
https://doi.org/10.1007/s00145-022-09419-1
J Cryptol (2022)35:6

Research Article

Locality-Preserving Oblivious RAM∗

Gilad Asharov
Department of Computer Science, Bar-Ilan University, 5290002 Ramat-Gan, Israel

Gilad.Asharov@biu.ac.il

T.-H. Hubert Chan
Department of Computer Science, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, China

hubert@cs.hku.hk

Kartik Nayak
Department of Computer Science, Duke University, Durham, USA

kartik@cs.duke.edu

Rafael Pass
Department of Computer Science, Cornell Tech, New York, USA

rafael@cs.cornell.edu

Ling Ren
Computer Science Department, University of Illinois at Urbana-Champaign, Urbana, USA

renling@illinois.edu

Elaine Shi
Computer Science and Electrical and Computer Engineering Departments, Carnegie Mellon University,

Pittsburgh, USA
runting@gmail.com

Communicated by Stefano Tessaro

Received 20 August 2020 / Revised 31 December 2021 / Accepted 3 January 2022
Online publication 24 January 2022

Abstract. Oblivious RAMs, introduced by Goldreich and Ostrovsky [JACM’96], com-
pile any RAM program into one that is “memory oblivious,” i.e., the access pattern to the
memory is independent of the input. All previous ORAM schemes, however, completely
break the locality of data accesses (for instance, by shuffling the data to pseudorandom
positions in memory). In this work, we initiate the study of locality-preserving ORAM-
s—ORAMs that preserve locality of the accessed memory regions, while leaking only
the lengths of contiguous memory regions accessed. Our main results demonstrate the
existence of a locality-preserving ORAM with polylogarithmic overhead both in terms
of bandwidth and locality. We also study the trade-off between locality, bandwidth and
leakage, and show that any scheme that preserves locality and does not leak the lengths
of the contiguous memory regions accessed, suffers from prohibitive bandwidth. To fur-
ther improve the parameters, we also consider a weaker notion of a File ORAM, which

∗A preliminary version of this paper appeared in IACR-EUROCRYPT 2019

© International Association for Cryptologic Research 2022

http://crossmark.crossref.org/dialog/?doi=10.1007/s00145-022-09419-1&domain=pdf

6 Page 2 of 48 G. Asharov et al.

supports accesses to predefined non-overlapping regions. Assuming one-way functions,
we present a computationally secure File ORAM that has a work overhead and locality
of roughly O(log2 N), while ignoring log log N factors. To the best of our knowledge,
before our work, the only works combining locality and obliviousness were for sym-
metric searchable encryption [e.g., Cash and Tessaro (EUROCRYPT’14), Asharov et
al. (STOC’16)]. Symmetric search encryption ensures obliviousness if each keyword is
searched only once, whereas ORAM provides obliviousness to any input program. Thus,
our work generalizes that line of work to the much more challenging task of preserving
locality in ORAMs.

Keywords. Oblivious RAM, Locality, Randomized algorithms.

1. Introduction

Oblivious RAM, originally proposed in the seminal work by Goldreich and Ostrovsky
[25,26], allows a client to outsource encrypted data to an untrusted server, and access
the data in a way such that the access patterns observed by the server are provably
obfuscated.

Thus far, the primary metric used to analyze ORAM schemes has been bandwidth
which is the number of memory blocks accessed for every logical access. After a long
sequence of works (e.g., [25,35,37,38,42]), it is now understood that ORAM schemes
can be constructed incurring only logarithmic bandwidth [3], and moreover, this is
asymptotically optimal [25,34].

An important performance metric that has been traditionally overlooked in the ORAM
literature is data locality. The majority of real-world applications and programs exhibit
a high degree of data locality, i.e., if a program or application accesses some address
it is very likely to access also a neighboring address. This observation has profoundly
influenced the design of storage systems—for example, commodity hard drive and SSD
disks support sequential accesses faster than random accesses.

Unfortunately, existing ORAM schemes (e.g., [3,17,25,26,37,38,42]) are not locality-
friendly. Randomization in ORAMs is inherent due to the requirement to hide the access
pattern of the program, and ORAM schemes (pseudo-)randomly permute blocks and
shuffle them in the memory. As a result, if a client wants to read a large file consisting of
�(N) contiguous blocks, all known ORAM schemes would have to access more than
�(N log N) random (i.e., discontiguous) disk locations, introducing significant delays
due to lack of locality.

In this paper, we ask the question: Can we design ORAM schemes with data locality?
At first sight, this seems impossible. Intuitively, an ORAM scheme must hide whether
the client requests N random locations or a single contiguous region of size N . As a
result, such a scheme cannot preserve locality, and indeed, we formalize this intuition
and formally show that any ORAM scheme that hides the differences between the above
two extreme cases must necessarily suffer from either high bandwidth or bad locality.

However, this does not mean that providing oblivious data accesses and preserving
locality simultaneously is a hopeless cause. In particular, in many practical applications,
it may already be public knowledge that a user is accessing contiguous regions; e.g.,
consider the following two motivating scenarios:

Locality-Preserving Oblivious RAM Page 3 of 48 6

• Outsourced file server. Imagine that a client outsources encrypted files to a server,
and then repeatedly queries the server to retrieve various files. In this case, each
file captures a contiguous region in logical memory. Note that unless we pad all
files to the maximum size possible (which can be very expensive if files sizes vary
greatly), we would already leak the file size (i.e., length of contiguous memory
region visited) on each request.

• Outsourced range query database. Consider an outsourced (encrypted) database
system where a client makes range queries on a primary search key, e.g., an IoT
database that allows a client to retrieve all sensor readings during a specified time
range. We would like to protect the client’s access patterns from the server. As
previous works argued [13,30], in this case one can leverage differential privacy to
hide the number of matching records and it may be safe to reveal a noisy version
of the length of the contiguous region accessed.

Note that in both of the above scenarios, some length leakage seems unavoidable unless
we always pad to the maximum with every request—and this is true even if we employ
ORAM to outsource the files/database! Further, disk IO may be more costly than net-
work bandwidth depending on the deployment scenario: For example, if the server is
serving many clients simultaneously (e.g., serving many users from the same organiza-
tion sharing a secret key, or if the server has a trusted CPU such as Intel SGX and is
serving multiple mutually distrustful clients), the system’s bottleneck may well be the
server’s disk I/O rather than the server’s aggregate bandwidth.

Motivated by these practical scenarios, we ask the following question.

Can we construct a bandwidth-efficient ORAM that preserves data locality
while leaking only the lengths of contiguous regions accessed?

We answer the question in the affirmative and prove the following result:

Theorem 1.1. (Informal) Let N be the size of the logical address space. There is an
ORAM scheme that makes use of only 2 disks and O(1) client storage, such that upon
receiving a sufficiently long request sequence containing T logical addresses, the ORAM
can correctly answer the requests paying only T · poly log N bandwidth, and moreover,
if the T addresses requested contains � discontiguous regions, the ORAM server visits
only � · poly log N discontiguous regions on its 2 disks. The construction only leaks the
length of contiguous regions accessed.

To the best of our knowledge, we are the first to consider and formulate the problem of
locality-friendly ORAM. Even formulating the problem turns out to be non-trivial, since
it requires teasing out the boundaries between theoretical feasibility and impossibility,
and capturing what kind of leakage is reasonable in practical applications and yet does
not rule out constructions that are both bandwidth-efficient and locality-friendly. Besides
the conceptual definitional contributions, we also describe novel algorithmic techniques
that result in the first non-trivial locality-friendly ORAM construction.

To help the reader understand the technical nature of our work, we point out that our
problem formulation in fact generalizes a line of work on optimizing locality in search-
able symmetric encryption (SSE) schemes. The issue of locality was encountered in
recent implementations [15] of searchable symmetric encryption in real-world databas-

6 Page 4 of 48 G. Asharov et al.

es, showing that the practical performance of known schemes that overlook the issue
of locality do not scale well to large data sizes. The problem of optimizing locality in
searchable symmetric schemes has received considerable attention recently (see, e.g.,
[6,7,20–22]). Our problem generalizes this line of work, and achieving good locality
in oblivious RAM is significantly more challenging due to the following reasons: (1)
In SSE, obliviousness is guaranteed only if each “file” is accessed at most once (and
the length of the file is also leaked in SSE);1 and (2) SSE assumes that rebuilding the
“server-side oblivious data structure” happens on a powerful client with linear storage,
and thus, the rebuilding comes “for free.” We show, for the first time, how to remove
both of these above restrictions, and provide a generalized, full-fledged oblivious mem-
ory abstraction that supports unbounded polynomial accesses and yet preserves both
bandwidth and locality.

In some cases, such as a motivating scenario of an outsourced file server, it suffices
to consider a weaker primitive than locality-preserving ORAM. In particular, instead of
storing and accessing arbitrary range data, files of fixed lengths are stored and accessed.
Each memory block is a part of exactly one file, and the sizes of the files are leaked
on accessing them. We investigate a primitive called File ORAM, which addresses this
specific motivating application. We achieve a computationally secure File ORAM that
has a work overhead and locality of O(log2 N) ignoring log log N factors.

2. Technical Roadmap

In the following, we provide a summary of results and techniques. In Sect. 2.1, we discuss
our modeling of locality. In Sect. 2.2, we discuss our lower bounds, providing trade-
offs between the locality of a program, leakage and bandwidth. Toward introducing our
construction, we start in Sect. 2.3 with a warmup– oblivious sort with “good” locality.
In Sect. 2.4, we introduce range ORAM, our core building block for achieving locality,
in which in Sect. 2.5 we overview its construction. In Sect. 2.6, we overview a variant of
Range ORAM, called “Online Range ORAM,” which can also be viewed as a locality-
preserving ORAM, i.e., our main new primitive. We then present the overview of File
ORAM in Sect. 2.7.

2.1. A Generalized Model of Locality

How do we model locality of an algorithm (e.g., an ORAM or SSE algorithm)? A natural
option is to use the well-accepted approach adopted by the SSE line of work [6,7,20,22].
Imagine that every time an algorithm (e.g., SSE or ORAM) needs to read an item from
disk, it has two choices: (1) Read the next contiguous address and (2) jump to a new
address (often called “seek” in the systems literature). While both types of operations
contribute to the bandwidth measure, only the latter type contributes to the locality
measure [6,7,20,22] since seeks are significantly more expensive than sequential reads
on real-world disks. We point out that locality alone is not a meaningful measure since
we can always achieve better locality and minimize jumps by scanning through the entire

1Intuitively, a file stores the identifiers of the documents matching a keyword search in SSE schemes.

Locality-Preserving Oblivious RAM Page 5 of 48 6

memory extracting the values we want along the way. Thus, we always use locality in
conjunction with a bandwidth metric too, i.e., how many blocks we must fetch from the
disk upon each request.

Motivating the multi-disk model The aforementioned model was adopted by the SSE
line of work; however, it is very constraining in the sense that they assume that the server
has access to only 1 disk. In practice, cloud-hosting services such as EC2 and Azure
provision servers with multiple disks. For example, the white paper by Brewer et al. [10]
provides an overview of the disk technology for modern data centers. Constraining to
such a single-disk model might rule out interesting cryptographic algorithms of practical
value. For example, even the simple task of making a copy of an array would require
jumping around linear number of times on a single disk, assuming that both the source
and destination arrays must be stored in contiguous regions. However, with just 2 disks,
we can accomplish the above without requiring any jumps. More examples are provided
in Sect. 3.1. Therefore, we will consider a model that allows multiple disks, and in fact,
all the algorithms proposed in this paper only need 2 or 3 disks to achieve good locality
and bandwidth efficiency simultaneously. More concretely, we generalize the locality
definition as follows.

Defining (D, �)-locality We consider the scenario where the ORAM server may have
multiple (but ideally a small number) of disks, where eack disk still supports the afore-
mentioned two types of instructions: “read the next contiguous address” and “jump to a
new address.” Henceforth, we say that an ORAM scheme satisfies (D, �)-locality and β

bandwidth cost iff for a sufficiently long input sequence containing B requests spanning
L non-contiguous regions, the ORAM server, with access to D disks, may access at
most β · B blocks and issue at most � · L jump instructions. Of course, the adversary
can observe all disks and all movement operations in these disks. We refer the readers
to Sect. 3.1 for the formal definition.

Under these new definitions, our result can be stated technically as “an ORAM scheme
with (2,poly log N)-locality and poly log N bandwidth (amortized) cost” where N is
the total number of logical blocks. Moreover, as mentioned, our ORAM scheme leaks
only the length of each contiguous region in the request sequence and nothing else (and
as mentioned, some leakage is inherent if we desire efficiency).

Open questionsGiven our new modeling techniques and results, we also suggest several
exciting open questions, e.g., is it possible to have an ORAM scheme that achieves
(1, �)-locality and β bandwidth cost where � and β are small? Can we compile source
programs that exhibit (D, �)-locality where D > 1 with meaningful leakage? For the
former question, if there is a lower bound that shows a sharp separation between 1 and 2
disks, it would be technically really intriguing. For the latter question, the constructions
in this paper directly imply that if one is willing to leak the disk each request wants to
access, such schemes are possible. However, depending on the practical application such
leakage varies from reasonable to extremely harmful. Thus, the challenge is to understand
the feasibility/infeasibility of achieving such compilation while hiding which disk each
request wants to access. We refer the reader to Sect. 8 for other open problems.

6 Page 6 of 48 G. Asharov et al.

2.2. Locality with No Leakage

As we already discussed, preserving both bandwidth and locality with no leakage is
impossible. We formalize this claim and study trade-offs between leakage profiles and
performance. We consider schemes that leak only the total number of accesses (just
as in standard ORAM)2 and show that a scheme with good locality must incur a high
bandwidth, even when allowing large client-side space blowup. We prove the following:

Theorem 2.1. For any �, c ≤ N
10 , any (D, �)-local ORAM scheme with c blocks of

client storage that leaks no information (besides the total number of requests) must
incur �(ND) bandwidth.

To intuitively understand the lower bound, consider a simplified case where the O-
RAM must satisfy (1, 1)-locality. Consider the following two scenarios: (1) requesting
contiguous blocks at addresses 1, 2, . . . N ; and (2) requesting blocks at random address-
es. By the locality constraint, in the former scenario the ORAM scheme can access only
1 contiguous region on 1 disk. Now the oblivious requirement says that the address
distributions under these two scenarios must be indistinguishable, and thus, even for
the second scenario the ORAM server can only access a single contiguous region too.
Now, if each request’s address is generated at random, in expectation the desired block
is at least N/2 far from where the disk’s head currently is—and this holds no matter
how one arranges the contents stored on the disk, and even when the server’s disk may
be unbounded! Since the ORAM scheme must perform a single linear scan even in the
second scenario, it must read in expectation N/2 locations to serve each randomized
request. Note that one key idea in this lower bound proof is that we generate the request
sequence at random in the second scenario, such that even if the ORAM scheme is al-
lowed to perform arbitrary, possibly randomized setup, informally speaking it does not
help. In Sect. 6, we make non-trivial generalizations to the above intuition and prove a
lower bound for generalized choices of D and �.

On leaking the lengthsGiven our lower bound, our constructions presented next leak the
lengths of the accessed regions to achieve good locality. Before proceeding with our con-
struction, we remark the following points regarding this leakage: (1) The input program
can always break locality (say, via fictitious non-contiguous accesses), and therefore, our
scheme can be viewed as a strict generalization of ordinary ORAM schemes. In other
words, the user can choose to opt out of the locality feature. (2) As we mentioned above,
in many applications it is already public knowledge that the client accesses contiguous
regions. In those cases, the leakage is the same had we used an ordinary ORAM [29]. (3)
Finally, we stress that just like the case of ordinary ORAM, our locality-friendly ORAM
can be combined with differential privacy techniques as Kellaris et al. [30] suggested to
offer strengthened privacy guarantees.

Despite these arguments, in some applications with good locality, such leakage might
be harmful. For example, a program may access several regions of different lengths
and which regions are accessed depend on some sensitive data. Whether the locality

2We emphasize that many practical applications leak some more information even when using standard
ORAM, e.g., in the form of communication volume. See discussion in below.

Locality-Preserving Oblivious RAM Page 7 of 48 6

feature of our scheme should be used or not is application dependent, and we encourage
using the locality feature only in places where the leakage pattern is clear and is public
information to begin with.

2.3. Warmup: Locality-Friendly Oblivious Sort

Before describing our main construction, we first introduce a new building block called
locality-friendly oblivious sortwhich we will repeatedly use. First, we observe that not all
known oblivious sorting algorithms are “locality-friendly.” For example, algorithms such
as AKS sort [4] and Zig-zag sort [28] are described with a sorting circuit whose wiring
has good randomness-like properties (e.g., in AKS the wiring involve expander graphs,
which have proven random-walk properties), thus making these algorithms difficult to
implement with small locality consuming a small number of disks (while preserving the
algorithm’s runtime).

