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Abstract. We define a framework for analyzing the security of crypto-
graphic protocols that makes minimal assumptions about what a “real-
istic model of computation is”. In particular, whereas classical mod-
els assume that the attacker is a (perhaps non-uniform) probabilistic
polynomial-time algorithm, and more recent definitional approaches also
consider quantum polynomial-time algorithms, we consider an approach
that is more agnostic to what computational model is physically realiz-
able.

Our notion of universal reductions models attackers as PPT algo-
rithms having access to some arbitrary unbounded stateful Nature that
cannot be rewound or restarted when queried multiple times. We also
consider a more relaxed notion of universal reductions w.r.t. time-

evolving, k-window, Natures that makes restrictions on Nature—roughly
speaking, Nature’s behavior may depend on number of messages it has
received and the content of the last k(λ)-messages (but not on “older”
messages).

We present both impossibility results and general feasibility results
for our notions, indicating to what extent the extended Church-Turing
hypotheses are needed for a well-founded theory of Cryptography.

1 Introduction

Modern Cryptography relies on the principle that cryptographic schemes are
proven secure based on mathematically precise assumptions; these can be
general—such as the existence of one-way functions—or specific—such as the
hardness of factoring products of large primes. The security proof is a reduction
that “transforms” any attacker A of a scheme (e.g., a pseudorandom genera-
tor) into an attacker A′ that breaks the underlying assumption (e.g., inverts
an alleged one-way function). More formally, cryptographic security of a single
primitive or assumption is often defined as an interactive game (a.k.a. a security
game) between a challenger C and an adversary A. C sends a random challenge
(e.g. a product of two large primes) to A, who tries to respond in such a way—
potentially over many rounds—to make the challenger accept (e.g. by sending
the individual factors). The game is determined by the challenger C and the
primitive is said to be secure if no “realistic” adversary can cause the challenger
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to accept with some specified probability. (In the sequel, we will abuse notation
and often identify the security game simply by the challenger C.) A reduction R
from a game with challenger C (i.e., a security game C) to one with challenger
C ′ provides a way to use a successful adversary A in the game C to construct a
successful adversary A′ in the game C ′. This study has been extremely success-
ful, and during the past four decades many cryptographic tasks have been put
under rigorous treatment and numerous constructions realizing these tasks have
been proposed under a number of well-studied complexity-theoretic hardness
assumptions.

In this paper, we revisit what it means to transform the alleged attacker A
for the scheme into an attacker A′ for the underlying assumption. In particular,
the standard cryptographic treatment explicitly assumes that the attacker A is
a (perhaps non-uniform) probabilistic polynomial-time (PPT) Turing machine.
Thus, when using the scheme in the “real-world”, the security proof is only
meaningful if this model of the attacker correctly captures the computational
capabilities of a real-life attacker—that is, the PPT model correctly captures all
“real-life” computation that can be feasibly carried out by an attacker in our
physical world. The extended Church-Turing hypothesis stipulates that this is
the case:

The extended Church-Turing Hypothesis: A probabilistic Turing
machine can efficiently simulate any realistic model of computation.

But whether this hypothesis holds is strictly speaking a religious, as opposed to
scientific, belief.1 Indeed, the advent of quantum computing directly challenges
this hypothesis. Based on exciting developments in quantum computation, it is
becoming increasingly clear that viewing an adversary simply as a polynomial-
time Turing machine, or polynomial-size circuit, may not be so “realistic”. Quan-
tum computers have access to qubits that we believe cannot be described with
classical bits or run by a classical, polynomial-sized circuit. Furthermore, by the
no-cloning theorem [WZ82,Die82], quantum states cannot be copied or re-used,
which is a common technique used by many classical security proofs. We remark
that this impacts the security of protocols/primitives even for security games
where the challenger C is purely classical (i.e., primitives implemented by a
classical algorithm that the attacker interacts with using classical communica-
tion). In recent years, there has been a successful line of work that has focused on

1 Without getting too deep into Philosophy, it seems reasonable to argue that
the Extended Church-Turing Hypothesis does not pass Popper’s falsifiability
test [Pop05], as we do not have “shared ways of systematically determining” whether
a probabilistic Turing machine cannot perform some task (as testified by the fact
that the P v.s. NP problem is still open). As such, the statement of the hypothesis
is no different from the classic example of “All men are mortal”, which according
to Popper’s theory is not scientific as we do not have systematic procedures for
deducing whether a person is immortal. This is in contrast to assumptions such as
“Factoring products of random 1000-bit primes is hard for all physically realizable
computation devices”, as we do have a systematic way of determining whether some
such device manages to complete the task—simply run it.
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proving the security of cryptographic protocols against quantum adversaries (see
e.g. [Sho94,Gro96,AC02,Wat09,BDF+11,Unr12,Zha12,ARU14,Unr16,Mah18,
BS20] for examples of cryptographic attacks, constructions, and techniques in a
quantum world). A vast set of new cryptographic techniques have been devel-
oped to address the idiosyncrasies of quantum computation and their impact
on the security of systems. But, to deduce “real-life” security from such security
proofs, we still need to rely on a quantum version of the extended Church-Turing
hypothesis (stipulating that quantum polynomial-time algorithms/circuits can
simulate all realistic models of computation).

This begs the question: could there be even more powerful, or even just
incomparable, realistic adversaries beyond quantum polynomial-time adver-
saries? After all, a hundred years ago, modern computers did not exist, and
quantum physics was in its infancy. Consequently, predicting the computational
power of an adversary a hundred years into the future seems unreasonable. If the
quantum extended Church-Turing hypothesis is wrong, because of the advent of
a new type of computation, it would force yet another re-examination of cryp-
tography.

In this work, instead of tailoring security reductions to specific classes of
increasingly powerful adversaries, we ask:

Can we have a well-founded theory of Cryptography without making
assumptions on the limits of “physically realizable models of

computation”?

Concretely, what if some human manages to (repeatedly) break the security of
some cryptographic scheme. There is currently a heuristic leap of faith in our
cryptography treatment that this human (and any physical phenomena they may
be using) can be implemented in PPT/QPT. Can this leap of faith be avoided?

In particular, ideally, we would want a theory of cryptography without mak-
ing any types of extended Church-Turing hypotheses, where the security of some
scheme is only based on falsifiable assumptions of the type that some computa-
tional task cannot be solved by a “physically realizable computation”.2

Towards this goal, we will focus our attention on classical primitives (i.e.,
security games with challengers C that are classical and where the attacker
can communicate with C only by using classical communication), but consider
attackers with unknown/unbounded computational capabilities. At first sight,
doing to seems to inherently require information-theoretic security (and all the
standard limitations thereof). But our approach will instead be to consider a
purely-reduction based framework : Our framework will provide a way to reduce
the security of a game with challenger C to one with a challenger C ′ without
assuming anything about the adversary other than the fact that it continually

2 For concreteness, and to simplify notation, we will model attackers as Turing
machines so technically we are still relying on the (more reasonable) non-extended
Church-Turing hypothesis. But we highlight that nothing in our treatment requires
doing so and none of our results would change if we instead allowed any, even non-
computable, attackers. See Sect. 3 for more discussion.
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wins in C. Now, rather than proving the security of some primitive C w.r.t.
PPT attackers based on assumptions of the form “C ′ cannot be broken by PPT
attackers”, we will view the reduction from C to C ′ as the main goal: the exis-
tence of such a reduction will then imply the statement “Security of C with
respect to any physically realizable attacker holds as long as security of C ′ holds
with respect to any physically realizable attacker”, without having to impose any
restrictions on what the class of “physically realizable attackers” actually is (as
long as they only communicate with the challenger C using classical communi-
cation). We note that this reduction-based approach follows intuitions similar
to those by Rogaway in his influential “formalizing human ignorance” paper
[Rog06], where a purely reduction-based approach is also advocated for (but for
a different reason, and where the standard notion of a reduction is employed).

Let us emphasize that whereas our framework is not imposing any upper
bounds on the class of feasible computation (hence the name “universal”), we
will be assuming a lower bound: in accordance with the standard literature, we
will use PPT as a lower bound on what can be feasibly done by an attacker.3

(In other words, polynomial-time computations will be considered realistically
feasible, today and forever in the future.) Additionally, we will here focus our
attention only on cryptographic primitives where the honest players are standard
PPT machines (as opposed to e.g. quantum).

1.1 Universal Reductions in a Nut-shell

Towards defining our reduction-based notion of security, we need to start off

by specifying the notion of an attacker we consider. An augmented adversary
(A,Nat) consists of a uniform PPT interactive Turing machine (ITM) A, known
as the attacker, and a stateful, potentially unbounded ITM Nat, known as the
Nature. We think of A as the part of the augmented adversary that only uses
“standard” computational resources, whereas Nat is a shared resource in the
world that may have “magical” computational resources. The stateful nature
of Nat is what distinguishes our model from more standard models of “black-
box” security used in cryptography. We think of A as some real-life attacker
(using today’s readily available computing infrastructure) that can interact with
a physical Nature Nat. Furthermore, A’s interactions with Nature may in turn
alter Nature. For instance, if Nat can capture quantum physical phenomena,
then by the no-cloning theorem [WZ82,Die82], any type of measurements of Nat

may alter it in ways that cannot be reversed (without losing information). Thus,
statefulness is key for capturing this.

