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Abstract. Indistinguishability obfuscation has become one of the most exciting cryp-
tographic primitives due to its far-reaching applications in cryptography and other fields.
However, to date, obtaining a plausibly secure construction has been an illusive task,
thus motivating the study of seemingly weaker primitives that imply it, with the possi-
bility that they will be easier to construct. In this work, we provide a systematic study of
compressing obfuscation, one of the most natural and simple to describe primitives that
is known to imply indistinguishability obfuscation when combined with other standard
assumptions. A compressing obfuscator is roughly an indistinguishability obfuscator
that outputs just a slightly compressed encoding of the truth table. This generalizes no-
tions introduced by Lin et al. (Functional signatures and pseudorandom functions, PKC,
2016) and Bitansky et al. (From Cryptomania to Obfustopia through secret-key func-
tional encryption, TCC, 2016) by allowing for a broader regime of parameters. We view
compressing obfuscation as an independent cryptographic primitive and show various
positive and negative results concerning its power and plausibility of existence, demon-
strating significant differences from full-fledged indistinguishability obfuscation. First,
we show that as a cryptographic building block, compressing obfuscation is weak. In
particular, when combined with one-way functions, it cannot be used (in a black-box
way) to achieve public-key encryption, even under (sub-)exponential security assump-
tions. This is in sharp contrast to indistinguishability obfuscation, which together with
one-way functions implies almost all cryptographic primitives. Second, we show that to
construct compressing obfuscation with perfect correctness, one only needs to assume
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its existence with a very weak correctness guarantee and polynomial hardness. Namely,
we show a correctness amplification transformation with optimal parameters that relies
only on polynomial hardness assumptions. This implies a universal construction assum-
ing only polynomially secure compressing obfuscation with approximate correctness.
In the context of indistinguishability obfuscation, we know how to achieve such a re-
sult only under sub-exponential security assumptions together with derandomization
assumptions. Lastly, we characterize the existence of compressing obfuscation with s-
tatistical security. We show that in some range of parameters and for some classes of
circuits such an obfuscator exists, whereas it is unlikely to exist with better parameters
or for larger classes of circuits. These positive and negative results reveal a deep con-
nection between compressing obfuscation and various concepts in complexity theory
and learning theory.

1. Introduction

Program obfuscation is an intriguing and powerful concept in modern cryptography.
A program obfuscator is a compiler that “scrambles” programs into ones that are hard
to reverse engineer, while preserving their functionality. The predominant notion that
captures the above concept is indistinguishability obfuscation, introduced in the seminal
work of Barak et al. [14], which has inspired a vibrant area of research in recent years.
Informally, indistinguishability obfuscation (iO) guarantees that the obfuscations of two
functionally equivalent circuits of the same size are computationally indistinguishable.

There are two main reasons why iO has become such a central primitive—its potential
to exist and its power. As opposed to stronger notions of obfuscation that are known not
to exist for all circuits (such as virtual black-box obfuscation [14]), general purpose iO
might be realizable, and in fact, since the work of Garg et al. [45] many candidate con-
structions of iO have emerged [5,8,13,33,45,51,52,88,94]. As for its power, iO serves
as a hub for an impressive number of cryptographic primitives, ranging from classical
concepts such as one-way functions [71], public-key encryption [90], trapdoor permuta-
tions [19], ZAPs and non-interactive witness-indistinguishable proofs [18], to ones that
are still far beyond the reach of any other assumption, such as deniable encryption [90],
fully secure multi-input functional encryption [55], and many others.

Despite immense efforts to construct iO from concrete assumptions, all currently
known candidate constructions have been shown to be vulnerable to attacks [7,12,26,38–
40,80,84].1 Another line of work shows how to construct iO from some seemingly
“simpler” or “weaker” generic cryptographic primitives (together with more standard
assumptions). These include primitives such as low-degree multilinear maps [4,73,74,
77], compact functional encryption schemes [3,20], compact randomized encodings
[76], and variants of exponentially efficient indistinguishability obfuscation [17,75], all
of which have no known instantiations from standard assumptions.