Fortunately, we observe that there is a particular method to implement the Bitonic
sort [8] algorithm such that with only 2 disks, the algorithm can be accomplished using
O(log2 n) “jumps” (note also that “natural” implementations of the Bitonic sort circuit
do not seem to have such locality friendliness).

We defer the details of this specific locality-friendly implementation of Bitonic sort
to “Appendix A,” stating only the theorem here:

Theorem 2.2. (Locality-friendly oblivious sort) Bitonic sort (when implemented as in
“Appendix A”) is a perfectly oblivious sorting algorithm that sorts n elements using
O(n log2 n) bandwidth and (2, O(log2 n))-locality.

For achieving better asymptotic complexity (albeit, with statistical security as opposed
to perfect as in Bitonic), we show that the Bucket oblivious sort, proposed in [1] also
enjoys good locality. See “Appendix B.”

2.4. Range ORAM: An Intermediate, Relaxed Abstraction

We now start to give an informal exposition of our upper bound results. This is perhaps
the most technically sophisticated part of our work.

To achieve the final result, we will do it in two steps. In our final ORAM scheme
(henceforth called Online Range ORAM), the ORAM client receives the requests one by
one in an online fashion, and it is not informed a priori when a contiguous scan would
occur in the request sequence. That is, it has exactly the same syntax as an ordinary
ORAM, but when the client accesses contiguous addresses, the online range ORAM has
to recognize this fact, and fetch contiguous regions from the memory. To reach this final
goal, however, we need an intermediate stepping stone called Range ORAM, which is an
“offline” version of Online Range ORAM. In a Range ORAM, imagine that the ORAM
client receives a request sequence that can look ahead into the future, i.e., the client is
informed that the next len requests will scan contiguously through the logical memory.

More formally, in a Range ORAM, the ORAM client receives requests of the form
Access(op, [s, t],data), where op ∈ {read,write}, s, t ∈ [N], s < t , and data ∈

6 Page 8 of 48 G. Asharov et al.

({0, 1}b)(t−s+1) where b is the block size. Upon each request, the client interacts with
the server to update the server-side data structure and fetch the data it needs:

• Ifop = read, at the end of the request, all blocks whose logical addresses belong to
the range [s, t] are written down in server memory starting at a designated address;
the server may then return the blocks to the client one by one in a single contiguous
scan.

• If op = write, then imagine that the client has already written down a data array
consisting of t − s + 1 blocks on the server in a designated, contiguous region;
the client and the server then perform interactions to update the server-side data
structure to reflect that the logical address range [s, t] should now store the contents
of data.

Note that as described above, a Range ORAM is well defined even for a client that
has only O(1) blocks of storage—and indeed we give a more general formulation by
assuming O(1) client storage.

As for obliviousness, we require that the distribution of memory addresses accessed by
the Range ORAM can be simulated from the lengths of the accessed ranges only, which
implies that there is no other leakage other than these lengths. We prove the following
theorem:

Theorem 2.3. There exists a perfectly secure Range ORAM construction consuming
O(N log N) space with amortized len · poly log N bandwidth and (2,poly log N)-
locality, for accessing a range of length len, while leaking only the length len of the
accessed ranges.

We remark bandwidth is in an amortized sense: For accessing contiguous regions of
lengths len1, . . . , lenm , the total bandwidth is

(∑m
i=1 leni

) · poly log N . Locality is
worst case, for each access of a continguous region, of length len1, . . ., or lenm , the
locality is (2,poly log N), i.e., the total locality of the m accesses is (2,m · poly log N).

In comparison, for all existing ORAM schemes, accessing a single region of len
contiguous blocks involves accessing �(len · log N) blocks residing at discontiguous
physical locations. We now overview the high level ideas behind our range ORAM
construction.

Strawman scheme: read-only Range ORAM Assuming that the CPU sends only read
instructions, we can achieve locality and obliviousness as follows. The idea is to make
replications of a set of superblocks that form contiguous memory regions. Specifically,
let N be a power of 2 that bounds the size of the logical memory. A size-2i superblock
consists of 2i consecutive blocks with the starting address being a multiple of 2i . We
call size-1 blocks as “primitive blocks.” We store log N different ORAMs, where the
i-th ORAM (for i = 0, . . . , log N − 1) stores all size-2i (super)blocks (exactly N/2i

blocks of size 2i each). Since any contiguous memory region of length 2i is “covered”
by two superblocks of that length, reading any contiguous memory of length 2i region
would boil down to making two accesses to the i-th ORAM.

However, this approach breaks down once we also need to support writes. The main
challenge is to achieve data coherency in different ORAMs. Since there are multiple

Locality-Preserving Oblivious RAM Page 9 of 48 6

Fig. 1. Hierarchy of range trees. Logically, data is divided into trees of exponentially increasing sizes. In each
tree block, a parent superblock stores the contents of both its children. If a block appears in more than one
tree, the smallest tree contains the freshest copy. The above figure shows the state of the data structure after
two accesses (read, 5, 2, ⊥) and (read, 1, 2, ⊥). h denotes height of a node in the Range Tree .

replicas of each data block, either a write must update all replicas, or a read must fetch
all replicas to retrieve the latest copy. Both strategies break data locality.

2.5. Constructing Range ORAM

Range Trees The aforementioned strawman scheme demonstrates the challenges we
face if we want a Range ORAM supporting both reads and writes. To achieve this we
need more sophisticated data structures.

We first describe a logical data structure called a Range Tree (without specifying at
this point how to actually store this logical Range Tree on physical memory). A Range
Tree of size 2i is the following (logical) data structure: the leaves store 2i primitive
blocks sorted by their (possibly non-contiguous) addresses, whereas each internal node
replicates and stores all blocks contained in the leaves of its subtree. For example, in
Fig. 1, each of T0,T1,T2 and T3 is a logical Range Tree of sizes 1, 2, 4, 8, respectively.
In such a Range Tree, each node at height j stores a superblock of size 2 j (leaves have
height 0 and store primitive blocks).

Range ORAM’s data structure As shown in Fig. 1, our full Range ORAM (supporting
both reads and writes) will logically contain a hierarchy of such Range Trees of sizes
1, 2, 4, 8, . . . , N , denoted T0,T1, . . . ,TL , respectively, where L = O(log N). These
trees form a hierarchy of stashes just like in hierarchical ORAM [25,26], i.e., each Ti

is a stash for Ti+1 which is twice as large. Thus, if a block at some logical address is
replicated multiple times in multiple range trees, the copy in a smaller Range Tree is
always more fresh (e.g., in Fig. 1, notice that the block at logical address 1 appears in
both T3 and T2). Within each Range Tree, a logical block also appears multiple times
within superblocks (or primitive blocks) of different sizes, but all these copies within
the same tree contain the same value.

We now specify how these logical Range Trees are stored in the physical memory.
Basically, in each Range Tree, all superblocks at the same height will be stored in a
separate ORAM—thus an ORAM at height j of the tree stores superblocks of size 2 j .

Besides the ORAMs storing each height of each Range Tree, we also need an auxiliary
data structure that facilitates lookup. The client can access this data structure to figure
out, for a requested range [s, t], which superblocks in a specific tree height intersect the

6 Page 10 of 48 G. Asharov et al.

request. This auxiliary data structure is stored on the server in an ORAM, and it can be
viewed as a variant of “oblivious binary search tree.”

Fetch phase of theRangeORAMLet us now consider how to read and write contiguous
ranges of blocks (i.e., implement the read and write operations of Range ORAM). Each
request, no matter read or write requests, proceed in two phases: a fetch phase and
a maintain phase. We first describe the fetch phase whose goal is to write down the
requested range in a designated contiguous space on the server.

Suppose that the range [s, t] is requested. Without loss of generality, assume that the
length of the range t − s + 1 = 2i (otherwise round it up to the nearest power of 2).
Roughly speaking, we would like to achieve the following effect:

• For every Range Tree at least 2i in size, we would like to fetch all size-2i superblocks
that intersect the range requested—it is not difficult to see that there are at most two
such superblocks.

• For every Range Tree smaller than 2i in size, we simply fetch the root.
• Write down all these superblocks fetched in a contiguous region on the server,

and then obliviously reconstruct the freshest value of each logical address (using
locality-friendly oblivious sort).

Henceforth, we focus only on the Range Trees that are at least 2i in size since for the
smaller trees it is trivial to read the entire root. To achieve the above, roughly speaking,
the client may proceed in the following steps. For each Range Tree that is not too small,

1. Look up the auxiliary data structure (stored on the server) to figure out which two
superblocks to request in the desired height that stores superblocks of size 2i ;

2. Fetch these two desired superblocks from the corresponding ORAM and write
down the fetched superblock in a contiguous region (starting at a designated posi-
tion) on the server’s memory.

All these fetched superblocks are written down on the server’s memory contiguously
(including the root nodes for the smaller Range Trees which we have ignored above).
The client now relies on oblivious sorting to reconstruct the freshest copy of each logical
address requested, and the result is stored in a designated contiguous region on the server.

Notice that the entire read procedure reads only polylogarithmically many contiguous
memory regions:

• Queries to the oblivious auxiliary data structure accesses polylogarithmically many
“small” metadata blocks using ordinary oblivious data structures;

• There are only logarithmically many requests to per-height ORAMs storing su-
perblocks of size 2i . Using an ordinary ORAM scheme, this step requires reading
polylogarithmically many regions of size 2i . Here, since every superblock of size
2i is bundled together, we do not need to read 2i separate small blocks from an
ORAM, and this is inherently why the algorithm’s locality is independent of the
length of the range requested.

• The oblivious sorting needed for reconstruction also consumes polylogarithmic
locality as mentioned in Sect. 2.3.

Maintain phase of the Range ORAM Inspired by the hierarchial ORAM [25,26], here
a superblock fetched will be written to the smallest Range Tree that is large enough to

Locality-Preserving Oblivious RAM Page 11 of 48 6

fit this superblock. If this Range Tree is full, we will then perform a cascading merge to
merge consecutive, full Range Trees into the next empty Range Tree.

During this rebuilding process, we must also maintain correctness, including but not
restricted to the following:

• for duplicated copies of each block, figure out the freshest copy and suppress du-
plicates; and

• correctly rebuild the oblivious auxiliary data structure in the process.

Without going into algorithmic details at this point, most of this rebuilding process can
be accomplished through a locality-friendly oblivious sorting procedure as mentioned
earlier in Sect. 2.3. However, technically instantiating all the details and making every-
thing work together is non-trivial. To enable this, we in fact introduce a new algorithmic
abstraction, that is, an ordinary ORAM scheme with a locality-friendly initialization
procedure (see Sect. 4.3). We will use this new building block to instantiate both the
oblivious auxiliary data structure and each tree height’s ORAM. In comparison with a
traditional ORAM where rebuilding can be supported by writing the blocks one by one
(which will consume super-linear locality), here we would like to rebuild the server-side
ORAM data structure using a special locality-friendly algorithm upon receiving a pos-
sibly large input array of the blocks. In subsequent technical sections, we show how to
have such a special ORAM scheme where initializing the server-side data structure can
be accomplished using locality-friendly oblivious sorting as a building block. We refer
the reader to Sect. 5 for the algorithmic details. We also refer the reader to Example 5.5
for a demonstration how the levels are updated after few accesses.

2.6. Online Range ORAM

Given our Range ORAM abstraction, we are now ready to construct Online Range
ORAM. The difference is that now, when the client receives request, it is unaware
whether the future requests will be contiguous. In fact, Online Range ORAM provides
the same interface as an ordinary ORAM: each request the client receives is of the
form (op,addr,data) where op ∈ {read,write}, and addr ∈ [N] specifies a single
address to read or write (with data). Yet the Online Range ORAM must preserve the
locality that is available in the request sequence up to polylogarithmic factors.

Roughly speaking, we can construct Online Range ORAM from Range ORAM as
follows, by using a predictive prefetching idea: When a request (containing a single
address) comes in, the client first requests that singe address. When a new request comes
in, it checks whether the request is consecutive to the address of the previous request.
If so, it requests 2 contiguous blocks—the specified address and also its next address.
This can be done by requesting a range in Range ORAM. If the next 2 requests happen
to be contiguous, then the client prefetches the next 4 blocks with Range ORAM; if
the requests are still contiguous, it will next prefetch 8 blocks with Range ORAM. At
any time if the contiguous pattern stops, back off and start requesting a region of size 1
again. It is not hard to see that the Online Range ORAM still preserves polylogarithmic
bandwidth blowup; moreover, if the request sequence contains a contiguous region of
length len, it will be separated into at most log(len) Range ORAM requests. Thus,
the Online Range ORAM’s locality is only a logarithmic factor worse than the Range
ORAM. The reader is referred to Sect. 5.5 for further details.

6 Page 12 of 48 G. Asharov et al.

2.7. File ORAM

Compared to a Range ORAM which supports accesses to any contiguous memory region,
a File ORAM provides a more constrained functionality that supports accesses to a set
of files of predefined ranges. More specifically, while in Range ORAM every pair of
[s, t] is a valid request (as long as t > s), in File ORAM, a client requests files whose
boundaries are known a priori; and further, distinct files do not overlap in memory.

Concretely, the primitive is defined as follows: The primitive gets as input a file
structure F = (Ffid1, . . . , Ffidk), where each file Ffidi has some length leni and identifier
fidi . The total size of all lengths is N . It arranges the files in the memory such that later
it can support accesses (opi , fidi ,datai) with opi ∈ {read,write}. It then has to
update the content of the file fidi in case opi = write, or retrieve its content when
opi = read.

Obliviously, we can use Range ORAM to realize File ORAM—but we are interested
in a more practical and asymptotically more efficient primitive. We show a construction
that has linear space (as opposed to O(N log N) in our Range ORAM construction), and
Õ(log2 N) work overhead, and is (3, Õ(log2 N))-locality.3 Toward that end, we make
use of the Bucket Oblivious sort of [1], and we show how it can be implemented with
good locality (see “Appendix B”).

Naïve construction Given a file structure F = (Ffid1 , . . . , Ffidk) of a total size N , we
build log N different ORAMs where the i th ORAM holds up to N/2i files of size 2i . If
we use Circuit ORAM [42] with a merged stash across all recursion levels [19], accessing
each file of 2i boils down to accessing O(log2 N) superblocks of length 2i . It is not hard
to see that this naïve scheme achieves a O(log2 N) work, but it consumes O(N log N)

space.

Non-recurrent file hashing scheme To show our linear space File ORAM, we start
with constructing File ORAM for non-recurrent accesses, namely, when the same file
is not accessed at most once. At a high level, to achieve this, we define a new primitive
which we call “Non-Recurrent File Hashing Scheme,” build upon the two-dimensional
balanced allocation scheme [6]. However, we show how to perform this balanced allo-
cation obliviously.

Given a sequence of files F = (Ffid1 , . . . , Ffidk) of various sizes and with total size
N , we allocate an array of bins and hash the files to the memory as follows. For each
file Ffid, we evaluate a pseudo random function on the file identifier fid to receive a
(pseudo-)random starting bin g, and place the i th block of the file in the bin g + i . That
is, the first block of the file is placed in the bin g, the second bin is placed in g+1, and so
on. Once this process is completed for all files, each bin contains blocks from different
files. We will show that if we allocate N/Õ(log N) bins of size Õ(log N), while we
make sure that the overall space is O(N), then with all but a negligible probability no
bin overflows. We pad each bin to contain exactly Õ(log N) blocks by adding dummy
block when needed.

To access file fid, we compute the starting bin g by applying the pseudorandom
function on fid and then read the len(fid) consecutive bins g, . . . , g + len(fid) − 1 to
retrieve all the blocks that correspond to the file fid. This guarantees good locality, as

3For a function f (n), we let Õ(f (n)) denote O(f (n) log f (n)).

Locality-Preserving Oblivious RAM Page 13 of 48 6

all the data that is associated with the file fid is stored in len consecutive bins, i.e., a
contiguous region of length len · Õ(log N). As no file is accessed more than once, this
range of memory locations is pseudorandom. As such, we can also support accesses of
fictitious files: When accessing a file with fid = ⊥ and some length len, we choose a
random bin g uniformly at random, and read the bins g, . . . , g + len − 1.

As for the initialization, we store next to each block some metadata that includes
its file identifier and its offset within the file, the destination bin of the block can be
computed directly. We then show how to implement the allocation procedure using
locality-friendly oblivious sort, from an array containing the data of the files in arbitrary
locations. Moreover, we have a metadata ORAM to let the user retrieve the length of
each file from its identifier.