Roughly speaking, we say that there is a universal reduction from a security
games C to a game C ′ if for every PPT A, there exists a “transformed” PPT
attacker A′ such that for every Nature Nat, if the augmented adversary (A,Nat)

3 This model clearly oversimplifies as, say, n100 computation is not actually feasible.
But we start off with a standard asymptotic treatment to get a model that is easy
to work with. In practice, a more concrete treatment is desirable, but we leave this
for future work.
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wins in the security game C, then the augmented adversary (A′,Nat) wins in
the security game C ′. In other words, the new transformed attacker A′ needs to
make use of the same Nature Nat as A.4 (As the reader may notice, this notion
captures an “existential” as opposed to a “constructive” notion of a reduction—
that is, we are only required to show that a transformed attacker A′ exists, as
opposed to constructively providing it using an efficient transformation from A;
we will also discuss constructive notions of reductions below.) We emphasize
that A′ may only communicate with Nat; it may not rewind, restart, or see any
of the implementation details of Nat. In essence, we require A′ to win in C ′ by
making use of Nature, much like the original attacker A did, and taking into
account that its interaction with the cosmos may alter it. The reasons we model
A and A′ as PPT, is that we consider PPT as a lower bound on what is currently
feasible, and assume that this lower bound is valid not only today but also in the
future (i.e., we will be able to only do more computation in the future). Thus we
can write security proofs today that hold regardless of how powerful the universe
ends up being (i.e. even if the extended Church-Turing hypothesis turns out to
be true). All non-PPT computation can be thought of as being inside Nat.

Comparison with Relativized Reductions and UC Security. Before proceeding to
further formalizing this notion, let us briefly point out some technical similari-
ties and differences with the notion of a relativized reduction (see e.g., [IR95]);
roughly speaking, a relativized reduction, and the related notion of a black-box
reduction, is a reduction that works even if the attacker has access to some arbi-
trary (perhaps non-efficiently computable) function (a.k.a. the “oracle”). The
main difference between the notion of a universal reduction and that of rela-
tivized reductions is that universal reductions can be viewed as reductions that
relativize also with respect to an interactive, stateful oracle, whereas relativized
reductions are only required to work in the presence of a non-interactive, state-
less, oracle. As we explained above, considering stateful, interactive, Natures is
a crucial aspect of our definition; as we shall see shortly, even formalizing how
to deal with stateful oracles/Natures will be non-trivial.

We highlight that the idea to consider cryptographic protocols in the presence
of an external stateful entity is also not entirely new: the notion of Universally
Composable (UC) security [Can01] does exactly this but in a different context—
more specifically, in the context of simulation as opposed to in the context of
reductions; see Sect. 1.6 for more discussion on the relationship between universal
reductions and UC.

4 We refer to such reductions as “universal” because they are agnostic to the computa-
tional resources of an attacker (and thus can be “universally” applied, independent
of the attacker’s computational power). Additionally, on a technical level, and as
we discuss in more detail shortly, considering security relative to a stateful entity is
related to how security is defined in the framework for Universal Composability of
Canetti [Can01].
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1.2 Formalizing Universal Reductions

To formalize the notion of a universal reduction we first need to define what
it means for (A,Nat) to win in some security game C. The standard notion of
winning simply requires the attacker to succeed in convincing C once with some
probability p. For us, since we consider stateful Natures, this will be too weak.
A stateful Nature Nat may decide to be helpful in winning with C just once,
and then never again, and such a Nature may not be very helpful in breaking
some underlying assumption (at least not repeatedly). In the standard models of
reductions, this is not a problem since the attacker can simply be restarted, but
this is not allowed in our setting. Consequently, to get a meaningful notion of
security, we will restrict our attention to (ruling out) attackers that repeatedly,
or “robustly”, win in the security game, no matter what other communications
are taking place with the cosmos. In more detail, we consider any history of
interaction ρ that Nat may have seen, where an interaction prefix ρ consists of
the messages Nature has received and the random coins it may have tossed. We
then require (A,Nat) to succeed in winning for C even if (A,Nat) is fed any such
prefix ρ. We denote such an interaction, where entities are provided the security
parameter 1λ, as 〈C ↔ A ↔ Nat(ρ)〉(1λ).

In other words, we are considering an attacker A that is interacting with
some physical stateful Nature Nat with unknown computational capabilities,
but also consider the possibility that there are others in the world (captured by
the prefix ρ) that have interacted with Nature in ways that are unknown to the
attacker. Still, the attacker needs to succeed in breaking C no matter what those
other prior communications are (i.e. given any transcript of interactions that
previously took place). In fact, this transcript may be of any length, that is, more
than just polynomial in λ (noting that Nat may have more than polynomially
many interactions in the past).5

Definition 1 (Robustly Winning Security Game; Informal). Let C be a
challenger in a security game. We say that an augmented adversary (A,Nat)
has robust advantage a(·) in C if, for every prefix view ρ, security parameter
λ ∈ N, it holds that C outputs 1 with probability at least a(λ) in the interaction
〈C ↔ A ↔ Nat(ρ)〉(1λ).

Given this notion of robust winning, we can now capture the above-mentioned
notion of a universal reduction.

Definition 2 (Universal Reduction; Informal). Let C and C ′ be security
games. We say that there is a ε-universal reduction from C to C ′ if for every
PPT A, there exists some PPT A′, such that for every Nat, if the augmented
adversary (A,Nat) has robust advantage a(·) in C, then (A′,Nat) has robust
advantage ε′(·) in C ′ where ε′(λ) = ε(λ, a(λ)).

5 Nevertheless, we note that all our results also hold if restricting the length of ρ to
be polynomial.
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The function ε here quantifies the security degradation of the reduction. Let
us briefly mention that one may also consider an a priori weaker looking notion
of a “win-once” universal reduction, that only requires the transformed attacker
(A′,Nat) to have non-robust advantage ε′(·) in C ′; that is, (A′,Nat) is only
required to win once in C ′ as opposed to robustly/repeatedly (while the original
attacker (A,Nat) still needs to have robust advantage). As it turns out, this
weaker notion is equivalent to the one provided in Definition 2; see Lemma 1 for
more details. We also note that one may consider alternative, seemingly weaker,
variants of robustness (e.g., that the attacker only wins an inverse polynomial
fraction of the time) but again such a notion turns out to be equivalent (up to
a difference in parameters); see the full version [CFP22] of this paper for more
details.

Black-Box Reductions and Dummy Adversaries. As mentioned above, the notion
of a universal reduction is “existential” as opposed to a “constructive”: We do
not actually require an efficient transformation taking attackers A to attackers
A′; rather, we just need to show that for every attacker A, the attacker A′

exists. One could also consider an a-priori stronger notion of a universal black-
box reduction where the transformed attacker A′ is defined as A′ = RA, where
R is fixed PPT (that works for any attacker A). As it turns out, this notion is
(again) equivalent to the (existential) notion of a universal reduction provided
in Definition 2. The reason for this is that to prove the existence of a universal
reduction, and actually also a universal black-box reduction, it suffices to show
that the reduction applies just to a so-called “dummy” adversary Adummy that
essentially just forwards messages between C and Nat; this, intuitively, follows
from the fact that we can always push all the work of a prospective attacker A
into Nat (more formally, considering a new Nature Nat′ that combines Nat and
A). We note that a similar phenomena happens for the notion of UC security
[Can01], and we are borrowing the term of a “dummy” adversary from there.

Lemma 1 (Dummy Lemma; Informal). Let C and C ′ be security games.
Assume that there exists some ε and some PPT Rdummy such that for every
Nat, if the augmented adversary Adummy has robust advantage a(·) in C, then
(Rdummy,Nat) has robust advantage ε′(·) in C ′ where ε′(λ) = ε(λ, a(λ)). Then,
there exists an ε-universal black-box reduction from C to C ′.

We highlight that whereas the actual proof of Lemma 1 indeed follows the
above intuition, the formalization is quite subtle and quite different from the
proof of the dummy lemma in the UC framework—the key obstacle is dealing
with the fact that the attacker needs to win robustly.

Note that as a consequence of Lemma 1, we have that to prove the existence of
a universal reduction, we may without loss of generality assume that A = Adummy

(i.e., in essence that Nat is directly breaking C), and thus proving the existence
of a universal reduction amounts to showing the existence of a PPT “filter”
A′ = Rdummy between C ′ and Nat.
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Composition. We additionally note that the notion of a universal reduction
composes. Namely, if hardness of C1 can be based on the hardness of C2, and
hardness of C2 can be based on the hardness of C3, then hardness of C1 can be
based on hardness of C3.

Theorem 1 (Composition Theorem; Informal). Let C1, C2, C3 be security
games. Suppose there exists an ε1-universal reduction from C2 to C1, and an ε2-
universal reduction from C3 to C2. Then, there exists an ε"-universal reduction
from C3 to C1 where ε"(λ, a) = ε1(λ, ε2(λ, a)).

The proof of the composition theorem essentially follows directly from the
definition of a universal reduction.

1.3 On the Feasibility of Universal Reductions

We turn to studying the feasibility of universal reductions.

Universal Reductions from Single-Shot, Straightline, Black-Box Reductions. We
observe that any straight-line black-box reduction between C and C ′ that only
invokes the attacker once is also a universal reduction. This should not be a
surprise since the stateful nature of the attacker in our model never becomes an
issue if the reduction only invokes the attacker once. Nevertheless, our model
formally demonstrates why such simple types of reductions are advantageous
from a (qualitative) security point of view.

Theorem 2 (Universal Reductions from Single-shot Straightline Black-
box Reductions; Informal). Let C and C ′ be security games. Suppose there
exists an ε-straightline black-box reduction from C to C ′ that interacts with the
adversary once. Then there exists an ε-universal reduction from C to C ′.

