tenth, two-tenth, third-tenth, four-tenth... something like that.  

The interviewer asked him to draw graphs of the two scenarios, he drew figure a to represent 
expression 1 and b to represent expression 2. While he attributed the amount of gas in the first 
one to be increasing slowly, and in the second to be increasing faster, he drew a steeper graph for 
the first one (Figure 4a).  

 
Figure 4. Baxil's graphs for ethylene production vs time 

Here Baxil conceived two distinct measurable attributes of the same object, apple. One was 
by how much gas is produced by the apple and the other being by how much the gas affects the 
ripeness of the apple. As a result, he createded two expressions that, despite being 
mathematically equivalent, behaved different to him in terms of quantities and quantitative 
operations. He settled on expression (ii) as his final model because, according to him, in the 
second expression the gas is produced quicker which is most suited for the given situation. 
Baxil’s expression modeling the amount of ethylene gas produced was normatively correct. 
However, his reasoning evidenced a few kinds of inconsistences. First, Baxil did not justify why 
he thought the second expression produced ethelyn gas faster than the first. Second, he produced 
graphs that are inconsistent with the aforementioned reasoning. We call structures of this nature 
– where the qualitative structure is mapped into an acceptable expression but for incorrect 
reasons – as a pseudo quantitative structures.  

Discussion 
In this report, we have illustrated four different kinds of structures students may establish for 

real-world scenarios. For completion, we suggest that it is possible that the modeler does not 
establish (a quantitative) structure for the real-world scenario. That is, the modeler may have 
conceived the quantities but has not recognized interdependencies among those quantities, thus 
explaining their absence from the structural network. We acknowledge that the types of 
structures reported in this paper are not exhaustive. In addition, the presence of these structures 
may be limited to students’ modeling activities for dynamic systems. These distinct kinds of 
quantitative structures can be used as a researcher tool to describe the degree of the formality of 
the network of quantitative relations students established on real-world situations. These 
descriptions may be used to analyze where the student is in her model developing activity, with 
quantitative and co/multivariational reasoning as the backbone, complementing existing research 
on mathematical modeling processes. This in result may provide insights into how educators can 
guide students into creating a mathematical expression – the favorable outcome of mathematical 
modeling - as the mathematical representation of a real-world situation.  
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