Achieving obliviousness for recurrent memory requests To make recurrent request-
s, we make the following observation: The hierarchical ORAM framework originally
proposed by Goldreich and Ostrovsky [25] is, in fact, a method for constructing a recur-
rent ORAM form a non-recurrent ORAM. Thus, we will apply the hierarchical ORAM
framework atop our oblivious non-recurrent File Hashing scheme, somewhat similarly
to the way we converted Range Trees to Range ORAM. Here, however, the i th table Ti

is a non-recurrent file hashing of size 2i which consumes space O(2i , whereas Range
Tree of size 2i consumes space O(i · 2i). As a result, the total space consumption of our
File ORAM is O(N) and not O(N log N) as in our Range ORAM.

2.8. Related and Subsequent Work

Related work on locality. Algorithmic performance with data stored on the disk has
been studied in the external memory models (e.g., [2,36,39,40] and references within).
Fundamental problems in this area include scanning, permuting, sorting, range searching,
where there are known lower bounds and matching upper bounds.

Relationship to locality-preserving SSE Searchable symmetric encryption (SSE) en-
ables a client to encrypt an index of record/keyword pairs and later retrieve all records
matching a keyword. The typical approach (e.g., [14,16,32,33,41], and references with-
in) is to store an inverted index. Our work is inspired by recent works that study locality
in SSE schemes [6,7,20–22]. While locality-preserving oblivious RAM is formally in-
comparable to the SSE line of work (it allows access to any regions in the memory and
not just predefined ones), our new File ORAM formulation can be viewed as a gener-
alization of the onetime ORAM (with free rebuild) construction adopted in recent SSE
constructions. File ORAM provides a much stronger security guarantee: Whenever the
same file (keyword) is accessed more than once, our FileORAM does not reveal this
fact, whereas the SSE schemes do reveal this fact. Table 1 compares the different SSE
schemes and our File ORAM.

In a concurrent work, Demertzis, Papadopoulos and Papamanthou [22] also consider
the SSE application. In their construction, they leverage as a building block a multi-
use ORAM with O(1)-locality, by blowing up the bandwidth to O(

√
N) and the client

storage to O(N 2/3). This construction fails to preserve the locality of the input program,
and when accessing a region of size len will result in O(len)-locality, and O(len ·√N)-

6 Page 14 of 48 G. Asharov et al.

Table 1. Comparison between FileORAM and local SSE schemes.

Scheme Space Bandwidth Locality Leakage Remarks

[14] O(N) len · O(1) (1, O(len)) AP, Sizes
[22] O(N) len · O(log2/3+δ N) (1, O(1)) AP, Sizes For any constant δ >

0 (assumes large client
storage)

[7] O(N) len · O(log log log N) (1, O(1)) AP, Sizes Assumes maximal list
length < N/ log3 N

[6] O(N log N) len · O(1) (1, O(1)) AP, Sizes
Our FileORAM O(N) len · Õ(log2 N) (3, Õ(log N)) Sizes O(1) client storage

AP stands for Access Pattern (reveals whether the same file/keyword is accessed more than once). File ORAM
comes to address this leakage. Õ is defined as in Footnote 3

bandwidth. In contrast, we achieve poly log N -locality and len · poly log N -bandwidth
when accessing a region of size len, and with O(1)-client space.

Oblivious RAM (ORAM) Numerous works [3,24,31,35,37,38,42,43,45–47] con-
struct ORAMs in different settings. Most of the ORAM constructions follow one of
two frameworks: the hierarchical framework, originally proposed by Goldreich and Os-
trovsky [25,26], or the tree-based framework proposed by Shi et al. [37].

Up until recently, the asymptotically most efficient scheme was given by [31], pro-
viding O(log2 N/ log log N) bandwidth. A recent improvement was given by Patel et
al. [35], reducing the bandwidth to O(log N ·poly log log N). The scheme of Asharov et
al. [3] achieves O(log N) bandwidth and matches the lower bounds given by Goldreich
and Ostrovsky [25,26] and Larsen and Nielsen [34]. Further, the Goldreich–Ostrovsky
lower bound is also known not to hold when the memory (i.e., ORAM server) is capable
of performing computation [5,23], which is beyond the scope of this paper.

Subsequent work Chakraborti et al. [11] show an ORAM called rORAM with good
locality and with O(log2 N) bandwidth assuming �(log2 N) block size. Their scheme
is based on tree-based ORAM. The construction works with large client storage (i.e.,
linear in the sequential data to be read/write), and reducing this client storage to O(1)

would incur multiplicative poly log N factors in locality and bandwidth in addition to
using more disks to achieve locality. The construction requires O(N log N) storage.

3. Definitions

Notations and conventions We let [n] denote the set {1, . . . , n}. We denote by p.p.t.
probabilistic polynomial time Turing machines. A functionnegl(·) is called negligible if
for any constant c > 0 and all sufficiently large λ’s, it holds that negl(λ) < λ−c. We let λ
denote the security parameter. For an ensemble of distributions {Dλ} (parametrized with
λ), we denote by x ← Dλ a sampling of an instance according to the distribution Dλ.

Given two ensembles of distributions {Xλ} and {Yλ}, we use the notation {Xλ} ε(N)≡ {Yλ}

Locality-Preserving Oblivious RAM Page 15 of 48 6

to say that the two ensembles are statistically (resp. computationally) indistinguishable
if for any unbounded (resp. p.p.t.) adversary A,

∣∣∣∣ Pr
x←Xλ

[A(1λ, x) = 1
] − Pr

y←Yλ

[A(1λ, y) = 1
]
∣∣∣∣ ≤ ε(λ)

Throughout this paper, for underlying building blocks, we will use n to denote the
size of the instance and use λ to denote the security parameter. For our final ORAM
constructions, we use N to denote the size of the total logical memory size as well as
the security parameter—note that this follows the convention of most existing works on
ORAMs [24–26,31,37,38,42].

3.1. Memory with Multiple Disks and Data Locality

To understand the notion of data locality, it may be convenient to view the memory as
D rotational hard drives or other storage mediums where sequential accesses are faster
than random accesses. The program interacting with the memory has to specify which
disk to access. Each disk is equipped with one read/write head. In order to serve a read
or write request with address addr in some disk d ∈ [D], the memory has to move the
read/write head of the disk d to the physical location addr to perform the operation. Any
such movement of the head introduces cost and delays, and the machine that interacts with
the memory would like to minimize the number of move head operations. Traditionally,
the latter can be improved by ensuring that the program accesses contiguous regions of
the memory. However, this poses a great challenge for oblivious computation in which
data is often continuously shuffled across memory.

More formally, a memory is denoted asmem[N , b,D], consisting ofD disks, indexed
by the address space [N] = {1, 2, . . . , N }, where D ·N is the size of the logical memory.
We refer to each memory word also as a block and we use b to denote the bit length of
each block. The memory supports the following two types of instructions.

• Move head operation (move,d,addr) moves the head of the d-th disk (d ∈ [D])
to point to address addr within that disk.

• A read/write operation (op,d,data), where op ∈ {read,write}, d ∈ [D] and
data ∈ {0, 1}b ∪ {⊥}. If op = read, then data = ⊥ and mem should return the
content of the block pointed to by the d-th disk; If op = write, the block pointed
to by the d-th disk is updated to data. The d-th head is then incremented to point
to the next consecutive address, and wrapped around when the end of the disk is
reached.

Locality A sequence of memory operations has (D, �) worst-case locality if it contains
� move operations to a memory that is equipped with D disks.
Examples The above formalism enables us to distinguish between different degrees of
locality, such that:

• An algorithm that just accesses an array sequentially can be described using a
program that is (1, O(1))-local.

• An algorithm that computes the inner product of two vectors can be implemented
with (2, O(1))-local (but cannot be implemented with O(1) locality with 1 disk).

6 Page 16 of 48 G. Asharov et al.

• An algorithm that merges two sorted arrays is (3, O(1))-local (and cannot be im-
plemented with O(1) locality with only 2 disks).

• An algorithm that makes N random accesses to an array is (D,�(N))-local for any
constant number of D disks with overwhelming probability.

Relation to the standard memory definition Instead of specifying which disk to read
from/write to, we can define a memory of range [D · N] = {1, . . . ,D · N }. The address
space determines the disk index, and therefore also whether or not to move the read/write
head. Thus, one can consider the regular notion of a RAM program, and our definition
provides a way to measure the locality of the program. Different implementations of the
same functionality can have different locality, similarly to other metrics.

3.2. Oblivious Machines

In this section, we define oblivious simulation of functionalities, either stateless (non-
reactive) or stateful (reactive). As most prior works, we consider oblivious simulation
of deterministic functionalities only. We capture a stronger notion than what is usually
considered, in which the adversary is adaptive and can issue request as a function of
previously observed access pattern.

Warmup:Oblivious simulation of a stateless deterministic functionalityWe consider
machines that interact with the memory viamove and read/write operations. In case
of a stateless (non-reactive) functionality, the machine M receives one instruction I as
input, interacts with the memory, computes the output and halts. Formally, we say that
the stateless algorithm M obliviously simulates a stateless, deterministic functionality
f w.r.t. to the leakage function leakage : {0, 1}∗ → {0, 1}∗, iff

• Correctness: there exists a negligible function μ(·) such that for every λ and I ,
M(1λ, I) = f (I) except with μ(λ) probability.

• Obliviousness: there exists a stateless p.p.t. simulator Sim, such that for any λ and

I , Addr(M(1λ, I))
ε(λ)≡ Sim(1λ, leakage(I)), where Addr(M(1λ, I)) is a random

variable denoting the addresses incurred by an execution of M over the input I .

Depending on whether
ε(λ)≡ refers to computational or statistical indistinguishability,

we say M is computationally or statistically oblivious. If ε(·) = 0, we say M is perfectly
oblivious. For example, an oblivious sorting algorithm is an oblivious simulation of the
functionality that receives an array and sorts it (according to some specified preference
function), where the leakage function contains only the length of the array being sorted.

Oblivious simulation of a stateful functionality We often care about oblivious sim-
ulation of stateful functionalities. For example, the ordinary ORAM is an oblivious
simulation of a logical memory abstraction. We define a composable notion of security
for oblivious simulation of a stateful functionality below. This time, the machine M , the
simulator Sim, the functionality f and the leakage function leakage are all interactive
machines that might receive instructions as long as they are activated, and each might
maintain a secret state. Moreover, we explicitly introduce the distinguisher A, which is
now also an interactive machine. In each step, the distinguisher A observes the access
pattern and selects the next command to perform. We write (outi ,addri) ← M(Ii),

Locality-Preserving Oblivious RAM Page 17 of 48 6

where outi denotes the intermediate output of M for the instruction Ii , and addri denote
the memory addresses accessed by M when answering the instruction Ii . We have:

Definition 3.1. (Adaptively secure oblivious simulation of stateful functionalities) Let
M, leakage, f be interactive machines. We say that M obliviously simulates a possibly
randomized, stateful functionality f w.r.t. to the leakage function leakage iff there
exists an (interactive) p.p.t. simulator Sim, such that for any non-uniform (interactive)
p.p.t. adversaryA,A’s view in the following two experiments,Exptreal,M

A andExptideal, f
A,Sim

are computationally indistinguishable.

Exptreal,M
A (1λ):

out0 = addr0 = ⊥
For i = 1, 2, . . . poly(λ):

Ii ← A(1λ,outi−1,addri−1)

outi ,addri ← M(Ii)

Exptideal, f
A,Sim(1λ):

out0 = addr0 = ⊥
For i = 1, 2, . . . poly(λ):

Ii ← A(1λ,outi−1,addri−1)

outi ← f (Ii)
addri ← Sim(leakage(Ii))

In the above definition, if we replace computational indistinguishability with statis-
tical indistinguishability (or identically distributed resp.) and remove the requirement
for the adversary to be polynomially bounded, then we say that the stateful machine M
obliviously simulates the stateful functionality f with statistical (or perfect resp.) secu-
rity. Besides the leakage of the individual instruction, the simulator might have some
additional information in the form of the public parameters of the functionality. We also
remark that Definition 3.1 captures correctness and obliviousness simultaneously, and
capture both deterministic and randomized functionalities. We refer the reader to the rel-
evant discussions in the literature of secure computation for the importance of capturing
correctness and obliviousness simultaneously for the case of randomized functionalities
[12,27].

Our definition of oblivious simulation is general and captures any stateless or stateful
functionality, and thus later in the paper, whenever we define any oblivious algorithm,
it suffices to state 1) what functionality it computes; 2) what is the leakage; and 3) what
security (i.e., computational, statistical, or perfect) we achieve. We next formally define
ordinary ORAM using Definition 3.1.

Ordinary ORAM The ORAM functionality is an oblivious simulation of a “logical
memory functionality,” parameterized by (N , b), where N is the size of the logical
memory and b is the block size:

• Functionality The internal state of the functionality consists of an array mem ∈
({0, 1}b)N . Upon each instruction of the form (op,addr,data), with op ∈
{read,write}, addr ∈ [N], and data ∈ {0, 1}b ∪ {⊥}, the functionality pro-
ceeds as follows. If op = write, then mem[addr] = data. In both cases, the
functionality returns mem[addr].

• Leakage The simulator has the public parameters of the functionality—N and b.
With each instruction (op,addr,data), the leakage is just that an access has been
performed.

6 Page 18 of 48 G. Asharov et al.

Bandwidth and private storage of oblivious machines Throughout the paper, we use
the terminology bandwidth to denote the total number of memory read/write operations
of size �(log N) a machine needs to use. We assume the machine/algorithm has only
O(1) blocks of private storage.

Remark In this paper, we focus on hiding the access patterns to the memory, but not
the data contents. Therefore, we do not explicitly mention that data is (re-)encrypted
when it is accessed, but encryption should be added since the adversary can observe
memory contents. That is, while we assume that the adversary completely sees the
instructions (move,d,addr) and (op,d,data) that are sent to the memory, data should
be encrypted. In of all our constructions, the only information that the client stores locally
is the secret key used for encrypting these data. Note that the adversary sees in particular
the (encrypted) contents and accesses of all disks.

4. Locality-Friendly Building Blocks

In this section, we describe several locality-friendly building blocks that are necessary
for our constructions.

4.1. Oblivious Sorting Algorithms with Locality

An important building block for our construction is an oblivious sorting algorithm that is
locality-friendly. In “Appendix A,” we describe an algorithm for Bitonic sort to achieve
good locality, and provide a detailed analysis.

Oblivious sort—functionality This is a deterministic functionality in which the input
is an array A[1, . . . , n] of memory blocks (i.e., each A[i] ∈ {0, 1}b, representing a key).
The goal is to output an array A′[1, . . . , n] which is some permutation π : [n] → [n]
of the array A, i.e., A′[i] = A[π(i)], such that A′[1] ≤ . . . ≤ A′[n]. The leakage is just
n, b, and obliviousness is defined using Definition 3.1.

Theorem 4.1. ((Theorem 2.2, restated) Perfectly secure oblivious sort with locality)
Bitonic sort (when implemented as in “Appendix A”) is a perfectly oblivious sorting
algorithm that sorts n elements using O(n log2 n) bandwidth and (2, O(log2 n)) locality.

In “Appendix B,” we also discuss the locality guarantees of Bucket oblivious sort [1].

4.2. Oblivious Deduplication with Locality

We define a handy subroutine that removes duplicates obliviously. Y ← Dedup(X, nY),
where X contains some real elements and dummy elements, and nY is some target output
length. It is assumed that each real element is of the form ((k, k′), v) where k is a primary
key and k′ is a secondary key. The subroutine outputs an array Y of length nY in which
for each primary key k in X , only the element with the smallest secondary key k′ remains
(possibly with some dummies at the end). It is assumed that the number of primary keys
k is bounded by nY .

Locality-Preserving Oblivious RAM Page 19 of 48 6

Given a locality-friendly oblivious sort, we can easily realize oblivious Dedup with
locality. We obliviously sort X by the (k, k′) tuple, scan X to replace duplicates with
dummies, and sort X again to move dummies toward the end. Finally, pad or truncate
X to have length nY and output. The procedure is just few scans of the array and 2
invocations of oblivious sort, and therefore, the bandwidth and locality are the same
as the oblivious sort. Concretely, using Theorem 4.1 this can be implemented using
O(|X| log2 |X|)-bandwidth and (2, O(log2 |X|))-locality.

4.3. Locally Initializable ORAM

In this section, we show that the oblivious sort can be utilized to define an (ordinary)
ORAM scheme that is also locally initializable.
A locally initializable ORAM is an ORAM with the additional property that it can be

initialized efficiently and in a locality-friendly manner given a batch of initial blocks.
The syntax and definitions of a locally initializable ORAM is the same as a normal
ORAM, except that the first operation in the sequence is a locality-friendly initialization
procedure. More formally, a locally initializable ORAM is an oblivious implementation
of the following functionality, parametrized by N and b:

• Secret state an array mem of size N and block size b. Initially all are 0.
• T.Build(X) takes an input array X of |X | < N blocks of the form (addri ,datai)

where each addri ∈ [N] and datai ∈ {0, 1}b . Blocks in X have distinct integer
addresses that are not necessarily contiguous. The functionality has no output, but it
updates its internal state: For every i = 1, . . . , |X | it writes mem[addri] = datai .