Fortunately, many well-known reductions in cryptography fall into this
class of reductions: PRG length extension, the GGM construction of PRFs
from PRGs [GGM86], IND-CPA secure encryption from PRFs, Naor’s bit
commitments from PRGs [Nao91], and Lamport’s one-time signatures from
OWFs [Lam79]. We note that for Lamport’s construction, this is straightfor-
ward to see. For the rest of the proofs, we rely on a uniform security analysis
for a hybrid argument, which for example is provided in [Gol07] for PRG length
extension. For the convenience of the reader, we provide brief sketches for the
constructions and proofs for all of these primitives in the full version [CFP22] of
this paper .

Combining these classical results with Theorem 2, we thus directly get the
following corollaries (formally stated in the full paper [CFP22]):

Corollary 1 (PRG length extension; Informal). Let m be a polynomial
and G be an λ + 1-bit stretch PRG. There exists a m(λ)-bit stretch PRG Gm

and an ε-universal reduction from the PRG security of Gm to the PRG security
of G for ε(λ, a) = 1/2 + δ/m(λ), where δ = a − 1/2.
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Corollary 2 (PRF from PRGs; Informal). Let G be any PRG. There exists
a PRF F and an ε-universal reduction from the PRF security of F to the PRG
security of G for ε(λ, a) = 1/2 + δ/poly(λ), where δ = a − 1/2.

Corollary 3 (IND-CPA secure private-key encryption from PRGs;
Informal). Let G be any PRG. There exists a private-key encryption scheme and
an ε-universal reduction from the IND-CPA security of the encryption scheme
to the PRG security of G for ε(λ, a) = 1/2 + δ/2 − µ(λ) for a negligible function
µ, where δ = a − 1/2.

Corollary 4 (Commitment schemes from PRGs; Informal). Let G be any
PRG. There exists a statistically binding commitment scheme and an ε-universal
reduction from the hiding of the commitment scheme to the PRG security of G
for ε(λ, a) = 1/2 + δ/2, where δ = a − 1/2.

Corollary 5 (One-time Signatures from OWFs; Informal). Let f be
any OWF. There exists a signature scheme and an ε-universal reduction from
the one-time security of the signature scheme to the OWF security of f for
ε(λ, a) = a/(2λ).

Universal Reductions from New Single-Shot Straightline Reductions. Often
times, security reductions used in the literature do invoke the attacker mul-
tiple times, and it may not be clear how such reductions can be translated to
work in the setting of universal reductions. We first show that sometimes famous
reductions in the literature that require invoking the attacker multiple times can
be made single-shot straightline. In particular, we show that the GMW proto-
col [GMW91] for graph 3-coloring is witness indistinguishable (WI) [FS90] based
on a universal reduction to a commitment scheme (and hence PRGs) with a new
proof; the standard proof requires rewinding the attacker and would thus not be
applicable in our setting. (This proof may be interesting in its own right; as far
as we know, the only proof of WI security of GMW with a straight-line reduc-
tion is the work of Hofheinz [Hof11] that shows WI security of GMW when the
underlying commitment satisfies a notion of selective-opening security. As far as
we know, it was an open problem to present a straight-line reduction based just
on standard security; this is what we do.)

Theorem 3 (Witness Indistinguishability from PRGs; Informal). Let
G be any PRG. For every language in NP, there exists an interactive proof system
(P, V ) and an ε-universal reduction from the WI of (P, V ) to the PRG security
of G for ε(λ, a) = 1/2 + δ/poly(λ), where δ = a − 1/2.

Beyond Single-Shot Straightline Reductions. While Theorem 3 provides some ini-
tial hope that more reductions in the literature can be made single-shot straight-
line, there are other classic reductions that we do not know how to make single-
shot. In fact, going one step further, we next show that some classic results in
the literature cannot be established with respect to universal reductions.

One of our main results shows that Yao’s classic result on hardness ampli-
fication of any weak one-way functions via direct product [Yao82] cannot be
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proven with a universal reduction. In fact, we show that hardness of any arbi-
trary “black-box” one-way function cannot be amplified essentially at all using
a n-fold direct product. Given a function f , let f (n) denote the n-fold direct
product of f :

Theorem 4 (Impossibility of Hardness Amplification; Informal). Con-
sider some polynomial n, and some function ε. Suppose there is an ε-universal
black-box reduction from the OWF security of f (n) to the OWF security of f that
uses only black-box access of f , and that works for any function f . Then, there
exists a negligible function µ such that ε(λ, a) ≤ a + µ(λ).

Note that there is a trivial reduction that embeds the challenge f(x) a single
time into a random location of the output of f (n) that has advantage ε(λ, a) = a.
The above theorem says that no universal reduction can do noticeably better
than this trivial reduction, even if considering attackers that succeed with some
fixed constant probability, say 1

2 .6

To give some intuition behind the proof of Theorem 4, let us recall on a very
high-level how Yao’s original proof works: given as input y, the reduction embeds
y into a random “position” i—letting yi = y, generates random pre-images xj

for j '= i, and lets yj = f(x), %y = y1y2 . . . and then runs A(%y). If A fails, then
we repeat the process (a polynomial number of times), again embedding y into
a new random position i. Note that this reduction is thus repeatedly running
A on correlated inputs—the inputs all contain the same string y (but except
for that y, they are independent). An augmented adversary could notice these
correlations and may stop working in case it sees correlations of this form (i.e., a
substring y that is repeated from a previous query). Note that such an attacker
still robustly wins in the security game: the probability that a fresh input from
the challenger coincides with any previously seen strings is negligible.7 Now, an
arbitrary reduction may not necessarily work in the same way as Yao’s reduction.
However, at a high level, we show that if the reduction works for any function f
(and only uses the function as a black-box), then the reduction has to ask A on
inputs that are correlated, and thus we can still use a similar type of attacker.

6 We emphasize that Theorem 4 is ruling out also so-called “parameter-aware” black-
box reductions [BBF13], where the reduction may depend on the success probability
a of the attacker; note that Yao’s original reduction is parameter dependent—more
specifically, the number of repetitions is required to be superlinear in the adversary’s
success probability, and as shown in [LTW05] a dependency on the attackers suc-
cess probability is inherent for black-box reductions. Theorem 4 rules out also such
parameter-aware universal reductions and indeed rules out universal reductions that
increase the success probability of the adversary even if assuming that the original
attackers success probability is, say, 1

2
.

7 There is a small subtlety here. Robustness is defined with respect to all previous
transcripts, even exponentially long ones, so naively implementing this approach
will not work since eventually we can include all possible strings y in the transcripts.
Rather, the way we formalize this argument is to consider a Nat that only has
“polynomial memory” and checks for repeated strings y in the most recent part of
the transcript it is fed.
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We additionally show that the universal aspect of Theorem 4 (i.e., that it
works for any function f) is inherent. If the function f is rerandomizable (see
the full paper for a formal definition), then we can show a universal reduction for
hardness amplification of f—in essence, we show that Yao’s reduction directly
works. At first sight, this may seem surprising: As mentioned above, Yao’s reduc-
tion does invoke the attacker multiple time, and does so on correlated inputs (and
as discussed above, this correlation lead to problems). Rerandomizability helps
overcome this issue and enables the reduction to always feed Nat messages that
are independent and have the same distribution.

For our next result, we show that the Goldreich-Levin theorem [GL89] for
constructing a OWF with a hardcore predicate from any OWF cannot be turned
into a universal reduction, again as long as the underlying OWF is only accessed
in a black-box way. For an underlying function g, the Goldreich-Levin theorem
shows that the inner product function is hardcore for the “randomized” function
ĝ(x, r) = (g(x), r). Namely, 〈x, r〉 cannot be predicted given (g(x), r) where
|x| = |r|. We extend our impossibility to any predicate h for any length of
randomness r (even no randomness).

Theorem 5 (Impossibility of a Goldreich-Levin Theorem; Informal).
Consider some function ε and some efficiently computable predicate h . Sup-

pose there is an ε-universal black-box reduction from the security of the hardcore
predicate h w.r.t. ĝ(x, r) = (g(x), r) to the OWF security of g that uses only
black-box access to g and that works for function g. Then, there is a negligible
function µ such that ε(λ, a) ≤ µ(λ) for all a ≤ 0.99.

The proof relies on similar intuitions to the hardness amplifications result.8

The above theorem gives an indication of why it may be hard to come up with
a universal reduction from PRGs to OWFs as known constructions of PRGs
from OWFs rely on the Goldreich-Levin theorem. We leave open the question of
whether there exists some alternative way to universally reduce PRGs to OWFs.

Concluding, while we can write nice universal reductions in some settings, we
also have some pretty severe impossibility results. To overcome these impossi-
bility results, we additionally consider more relaxed—yet, in our eyes, natural—
variants of universal reductions.

1.4 Restricted Classes of Natures

While it is natural to assume that an attacker can affect Nature/the Cosmos, it
also seems reasonable (at least in some contexts) to make additional assumption
on the class of Natures. In particular, we will consider Natures that act inde-
pendently of the content of interactions they had “far back” in the past. Roughly

8 Again, we highlight that Theorem 5 rules out also “parameter-aware” reductions
that depend on the success probability of the attacker—in fact, it rules out also
reductions that only work if the underlying attacker’s success probability is 0.99.
(As noted in [BBF13], Goldreich-Levin’s standard reduction is parameter-aware,
and this is inherent as shown in [LTW05].).
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speaking, we allow Nature to change over time, and we will allow Nature to be
stateful within a single, or a bounded number of, sessions but assume that the
actual content of messages received too farin the past (that is, many messages
ago) does not significantly affect the behavior of Nature.