The difficulty of constructing iO motivates the study of such seemingly weaker cryp-
tographic primitives, with the hope that such a study could elucidate the foundations
of iO. In this paper, we focus on the primitive which is arguably the simplest to de-

1Some of the attacks apply directly to the candidate construction, while some only apply to the underlying
graded encoding scheme [41,42,51]. See Ananth et al. [1, Appendix A] for an overview.
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fine and the closest in its nature to iO: indistinguishability obfuscation with non-trivial
compression, or in short, compressing obfuscation.

Compressing obfuscation For functions t (s, n) and !(s, n), we say that an obfuscator
O is (t, !)-compressing if, when given a circuit C of size s on n inputs, the obfuscator
O(C) runs in time t (s, n) and has output length !(s, n). In the case of iO, both t and
! are polynomial in s and n, but in general, we allow them to be super-polynomial,
or even (sub-)exponential. This definition generalizes existing relaxations of iO (such
as XiO and SXiO which we discuss below) and allows us to characterize the extent
to which efficiency impacts the existence, applications, and limitations of obfuscation.
Throughout this work, we mostly focus on the following two settings of parameters,
which, intuitively, are relaxed versions of iO that only allow obfuscating circuits with
logarithmic input size:

– XiO The first (and weaker) setting of parameters is that of exponentially efficient iO
(XiO), introduced by Lin et al. [75]. XiO allows the running time of the obfuscator
to be as large as the truth table of the circuit to be obfuscated, but requires the size of
the obfuscated circuit to be slightly smaller than its truth table. More formally, for
a function c (which denotes the compression of XiO), we say that c-XiO is a (t, !)-
compressing obfuscator with t (s, n) = poly(2n, s) and !(s, n) = c(n) · poly(s).
When there exists a constant ε > 0 such that c(n) = 2n(1−ε), we denote c-XiO
simply by XiO. Lin et al. [75] showed that XiO for all circuits and Learning With
Errors (LWE), both with sub-exponential security, imply iO.

– SXiO The second (and stronger) setting of parameters is that of strong XiO (SXiO),
introduced by Bitansky et al. [17]. SXiO requires that the time to obfuscate a circuit
is slightly smaller than the truth table of the circuit. More formally, for a function
c, we say that c-SXiO is a (t, !)-compressing obfuscator with t (s, n) = !(s, n) =
c(n)·poly(s). Similar to the above case, when there exists some constant ε > 0 such
that c(n) = 2n(1−ε), we denote this simply by SXiO. Bitansky et al. [17] showed
that SXiO and any public-key encryption, both with sub-exponential security, imply
iO. This was strengthened by Kitigawa et al. [70], who showed that SXiO and any
one-way function, with sub-exponential security, imply iO.

These two settings of parameters have seemingly minor differences, but, nevertheless,
are not known to be equivalent. Moreover, as mentioned above, their known implications
illustrate the richness of the world of compressing obfuscation and indicate that efficiency
is a fundamental property of obfuscation. Since the regime of parameters for compressing
obfuscation is somewhat non-standard (especially, the distinction between time and
output length in XiO), it has not received adequate attention, and as a result we know
very little about it.

In this work, we provide a systematic study of compressing obfuscation as an in-
dependent cryptographic primitive and thus characterize the extent to which efficiency
plays a role in obfuscation.
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1.1. Our Results

Our results span a wide range of topics concerning compressing obfuscation, including
limitations of its power, existence in an information-theoretic setting, constructions for
limited classes of functions, and correctness amplification.

XiO vs. PKE We start by exploring the power of XiO as an independent cryptographic
primitive. On the one hand, we know that when combined with LWE it implies full-
fledged iO (which in turn implies almost all cryptographic primitives). On the other
hand, as opposed to iO [71], we do not even know whether XiO by itself2 implies
one-way functions—the most basic cryptographic primitive.