• B ← T.Access(op,addr,data) with op ∈ {read,write}, addr ∈ [N], and
data ∈ {0, 1}b. If op = write, then mem[addr] = data. In both cases of
op = read and op = write, return mem[addr].

The leakage function of locally initializable ORAM reveals |X | and the number of
Access operations (as well as the public parameters N and b). Obliviousness is defined
as in Definition 3.1 with the above leakage and functionality.

Locality-friendly initialization We now show that the hierarchical ORAM by Gol-
dreich and Ostrovsky [26] can be initialized in a locality-friendly manner, i.e., how to
implement Build with (2, O(poly log n)) locality, where n = |X |. To initialize a hier-
archical ORAM, it suffices to place all the n blocks in the largest level of capacity n.
In the Goldreich and Ostrovsky ORAM, each block is placed into one of the n bins by
applying a pseudorandom function PRFK (addr) where K is a secret key known only to
the CPU and addr is the block’s address. By a simple application of the Chernoff bound,
except with negl(λ) probability, each bin’s utilization is upper bounded by α log λ for
any super-constant function α. Goldreich and Ostrovsky [26] show how to leverage
oblivious sorting to obliviously initialize such a hash table. For us to achieve locality,
it suffices to use a locality-friendly oblivious sort algorithm such as Bitonic sort. This
gives rise to the following theorem:

Theorem 4.2. (Computationally secure, locally initializable ORAM) Assuming one-
way functions exist, there exists a computationally secure locally initializable ORAM
scheme that has negl(λ) failure probability, and can be initialized with n blocks using

6 Page 20 of 48 G. Asharov et al.

(n + λ) · poly log(n + λ) bandwidth and (2,poly log(n + λ)) locality, and can serve an
access using poly log(n + λ) bandwidth and (2,poly log(n + λ)) locality.

Notice that for ordinary ORAMs, since the total work for accessing a singe block
is only polylogarithmic, obtaining polylogarithmic locality per access is trivial. Our
goal later is to achieve ORAMs where even if you access a large file or large region, the
locality is still polylogarithmic, i.e., one does not need to split up the file into little blocks
and access them one by one. Our constructions later will leverage a locally initializable,
ordinary ORAM as a building block.

5. Range ORAM

In this section, we define range ORAM and present a construction with polylogarithmic
bandwidth and polylogarithmic locality. The construction uses a building block which
we call an oblivious range tree (Sect. 5.2). It supports read-only range lookup queries
with low bandwidth and good locality. From an oblivious range tree, we show how to
construct a range ORAM, which supports reads and updates (Sect. 5.3). Then, we discuss
statistical and perfect security in Sect. 5.4. Finally, we extend Range ORAM to online
Range ORAM (Sect. 5.5).

Our ORAM construction uses multiple disks only when it invokes an oblivious sort
operation (andDedupoperation which invokes an oblivious sort). Thus, for the following
algorithms, it can be assumed that the entire data are stored on a single disk. Multiple
disks are used only transiently using during an oblivious sort or a Dedup operation.

5.1. Range ORAM Definition

A Range ORAM is an oblivious machine that supports read/write range instructions,
and interacts with the memory while leaking only the size of the range. Formally, using
Definition 3.1, Range ORAM is defined as follows, parameterized by N and b:

Functionality The internal state is an array mem of size N and blocksize b. Range
ORAM takes as input range requests in the form Access(op, [s, t],data), where op ∈
{read,write}, s, t ∈ [N], s < t , and data ∈ ({0, 1}b)(t−s+1). If op = read, then it
returns mem[s, . . . , t]. If op = write, then mem[s, . . . , t] = data.
Leakage With each instruction Access(opi , [si , ti],datai), range ORAM leaks ti −
si + 1.

5.2. Oblivious Range Tree

A necessary building block for our Range ORAM construction is a Range Tree. An
oblivious Range Tree is a read-only Range ORAM with an initialization procedure from
a list of blocks with possibly non-contiguous addresses. Formally, it is an oblivious
simulation of the following reactive functionality with the following leakage (where
obliviousness is defined using Definition 3.1):

Functionality Formally, an oblivious Range Tree T supports the following operations:

Locality-Preserving Oblivious RAM Page 21 of 48 6

• T.Build(X) takes in a list X of blocks of the form (addr,data). Blocks in X have
distinct integer addresses that are not necessarily contiguous. Store X as the secret
state. Build has no output.

• B ← T.Access(read, [s, t],⊥) takes in a range [s, t] and returns all (and only)
blocks in X that has addr in the range [s, t]. We assume len = t − s + 1 = 2i is a
power of 2 for simplicity.

Leakage T.Build(X) leaks |X |. Each T.Access(read, [s, t],⊥) leaks the value (t −
s + 1).
A logical Range Tree For simplicity, assume n := |X | is a power of 2; if not, we simply
pad with dummy blocks that have addr = ∞. A logical Range Tree is a full binary tree
with n leaves. Each leaf contains a block in X , sorted by addr from left to right. Each
internal node is a superblock, i.e., blocks from all leaves in its subtree concatenated and
ordered by addresses. A height-i superblock thus has size 2i . The leaves are at height 0,
and the root is at height log2 n.

Metadata tree Each superblock in the logical Range Tree defines a range: [as, am, at]
where as is the lowest address, at is the highest address, and am is the middle address (the
address of the 2i−1-th block for a height-i superblock). We use another full binary tree to
store the range metadata of each superblock, henceforth referred to as the metadata tree.
The metadata tree is a binary search tree that supports the following search operations:

• Given a request range [s, t] with len := t − s + 1 = 2i , find the leftmost and
rightmost height-i (super)blocks whose ranges intersect [s, t], or return ⊥ if none
is found.

Since t − s + 1 = 2i , the leftmost and rightmost height-i (super)blocks that intersect
[s, t] (if they exist) are either contiguous or the same node.

Next, to achieve obliviousness, we will put the metadata tree and each height of the
logical range tree into a separate ORAM, as shown in Fig. 2.

Algorithm 5.1. T.Build(X). The Build algorithm takes a list of blocks X , constructs
the logical Range Tree and metadata tree, and then puts them into ORAMs through local
initialization (Sect. 4.3).

1. Create leaves Obliviously sort X by the addresses. Pad X to the nearest power of
2 with dummy blocks that have addr = ∞. Let height[0] denote the sorted X ,
which will be the leaves of the logical Range Tree.

2. Create superblocks For each height i = 1, 2, . . . , L := log2 n, create height-i
superblocks by concatenating their two child nodes. Let height[i] denote the set
of height-i superblocks. Tag each superblock with its offset in the height.

3. Create metadata tree Let metadata be the resulting metadata tree represented as
an array, i.e.,metadata[i] is the parent ofmetadata[2i+1] andmetadata[2i+2].
Tag each node in the metadata tree with its offset in metadata.

4. Put each height and metadata tree in ORAMs For each height i = 0, 1, . . . , L ,
letHi be a locally initializable ORAM from Sect. 4.3, and callHi .Build(height[i])
in which each height-i superblock behaves as an atomic block. Let Hmeta be a
locally initializable ORAM, and call Hmeta.Build(metadata).

6 Page 22 of 48 G. Asharov et al.

Fig. 2. An oblivious Range Tree with Locality .

Algorithm 5.2. T.Access(read, [s, t],⊥) (with len = t − s + 1 = 2i)

1. Look up address Call Hmeta.Access(·) 2L times to obliviously perform binary
searches for the leftmost and rightmost height-i (super)blocks in the logical Range
Tree that intersects [s, t]. Suppose they have addresses addr1 and addr2 (which
may be the same and may both be ⊥).

2. Retrieve superblocks Call B1 ← Hi .

Access(read,addr1,⊥) and B2 ← Hi .Access(read,addr2,⊥) to retrieve
the two (super)blocks.

3. Output Remove blocks from B1 and B2 that are not in [s, t]. Output
B = Dedup(B1 || B2, len).

We prove the following theorem:

Theorem 5.3. (Oblivious Range Tree) Assuming one-way functions exist, there exists
a computationally secure oblivious Range Tree scheme that has correctness except with
negl(λ) probability, and

• Build(X) requires n · poly log(n + λ) bandwidth and (2,poly log(n + λ)) locality
for an input X of length n,

• Access requires poly log(n + λ) bandwidth and (2,poly log(n + λ)) locality.

The construction requires O(n log n) space. Recall that Build(X) leaks the length |X |
and each Access(read, [s, t],⊥) leaks the value (t − s + 1).

Locality-Preserving Oblivious RAM Page 23 of 48 6

Proof. We start with efficiency analysis and proceed to obliviousness.

EfficiencyTheT.Build algorithm invokes the initialization procedure of O(log n) locally
initializable ORAMs (Sect. 4.3); the T.Access algorithm invokes a polylogarithmic
number of ORAM accesses, each having polylogarithmic bandwidth and (2,poly log n)

locality. It is also not hard to see that the other steps in the above algorithms have O(n)

bandwidth and (2, O(1))-locality.

Obliviousness We first claim the existence of adaptive simulators Sim0, . . . ,SimL ,
where Sim j corresponds to ORAM H j . In addition, there exists a simulator Simmeta,
corresponding to Hmeta, SimDedup for the algorithm Dedup, and Simsort for the obliv-
ious sorting algorithm. We construct a simulator for satisfying Definition 3.1 where the
function f, leakage are as defined above.

The simulator Sim. The simulator is online, receiving leakage of instructions from the
adversary and outputs memory accesses. With each instruction I :

• Build: Upon receiving leakage |X |, invoke Simsort and output its output. Then,
restart all simulators Sim0, . . . ,SimL where Sim� is parameterized with block
size 2� · b and leakage |X |/2�, and output their output. Activate the additional
simulator Simmeta with the input |X |. Output the outputs of all these simulators.

• Access: Upon receiving leakage corresponding to (t − s + 1) = 2i , simulate an
access to a range [s, t]:

1. InvokeSimmeta for L accesses, simulating the accesses to the metadata ORAM,
and output them.

2. Since (t−s+1) = 2i , we access the i-th level only. Invoke the simulator Simi

twice, simulating two accesses to it, and appending the simulated instructions
to the output.

3. Invoke SimDedup on size 2i .

The updated state of the simulator is simply the states of all activated simulators.
We show that Exptreal,M (1λ) is indistinguishable from Exptideal, f (1λ) through a se-

quence of hybrid experiments:

• Hyb0(λ): This is exactly the real execution. With each instruction I received from
the adversary, we hand it to the real construction to receive the memory addresses.
In addition, the construction interacts with the real memory and generates the output
outi in each stage, which is also given to the adversary.

• Hyb1(λ): Same as Hyb1(λ), where now we use the Range Tree functionality in
order to produce the output outi in each step.

• Hyb2,k(λ) with k ∈ [L]: In this execution, upon receiving some instruction I from
the adversary, we proceed as follows:

1. Build(X): Perform Steps 1–3 in Algorithm 5.1. Then,

– For all i ≤ k, call to Simi (|X |/2i) as in the simulation.
– For all i > k, perform Hi .Build(height[i]).

2. Access(read, [s, t],⊥): (with t − s = 2i), perform the following steps:

(a) Call Hmeta to obliviously search for the metadata addr1,addr2 as in the
real execution.

6 Page 24 of 48 G. Asharov et al.

(b) If i ≤ k, call to the simulator Simi for simulating two accesses.
(c) If i > k, then call to the real oblivious RAM Hi to access both addr1 and

addr2.

In each step, output the concatenation of all memory address defined as above and
proceed to the next instruction.

• Hyb3(λ): Same as Hyb2,L(λ), except that the metadata ORAM is replaced with
Simmeta.

• Hyb4(λ): Same as Hyb3(λ) except that we replace Dedup with SimDedup.
• Hyb5(λ): Same as Hyb4(λ) except that we replace the oblivious sort with Simsort.

As a result, the experiment uses only the leakage of the instruction, and this is exactly
the simulator Sim.

We show that for every adversary A, its view in each one of the hybrid experiment
is indistinguishable. Specifically, Hyb5(λ) is indistinguishable from Hyb4(λ) due to the
security of the oblivious sorting algorithm. The view of the adversary in Hyb4(λ) is
indistinguishable from its view in Hyb3(λ), due to the security of the Dedup function.

The view of the adversaryHyb3(λ) is indistinguishable fromHyb2,L(λ) due to the se-
curity of the metadata ORAM. In a more detail, assume by contradiction that there exists
an adversary A that succeeds to distinguish between Hyb3(λ) and Hyb2,L(λ). We show

the existence of an adversaryA′ that succeeds to distinguish betweenExptreal,MORAM
A′ (1λ)

and Exptideal, fORAM
A′,Simmeta

(1λ) as follows:

1. A′ is activated with input (1λ,⊥,⊥) and activates A on the same input.
2. Upon receiving an instruction I = Build(X) or I = Access(read, [s, t],⊥)

from A, the adversary A′ simulates the hybrid experiment, in which all levels
T0, . . . ,TL are simulated using Sim0, . . . ,SimL , and invocations of Dedup and
sort are the real constructions. In order to simulate instructions toHmeta,A′ outputs
that instruction to its own challenger, receives the output and the memory addresses
and uses them to answer A instruction I .

3. When A outputs a bit b distinguishing between Hyb3(λ) and Hyb2,L(λ), the ad-
versary A′ uses this bit to distinguish between interacting with Simmeta and the
corresponding real ORAM construction.

Likewise, for every k ∈ {0, . . . , L − 1} it holds that the view of the adversary in
Hyb2,k(λ) is indistinguishable from Hyb2,k+1(λ) due to the security of the k + 1th
ORAM. Finally, Hyb2,0(λ, I) and Hyb1(λ) are indistinguishable due to the security of
the ORAMT0. Finally,Hyb1(λ) andHyb0(λ) are indistinguishable due to the correctness
of the Range Trees. �

5.3. Range ORAM from Oblivious Range Tree

In this section, we show how to construct a Range ORAM from oblivious Range Tree
scheme. Since the underlying oblivious Range Tree has good efficiency/locality, so will
the resulting Range ORAM. The idea behind our construction is similar to that of the
standard hierarchical ORAM [25,26]. Intuitively, where a standard hierarchical ORAM
employs an oblivious hash table, we instead employ an oblivious Range Tree.

Locality-Preserving Oblivious RAM Page 25 of 48 6

Data structure We use N to denote both the total size of logical data blocks as well as
the security parameter.4 There are log N + 1 levels numbered 0, 1, . . . , L , respectively,
where L := log2 N� is the maximum level. Each level is an oblivious Range Tree
denoted T0,T1, . . . ,TL where Ti has capacity 2i . Data will be replicated across these
levels. We maintain the invariant that data in lower levels are fresher. At any time, each
Ti can be in two possible states, non-empty or empty. Initially, the largest level is marked
non-empty, whereas all other levels are marked empty.

Algorithm 5.4. Range ORAM Access(op, [s, t],data) (with t − s + 1 = 2i for
some i).

1. Retrieve all blocks in range trees of capacity no more than 2i , i.e., fetched :=
∪i−1

j=0T j . This can be easily done by fetching its root. Mark blocks in fetched
that are not in the range [s, t] as dummy.

Each real block in fetched is tagged with its level number j as a secondary key so that
later after calling Dedup(fetched, t − s + 1), where Dedup is defined in Sect. 4.2,
only the most fresh version of each block remains. We assume each block also carries
a copy of its address.

2. For each j = i, i + 1, . . . , L , if T j is non-empty, let fetched = fetched ∪ T j .

Access(read, [s, t],⊥).
3. Let data∗ := Dedup(fetched, 2i). If op = read , then data∗ will be returned at

the end of the procedure. Else, data∗ := data.
4. If all levels ≤ i are marked empty then perform Ti .Build(data∗) and mark it as ready.

Otherwise:

(a) Let � denote the smallest level greater than i that is empty. If no such level
exists, let � := L .

(b) Let S := ∪�−1
j=0T j . If � = L , additionally include S := S ∪ TL . Call T�.

Build(Dedup(S, 2�)) and Ti .Build(data∗). Mark levels � and i as non-empty,
and all other levels below � as empty.

Example 5.5. We show a simple example for how levels are updated after some ac-
cesses. We assume initially that all blocks are stored in the largest Range Tree. Consider
the following sequence of ranges [1, 1], [2, 3], [4, 5], [6, 6] accessed.

• Access [1, 1]: A block of size 1. Added to T0.
• Access [2, 3]: A block of size 2, and so i = 1. Levels ≤ i are not empty. The

smallest empty level larger than i = 1 is 2. Thus, move [1, 1] to T2 (which has
capacity 4), and then put [2, 3] to T1. At this point, T0 is empty and T1 and T2 are
occupied.