In more detail, choose any polynomial function k(·), and consider those
natures whose responses depend only on (a) the number of queries it has received
in the past, (b) the last k(λ) messages that it received, and (c) the randomness
that it used to respond to those k(λ) messages. We call a nature that satisfies
these conditions a time-evolving k-window nature. We formalize this by requiring
that the output of Nature given any two prefixes ρ and ρ′ of the same length
that also share the last k(λ) messages and coins, it must be that Nat(ρ) behaves
identically (or ε-close to) Nat(ρ′). (The same-length requirement is what allows
Nature to evolve over time).

Definition 3 (Time-Evolving k-Window Natures). Let k(·) be a polyno-
mial function. A Nature machine Nat is said to be a k-window Nature if there
exists a negligible function µ s.t. for all machines C, λ ∈ N, and interaction
prefixes ρ, ρ′, ρ′′, where ‖ρ‖ = ‖ρ′‖ and ‖ρ′′‖ = k(λ), it holds that

∆
Ä

〈C ↔ Nat(ρ ◦ ρ′′)〉(1λ), 〈C ↔ Nat(ρ′ ◦ ρ′′)〉(1λ)
ä

≤ µ(λ).

where 〈C ↔ S〉(1λ) denotes the output of C in an interaction with a machine
S, ∆ denotes statistical distance, ‖ρ‖ denotes the number of messages contained
within ρ, and ρ ◦ ρ′′ denotes prefix concatenation.

Observe that by sending to Nature a sequence of k(λ) “dummy messages” ⊥,
we can (roughly speaking) reset the state of a time-evolving k-window Nature, by
making it so that its behavior only depends on those dummy messages (and cor-
responding coins) and the number of messages it received in the past—regardless
of the state that Nature started in before receiving those dummy messages. In
other words, we can think of an augmented adversary (A,Nat) where Nat is
time-evolving k-window (when called repeatedly, each time utilizing the above
resetting procedure) as a sequence of attackers A1, A2, . . . such that (1) each
individual attacker Ai succeeds in the security game, but (2) the way it succeeds
may be different, and (3) the security reduction cannot restart the attacker but
may “move on” to the next attacker in the sequence.

As our main result for time-evolving k-window Natures, we show that any
non-adaptive, straight-line black-box classical reduction can be transformed into
a universal reduction, when restricting to time-evolving k-window Natures. In
more detail, we refer to a straight-line black-box reduction R as non-adaptive
if R interacts with the challenger C and attacker A according to the following
pattern:

– R starts by interacting with C for any number of rounds of its choice; at some
point it decides that it wants to start communicating with the attacker A.

– At this point, R selects m different PPT machines M1,M2, . . . , Mm.
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– For each i ∈ [m], we let Mi communicate (straight-line) with a fresh instance
of A, and let ai denote the output of Mi at the end of the interaction.

– Finally, R gets back the answers a1, . . . , am and gets to continue interacting
with C.

We show:

Theorem 6 (Universal Reductions from Non-adaptive Reductions;
Informal). Let C,C ′ be challengers. If there exists a non-adaptive straight-
line black-box reduction from C to C ′, then for any polynomial k(·), there exists
a universal reduction from C to C ′ w.r.t. time-evolving k-window Natures.

At a very high level, the idea behind the proof of Theorem 6 is the following.
Recall that (roughly speaking) an augmented adversary, with a time-evolving
k-window Nature, can be treated as a sequence of attackers A1, A2, . . . that
is fixed ahead of time and utilized in order. Such a sequence of attackers can
essentially be turned into a “standard” fully restartable attacker by, at each
invocation, choosing a random attacker Ai out of the sequence of attackers.
Of course, in a real execution we are forced to utilize A1, A2, . . . in sequence
and in order. Fortunately, for any non-adaptive reduction, we can emulate (with
inverse polynomial statistical gap) this standard randomized restartable attacker
by permuting the order of the queries of the reduction, and inserting these queries
into a sufficiently long bogus interaction. Note that we here inherently rely on
the fact the a time-evolving k-window Nature can be reset so that the last k
messages no longer affects its state, so that its behavior depends on only the
length of the prefix of messages it receives.

We remark that many (but not all) of the classical reductions in the crypto-
graphic literature are of the non-adaptive type. In particular, these include reduc-
tions such as those in Yao’s hardness amplification [Yao82] and the Goldreich-
Levin Theorem [GL89] (which we proved could not be shown using a “plain”
universal reduction). Perhaps surprisingly, our results therefore imply that we
can achieve hardness amplification or hard-core bits for attackers that change
their behavior across queries (albeit in this limited way).

k-Window Natures. We finally turn our attention to the more restrictive class of
simply k-window Natures (i.e., not time-evolving), that are identically defined
except that we quantify over any two prefixes ρ and ρ′ (with the same last k(λ)
messages and coins), and not just those of equal length. We observe that straight-
line black-box reductions, even those that are adaptive, that only sequentially
invoke the attacker in multiple sessions, directly imply universal reductions w.r.t.
k-window Natures; this essentially follows directly from the definition (by using
a standard hybrid argument), and by the observation that sending such a Nature
k dummy messages resets it to a default state (from which is acts indistinguish-
ably):

Theorem 7 (Universal Reductions from Adaptive Reductions; Infor-
mal). Let C,C ′ be challengers. If there exists a (possibly adaptive) sequential
straight-line black-box reduction from C to C ′, then for any polynomial k(·), there
exists a universal reduction from C to C ′ w.r.t. k-window Natures.



164 B. Chan et al.

1.5 Universal Reductions Imply Standard Reductions

As a sanity check, we finally observe that the existence of a universal reduction
from C to C ′, even one that is only w.r.t. k-window Natures (where k(·) is large
enough to bound the number of rounds of interaction with C), implies the exis-
tence of a reduction for classic models of attackers such as PPT, non-uniform
PPT, quantum polynomial time (QPT), and QPT with non-uniform quantum
advice (which we refer to as non-uniform QPT). This follows by noticing that all
these models of computations can be captured by a k-window Nature Nat, when
used to win a k-round security game C. For the case of PPT, non-uniform PPT,
and (uniform) QPT, this is trivial. For non-uniform QPT, it is a bit more prob-
lematic since a non-uniform QPT algorithm may make some measurement that
ruins the non-uniform advice in a way that makes the algorithm non-restartable.
But this issue can be resolved by, for every bound b(·) on the number of restarts,
considering a Nat that contains b(λ) copies of the non-uniform quantum advice.
The resulting attacker (A′,Nat) that breaks C ′ will then still be non-uniform
QPT (albeit with longer non-uniform advice than the original attacker breaking
C).

Theorem 8 (Classical Reductions from Universal Reductions; Infor-
mal). Let C and C ′ be security games, and let k(·) be a polynomial function
that upper bounds the number of rounds in any interaction with C. Assume there
exists a ε-universal reduction from C to C ′ w.r.t. (k, µ)-window Natures, for an
arbitrary choice of µ. Then there exists a ε-reduction from C to C ′ w.r.t. PPT,
non-uniform PPT, QPT, and non-uniform QPT attackers.

A Note on Post-quantum Security. Note that Theorem 8 shows that if you can
base the security of some (classical) security game C on the security of C ′ using a
universal reduction (even with respect to just k-window Natures), then it implies
resilience of C with respect to quantum attackers if assuming that C ′ is secure
with respect to quantum attackers.

Let us highlight, however, that this result only holds true to security games C
that themselves are classical. For instance if C is the security game of a PRF and
C ′ is that of a PRG, then we only get quantum security of the PRF with respect
to attackers that can get evaluations of the PRF on classical inputs. (As such,
the combination of Corollary 2 and Theorem 8 does not subsume the results of
Zhandry [Zha12] showing post-quantum PRF security of the GGM construction
[GGM86] since Zhandry notably allows the attacker to make quantum queries
to the PRF.). In other words, our framework currently only consider primitives
where the honest players are classical. (Of course, we could extend our model
to also deal with quantum security games but we believe it is a more pressing
issue to get a “future-proof” notion of security w.r.t., cryptographic primitive
and protocols that are run by honest players on classical computers).

1.6 Conclusions, Related and Future Work

Interpreting our Results. Our results demonstrate both limitations and feasi-
bility of universal reductions—that is, the feasibility of a foundation for cryp-
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tographic security without making extended Church-Turing type assumptions
about the class of physically-realistic computations. This paper is only a first
step—we have not done an extensive survey of all the reductions in the literature,
and we have not investigated all primitives out there; notably, we have focused
only on the most basic primitives/reductions. We leave an exploration of more
advanced primitives, such as zero-knowledge proofs and secure computation for
future work.

Taken together, our result provide a new qualitative understanding of how
different types of restrictions on black-box reductions result in security w.r.t.
stronger classes of attacker. In particular, when restricting our attention to
straight-line black-box reductions: (1) reductions that only invoke the attacker
once, yield the strongest form of “plain” universal reduction, (2) reductions
that are non-adaptive yield universal reductions w.r.t. time-evolving k-window
Natures, and (3) adaptive ones yield universal reductions w.r.t. k-window
Natures, for any choice of polynomial k(·).

So given our three different notions of security (which we have shown all imply
standard notions of security), which one should we aim to achieve? Obviously
the strongest form of plain universal reduction is the most desirable as it allows
us to argue security while making only minimal “religious” assumptions about
the class of physically-feasible computation. Our results demonstrate that indeed
this notion is achievable for many constructions of interest (e.g., for primitives
proven secure using straight-line black-box reduction that call the attacker once,
or for some cases even multiple times when the queries are independent). Our
impossibility results, however, also demonstrate important limitations, showing
that in some situations, stronger types of “religious” assumptions about the
class of feasible computation are required. The class of time-evolving k-window
Natures seems like a reasonable midpoint between expressivity of the theory and
the assumptions made on the class of physically-feasible computation.

More Justification for Time-Evolving k-Window Natures. Let us briefly com-
ment on the recent and independent of work of Bitansky, Brakerski, and Kalai (
[BBK22]), who study the quantum security of non-interactive reductions. Sim-
ilar to us, they propose a framework to deal with stateful attackers, and show
that non-adaptive reductions (with a polynomial solution space, including deci-
sional assumptions) imply post-quantum security with a uniform reduction. In
more detail, [BBK22] leverages the main result of Chiesa et al. [CMSZ21] that
shows how to effectively “rewind” quantum attackers for a restricted class of
protocols so that they effectively become time-evolving but otherwise stateless
(or rather, bounded memory)— [BBK22] refer to such attackers as persistent
solvers. Next, [BBK22] rely on a proof that is very similar to the proof of our
Theorem 6 to show that non-adaptive black-box straight-line reductions can be
applied to such attackers.

Note that our Theorem 8 shows that universal reduction w.r.t. not only
time-evolving k-window, but also simply k-window Natures (which by Theorem7
are implied by also adaptive straight-line black-box reductions) imply quantum
security but it requires using a non-uniform reduction. By relying on the results
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of [CMSZ21], [BBK22] effectively show that universal reductions w.r.t. time-
evolving k-window Natures have the advantage that the reduction for quantum
security—for specific security games—becomes fully uniform. Consequently, we
take the works of [CMSZ21,BBK22] as further evidence that restricting attention
to universal reductions w.r.t. time-evolving k-window Natures is meaningful.

Comparison to Universal Composition (UC). Let us highlight that some of the
intuition behind our definition take inspiration from the framework for Universal
Composability (UC) by Canetti [Can01]. In particular, a simulator in the UC
framework needs to interact with the attacker in a black-box straight line fashion
in the presence of any environment, without the power of rewinding or restart-
ing the environment. Clearly, there are many similarities between the notion
of an environment and our notion of Nature. As such, one may be tempted to
hope that UC protocols automatically have universal reductions. This intuition
is misleading (as demonstrated e.g., by our Theorem 4). The reason for this
is that whereas the simulator in the UC framework is required to be straight-
line (and the attacker/environment is allowed to be fully stateful), the security
proof/reduction used to argue that the simulation is “correct” (i.e., indistinguish-
able from the real execution in the eyes of the environment) may very well use
rewinding (and in fact often does). In more detail, standard proofs in the UC
framework still assume that the environment is a non-uniform PPT machine to
reduce security to some assumption (e.g., one-wayness of a function).

It is also worthwhile to compare universal reductions to UC security with
an unbounded environment (in analogy with how we consider Natures that are
unbounded). While such a notion of UC security indeed also would be “future-
proof” in the sense that it does not make any assumptions about computational
limits on the class of physically realizable computations, the problem with such a
notion is that it only enables information-theoretically secure protocols, whereas
our goal here is to develop a computational theory of cryptography that is
“future-proof”. One could consider defining primitives (e.g., one-way functions,
PRGs, signatures) as UC functionalities, and consider whether one functionality
can be implemented in a UC way using some other functionality with respect to a
computationally-unbounded environment; as far as we are aware, such a method
has not previously been advocated for and is in line with what we are doing
here. However, we highlight that doing this is non trivial for several reasons: (1)
it is non trivial to define standard cryptographic primitives as UC functionalities
(e.g., how does one define an idealized one-way function); (2) such a treatment
would require presenting a straight-line reduction that is required to work even
if the environment (i.e., Nature in our language) only helps the attacker to suc-
ceed once; as we have argued above, such a notion is overly strong (and it is
trivial to present impossibility results for it). In contrast, by focusing directly
on a reduction-based framework, we can (1) define primitives in the standard
game-based way, (2) only require the reduction to work for attackers that win
robustly (i.e., repeatedly) to rule out trivial cases when Nature helps the attacker
to win just a single time.
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Let us finally mention that a natural way to define protocol security in a
both universally-composable and universally-reducible way would be to consider
the standard UC definition of security, but requiring that the security reductions
used to prove indistinguishability of the simulation are universal. We leave an
exploration of such protocols for future work.

Comparison to Abstract Cryptography. We end by noting that the frameworks
for abstract cryptography [MR11], and constructive cryptography [Mau11], among
other things also have as a goal of building up a theory of cryptography that is
independent of the model of computation used to model an adversary. While
these frameworks were used to analyze how to obtain higher-level function-
ality (e.g., secure channel) from advanced primitives (e.g., secure encryption
and MACs) and also used to analyze some building blocks (for instance see
[Mau02,MP04,MPR07]), as far as we can tell, they have not been used to under-
stand the underlying most basic building blocks that we study here (e.g., hard-
ness amplification of one-way functions, whether one-way functions have hard-
core bits, etc.). At a very high-level, the idea is to view security reductions among
primitives as simulations of one system in terms of another; these simulations,
just as in the UC framework, need to be straight-line, black-box, and only invoke
the attacker once. As far as we can tell, consequently, the same two differences
as presented w.r.t. UC with an unbounded environment also apply here. Most
notably, since we restrict attention to attackers that win repeatedly/robustly, we
can obtain feasibility results using reductions that invoke the attacker multiple
times (and this is also what makes it significantly more challenging to present
impossibility results).

We highlight that also in the constructive cryptography, computational sim-
ulation has been defined to consider tasks requiring computational assumption,
but this is defined by restricting attention to polynomial-time distinguishers, so
such computational definitions still rely on a extended Church-Turing assump-
tion. It would be interesting to extend these works by considering a computa-
tional notion of indistinguishability based on universal reductions.

2 Overview of Techniques

We now describe our main technical contributions. We direct the reader to the
full paper [CFP22] for full proofs and theorem statements.

2.1 The Dummy Lemma

Universal reductions give universal black-box reductions. (See Lemma 1)
Consider a “dummy attacker” Adummy that forwards all messages from C to the
Nature Nat, and forwards replies from Nat back to C. The “dummy lemma” says
(informally) that if there exists a universal reduction Rdummy between two security
games that works for augmented adversaries of the form (Adummy,Nat), then there
exists a universal reduction that works for any augmented adversary (A,Nat).
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Moreover, it is constructive, and the resulting reduction uses A in a black-box way.
Here, we briefly provide some intuition for why the“dummy lemma” holds.

The key observation is that since Rdummy works for any Nature talking with
the dummy attacker Adummy, it must in particular also work for the Nature Nat′

that internally simulates an attacker A talking to Nat, for any augmented adver-
sary (A,Nat). If (A,Nat) wins some security game C, then (Adummy,Nat′) should
also win an interaction with C, as Nat′ is essentially simulating the augmented
adversary (A,Nat) inside. Thus, the reduced attacker (Rdummy,Nat′) should also
win the game C ′. Finally, consider the reduction RA that internally runs Rdummy

and forwarding all its attacker messages to its oracle A. Since Rdummy is only
talking to Nat′ in a straightline fashion, intuitively, the augmented adversary
(RA,Nat) should behave exactly like (Rdummy,Nat′) and thus also win C ′. For-
malizing this intuition, however, is a bit tricky since we need to make sure that
(Adummy,Nat′) is also robustly winning in C, which requires a more complicated
construction of Nat′; see the full paper [CFP22].

2.2 Straightline Black-Box Reductions and Witness
Indistinguishability

We overview why single-shot, straightline, black-box reductions imply universal
reductions, and use this to show a witness indistinguishable proof based on a
universal reduction to PRG security.

Single-shot Straightline Reductions imply Universal Reductions. (See
Theorem 2) We first argue that “single-shot” straightline black-box reductions
imply universal reductions. Suppose there is a classical straightline, black-box
reduction R that succeeds in some security game C ′ with probability ε when
making single-shot usage of an adversary A with advantage a in the game C.
That is, R interacts with A a single time without any rewinding or restarting. As
we shall observe, any such reduction must also “relativize” with respect to any
stateful oracle Nat. In more detail, consider some augmented adversary (B,Nat)
that has robust advantage a in a game C, and let B′ be an adversary that
simulates a communication between R and B: Any time R wants to query its
adversary A, we direct that communication to B, and any time B wants to query
Nature Nat, we direct that communication to Nat. Since for every prefix ρ, we
have that (B,Nat(ρ)) wins in C, we also have that for every prefix ρ, R(B,Nat(ρ))

wins in C and thus (B′,Nat(ρ)) (which perfectly emulates R(B,Nat(ρ))) does so
as well, so (B′,Nat) also has robust advantage in C ′. Note that this construction
crucially relies on the fact that R only invokes its attacker once and without
rewinding it (so that communication with Nat can be forwarded).