• Access [4, 5]: A block of size 2, and so i = 1. Levels ≤ i are not empty. The
smallest empty level larger than i = 1 is 3. Thus, move {1, 2, 3} to T3 (which has
capacity 8), and then put [4, 5] to T1. At this point, T0 and T2 are empty, and T1
and T3 are occupied.

4Recall that we use n to denote the size of an instance of the underlying building block, in our case, an
Oblivious Range Tree, and N to denote the total size of the memory.

6 Page 26 of 48 G. Asharov et al.

• Access [6, 6]: A block of size 1, and so i = 0. Levels ≤ i are empty. [6, 6] is added
to T0. At this point, T2 is empty, and T0, T1 and T3 are occupied.

Theorem 5.6. (Range ORAM) Assuming one-way functions exist, there exists a com-
putationally secure Range ORAM consuming O(N log N) space with negl(N) failure
probability, and len · poly log N bandwidth and (2,poly log N) locality for accessing a
range of size len. Each access to a range of size len leaks the value len.

We remark bandwidth is in an amortized sense: for accessing contiguous regions of
lengths len1, . . . , lenm , the total bandwidth is

(∑m
i=1 leni

)·poly log N . Locality is worst
case, for each access of these regions len1, . . . , lenm the locality is (2,poly log N), i.e.,
the total locality of the m accesses is (2,m · poly log N).

Proof. We start with efficiency analysis and proceed to obliviousness.

Efficiency We now analyze the efficiency and locality of our Range ORAM.

• Space: Level i is a Range Tree that requires O(2i · log 2i) space. Therefore, the
total space can be bounded by

∑log N+1
i=0 O(2i log 2i) ≤ ∑log N+1

i=0 O(2i log N) =
O(N log N).

• Read phase. The read phase (Step 1 to 3) invokes one access to each of the O(log n)

oblivious Range Trees and hence has len·poly log N bandwidth and (2,poly log N)

locality.
• Rebuild phase. An alternative way to view our algorithm is to think all each levels’

empty bit (where empty denotes 0 and non-empty denotes 1), when concatenated,
form a binary counter. Level i is rebuilt every 2i counter increments. Rebuilding a
level i involves initializing (building) the underlying oblivious Range Tree, which
costs n · poly log n bandwidth and locality where n = 2i . Thus, the per-increment
bandwidth for rebuilding is poly log N—recall that N is both the total logical mem-
ory size and the security parameter. It is not hard to see that every time a memory
range of size 2i is requested, the counter’s value increases by at most 3 · 2i . So the
amortized bandwidth for rebuilding is O(len ·poly log N) for an access requesting
len blocks. The locality of the rebuild phase is straightforward: every access request
involves rebuilding at most 2 levels.

Correctness The key argument for correctness of Algorithm 5.4 is to ensure that for
any address, if it is stored at a smaller level, the smaller level contains fresher data. Let
us show this by contradiction. Suppose this is violated, i.e., for some address addr, T j

contains a fresher version than Ti (j > i). When addr was written to T j , a stale version
of addr is in Ti . However, addr was written to T j by either steps 4 or 4a. In both cases,
all levels ≤ i were empty.

Obliviousness Let Sim0, . . . ,SimL denote the simulators of the Range Trees. Let
SimDedup denote the simulator for the Dedup algorithm. Consider the functionality
of Range ORAM as defined in Sect. 5.1. We show the existence of an online simulator

Sim for Range ORAM, participating in the experiment Expt
ideal, fRangeORAM
A,Sim (1λ), defined

as follows:

Locality-Preserving Oblivious RAM Page 27 of 48 6

The simulator Sim. Upon initialization, initialize L + 1 bits corresponding to whether
a level is ready or empty. Mark all levels as empty, except for the last level. Invoke SimL

with leakage 2L .
Access: Upon receiving leakage(I) with leakage(I) = 2i for some integer i

1. For j = 0, . . . , i − 1, access the memory locations devoted to Sim j .
2. For j = i, . . . , L , if the level j is marked ready, invoke the simulator Sim j on

simulating an access with leakage 2i .
3. Invoke the simulator SimDedup(2i).
4. If all levels ≤ i are marked empty, then invoke Simi with Build and leakage 2i .

Otherwise,

(a) Let � denote the smallest level greater than i that is empty. If no such level
exists, let � = L .

(b) Call SimDedup(2�). Terminate all running simulators Sim0, . . . ,Sim� and
mark all corresponding bits as empty. Restart Sim� with Build on leakage
2�, and Simi with leakage 2i , and mark corresponding bits as ready.

The internal state of the simulator is the bits indicating whether a level is ready/empty,
and the internal states of the underlying simulators.

We show that the adversary cannot distinguish between a real execution and the ideal
one. We show that through a sequence of hybrids:

• Hyb0(λ): This is exactly the real execution. Upon receiving instruction
I = (op, [s, t],data) from the adversary, we invoke Algorithm 5.4 and output
the memory addresses it produces, and outi .

• Hyb1(λ): Same as Hyb0(λ) but the adversary receives in each step the output of the
Range ORAM functionality and not the output of the construction. The memory
addresses are still according to the construction.

• Hyb2,k(λ) with k ∈ {0, . . . , L}: In this hybrid, we replace all range trees 0, . . . , k−
1 with simulators Sim0, . . . ,Simk−1.
Upon receiving some instruction I = (op, [s, t],data) with t−s+1 = 2i for some
integer i , we follow Algorithm 5.4. Whenever the algorithm performs T j .Build(X)

for some j < k and some X , we replace it with an invocation of Sim j for Build
instruction with leakage |X |. Whenever the Algorithm performs T j .Access, we
invoke Sim j for Access with leakage 2i .

• Hyb3(λ): Same as Hyb2,L(λ), where here also the Dedup algorithm is replaced
with SimDedup. As a result, we do not use any information in the instruction I
beyond leakage(I), and this is exactly the simulator Sim.

We now claim that the view of the adversary in the experiment Hyb3(λ) is indistin-
guishable from its view in Hyb2,L(λ) due to the security of the Dedup Algorithm. Like-
wise, for every k ∈ {0, . . . , L − 1} it holds that the view of the adversary in Hyb2,k(λ)

is indistinguishable from its view in Hyb2,k+1(λ) due to the security of the k + 1th
Tree ORAM. The views in Hyb2,0(λ) and Hyb1(λ) are identical. Finally, the views in
Hyb1(λ) and Hyb0(λ) are indistinguishable from the correctness of the Range ORAM
construction. �

6 Page 28 of 48 G. Asharov et al.

5.4. Perfectly Secure Range ORAM

The computational security in our construction is due to the use of a computationally
secure locally initializable hierarchical ORAM (Theorem 4.2).

We can achieve perfect security by making the perfectly secure ORAM construction
with polylogarithmic bandwidth in Chan et al. [18] locally initializable.

For a hierarchical ORAM, within each level, the position of a data block is determined
by applying a PRF to the block’s logical address. To achieve perfect security, Chan et
al. [18] replace the PRF with a truly random permutation. To access a block within
a level, the client must first figure out the block’s correct location within the level. If
the client had linear storage, it could simply store the locations (or position labels). To
achieve small client storage, Chan et al. recursively store the position labels in a smaller
ORAMs, similar to the idea of recursion in tree-based ORAMs [37]. Thus, there are
logarithmically many ORAMs (each is a perfectly secure hierarchical ORAM), where
the ORAM at depth d stores position labels for the ORAM at depth d + 1; and finally,
the ORAM at the maximum depth D = O(log N) stores the real data blocks.

The Build procedure for one ORAM depth relies only on oblivious sorts and linear
scans, and thus consumes (2,poly log N) locality using locality-preserving Bitonic sort.
The Build procedure for one ORAM depth outputs its position map, which is subse-
quently used to initialize the next ORAM depth. Thus, all ORAM depths combined can
be initialized with (2,poly log N) locality. Thus, we have the following theorem.

Theorem 5.7. (Perfectly secure Range ORAM) There exists a perfectly secure Range
ORAM consuming O(N log N) space, len · poly log N bandwidth and (2,poly log N)

locality for accessing a range of size len.

5.5. Online Range ORAM

So far, our range ORAM assumes an abstraction where we have foresight on how many
contiguous locations of logical memory we wish to access. We now consider an online
variant, where the memory requests arrive one by one just as in normal ORAM. Formally:

Functionality: A logical memory functionality that supports the following
types of instructions:

• (op,addr,data): where op ∈ {read,write}, addr ∈ [N] and data ∈
{0, 1}b ∪ {⊥}. If op = write, then write mem[addr] = data. In both
cases, return mem[addr].

Leakage: Consider a sequence of requests I = ((op1,addr1,data1), . . . ,

(opi ,addri ,datai), . . .). Each instruction leaks one bit indicating whether
the last instruction is contiguous, i.e., for every i , the leakage is 1 iffaddri+1 =
addri + 1.

Blackbox construction of online range ORAM from range ORAM. Given a range
ORAM construction, we can convert it to an online range ORAM scheme as follows,
incurring only logarithmic further blowup. Intuitively, the idea is to prefetch a contiguous

Locality-Preserving Oblivious RAM Page 29 of 48 6

region of size 2k every time a 2k contiguous region has been accessed. That is, if a
contiguous region of overall size 2k is being read, then it is fetched as k distinct blocks
of size 1, 2, 4, 8, . . . , 2k . The detailed construction is given below:

Let prefetch be a dedicated location in memory storing prefetched contiguous mem-
ory regions. In the array prefetch , each element prefetch[i] stores a pair of addr,data,
where addr is the logical address of the element and data is its current data. Moreover,
we initialize rsize := 1, p = 1, and let prefetch := ⊥, and denote the underlying
Range ORAM as rORAM. Upon receiving a memory request (op,addr,data∗) with
op ∈ {read,write}, addr ∈ [N] and data∗ ∈ {0, 1}b ∪ {⊥}:

1. If prefetch[p].addr �= addr then do the following.

(a) Perform rORAM.Access(write,prefetch[1].addr,prefetch[rsize].addr,
prefetch), i.e., we write back the entire prefetch into the range ORAM.

(b) prefetch ← rORAM.Access(read,addr,addr + 1,⊥). That is, request a
region of length 1 consisting of only the requested logical address and store
the result in prefetch.

(c) Reset p := 1 and rsize := 1;

2. If op = write, then update prefetch[p].data = data∗.
3. Let v := prefetch[p]. Increment p := p + 1.
4. If p > rsize, then do the following.

(a) Perform rORAM.Access(write,prefetch[1].addr,prefetch[rsize].addr,
prefetch)., i.e., write prefetch back into the range ORAM.

(b) prefetch = rORAM.Access(read,prefetch[rsize].addr + 1, 2rsize).
(c) Set p := 1 and rsize := 2 · rsize.

5. Return v.

It is not hard to see that given the above algorithm, accessing each range of size R will
be broken up into at most O(log R) accesses, to regions of sizes 1, 2, 4, . . . , R, respec-
tively, and each size has one read request and one write request. Security is straightfor-
ward as range ORAM is oblivious, and the transformation between the leakage profiles
of online range ORAM and range ORAM is straightforward. We have the following
theorem:

Theorem 5.8. (Online Range ORAM) There exists a perfectly secure online Range
ORAM, which on receiving len consecutive memory locations online performs len ·
poly log N bandwidth and achieves (2,poly log N) locality.

Proof. Accessing each range of size R is broken up into at most �log R� + 1 access,
to regions of sizes 1, 2, 4, . . . , 2R, respectively, and each size has one read request and
one write request. Thus, given a perfect Range ORAM with len · poly log N amortized
bandwidth and (2,poly log N) locality for accessing a range of size len, an access of a
range R to the Online Range ORAM results in amortized bandwidth of

∑�log R�+1
i=0 2i ·

poly log N ≤ 4Rpoly log N . Thus, there is no blowup in amortized bandwidth. However,
we do have blowup in locality. Assume that the range ORAM has (2, logc N) worst-case
locality regardless of the size of the range being accessed. Our Online ORAM performs

6 Page 30 of 48 G. Asharov et al.

O(log R) accesses when accessing a consecutive range of size R, and therefore, it results
in (2, O(log R) · logcN) locality, i.e., (2, O(logc+1 N))-locality.

For security, recall that with each request, the leakage profile tells us whether the
requested address is consecutive. That is, it tells us whether the condition in Step 1
is satisfied or not. Let SimrORAM be the simulator of the Range ORAM. The (online)
simulator performs as follows:

1. Receive as leakage whether the accessed element is a continuation of the previous
access. If it is not:

(a) Call the simulator SimrORAM on access with range of size rsize.
(b) Call the simulator SimrORAM on access with range of size 1.
(c) Reset p := 1 and rsize := 1.

2. Increment p. If p > rsize:

(a) Call SimrORAM on access with range of size rsize.
(b) Call SimrORAM on access with range of size 2 · rsize.
(c) Let rsize = 2rsize

Clearly, since the simulator receives the leakage from the functionality, the internal
variables p, rsize of the Online ORAM are identical to that of the simulator. The accesses
performed by the Online ORAM are determined by those variables, and whether or not
the condition in Step 1 holds. As a result, the access pattern of the Online Range ORAM
is simulatable. �

6. Lower Bound for More Restricted Leakage

In Sect. 5.5, the online range ORAM leaks which instructions form a contiguous group
of addresses. In this section, we show that if we restrict the leakage and do not allow the
adversary to learn whether adjacent instructions access contiguous addresses, the lower
bound for bandwidth to achieve locality will be significantly worse.

Model assumptions We first clarify the model in which we prove the lower bound.

1. We restrict the leakage such that the adversary knows only the number N of logical
blocks stored in memory, and the total number T of online operations, each of
which has the form (op,addr,data), where op ∈ {read,write}, addr ∈ [N]
and data ∈ {0, 1}b ∪ {⊥}.

2. Just like earlier ORAM lower bounds [9,25,26]), we assume the so-called balls-
and-bins model, i.e., the blocks are opaque objects and the algorithm, for instance,
cannot use encoding techniques to combine blocks in the storage. Note that all
known ORAM algorithms indeed fall within this model.

3. We assume that the algorithm has an offline phase in which it can preprocess
memory before seeing any instructions. However, recall that the instructions are
online, i.e., the algorithm must finish serving an instruction before seeing the next
one.

Notation. Recall that we use D to denote the number of disks (each of which has a single
head), � to denote the locality (where we consider the very general case � ≤ N

10), m to

Locality-Preserving Oblivious RAM Page 31 of 48 6

denote the memory size blowup,5 and β to denote the bandwidth. Moreover, suppose
the CPU has only c block of local cache, where we just need a loose bound c ≤ N

10 . We
shall prove the following theorem.

Theorem 6.1. For any �, c ≤ N
10 , any Online Range ORAM satisfying the restricted

leakage that has (D, �)-locality with c blocks of cache storage will incur �(ND) band-
width.

Proof intuition.By our leakage restriction assumption, the adversary cannot distinguish
between the following two scenarios.

1. There are N operations that access contiguous addresses in the order from 0 to
N − 1.

2. There are N operations, each of which access an address chosen independently
uniformly at random from [N].

Observe that to achieve (D, �)-locality, in scenario 1, there can be at most � jumping
moves for the disk heads. Therefore, the same must hold for scenario 2. To serve an
online request in scenario 2, we consider the following cases.

1. The block of the requested address is already in the cache. (However, the ORAM
might still pretend to do some accesses.) Observe this happens with probability at
most c

N ≤ 1
10 , since the next requested address is chosen independently uniformly

at random.
2. The online request is served by some disk head jump, which takes O(1) physical

accesses. Again, the ORAM might make other accesses to hide the access pattern.
Observe at most � ≤ N

10 requests can be served this way.
3. The online request is served by linear scan of the disk heads. By the Chernoff

Bound, except with e−�(N) probability, at least N
2 of the requests are served by

linear scan. The following lemma gives a stochastic lower bound on the number
of physical accesses in this case.

For ease of notation, we assume that K := N−c
D is an integer.

Lemma 6.2. (Stochastic Lower Bound on the Number of Physical Accesses) Suppose
in Scenario 2, the block of the next randomaddress requested is not in theORAM’s cache.
Moreover, suppose this request is served by only linear scan of disk heads, i.e., no jump
move is made. Then, the random variable of the number of physical accesses for serving
this request stochastically dominates the random variable with uniform distribution on
{1, 2, . . . , N−c

D }.

Proof. Consider some configuration of the disk heads. Without loss of generality, as-
sume that the cache currently stores the blocks for exactly c distinct addresses. For each
of the remaining N −c addresses, we can assign it to the disk head that takes a minimum
number of accesses to reach a corresponding block by linear scan, where a tie can be
resolved arbitrarily. For each j ∈ [D], let a j be the number of addresses assigned to disk
head j ; observe that we have

∑
j∈[D] a j = N − c.