Let us emphasize, however, that universal reductions are not equivalent with
single-shot straightline reductions: as we already discussed, we can obtain uni-
versal reductions that do reuse the attacker multiple time—we demonstrate this
for the case of hardness amplification for rerandomizable functions—and for this
task it is easy to see that a straightline single-shot black-box reductions cannot
be used (see the full paper for details).
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Universal Reductions from Some Classic Reductions. The above observa-
tion shows that if we can construct proofs of security using single-shot, straight-
line, black-box reductions, then we immediately can infer the existence of a uni-
versal reduction. We observe that indeed some of the classical proofs of security
(for e.g. PRG length extension, PRFs from PRGs, encryption from PRFs, com-
mitments from PRGs, one-time signatures from OWFs) fall into this category;
see Corollaries 1 through 5.

Universal Reductions from New Classic Reductions: Witness Indis-
tinguishable Proofs. (See Theorem 3) Many classic cryptographic reductions,
however, do require rewinding/restarting the adversary. Most notable are reduc-
tions/simulations for notions of privacy in interactive proofs like zero-knowledge
[GMR89]. As we shall see, we demonstrate that sometimes these can be “de-
rewinded”. In particular, we will focus our attention on a weakening of zero-
knowledge, known as witness indistinguishability [FS90], and will show how to
provide a new single-shot straightline reduction (and as a consequence, a uni-
versal reduction) to PRGs. (We hope that this proof will serve as an example of
how classic proofs may be “de-rewinded”.)

Recall that an interactive proof system [GMR89], (P, V ), for an NP language
L specifies an interaction between the prover P with access to a witness w and the
verifier V , on common input a security parameter 1λ and a statement x. It should
satisfy completeness, meaning on inputs x ∈ L and w a valid witness for x, P (w)
causes V to accept. The other required property is soundness, meaning on input
x '∈ L, no cheating prover P " can cause V to accept (with noticeable probability).
Sometimes we want additional privacy and security properties for the witness
w used. One basic property is witness indistinguishability (WI) [FS90] which
requires that no (potentially cheating) verifier V " can tell if P is using one
witness w0 or another witness w1. Note that this might seem like a weak property
(e.g., it provides no guarantees for languages with unique witnesses), but it has
been shown to be extremely useful for broader cryptographic applications (see
e.g. [FS90,DN07,BG08]).

We show that the GMW protocol for graph 3-colorability [GMW91] is WI
using a single-shot straightline reduction to PRG security. We note that previous
classical proofs showing WI of the GMW protocol first showed that GMW is
actually zero-knowledge and then use this to conclude that it also satisfies WI.
But this approach requires rewinding the adversary; we shall dispense of this
rewinding.

We proceed to recalling the GMW protocol. Let G = (U,E) be the input
graph where U = [n]. Recall that the prover P in this protocol has access to
a valid 3-coloring w : [n] → [3] such that for all (i, j) ∈ E, w(i) '= w(j). To
prove that the graph G is indeed 3-colorable, P samples a random permutation
π : [3] → [3] and commits to the colors ck = π(w(k)) for all k ∈ [n]. V asks to
open a random edge (i, j) ∈ E, and P responds with the openings revealing ci and
cj . V accepts the interaction if ci '= cj and the openings are valid. Completeness
of the protocol can be checked straightforwardly. The protocol has statistical
soundness (1 − 1/|E|) (meaning the verifier will catch a cheating prover with
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probability roughly 1/|E|) by the statistical binding of the commitment, since
at least one edge must be colored incorrectly if G is not 3-colorable. We proceed
to argue WI by showing that no cheating verifier V " can distinguish interactions
with P (w0) or P (w1) for any two distinct witnesses w0 and w1.

To formalize this claim, we model WI as a security game as follows. We allow
the adversary A to select a graph G and two valid witnesses w0 and w1. The
challenger C samples a bit b ← {0, 1} and proceeds to interact as P (wb) while
A acts as the (potentially cheating) verifier V . After the interaction, A outputs
a bit b" and C outputs 1 (so A wins) iff b = b".

Now suppose that there is an adversary A that distinguishes P (w0) and
P (w1) with probability 1/2 + δ (namely, it outputs 1 on P (w1) with probability
2δ more than on P (w0)). We construct a straightline, black-box reduction R
that uses A to distinguish two commitments to different values. R first receives
a graph G and witnesses w0 and w1 from the adversary A. Next, R chooses
a random edge (i′, j′) ∈ E and random distinct colors for these vertices ci′ '=
cj′ ∈ [3]. R computes permutations π0 and π1 such that π0(w0(·)) and π1(w1(·))
are consistent with the colors ci′ and cj′ . R then sends two sets of messages
to a commitment challenger: the first consists of the colors for π0(w0(k)) for
all k ∈ U \ {i′, j′}, and the second consists of the colors for π1(w1(k)) for all
k ∈ U \ {i′, j′}. R generates commitments for ci′ and cj and then uses the
commitments received from the commitment challenger for the other vertices,
so R does not know whether it is using w0 or w1. A then asks to open a specific
edge (i, j) ∈ E, and if (i, j) happens to be (i′, j′), R opens the colors ci′ , cj′ .
Otherwise, R aborts. If R didn’t abort, the interaction is now over and A outputs
a guess b" for whether the witness was w0 or w1. R simply forwards this guess
to the commitment challenger.

Note that by definition, R only queries A in a single session and only via
black-box access. So, we only need to argue that R succeeds with better than 1/2
probability assuming that A succeeds with 1/2 + δ probability for some inverse
polynomial δ. At a high level, this follows since A’s view is identical to a random
execution with either P (w0) or P (w1), assuming that R does not abort. The key
point in arguing this is that any b ∈ {0, 1}, for any fixed edge (i′, j′) and fixed
witness wb, there is a 1–1 mapping between colors ci′ , cj′ and permutations πb

over colors, so picking random colors for ci′ , cj′ and computing the corresponding
permutation w.r.t. wb, is equivalent to picking a random permutation.

Next, since R chose (i′, j′) randomly and independent of A, the probability
that R aborts because (i′, j′) '= (i, j) is at most (1 − 1/|E|). So with prob-
ability 1/|E|, A’s guess at distinguishing w0 from w1 corresponds exactly to
whether or not the commitment challenger chose the commitments for π0(w0(·))
or π1(w1(·)). It follows that R succeeds at distinguishing these two cases with
probability 1/2 + δ/|E|. Further, we can do an additional hybrid over each of
the elements in the set to distinguish two individual committed values with
probability 1/2 + δ/(|E| · (|U | − 2)).

For full details of the above high level argument, we refer the reader to the
full paper [CFP22]. The main point is that since this new proof is a single-shot,
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straightline, black-box reduction, it immediately implies a universal reduction
from WI to PRG security.

2.3 Impossibility of Hardness Amplification and Goldreich-Levin

Impossibility of Universal Hardness Amplification. (See Theorem 4) We
start by giving an overview for why there is no universal black-box reduction for
the proof of hardness amplification with black-box access to the function f . Let
f be a one-way function, and define the n-fold direct product function f (n) such
that f (n)(x1, . . . , xn) = (f(x1), . . . , f(xn)). We show that this construction does
not increase the security for generic functions f . Specifically, we consider generic
security games Cf and C(n),f for the OWF security of an arbitrary function f
and its n-fold product f (n). Suppose there exists a reduction R such that for any
f and any augmented adversary (A,Nat) with advantage a(λ) at inverting f (n),
then the augmented adversary (R(A,f),Nat) inverts f with advantage ε(λ, a). In
this overview, we show that if R(A,f) only makes black-box use of the function
f via oracle access to f , then it must satisfy ε(λ, a) ≤ a + µ(λ) for a = 1/e and
µ a negligible function.

Our high level approach is as follows. We will construct an augmented adver-
sary (A,Nat) that has robust advantage roughly 1/e, yet the answers by this
attacker can be efficiently simulated in PPT. In more detail, consider some
reduction (R(A,f),Nat) that work for any function f . Such a reduction must
also work for a random function f : {0, 1}λ → {0, 1}3λ, and for random func-
tions, we have the advantage that the reduction won’t (except with negligible
probability) be able to query the attacker on any point in the range of the func-
tion unless it has already queries f on the pre-image. So, it would seem that if
we use such a random function, then we can easily emulate a perfect inverter (by
simply looking at all the queries made by R to f). There is one main obstacle
here: R actually gets some value y in the range of f as input (and its goal is to
invert this point), and R could of course embed this y into its queries to (A,Nat).
We overcome this issue by considering a particular “random-aborting” attacker
(A,Nat) that (1) only inverts a 1 − 1/n fraction of all values y′, and (2) never
agrees to invert the same value y′ twice. We can show that such an attacker suc-
ceeds in robustly inverting f (n) with probability roughly 1/e. Intuitively, such an
attacker “knows” how to invert f with probability 1 − 1/n, but as we shall see,
since (A,Nat) is stateful and never agrees to invert the same value twice we can
show that (A,Nat) can only be used to invert f with probability roughly 1/e.
More precisely, we show how to correctly simulate this attacker with probability
1−1/e by a PPT simulator S that simply aborting whenever we see a query that
contains a component yi for which we do not know a pre-image (through one
of the f queries made by R). Thus, if (R(A,f),Nat) inverts a random function f
with probability ε(λ, a(λ)), it follows that (R(A,f), Sf ) will invert f with proba-
bility ε(λ, 1/e) − 1/e − negl(λ). Since R, A, and S are efficient, this probability
must be bounded by a negligible function, so ε(λ, 1/e) ≤ 1/e + negl(λ).
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Let us proceed to defining the augmented adversary (A,Nat). The augmented
adversary (A,Nat) interacts in the OWF security game of f (n), so A receives
queries of the form (y1, . . . , yn). A will simply forward these queries to Nat, who
responds with either ⊥ or the correct inverse (r1, . . . , rn), based on the following
procedure:

1. For each yi in the query, if Nat has previously seen a query for yi in ρ or if yi

is not in the image of f , it sets ri to be ⊥.
2. Next, it flips a coin and with probability roughly 1/n just sets ri to be ⊥
3. If ri has not been set to ⊥, Nat sets ri to be any preimage in f−1(yi).
4. Finally, if any ri was set to ⊥, Nat responds to the entire query with ⊥.