5However, as we shall see, m does not play a role in the lower bound.

6 Page 32 of 48 G. Asharov et al.

For each integer 1 ≤ i ≤ K = N−c
D , observe that the number of addresses that take at

least i physical accesses to reach is at least
∑

j∈[D] max{0, a j − i +1} ≥ D · (K − i +1),
where the last equality holds when all a j ’s equal K .

Hence, the probability that at least i physical accesses is needed is at least D·(K−i+1)
N−c =

K−i+1
K , which implies the required result. �

Lemma 6.3. (Lower Bound on Bandwidth) Except with probability at most e−�(N),
the average number of physical accesses to serve each request in Scenario 2 is at least
�(ND).

Proof. As observed above, except with at most e−�(N) probability, at least N
2 of the

online requests must be served by linear scan of disk heads. By Lemma 6.2, the number of
physical accesses for each such request stochastically dominates the uniform distribution
on {1, 2, . . . , N−c

D }, which has expectation�(ND), since we assume the cache size c ≤ N
10 .

Since the addresses of the online requests are picked independently after the previous
requests are served, by Chernoff bound, except with probability e−�(N), the average
number of physical accesses to serve each such online request is at least �(ND), as
required. �

7. File ORAM

In this section, we show how to construct a FileORAM scheme. We first define this
new primitive in Sect. 7.1. In Sect. 7.2, we construct a non-recurrent read-only file
hashing primitive, which is a FileORAM that supports only read accesses and achieves
obliviousness if no file is accessed more than once. Finally, we show how to rely on core
ideas behind the hierarchical ORAM framework to obtain a full-fledged FileORAM
from non-recurrent read-only file hashing schemes (see Sect. 7.3).

Bucket oblivious sort In this section, we aim for concrete efficiency. Toward that end,
we use a sorting algorithm with locality that is statistically secure, proposed in [1]. In
“Appendix B,” we give an overview of the algorithm, and prove its locality properties.
We have:

Theorem 7.1. Let α ∈ ω(1) and n > log2 λ. The Bucket oblivious sort implements the
sorting functionality except for negl(λ) probability, it uses O(1) client storage, takes
O(n log n log2(α log λ)) work and O(3, log n log2(α log λ))-locality.

7.1. Definition

Compared to a Range ORAM which supports accesses to any contiguous memory region,
a FileORAM provides a more constrained functionality that supports accesses to a set
of files of predefined ranges. More specifically, in Range ORAM every memory range
[s, t] can be accessed (i.e., for any arbitrary values of s, t as long as t > s). In contrast,
in FileORAM, the number of allowed ranges is known and fixed in advance and do not
overlap. A FileORAM should leak only the length of the requested file but should hide

Locality-Preserving Oblivious RAM Page 33 of 48 6

any additional information. In particular, this includes the number of files of each length,
or to distinguish between whether two different files of the same length are requested, or
the same file is requested twice. We assume that each file is padded to the next power of 2
blocks, which at most doubles the memory consumption. The FileORAM functionality
is defined as follows, and its oblivious simulation is defined using Definition 3.1 where
the allowed leakage is as follows:

Functionality The requests are in the form Access(op, fid,data) where op ∈
{read,write}, fid ∈ [k] and data ∈ ({0, 1}b)len(fid). Initially, state = ∅, where
state is an internal state that stores pairs of file identifiers and the associated data. If
op = write then: If fid �∈ state, then add (fid,data) to state; Otherwise, update
its associated value to data. If op = read then look for fid in state and assign the
associated value to data. If fid �∈ state, then assign ⊥. In all cases, return data.
Leakage Let len(fid) be the length of file fid. For simplicity, we assume the length of
each file len(fid) is a power of 2 (otherwise, pad each file to the next power of 2). Let N
be a bound on the sum of lengths of all files. The leakage is simply the length of each
accessed file. Formally, given a sequence of instructions

I = ((op1, fid1,data1), . . . , (opm, fidm,datam)) , wedefine

leakage(I) := (N , len(fid1), . . . , len(fidm)) .

7.2. Non-Recurrent File Hashing Scheme with Locality

A file hashing scheme H receives a set of files as input and builds a hash table that allows
quick read requests. We consider a relaxed notion of security, in which obliviousness
is guaranteed when the adversary is restricted to only access each (non-dummy) file at
most once.
Functionality The functionality supports the following instructions:

• H.Build(X) takes as input an array X , where each element is of the form (fidi , j,data j).
fidi is a file identifier and data j ∈ {0, 1}b is the j-th block of the file fidi . The length
of a file fidi is the maximal j for which (fidi , j,data j) ∈ X . It is assumed that for
each given file fidi with length len, exactly one block of the form (fidi , j,data j)

for each j < len exists in X . The Build instruction simply set the secret state state
to be X .

• F ← H.Read(fid, len) takes in a possibly dummy file identifier fid to be fetched
of purported length len and returns F , the blocks of the file fid in the secret state
state. If the file fid does not exist in state, or if fid = ⊥, then F = ⊥.

Leakage The allowed leakage is as follows. For a sequence

I = (Build(X),Read(fid1, len1), . . . ,Read(fidm, lenm)) , wedefine

leakage(I) := (|X |, len1, . . . , lenm) .

Obliviousness under non-recurrent requests We say that a non-recurrent file hashing
scheme satisfies obliviousness, iff Definition 3.1 is respected when the adversary A is

6 Page 34 of 48 G. Asharov et al.

constrained to submit request sequences I where all non dummy files fid �= ⊥ appear at
most once (i.e., no file is accessed twice).

Construction Below, we present our non-recurrent file hashing scheme. Build(X) has
no output, but it stores a secret state6 in the memory which consists of an array of length
2|X |. Build arranges the memory in B bins of size Z each and places each file fid of
length len in len consecutive bins starting from bin PRFk(fid). In Read, the len bins
are accessed and only the elements that are associated with fid are retrieved.

Algorithm 7.2. H.Build(X)

1. Let n := |X |. The algorithm uses B bins of size Z each, where we let Z := α log λ

with α ∈ ω(1), and let B = 2n/Z�. Append to X exactly Z B/2 − n elements.
2. Generate a random key k. In a single linear scan of X , mark every non-dummy

element (fid, j,data j) with a targeted bin number (PRFk(fid) + j) mod B.
3. Copy X to an array Y of length Z B, and append Z B dummy elements to Y such

that exactly Z dummy elements to each of the B bins.
4. Oblivious sort Y according to their bin assignment. Upon ties, prefer real elements

over dummy elements, and break all other ties arbitrarily. At the end of this step,
real elements that are assigned to the i-th bin appear before real elements that are
assigned to the (i + 1)-th bin. Between these real elements, there are exactly Z
dummy elements.

5. Scan the array Y . For every bin i ∈ [B], let li denote the number of real elements
in that bin. If li > Z , then output overflow and abort. Otherwise, mark the next
Z − li dummy elements with bin i , and the remaining li dummy elements with
exceed.

6. Oblivious sort the array Y again, where all the exceeded elements are moved to
the very end. Truncate the array to be of length 2n, and store it together with the
PRF key K as the secret state.

Algorithm 7.3. H.Read(fid, len)

1. If fid �= ⊥, compute the starting bin number g := PRFk(fid). Else, choose g
uniformly at random from [0, . . . , B − 1].

2. Retrieve all blocks from bins g, g + 1, . . . , g + len − 1 (each mod B).
3. In a single linear scan, extract from each bin the unique7 block with file identifier

fid. Write down exactly len blocks. Output those len elements.

We then obtain the following theorem:

6We assume that all information that the client stores at the external memory is encrypted and authenticated
using some global secret key. The secret key used in the construction can be derived from the global secret
key that the client holds by a proper labeling of the instance of the file hashing scheme, and therefore, no
additional key should be stored.

7This assumes that there is no file with more than B blocks. In case this assumption does not hold, some
bins will contain more than one blocks of the file. We will visit those bins more than once, extracting exactly
one block in each scan of the bin.

Locality-Preserving Oblivious RAM Page 35 of 48 6

Theorem 7.4. (Oblivious non-recurrent File hashing scheme)Assuming one-way func-
tions exist, for any super-constant function α := ω(1), there exists a computationally
secure non-recurrent file hashing scheme that requires O(n) space for files of total length
n, and except with negl(λ) probability

• Build: takes O(n log n log2(α log λ)) work and has (3, O(log n log2(α log λ))) lo-
cality, and

• Read: each access of a filewith length len costs O(len·α log λ)work and (1, O(1))

locality.

Recall that Build(X) leaks |X | = n, and each Read(fidi , leni) leaks leni .

Proof. First, assume that n > log2 λ. We use Algorithm 7.3. We start with correctness
of the scheme, then we show obliviousness and conclude the proof with analyzing
efficiency and locality.

Correctness is immediate, where we just have to show that the event overflow in
Build occurs with only negligible probability. If overflow does not occur, then clearly
the scheme returns the same output as the functionality upon everyRead operation. Note
also that the functionality is deterministic, and thus, the outputs are, in fact, identical.

�

Claim 7.5. (Overflow analysis) According to the assignment used in Build, the prob-
ability of overflow within each bin is negligible in λ.

Proof. Let F1, . . . , Fk be the files that exist in the input array X , and let ni denote the
length of the file Fi . It holds that

∑k
i=1 ni ≤ |X | = n ≤ BZ/2. For simplicity, assume

that there is no file with length greater than B. For β ∈ {0, . . . , B − 1} let Xβ be a
random variable denotes the load of the bin Bβ , and for every i ∈ [k] let Yβ [i] be an
indicator that gets 1 if and only if some element of the file Fi fells into bin Kβ . Note
that Xβ = ∑k

i=1 Yβ [i]. Moreover, for a fixed β ∈ {0, . . . , B − 1}, i ∈ [k] we have
that E[Yβ [i]] = ni/B. This holds since there is no file with length greater than B, and
therefore, an element of some file is in the bin Bβ if and only if its head was chosen to
be in one of the previous ni consecutive bins. This implies that

E[Xβ] = E

[
k∑

i=1

Yβ [i]
]

=
k∑

i=1

E
[
Yβ [i]] =

∑k
i=1 ni
B

≤ Z/2 .

Moreover, the random variables Yβ [1], . . . ,Yβ [k] are independent and are taking values
in {0, 1}. By Chernoff’s bound we have that the probability to exceed Z (and output
overflow) is negligible in λ, and the claim is obtained by a simple union bound on the
number of bins B. The analysis can also be easily adapted for the case where we have a
file with length ni > B. In that case, each bin receives at least �ni/B� real elements of
that file, and random [ni mod B] consecutive bins receive one more element in addition,
and therefore, this case is reduced to the case where all files are of length < B. �

Obliviousness We show that the memory addresses accessed can be simulated by a
simulator Sim receiving only leakage.

6 Page 36 of 48 G. Asharov et al.

• Upon receiving a leakage |X | for Build(X), the simulator performs few linear scans
of the memory and invokes the simulator of the underlying oblivious sort twice,
according to the Build algorithm.

• Upon receiving a leakage len for simulating some H.Read(fid, len) instruction,
the simulator chooses a random bin g ∈ [B], and accesses g, g+1, . . . , g+ len−1
(modulo B).

We claim that the memory locations produced by the simulator are indistinguishable
from the memory locations in the real execution:

• Instruction H.Build(X) is clearly the same in both executions.
• Upon receiving instruction H.Read(fid, len) with fidi = ⊥, then Algorithm 7.3

chooses a random bin g ∈ [B] and access the bins g, g+1 . . . , g+ len − 1 (modulo
B). This is exactly as the simulation.

• InstructionH.Read(fid, len) with fid �= ⊥, the non-recurrence property guarantees
that there was no previous access to this fid. Algorithm 7.3 computes g = PRFk(fid)

and accesses bins g, g + 1 . . . , g + len − 1 (module B), whereas the simulator
chooses g at random. Assuming the pseudorandom property of thePRF, and relying
on the fact that fid was not queried before, these two distributions are the same and
are also indistinguishable from the access pattern of H.Read(⊥, len).

Efficiency and locality The algorithm Build is just a constant number of invocations of
oblivious sorts and a constant number of linear scans. Therefore, it can be implemented
in time O(n log n log2(α · log λ)) and locality (3, O(log n log2(α log λ))) using Bucket
oblivious sort (Theorem 7.1). As for Read, each invocation of the algorithm accesses
a single region in the memory (maybe with some wraparound). Therefore, it can be
implemented using a single head and O(1) move operations.

For the case where log λ < n ≤ log2 λ, we will just use Bitonic sort as our sort.
In that case, it is easy to see that Build takes O(n log2 n) work and has (2, O(log2 n))

locality. Since n < log2 λ, this can be bounded by O(n log n log2(α log λ))-work and
(3, log n log2(α log λ))-locality.

For the case of n ≤ log λ, our Build algorithm does nothing, and we just use a linear
scan with each access.

This complete the proof of Theorem 7.4. �

7.3. Constructing FileORAM from Non-Recurrent File Hashing Scheme

In this section, we show how to construct a File ORAM with locality in linear space, in
a blackbox manner from non-recurrent file hashing scheme. Below we use N to bound
the total number of blocks in all files combined (i.e., the size of the logical memory).8

Data structure There are log N + 1 levels numbered 0, . . . , L where L := log2 N� is
the largest level. Each level is a non-recurrent file hashing scheme and its data structure
is denoted H := (H0, . . . ,HL) where Hi has capacity 2i . At any time, each table Hi can
be in two possible states, ready or empty.

8Recall that we use n to denote the size of an instance of the underlying building block, in our case,
non-recurrent file hashing scheme, and N to denote the total size of the memory.

Locality-Preserving Oblivious RAM Page 37 of 48 6

FileORAM.Access(op, fid,data). We first present the access algorithm assuming we
know the length len of the requested file. We again assume len = 2i for some non-
negative integer i . After that we describe how to retrieve the length of the requested file
using a metadata ORAM.

Algorithm 7.6. H.Access(op, fid,data, len), where len = 2i for some non-negative
integer i :

1. found := false.
2. For each � = i, . . . L in increasing order, if H� is marked ready:

(a) If not found, then perform fetched := H�.Read(fid, len). If fetched �= ⊥,
let found := true, data∗ := fetched.

(b) Else H�.Read(⊥, len).

3. Let D := {(fid,data∗)} if op = read; else let D := {(fid,data)}.
4. If Hi is marked empty, let Hi := Build(D) and mark it as ready. Else, perform the

following rebuilding:

(a) Let � > i be the smallest level index greater than i such that H� is marked
empty. If all levels � > i are marked ready, then let � := L . In other words, �

is the target level to be rebuilt.
(b) Let S := H0 ∪ . . .∪H�−1 (if � = L , then additionally let S := S∪HL). Further,

tag each non-dummy element in S with its level number, i.e., if a non-dummy
element in S comes fromH j , tag it with the level number j . Thus, each element
j in S is of the form ((fid j , l j),data j).

(c) Run H�.Build(Dedup(S, 2�)), and mark H� as ready. Further, set H0 = . . . =
H�−1 := ∅ and their status bits to empty.

(d) Write back Hi .Build(D), and mark it as ready.

5. Return data∗.

To retrieve the length, we introduce metadata structure Hmeta that stores the length
of each block. It is similar to H except that it always takes in len = 1. Now each
FileORAM access first retrieves the length of the requested file from Hmeta, and then
calls H.Access(·).

Theorem 7.7. (FileORAM in linear space with locality) Let N be the total number of
blocks in all files combined and assume that N ∈ poly(λ). Assuming one-way function
exist, for any super-constant function α := ω(1), there exists a computationally secure
FileORAM scheme that requires O(N) space, and except with negl(λ) probability,
requires O(len · log2 N · log2(α log λ)) work and (3, O(log N · log2(α log λ)) locality.

Proof. We start with efficiency analysis, and proceed to locality, space and oblivious-
ness.

Amortized work for access Each access of a file of length len involves looking up in
all levels log len, . . . , log N , each costing O(len · α log λ). Thus, the cost to retrieve a
file of length len is O(log N · len · (α log λ)).

6 Page 38 of 48 G. Asharov et al.

For rebuild, let isFulli be the bit indicating whether the i th level is empty or ready. We
can view the concatenations of bits (isFullL , . . . , isFull0) as a binary counter, denoted
counter. When accessing a file with length len = 2i , we perform the following rebuild:

• If level i is empty (i.e., isFulli = 0), we just rebuild level i (and set isFulli = 1).
This is equivalent to incrementing the counter by 2i .

• Otherwise, we look for the first � > i for which isFull� = 0 (or set � = L if all
levels after i are full). We then rebuild level H� by taking all elements in all levels
H�−1, . . . ,H0. After this operation, isFull� = 1 and isFull�−1, . . . , isFull0. This
is equivalent to increasing the counter by at most 2i , as we ignore the values of
isFulli−1, . . . , isFull0. That is, when isFulli−1 = . . . = isFull0 = 0, we increase
the counter by 2i , whereas if isFulli−1 = . . . = isFull0 = 1 we just increment the
counter by 1.

At this point, level i is empty, and we rebuild it with the data D. This is equivalent to
incrementing the counter again by 2i .

With each access of file of length len = 2i , the value of counter is increased by at
most 2 · 2i . Rebuilding a level of size 2 j costs O(2 j log 2 j (log2(α · log λ))) total work.
As a result, we can bound the amortized cost for rebuild when accessing a file of length
len with O(len · log2 N · log2(α log λ)).

Locality For accessing both the metadata and the main data, each access requires re-
build with a locality of (3, O(log N log2(α · log λ)). Each access requires looking up
log(N/len) levels, each with a locality of (1, O(1)) resulting in a locality of O(1, O(log N)).
Thus, we achieve a locality of (3, O(log N log2(α ·log λ))) for our FileORAM construc-
tion.

Server storage The non-recurrent file hashing scheme construction uses a space of 4n
for obliviously hashing a total of n blocks. We use log N instances of that construction, of
exponentially increasing sizes in our FileORAM construction, requiring

∑log N
i=0 (4·2i) <

8 · N = O(N) space.

Obliviousness We show the existence of an online simulator Sim that in each step
receives some leakage leakage(I) for some instruction I and produces the memory
address for that instruction.

Let Sim0, . . . ,SimL be the simulators for the non-recurrent file hashing schemes,
H0, . . . ,HL , respectively, letSimDedup be the simulator for the deduplication algorithm,
and let Simmeta be the simulator for the metadata ORAM.

The simulator Sim. The simulator for the FileORAM initializes L+1 bits representing
whether the levels are ready or empty. Upon initialization, all the bits are empty, except
for the level L which is marked as ready, and it also invokes the simulator SimL on Build
instruction with input 2L . The internal state of the simulator is all its internal bits, and
the internal states of the underlying simulators.
Simulating Access(op, fid,data, len), using only leakage len = 2i where len =
len(fid):

1. Invoke the simulator Simmeta to simulate access to the metadata ORAM.
2. For � = i, . . . , L , if H� is marked ready, invoke the simulator Sim� on leakage

len.

Locality-Preserving Oblivious RAM Page 39 of 48 6

3. If Hi is marked empty, then invoke Simi for simulating Build operation with input
leakage len.

4. Otherwise, if Hi is marked ready, then let � > i be the smallest level index greater
than i such that H� is marked empty. If all levels are full, set � := L . Then, invoke
SimDedup(2�) and append the simulated instructions it produces to the output. Halt
the simulators Simi , . . . ,Sim� and mark the bits corresponding to these levels as
empty. Initialize Sim� on Build with leakage 2� and initialize Simi on Build with
leakage 2i . Mark these two levels as ready.

We now show that the view of the adversary, upon interactive with the simulator Sim
and receiving outputs from the FileORAM functionality, is indistinguishable from the
real construction (that interacts with the memory). We show that through a sequence of
hybrid experiments, defined as follows:

• Hyb0(λ): This is exactly the real execution. That is, upon receiving instruction
Ii = Access(op, fid,data, len) from the adversary, we invoke Algorithm 7.6 and
output the memory addresses it produces, and the outputs outi after completing the
instruction Ii .

• Hyb1(λ): This is as Hyb0(λ) where the outi is now being computed by the FileO-
RAM functionality.

• Hyb2,k(λ) with k ∈ [L]: Same as Hyb1(λ), where we replace all non-recurrent file
hashing scheme, H0, . . . ,Hk−1 with simulators Sim0, . . . ,Simk−1.
Upon receiving some instruction Access(op, fid,data, len), we follow Algorith-
m 7.6. Whenever the Algorithm performs H j .Build(X) for some j < k and some
X , we replace it with an invocation of Sim j for Build instruction with leakage
|X |. Whenever the Algorithm performs H j .Access for j < k, we invoke Sim j for
Access with leakage len.

• Hyb3(λ): Same as Hyb2,L(λ) where the only difference is as follows: whenev-
er calling to Dedup(S, 2t) for some integer t and set S, we replace it with the
SimDedup(2t).

• Hyb4(λ): Same as Hyb3(λ) where every invocation of Hmeta is replaced with
an access to Simmeta. As such, the only information that we use in the I =
Access(op, fid,data, len) is the value len. This is exactly the simulation exe-
cution.

The view of the adversary in Hyb4(λ) is indistinguishable from its view in Hyb3(λ) due
to the security of the metadata ORAM. Likewise, the view of the adversary inHyb3(λ) is
indistinguishable from its view inHyb2,L(λ) due to the security of theDedupAlgorithm.

For every k ∈ {0, . . . , L − 1} it holds that Hyb2,k+1(λ) is indistinguishable from
Hyb2,k(λ) due to the security of the (k + 1)th non-recurrent file hashing scheme. For
that, we have to show that all accesses to Hk+1 in Hyb2,k(λ) are non-recurrent, since this
is a necessary condition to replace the construction with the simulator. When a file fid is
first found in some level Hk+1, the corresponding file is entered into D. According to the
definition of the ORAM algorithm, it is not hard to see until the next time Tk is rebuilt,
fid exists in some H� where � < k + 1. As a result, any instruction for looking for fid
in level k + 1, the bit found is guaranteed to be true, and in level Hk+1 we will look
for for the file id ⊥. We conclude that until Hk+1 is rebuilt, no lookup query will ever be

6 Page 40 of 48 G. Asharov et al.

issued again for fid to Hk . This holds for every file, and therefore, the instructions the
accesses to Hk+1 are non-recurrent, and can be replaced by the simulator.

It is easy to see that Hyb2,0(λ) is identical to Hyb1(λ). Finally, Hyb1(λ) and Hyb0(λ)

are indistinguishable due to the correctness of the construction (the functionality is deter-
ministic, and therefore, we can separately consider the access pattern and correctness). �

8. Conclusions and Open Problems

We initiate a study of locality in oblivious RAM. For conclusion, we obtain the following
results:

• There is an ORAM scheme that makes use of only 2 disks, that preserves the locality
of the input program. Namely, if the input program accesses in total � discontiguous
regions, the ORAM scheme accesses at most � · poly log N discontiguous regions.
Moreover, if the program accesses in total T logical addresses, then the ORAM ac-
cesses in total T ·poly log N addresses. The ORAM leaks the sizes of the contiguous
regions being accessed.

• We present asymptotic improvements (albeit, with statistical security) and a novel
oblivious sort.

• Without leaking the sizes, we show a lower bound that the bandwidth of an oblivious
program must be �(N), assuming O(1)-disks.

Open problems. We hope that our result will inspire future work on this topic. In the
following, we provide several open questions on further understanding the trade-off
between locality and bandwidth in oblivious compilation.

Preserving the number of disks. Our ORAM construction compiles (1, �)-local
program into (2,poly log N)-local program that is oblivious. Is it possible to achieve
a compiler that preserve the number of disks? We emphasize that our construction
uses the second disk only in the oblivious sorting, and it unclear whether sorting with
(1, � · poly log N)-locality is possible to achieve.

Supporting more expressive input programs. Our motivated applications (e.g.,
outsourced file server, outsourced range query database), involve fetching some region
from the memory and then accessing it in a streaming fashion. That is, we focused so far
on supporting ORAM for (1, �)-local programs. A natural generalization is to construct
an ORAM scheme that supports more expressive input programs, such as (D, �)-local
programs for D ≥ 2. This allows, for instance, computing inner products of D-arrays, or
merging D-arrays. The input program sends to the memory instructions that also specify
which disks to access, i.e., instructions of the form (move,d,addr) and (op,d,data),
as defined in Sect. 3.

Such an ORAM scheme can be constructed quite easily using online range ORAM,
and moreover, the ORAM even preserves the number of disks, i.e., it converts (D, �)-
local program to (D, � ·poly log N)-local program. In a nutshell, the ORAM just holdsD
instances of online range ORAM on each disk. Observe that each range ORAM mainly
uses one disk and the second disks only serves as a “workspace” for performing the
oblivious sorts. We can reuse disks as the “workspaces” for other disks, e.g., if the

Locality-Preserving Oblivious RAM Page 41 of 48 6

online range ORAM of disk 1 wants to sort an array, it uses disk 2 as its workspace:
It stores the current address in disk 2 and moves the head to a designated empty place.
When completing the sort, it restores the address of disk 2. It is easy to see that this at
most doubles the number of “jumps” in a simulation of an online range ORAM.

However, such a scheme not only reveals the lengths accessed in each disk, but also
reveals the interleaving pattern of the accesses, i.e., each access also reveals which disk
is being accessed. While this seems reasonable leakage for supporting, e.g., a program
that computes inner product of two arrays, this leakage seems much more harmful in
other computations, e.g., merging two sorted arrays. Understanding what computations
are reasonable while leaking the interleaving pattern, or how to hide this pattern while
preserving the number of disks, are intriguing open problems.

Locality-preserving OPRAM. We have considered a single CPU in this work. A
natural question is whether we can extend the construction to support multiple CPUs,
namely, to construct an oblivious parallel RAM (OPRAM) that preserves locality.

Asymptotic efficiency. We have showed the theoretic feasibility of constructing a
Range ORAM with polylogarithmic work and locality. In this feasibility result, we
favored conceptual simplicity over optimizing polylogarithmic factors. Nevertheless, it
is interesting to see to what extent the constructions can be optimized. Perhaps locality-
preserving ORAM can be constructed with the same bandwidth efficiency as a regular
ORAM? Moreover, what is the space overhead of locality-preserving ORAM?

Acknowledgements

This work was partially supported by a Junior Fellow award from the Simons Foun-
dation to Gilad Asharov. Currently supported by the Israel Science Foundation (grant
No. 2439/20), by the BIU Center for Research in Applied Cryptography and Cyber
Security in conjunction with the Israel National Cyber Bureau in the Prime Minister’s
Office, and by the European Union’s Horizon 2020 research and innovation program
under the Marie Skłodowska-Curie Grant Agreement No. 891234. Supported in part
by NSF Award CNS-1561209, NSF Award CNS-1217821, NSF Award CNS-1704788,
AFOSR Award FA9550-15-1-0262, a Microsoft Faculty Fellowship, a Google Faculty
Research Award and a JP Morgan fellowship to Rafael Pass. This work was supported in
part by NSF grants CNS-1314857, CNS-1514261, CNS-1544613, CNS-1601879, CNS-
1617676, an Office of Naval Research Young Investigator Program Award, a Packard
Fellowship, a Sloan Fellowship, Google Faculty Research Awards, a VMWare Research
Award, and a Baidu Faculty Research Award to Elaine Shi. Kartik Nayak was partial-
ly supported by a Google Ph.D. Fellowship Award. T-H. Hubert Chan was partially
supported by the Hong Kong RGC under the GGrants 17200418 and 17201220.

A. Appendix: Locality of Bitonic sort

In this section, we first analyze the locality of Bitonic sort, which runs in O(n log2 n)

time.

6 Page 42 of 48 G. Asharov et al.

We call an array of numbers bitonic if it consists of two monotonic sequences, the
first one ascending and the other descending, or vice versa. For an array S, we write it as
Ŝ if it is bitonic, as

−→
S (resp.

←−
S) if it is sorted in an ascending (resp. descending) order.

The algorithm is based on a “bitonic split” procedure
−−→
Split, which receives as input a

bitonic sequence Ŝ of length n and outputs a sorted sequence
−→
S .

−−→
Split first separates Ŝ

into two bitonic sequences Ŝ1, Ŝ2, such that all the elements in S1 are smaller than all the

elements in S2. It then calls
−−→
Split recursively on each sequence to get a sorted sequence.

For simplicity, we assume that the length of the array is a power of 2.

Procedure A.1.
−→
S = −−→

Split(Ŝ)

– If |−→S | = 1 then return the single element. Otherwise:
– Set k = |−→S |/2.
– Let Ŝ1 = 〈min(a0, ak+0), min(a1, ak+1), . . . , min(ak−1, a2k−1)〉.
– Let Ŝ2 = 〈

max(a0, ak+0), max(a1, ak+1), . . . , max(an/2−1, a2k−1)
〉
.

–
−→
S 1 = −−→

Split(Ŝ1),
−→
S 2 = −−→

Split(Ŝ2) and
−→
S = (

−→
S 1,

−→
S 2).

Similarly,
←−
S = ←−−

Split(Ŝ) sorts the array in a descending order. We refer to [8] for details.
To sort an array S of n elements, the algorithm first converts S into a bitonic se-

quence using the Split procedures in a bottom up fashion, similar to the structure of
merge–sort. Specifically, any size-2 sequence is a bitonic sequence. In each iteration
i = 1, . . . , log n − 1, the algorithm merges each pair of size-2i bitonic sequences into a

size-2i+1 bitonic sequence. Toward this end, it uses the
−−→
Split and

←−−
Split alternately, as two

sorted sequences (
−→
S 1,

←−
S 2) form a bitonic sequence. The full Bitonic sort algorithm is

presented below:

Algorithm A.2. BitonicSort(S)

1. Convert S to a bitonic sequence: For i = 1, . . . , log n − 1:

(a) Let S = (Ŝ0, . . . , Ŝn/2i−1) be the size-2i bitonic sequences from the previous
iteration.

(b) For j = 0, . . . , n/2i+1 − 1, B̂ j = (
−−→
Split(Ŝ2 j),

←−−
Split(Ŝ2 j+1)).

(c) Set S = (B̂0, . . . , B̂n/2i+1−1).

2. The array Ŝ is now a bitonic sequence. Apply
−→
S = −−→

Split(Ŝ) to obtain a sorted
sequence.

Locality and obliviousness It is easy to see that the sorting algorithm is oblivious, as
all accesses to the memory are independent of the input data. For locality, first note

that procedure
−−→
Split and

←−−
Split are (2, O(log n))-local. No move operations are needed

between instances of recursions, as these can be executed one after another as iterations
(and using some vacuous reads). Thus, Algorithm A.2 is (2, O(log2 n))-local as it runs

in log n iterations, each invoking
−−→
Split and

←−−
Split. Figure 3 gives a graphic representation

of the algorithm for input size 8 and Fig. 4 illustrates its locality. The (2, O(log2 n))

locality of Bitonic sort is also obvious from the figure.

Locality-Preserving Oblivious RAM Page 43 of 48 6

Fig. 3. Bitonic sorting network for 8 inputs. Input come in from the left end, and outputs are on the right end.
When two numbers are joined by an arrow, they are compared, and if necessary are swapped such that the
arrow points from the smaller number toward the larger number. This figure is modified from [44] .

Disk 1

Disk 2

Operation

0

1

1

2

2

3

6

7

3

4

0 1 2 3

2 3 4 5

4

5

5

6

4 5

6 7

0

1

1

2

2

3

6

7

3

4

4

5

5

6

Pass 1 Pass 2 Pass 3

Time

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Fig. 4. Locality of Bitonic sort for 8 elements. The figure shows the allocation of the data in the two disks
for an 8 element array. For each input, either a compare–and–swap operation is performed in the specified
direction or the input is ignored as denoted by ⊥. The figure shows the first 3 passes out of the required 6
passes for 8 elements (see Fig. 3) .

Remark. Observe that in each pass of
−−→
Split (or

←−−
Split), a min/max operation is a read–

compare–write operation. Thus, strictly speaking, each memory location is accessed
twice for this operation—once for reading and once for writing. When the write is
performed, the read/write head has already moved forward and is thus not writing back
to the same two locations that it read from. Going back to the same two locations would
incur an undesirable move head operation. However, we can easily convert this into

a solution that still preserves (2, O(1))-locality for each pass of
−−→
Split by introducing

a slack after every memory location (and thus using twice the amount of storage). In
this solution, every memory location ai is followed by a′

i ; the entire array is stored as
((a0, a′

0), . . . , (an−1, a′
n−1)) where ai stores real blocks and a′

i is a slack location. When
ai and a j are compared, the results can be written to a′

i and a′
j , respectively, without

incurring a move operation. Before starting the next iteration, we can move the data from
slack locations to the actual locations in a single pass, thus preserving (2, O(1))-locality

for each pass of
−−→
Split (and

←−−
Split).

A.1. Concurrent Executions of Bitonic Sorts

In our constructions, we sometimes need to invoke Bitonic sorts on disjoint segments of
equal size in an array. Let n be the array size and k be the segment size. If we naively sort
each segment sequential, we would incur (2, O((n/k) · log2 k)) locality. We can save
the factor n/k by running each step of the Bitonic sort over all instances before starting

6 Page 44 of 48 G. Asharov et al.

the next step. Each step requires a scan on the segments, so after finishing one segment,
the memory heads are right at the start of the next segment. It is not hard to see that this
approach of “striped concurrent execution” achieves (2, O(log2 k)) locality.