Otherwise, it responds with the inverse (r1, . . . , rn).

We argue that (A,Nat) will invert a random challenge (f(x1), . . . , f(xn)) with
constant probability, for all possible prefixes ρ. In particular, a random challenge
(y1, . . . , yn) will always have that each yi is in the image of f . Additionally, no
matter what the history is, a random challenge will not collide with any past
query with high probability (formally we need to restrict to only looking at the
most recent λlog λ queries in case ρ has super-polynomial length). So the only
reason Nat outputs ⊥ is if any of its coin flips tell it to set ri to be ⊥, but this
happens with probability at most 1−(1−1/n)n ≈ 1−1/e. Thus, the augmented
adversary (A,Nat) succeeds with probability roughly 1/e.

We now argue that Nat can be efficiently simulated. The main reason is
that because Nat only needs to reply to queries the first time it sees them, we
only need to simulate a single response for the challenge y = f(x) that the
reduction receives. This is much easier than simulating multiple responses that
may include y in various ways. Specifically, the simulator S simulates any queries
that R makes to either Nat or f , without the use of Nat. Whenever S simulates
a query to f , it records the responses before forwarding the reply back to R.
To simulate a query (y1, . . . , yn) to Nat, S proceeds exactly as Nat except that
it doesn’t actually know how to invert f . Namely, it can still reject yi values it
has seen before, and flip a coin to ignore certain inputs. It tries to invert any yi

value it sees by looking at the queries R has made to f , and uses such a value if
one exists.

It remains to argue that S diverges from the behavior of Nat with small
probability. S diverges whenever R makes a query (y1, . . . , yn) where R has not
queried some yi before, or if yi has multiple pre-images. But because f is a
random function from λ to 3λ bits, the probability R can guess an element in
the image of f without querying it is negligible (other than its input y = f(x),
and the probability that f is not injective is negligible). Thus, we only need to
deal with when it queries y = f(x) for the first time. But Nat outputs ⊥ in
that case with probability ≈ 1−1/e, so S and Nat only diverge with probability
roughly 1/e!

Finally, it follows that if R, given access to Nat, inverts a random (y1, . . . , yn)
with probability 1/e + 1/p(λ) for some polynomial p, then R given access to the
simulator S will invert a random f with probability at least 1/p(λ), which is
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impossible. So (R(A,f),Nat) must invert f with probability at most ε(λ, a) ≤
a + µ(λ) for a = 1/e and some negligible function µ.

For the above proof, we note that we crucially rely on the fact that (A,Nat) is
an augmented adversary because it only ever inverts individual yi values that it
has never seen before. Let us also point out that by setting the abort probability
more carefully, we can make the proof go through also when are required to
construct an attacker that succeeds with much higher probability a (and not
just 1/e). A rigorous proof is in the full paper.

Impossibility of a Universal Goldreich-Levin Theorem. (See Theorem 5)
We briefly discuss the impossibility of a universal reduction for the Goldreich-
Levin theorem. The high level idea and proof structure is similar to the impos-
sibility of hardness amplification.

Recall that the Goldreich-Levin theorem shows that, for any one-way function
g, the function f(x, r) = (g(x), r) is a one-way function with hardcore predicate
h(x, r) = 〈x, r〉 for |x| = |r|. Let us first outline why the security of the hardcore
predicate h cannot be based on the OWF security of g via a universal reduction,
when the reduction only has oracle access to the function g.

Similar to the above impossibility for hardness amplification, we construct
an augmented adversary (A,Nat) with advantage a where Nat can be efficiently
simulated by a machine S for a random function g : {0, 1}λ → {0, 1}3λ. Nat

only responds to queries of the form (g(x), r) with the value of h(x, r) (with
probability roughly a) once per g(x) value. Then, we construct S that simulates
Nat (almost) perfectly except on the first query to the challenge y = g(x) from
the OWF challenger. However, since the output of Nat is a single bit, S can
just guess what Nat would have output! It follows that S will simulate Nat with
roughly 1/2 probability, so if (R(A,f),Nat) inverts g with probability ε(λ, a), then
(R(A,f), Sf ) will do so with probability roughly ε(λ, a)/2. Since R, A, and S are
efficient, this implies that ε(λ, a) must be negligible.

Note that we did not use anything about |r| or the structure of h in the
above overview. In fact, we rule out any hardcore predicate h for constructions
f(x, r) = (g(x), r) for any |r| (even no randomness). See the full paper.

2.4 Universal Reductions for Time-Evolving k-Window Natures,
from Classical Non-adaptive Reductions

Let k(·) be any polynomial function. We here argue that if there exists a non-
adaptive, straightline black-box reduction R from some game C to C ′, then there
exists a universal reduction from C to C ′ w.r.t. time-evolving k-window Natures
(see Theorem 6). For now, we focus on the simplified case where C and C ′

are 1-round games, but we consider a more general definition of a non-adaptive
reductions in the full paper.

Recall that a straightline black-box reduction is one where the reduction
R only makes black-box use of a classical, stateless adversary A. We say that
such a reduction is non-adaptive if (for 1-round games) the reduction R after
receiving a challenge message in C ′, generates m queries q1, . . . , qm for A in the
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game C, sends them all at once, receives the responses, and then responds to the
challenger C ′. Suppose there exists such a reduction R that has advantage ε in C ′

after making m non-adaptive queries to a classical adversary A with advantage
a in C. Then for any augmented adversary (B,Nat) with robust advantage a,
where Nat is additionally a time-evolving k-window Nature, we want to construct
an augmented adversary (B′,Nat) also with advantage close to ε. In particular,
for any δ, we will construct B′ such that (B′,Nat) has robust advantage ε − δ.
(This B′, however, will have larger running time than RB, where the running
time depends on δ.)

As Nat is a time-evolving k-window Nature, we can essentially think of
(B,Nat) as specifying ahead of time a sequence of independent, arbitrary algo-
rithms S1, S2, . . . s.t. it uses Si to respond to the ith query qi. We achieve this
as follows: in order for B′ to be able to emulate such a sequence of attackers
S1, S2, . . . using only interactive access to Nat, for each query qi B′ will first send
k dummy messages to Nat (in essence resetting its state to be independent of the
past, depending only on i). Subsequently, to generate a response for qi, B′ will
invoke a fresh copy of B, communicate with Nat on behalf of B, send qi to B, and
reply with B’s reply. However, this isn’t enough, because each Si ∈ S1, S2, . . .
may respond differently as i increases (albeit each Si still wins by robust win-
ning). In other words, the augmented adversary changes over time. To apply the
classical non-adaptive reduction R, we must somehow use (B,Nat) to emulate
a classical adversary that responds to queries repeatedly according to the same
distribution, because R might call its oracle multiple times.

Thus, we construct the universal reduction B′ as follows. B′ receives
some challenge from C ′ and emulates R on this challenge to generate queries
q1, . . . , qm. B′ then generates m2/δ − m extra random “dummy” queries, call
them qm+1, . . . , qm2/δ. It then samples a random permutation π : [m2/δ] →
[m2/δ] that it uses to permute the order of all the queries. For each i ∈ [m2/δ],
denote q′

i = qπ(i). B′ then uses S1, . . . , Sm2/δ to respond to those queries, using
each Si to generate a response r′

i for q′
i, in order. It then recovers the responses

to the original queries by computing ri = r′
π(i) for each i ∈ [m]. R′ can feed

these to R in order to generate a response for the challenger C ′. Importantly, B′

is able to emulate S1, . . . , Sm2/δ using a single interaction with the stateful Nat,
as long as Nat is a time-evolving (k, µ)-window Nature.

At a high level, the reason the universal reduction B′ works is that each
response ri is generated using a random Sj for j ∈ [m2/δ]. Thus, R’s output
should be statistically close to the output of RA where A is a “classical” adver-
sary A that samples a random j ← [m2/δ] and responds with Sj . However, this
isn’t the case if there are any collisions on the set of m queries that R queries to
this classical adversary A—in other words, if some j ← [m2/δ] is chosen twice—
but this bad event can be shown to happen only with probability at most δ. It
follows that the output of (B′,Nat) is at most δ-far from the output of RA, so if
R wins with probability ε, then (B′,Nat) will win with probability at least ε− δ.
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3 Defining Universal Reductions

In this section, we formally present the notion of a universal reduction. A more
in depth study of these notions can be found in the full version [CFP22].

3.1 Preliminaries

We let N = {1, 2, 3, . . .} denote the set of natural numbers, and for any n ∈ N,
we use [n] = {1, . . . , n} to denote the set from 1 to n.

Throughout, we use λ ∈ N to denote the security parameter. When we say
that an event holds for sufficiently large λ ∈ N we mean that there exists an
integer N ∈ N such that the event holds for all λ ≥ N . In particular, for any
function f : N → N, the set O(f) consists of all functions g such that there exists
a constants c such that g(λ) ≤ c · f(λ) for sufficiently large λ ∈ N. We say that
a function f(λ) is polynomially-bounded if it is in the set λO(1) = poly(λ). We
say that a function µ : N → R is negligible if it is asymptotically smaller than
any inverse-polynomial function, so for every constant c > 0, µ(λ) ≤ λ−c for
sufficiently large λ ∈ N. In this case, we say µ ∈ negl(λ).