Theorem A.3. (Perfectly secure concurrent oblivious sorts with locality) Concurrent
Bitonic sort can obliviously sort all disjoint size-k segments of a length-n array in
O(n · log2 k) work and (2, O(log2 k)) locality.

Specifically, the k = n case is Theorem 2.2.

B. The Locality of Bucket Oblivious Sort [1]

In Sect. 2.3 we mentioned that Bitonic sort is locality-friendly. However, compared
to AKS and Zig-zag sorts, Bitonic sort is asymptotically worse, although it performs
much better in practice. To investigate the asymptotic overhead of Range ORAM, using
Bitonic sort causes an additional logarithmic factor in bandwidth, and we are looking for
an alternative oblivious sort that is locality-friendly and does not introduce the additional
overhead.

In the following, we give an overview of Bucket Oblivious Sort of [1]. The sort is
statistically secure, locality-friendly, and is poly log log factor away from the optimal
oblivious sorts [4,28]. Let Z be a statistical security parameter that controls the error
probability.

The basic idea. The core idea of the algorithm is to assign a random bin and then route
the elements to the bins obliviously through a butterfly network. In a more detail, the
n elements are divided into B = 2n/Z buckets of size Z/2 each and Z/2 dummy
elements are added to each bucket. Now, imagine that these B buckets form the inputs
of a butterfly network—for simplicity, assume B is a power of two. Each element is
uniformly randomly assigned to one of the B output buckets, represented by a key of
log B bits. The elements are then routed through the butterfly network to their respective
destinations. When the client can store two buckets locally at a time, at level i the client
simply reads elements from two buckets that are of distance 2i away in level i , and writes
them to two adjacent buckets in level i + 1. The decision how to split the union of the
two buckets from level i into two buckets in level i + 1 is done using the i th bit of each
element’s key. See Fig. 5 for a graphical illustration.

The above algorithm is clearly oblivious, as the order in which the client reads and
writes the buckets is fixed and independent of the input array. If no bucket overflows,
all elements reach their assigned destinations. By setting Z appropriately, the overflow
probability can be bounded.

After assigning the elements into the bins, the dummy elements are removed (using a
linear scan), each output bucket is permuted and all buckets are concatenated. Asharov
et al. [1] showed that this implements an oblivious random permutation. Then, to get
oblivious sort, they also show that any non-oblivious comparison based sorting algorithm
can be applied on the output of the oblivious random permutation, and the resulting
sorting algorithm is oblivious. They show:

Locality-Preserving Oblivious RAM Page 45 of 48 6

Fig. 5. Oblivious random bin assignment with 8 buckets. The MergeSplit procedure takes elements from
two buckets at level i and put them into two buckets at level i + 1, according to the (i + 1)-th most significant
bit of the keys. At level i , every 2i consecutive buckets are semi-sorted by the most significant i bits of the
keys .

Theorem B.1. [1] There exists a statistically secure oblivious sort algorithm which,
except with≈ e−Z/6 probability, assuming that the client has local memory of size O(1),
then, the sort completes in O(n(log n + Z) log2 Z) bandwidth.

The locality of Bucket oblivious sort. While it is mentioned in [1] that the algorithm
can be implemented with good locality, there is no analysis. We now analyze the locality
of this sort.

Each MergeSplit can be realized with a single invocation of Bitonic sort. Concretely,
we first scan the two input buckets to count how many real elements should go to buckets
A′

0 vs. A′
1, then tag the correct number of dummy elements going to either buckets, and

finally perform a Bitonic sort for moving the elements obliviously. Next, we need to
permute each output bucket obliviously with O(1) local storage. This can be done as
follows. First, assign each element in a bucket a uniformly random label of c · log n
bits for some constant c > 3. Then, obliviously sort the elements by their random labels
using Bitonic sort. Since the labels are “short,” i.e., the probability that two labels collide
is n−c. In case of a collision, we simply retry. The probability to have any collision is
bounded by

(n
2

)
n−c < 1/n for c > 3, and thus, in worst case, for n > 3 we will have by

repeating the process Z times we obtain a failure probability that is smaller than e−Z/6.
Finally, run merge–sort. We have:

Theorem B.2. The Bucket oblivious sort implements the sorting functionality except
for ≈ e−Z/6 probability; It uses O(1) client storage, consumes 2n(log n + Z) log2 Z
work, and (3, O((log n + Z) log2 Z)-locality.

6 Page 46 of 48 G. Asharov et al.

Theorem 7.1 is obtained when Z = ω(1) log λ for some super-constant function α :=
ω(1) and for n ≥ log2 λ. In that case, the probability of failure is negligible, and the
algorithm uses O(n(log n) log2(α log λ)) work and (3, O(log n log2(α log λ)))-locality.

Proof of Theorem B.2:. We show efficiency and locality.

Efficiency The algorithm has a linear scan of adding the dummy elements and tagging
each element with a random bin. Then, we have log B iterations, where in each iteration
we have B/2 instances of Bitonic sort on 2Z elements. This step can be bounded by
log B · B/2 · 2Z · log2(2Z) which is bounded by 2n log n log2 Z . Finally, we have
also the permutation of each bucket. We have B buckets, and to permute them with
error probability e−Z/6 we have to run Z invocation of Bitonic sort, that is, this step
is BZ · Z log2 Z which is 2nZ log2 Z . The final step is an invocation of the merge–
sort, which results in 2n log n work. Overall, the work of the bucket sort algorithm is
2n(log n + Z) log2 Z work.

LocalityThe algorithm consists of few linear scans, and concurrent executions of Bitonic
sort (i.e., we run Bitonic sort on pair of buckets concurrently). In “Appendix A.1,” we
show that concurrent execution of Bitonic sort can sort disjoint size Z segments of a
length n array in O(n log2 Z) work and (2, O(log2 Z)) locality. We have log B levels in
the algorithm, which results in O(n log n log2 Z) work and (2, O(log n log2 Z)) locality.
Permuting the bins is takes O(log2 Z) locality for one trial, and we have to repeat it Z
times which takes in total O(Z log2 Z) locality. Finally, we invoke the merge–sort.
It is easy to see that merging two sorted arrays can be implemented in O(3, O(1))

locality: We linearly scan that the input arrays and write into the output array. In merge–
sort, we have several instances of pairs of arrays that have to be merged at the same
level. This is implemented in a similar manner to concurrent executions of Bitonic sort.
We conclude that the merge–sort requires O(n log n) time and (3, O(log n))-locality.
Overall, the Bucket Oblivious Sort algorithm requires 2n(log n + Z) log2 Z work and
(3, O((log n + Z) log2 Z)-locality. �

References

[1] G. Asharov, T.-H.H. Chan, K. Nayak, R. Pass, L. Ren, E. Shi, Bucket oblivious sort: An extremely simple
oblivious sort, in 3rd Symposium on Simplicity in Algorithms, SOSA@SODA 2020 (SIAM, 2020), pp.
8–14

[2] L. Arge, P. Ferragina, R. Grossi, J.S. Vitter, On sorting strings in external memory (extended abstract),
in ACM Symposium on the Theory of Computing (STOC ’97) (1997), pp. 540–548

[3] G. Asharov, I. Komargodski, W.-K. Lin, K. Nayak, E. Peserico, E. Shi, Optorama: Optimal oblivious
RAM, in Advances in Cryptology—EUROCRYPT 2020, Proceedings, Part II, volume 12106 of Lecture
Notes in Computer Science (Springer, 2020), pp. 403–432

[4] M. Ajtai, J. Komlós, E. Szemerédi, An O(N log N) sorting network, in ACM Symposium on Theory of
Computing (STOC ’83) (1983), pp. 1–9

[5] D. Apon, J. Katz, E. Shi, A. Thiruvengadam, Verifiable oblivious storage, in Public Key Cryptography
(PKC’14) (2014), pp. 131–148

[6] G. Asharov, M. Naor, G. Segev, I. Shahaf, Searchable symmetric encryption: optimal locality in linear
space via two-dimensional balanced allocations, in ACM Symposium on Theory of Computing (STOC
’16) (2016), pp. 1101–1114

Locality-Preserving Oblivious RAM Page 47 of 48 6

[7] G. Asharov, G. Segev, I. Shahaf, Tight tradeoffs in searchable symmetric encryption, in CRYPTO (1),
vol. 10991 (2018), pp. 407–436

[8] K.E. Batcher, Sorting Networks and Their Applications. AFIPS ’68 (1968)
[9] E. Boyle, M. Naor, Is there an oblivious RAM lower bound?, in ACM Conference on Innovations in

Theoretical Computer Science (ITCS ’16) (2016), pp. 357–368
[10] E. Brewer, L. Ying, L. Greenfield, R. Cypher, T. T’so, Disks for data centers—white paper for FAST

2016. Technical report, Google (2016)
[11] A. Chakraborti, A.J. Aviv, S.G. Choi, T. Mayberry, D.S. Roche, R. Sion, rORAM: Efficient Range

ORAM with O(log2 N) Locality, in Network and Distributed System Security (NDSS) (2019)
[12] R. Canetti, Security and composition of multiparty cryptographic protocols. J. Cryptology, 13(1), 143–

202 (2000)
[13] T.H.H. Chan, K.-M. Chung, B. Maggs, E. Shi, Foundations of differentially oblivious algorithms, in

Symposium on Discrete Algorithms (SODA) (2019)
[14] R. Curtmola, J.A. Garay, S. Kamara, R. Ostrovsky, Searchable symmetric encryption: improved defini-

tions and efficient constructions, in ACM Conference on Computer and Communications Security (CCS
’06) (2006), pp. 79–88

[15] D. Cash, S. Jarecki, C.S. Jutla, H. Krawczyk, M.-C. Rosu, M. Steiner, Highly-scalable searchable sym-
metric encryption with support for boolean queries, in Advances in Cryptology—CRYPTO 2013. Pro-
ceedings, Part I (2013), pp. 353–373

[16] M. Chase, S. Kamara, Structured encryption and controlled disclosure, in Asiacrypt (Springer, 2010),
pp. 577–594

[17] K.-M. Chung, Z. Liu, R. Pass, Statistically-secure ORAM with Õ(log2 n) overhead, in Asiacrypt (2014)
[18] T.-H.H. Chan, K. Nayak, E. Shi, Perfectly secure oblivious parallel RAM, in Theory of Cryptography

Conference (TCC) (2018)
[19] T.-H.H. Chan, E. Shi, Circuit OPRAM: unifying statistically and computationally secure orams and

oprams, inTheory ofCryptography—15th InternationalConference, TCC2017, volume 10678 of Lecture
Notes in Computer Science (Springer, 2017), pp. 72–107

[20] D. Cash, S. Tessaro, The locality of searchable symmetric encryption, in Advances in Cryptology—
EUROCRYPT 2014, vol. 8441 (2014), pp. 351–368

[21] I. Demertzis, C. Papamanthou, Fast searchable encryption with tunable locality, in SIGMODConference
(ACM, 2017), pp. 1053–1067

[22] I. Demertzis, D. Papadopoulos, C. Papamanthou, Searchable encryption with optimal locality: Achieving
sublogarithmic read efficiency, in CRYPTO (2018)

[23] S. Devadas, M. van Dijk, C.W. Fletcher, L. Ren, E. Shi, D. Wichs, Onion ORAM: a constant bandwidth
blowup oblivious RAM, in TCC (2016)

[24] M.T. Goodrich, M. Mitzenmacher, Privacy-preserving access of outsourced data via oblivious RAM
simulation, in ICALP (2011)

[25] O. Goldreich, R. Ostrovsky, Software protection and simulation on oblivious RAMs. J. ACM (1996)
[26] O. Goldreich, Towards a theory of software protection and simulation by oblivious RAMs, in STOC

(1987)
[27] O. Goldreich, The Foundations of Cryptography—Volume 2, Basic Applications (Cambridge University

Press, 2004)
[28] M.T. Goodrich, Zig-zag sort: a simple deterministic data-oblivious sorting algorithm running in o(n log

n) time, in STOC (2014)
[29] G. Kellaris, G. Kollios, K. Nissim, A. O’Neill, Generic attacks on secure outsourced databases, in ACM

CCS (2016), pp. 1329–1340
[30] G. Kellaris, G. Kollios, K. Nissim, A. O’Neill, Accessing data while preserving privacy. CoRR, arX-

iv:abs/1706.01552 (2017)
[31] E. Kushilevitz, S. Lu, R. Ostrovsky, On the (in)security of hash-based oblivious RAM and a new balancing

scheme, in SODA (2012)
[32] K. Kurosawa, Y. Ohtaki, How to update documents verifiably in searchable symmetric encryption, in

International Conference on Cryptology and Network Security (Springer, 2013), pp. 309–328
[33] S. Kamara, C. Papamanthou, Parallel and dynamic searchable symmetric encryption, in Financial Cryp-

tography and Data Security (2013), pp. 258–274
[34] K.G. Larsen, J.B. Nielsen, Yes, there is an oblivious RAM lower bound!, inCRYPTO (2018), pp. 523–542

http://arxiv.org/abs/1706.01552

6 Page 48 of 48 G. Asharov et al.

[35] S. Patel, G. Persiano, M. Raykova, K. Yeo, Panorama: Oblivious RAM with logarithmic overhead, in
FOCS (2018)

[36] C. Ruemmler, J. Wilkes, An introduction to disk drive modeling, IEEE Computer, 27(3), 17–28 (1994)
[37] E. Shi, T.-H.H. Chan, E. Stefanov, M. Li, Oblivious RAM with O((log N)3) worst-case cost, in ASI-

ACRYPT (2011)
[38] E. Stefanov, M. van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, S. Devadas, Path ORAM—an extremely

simple oblivious ram protocol, in CCS (2013)
[39] J.S. Vitter, External memory algorithms and data structures. ACM Comput. Surv. 33(2), 209–271 (2001)
[40] J.S. Vitter, Algorithms and data structures for external memory. Foundations and Trends in Theoretical

Computer Science 2(4), 305–474 (2006)
[41] P. Van Liesdonk, S. Sedghi, J. Doumen, P. Hartel, W. Jonker, Computationally efficient searchable

symmetric encryption, in Workshop on Secure Data Management (Springer, 2010), pp. 87–100
[42] X. Wang, T.-H.H. Chan, E. Shi, Circuit ORAM: On Tightness of the Goldreich-Ostrovsky Lower Bound,

in ACM Conference on Computer and Communications Security (ACM, 2015), pp. 850–861
[43] X.S. Wang, Y. Huang, T.-H.H. Chan, A. Shelat, E. Shi, SCORAM: Oblivious RAM for Secure Compu-

tation, in CCS (2014)
[44] Wikipedia. Bitonic sorter. https://en.wikipedia.org/wiki/Bitonic_sorter#/media/File:BitonicSort1.svg.

Online; accessed (August 2021).
[45] P. Williams, R. Sion, Usable PIR, inNetwork andDistributed System Security Symposium (NDSS) (2008)
[46] P. Williams, R. Sion, Round-optimal access privacy on outsourced storage, in ACM Conference on

Computer and Communication Security (CCS) (2012)
[47] P. Williams, R. Sion, B. Carbunar, Building castles out of mud: practical access pattern privacy and

correctness on untrusted storage, in CCS (2008), pp. 139–148

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://en.wikipedia.org/wiki/Bitonic_sorter#/media/File:BitonicSort1.svg

	Locality-Preserving Oblivious RAM
	1. Introduction
	2. Technical Roadmap
	2.1. A Generalized Model of Locality
	2.2. Locality with No Leakage
	2.3. Warmup: Locality-Friendly Oblivious Sort
	2.4. Range ORAM: An Intermediate, Relaxed Abstraction
	2.5. Constructing Range ORAM
	2.6. Online Range ORAM
	2.7. File ORAM
	2.8. Related and Subsequent Work

	3. Definitions
	3.1. Memory with Multiple Disks and Data Locality
	3.2. Oblivious Machines

	4. Locality-Friendly Building Blocks
	4.1. Oblivious Sorting Algorithms with Locality
	4.2. Oblivious Deduplication with Locality
	4.3. Locally Initializable ORAM

	5. Range ORAM
	5.1. Range ORAM Definition
	5.2. Oblivious Range Tree
	5.3. Range ORAM from Oblivious Range Tree
	5.4. Perfectly Secure Range ORAM
	5.5. Online Range ORAM

	6. Lower Bound for More Restricted Leakage
	7. File ORAM
	7.1. Definition
	7.2. Non-Recurrent File Hashing Scheme with Locality
	7.3. Constructing FileORAM from Non-Recurrent File Hashing Scheme

	8. Conclusions and Open Problems
	Acknowledgements
	A. Appendix: Locality of Bitonic sort
	A.1. Concurrent Executions of Bitonic Sorts

	B. The Locality of Bucket Oblivious Sort AsharovCNP0S20
	References