We use PPT to denote the acronym probabilistic, polynomial time. A uniform
algorithm A is a constant-size Turing machine. We say that a function f is
efficiently computable if there exists a uniform, polynomial-time algorithm A
such that A(x) = f(x) for all x ∈ {0, 1}λ. A non-uniform algorithm A = {Aλ}λ∈N

is a sequence of algorithms for all λ ∈ N, and we assume for simplicity that Aλ

always receives 1λ as its first input. A non-uniform PPT algorithm is one where
the description size of Aλ is bounded by a polynomial as a function of λ.

An interactive Turing machine (ITM) is an algorithm M that receives
and sends messages to other ITMs. For two ITMs, A and B, we denote
〈A(x), B(y)〉(z) to denote B’s output in the interaction between A and B on
private inputs x and y, respectively, and on common input z.

3.2 The Definition and Some Consequences

Towards this, let us first recall the standard notion of a security game, wherein
an ITM Challenger C interacts with an ITM Adversary A: On common input
1λ, C interacts with A until C outputs a bit b ∈ {0, 1}. If b = 1, we say that
the adversary wins, and we say that A has advantage a if C outputs 1 with
probability at least a(λ) for all λ ∈ N. The security game is fully specified by
the challenger C, and in the sequel we will use security game and challenger
interchangeably.

Whereas classically, the adversary is typically a PPT, or a non-uniform PPT,
in our context, we will consider security games with respect to augmented adver-
saries: roughly speaking, a PPT attacker A that has access to some potentially
unbounded Nature Nat (Fig. 1).
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C A Nat(ρ)

Fig. 1. Execution in a nutshell. The PPT challenger C plays an interactive security
game with a PPT attacker A. To help with generating responses, A may send queries
to a potentially unbounded Nature machine Nat. Note that Nat may have had previous
interactions, which we specify using ρ, which comprises prior messages that Nat may
have received, as well as any private coins that Nat may have flipped previously. When
we omit ρ, we mean that Nat starts from the blank slate (i.e. no prior messages or
coins).

Augmented Adversaries. In more detail, an augmented adversary (A,Nat) con-
sists of a PPT ITM A, known as the attacker, and a stateful, possibly unbounded
non-uniform ITM Nat, known as Nature. We think of A as the part of the aug-
mented adversary that only uses “standard” computational resources, whereas
Nat is a shared resource in the world that may have “magical” computational
resources. Note that since Nat is a non-uniform ITM, it may take a non-uniform
advice of arbitrary length. We assume that Nat halts on every input message.

Remark 1. All of our definitions—and proofs—work for more powerful Natures
as well, even those that output an arbitrary probability distribution in response to
any interaction prefix (as opposed to one being samplable by a TM). We define
Nat as an ITM for convenience: It becomes easier to specify communication,
randomness, views, etc. Furthermore, considering uncomputable Natures gives
incomparable results: the feasibility results are stronger, but the impossibility
results become weaker.

Interaction Model and Winning Security Games (Once). We consider executions
of a security game C interacting with an augmented adversary (A,Nat). We use
〈C ↔ A ↔ Nat〉(1λ) to denote an execution between C, A, and Nat, given
the security parameter 1λ as common input. In particular, the challenger C
sends queries to and receives responses from the attacker A, who in turn sends
queries to and receives responses from the Nature machine Nat. The execution
ends when C halts outputting a bit b ∈ {0, 1} representing the outcome of the
security game. An ITM in this model is PPT if there is a polynomial upper
bound—as a function of λ—on the number of steps it takes during the lifetime
of any execution before halting. Formally, 〈C ↔ A ↔ Nat〉(1λ) is a random
variable over the joint views of C,A,Nat, where the randomness is over the
coins of each party. Given an execution exec ∈ Supp(〈C ↔ A ↔ Nat〉(1λ)), we
let outC [exec] and viewC [exec] denote C’s output and view, respectively, in the
execution exec.

Definition 4 (Winning Security Games). Let a ∈ [0, 1] and λ ∈ N be a
security parameter. We say that an augmented adversary (A,Nat) has advantage
a on λ for a security game C if

Pr
î

outC [〈C ↔ A ↔ Nat〉(1λ)] = 1
ó

≥ a.
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Let a : N → [0, 1]. The augmented adversary (A,Nat) has advantage a(·) for a
security game C if for all security parameters λ ∈ N, (A,Nat) has advantage
a(λ) for C on λ.

Robust Winning. We will also be interested in executions involving Nat where
Nat has already had some prior interaction; intuitively, we will want to capture
a notion of what it means for (A,Nat) to “robustly” win in a security game—
roughly speaking, that must (A,Nat) “wins” regardless of any prior interaction
that Nat has had with the rest of the world.

We capture this by specifying an interaction prefix ρ = (r, q1, q2, . . .) for Nat

at the beginning of an execution. We can think of ρ as specifying a finite sequence
of queries q1, q2, . . . that Nat previously received, as well as the randomness r that
Nat used to respond to those queries; thus ρ fully determines the past behavior
and the current state of Nat. For any ρ ∈ {0, 1}∗ and security parameter λ ∈ N,
consider the interaction where Nat is initialized on input 1λ, with (read-once)
random tape prepopulated by r (followed by 0s), and where Nat is reactivated
whenever it becomes idle, s.t. when Nat is activated for the ith time, its message
tape is prepopulated with qi (followed by 0s). Recall that an ITM enters an idle
state whenever it is ready to receive the next message in the interaction. When
there are no more queries in ρ to process, the random tape of Nat is then reset
to uniform randomness. We then let Nat(1λ, ρ) denote Nat in the state reached
following the interaction specified by ρ and 1λ. Let ‖ρ‖ denote the number of
queries sent to Nat in ρ. Finally, the notation 〈C ↔ A ↔ Nat(ρ)〉(1λ) refers to
an execution on input 1λ where Nat starts in the state determined by ρ. If the
prefix ρ is omitted, then Nat starts without any prior interaction.

We also define what it means to concatenate two prefixes ρ ◦ ρ′, where ρ =
(r, q1, q2, . . .) and ρ′ = (r′, q′

1, q
′
2, . . .). Define r∗ to be the contents of the random

tape read by Nat in the interaction Nat(1λ, ρ), including any 0s if r is too short, or
trimming extraneous bits of r that Nat(1λ, ρ) doesn’t read if r is too long. Define
ρ ◦ ρ′ = (r∗ ◦ r′, q1, q2, . . . , q

′
1, q

′
2, . . .), where r∗ ◦ r′ denotes string concatenation.

We are now ready to define what it means for an augmented adversary
(A,Nat) to robustly win in a security game.

Definition 5 (Robust Winning). Let a ∈ [0, 1] and λ ∈ N be a security
parameter. We say that an augmented adversary (A,Nat) has robust advantage
a on λ for a security game C if for all ρ ∈ {0, 1}∗, (A,Nat(ρ)) has advantage
a(λ) on λ for C. Let a : N → [0, 1]. The augmented adversary (A,Nat) has
robust advantage a(·) for a security game C if for all λ ∈ N, (A,Nat) has robust
advantage a(λ) for C on λ.9

9 In the definition of robust winning above, we require that the augmented adversary
win a security game for every prefix ρ that Nat may have previously seen, even
those containing exponentially many messages. A natural alternative is to consider
a notion of robust winning that considers only those prefixes with poly(λ) many
messages; indeed our impossibilities and feasibilities can both be made to work in
that setting, but at the expense of definitional complexity.
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Universal Reductions. We finally turn to defining the notion of a universal reduc-
tion. Roughly speaking, a universal reduction from security games C to C ′ guar-
antees that for every augmented adversary (A,Nat) that robustly wins C, there
must exist an attacker A′ (depending on A only) such that (A′,Nat) robustly
wins in C ′ using the same Nature.

Definition 6 (Universal Reductions). Let ε : N × [0, 1] → [0, 1], C and C ′

be security games. We say that there is an ε-universal reduction from C to C ′ if
for all PPT A there exists a PPT A′ such that for every augmented adversary
(A,Nat) with robust advantage a(·) for C, (A′,Nat) has robust advantage ε(·, a(·))
for C ′.

Composability of Universal Reductions. We observe that the definition of a uni-
versal reduction easily composes:

Lemma 2 (Composition of Universal Reductions). Let C1, C2, C3 be
security games. Suppose there exists an ε1-universal reduction from C2 to C1, and
an ε2-universal reduction from C3 to C2. Then, there exists an ε"-universal reduc-
tion from C3 to C1 where ε"(λ, a) = ε1(λ, ε2(λ, a)) for all λ ∈ N and a ∈ [0, 1].

Proof. Let (A3,Nat) be any augmented adversary, and denote a(·) its robust
advantage in C3. Since there is a ε2-universal reduction from C3 to C2, then
there exists PPT A2 s.t. (A2,Nat) has robust advantage ε2(λ, a(λ)) in C2 given
security parameter λ for all λ ∈ N. Since there is a ε1-universal reduction from
C2 to C1, then there must exist PPT A1 s.t. (A1,Nat) has robust advantage
ε1(λ, ε2(λ, a(λ))) in C1 given security parameter λ for all λ ∈ N.

We conclude that there thus exists a ε"-universal reduction from C3 to C1

where ε"(λ, a) = ε1(λ, ε2(λ, a)) for all λ ∈ N and a ∈ [0, 1]. 01
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