One of the original applications of obfuscation, which was proposed by Diffie and
Hellman back in 1976 [43], is to transform private-key encryption into public-key en-
cryption. When combined with one-way functions, iO can be used to perform such a
transformation, as shown by [45,90]. This transformation can also be obtained starting
from sub-exponentially secure SXiO and one-way functions [70].

This raises the same question regarding XiO: Can it bridge the gap between the world
of private-key cryptography and that of public-key cryptography? We provide evidence
that it cannot, and thus show a concrete lower bound on its potential power.

Theorem 1.1. (informal) There is no fully black-box construction of a perfectly correct
key-agreement protocol from one-way functions and perfectly correct 2(1−ε)n-XiO for
any constant ε > 0, even with sub-exponential security.

Our result follows the extended black-box model of [48,49] and in particular holds
even if the XiO scheme can obfuscate oracle-aided circuits which contain both XiO and
one-way function gates. This model is stronger than the one considered in [9,10,15],
in which the obfuscator is allowed to obfuscate circuits with only one-way function
gates. By allowing circuits to contain all possible oracle gates, our framework captures
the “self-feeding" techniques used in the context of iO and related primitives. Thus, our
result is one of the strongest forms of the classical separation between one-way functions
and public-key encryption due to Impagliazzo and Rudich [66]. We note that our result
does not separate imperfectly correct key-agreement from (perfectly correct) XiO and
one-way functions.

Previously, by combining [9,17], a related result follows but in a significantly weaker
black-box model and for XiO with somewhat weak compression. Concretely, [9] showed
a separation of perfect key-agreement from imperfect private-key functional encryption
in a black-box model where one can obfuscate functions that have only one-way function
gates, and [17] showed a black-box construction of 2n/2-XiO from such private-key
functional encryption. This implies a separation from 2(1−ε)n-XiO where 0 < ε ≤ 1/2,
and when only allowing XiO to obfuscate circuits containing one-way function gates.
We summarize the results known on constructing PKE from OWF assuming various
types of compressing obfuscation in Table 1.

2Assuming any average- or worst-case hardness assumption. This is necessary as XiO exists uncondition-
ally if P = NP.
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Table 1. The table shows which types of compressing obfuscators suffice to transform OWF to PKE, in order
from most to least compressing.

Suffices for OWF ⇒ PKE Model References

iO Yes Extended black-box [45,90]
2γ n -sXiO for γ ∈ o(1) Yes Extended black-box [17]
SXiO Yes Non-black-box [70]
XiO Yes (assuming LWE) Non-black-box [75]
XiO No Extended black-box This paper

Regarding the extended black-box models, we note that the first two constructions only require obfuscating
circuits that contain one-way function gates. We additionally note that some of these results require sub-
exponential security assumptions

Statistical security Our result that it is unlikely that key-agreement can be constructed
from XiO and one-way functions can be viewed as “good news,” as it hints that XiO is a
somewhat “weak” primitive, and therefore it might be possible to base its existence on
well-studied assumptions. In fact, it might even be possible that compressing obfuscation
exists unconditionally (even if P &= NP). Toward this end, we show almost matching
upper and lower bounds for the existence of compressing obfuscation with statistical
security, both for the case of perfect correctness and that of approximate correctness. Our
results show tight connections between compressing obfuscation and various concepts
in complexity theory and learning, and thus, we view this as one of the central takeaways
of this work.

For the case of approximate correctness, we show a 2n
ε
-SXiO for ε > 0 for small

classes of circuits (such as AC0). On the other hand, we show that such an obfuscator
cannot exist for larger classes of circuits that contain a (puncturable) PRF, unless SAT ∈
AM[2nε ], where SAT is the problem of deciding whether a formula is unsatisfiable and
AM[t (n)] is the class of all languages on instances of size n that have an AM protocol
in which the running time of the verifier and the message sizes are at most t (n).

Theorem 1.2. (informal) There exists a statistically secure and approximately correct
2n

ε
-SXiO for AC0 and ε > 0. On the contrary, unless SAT ∈ AM[2nε ], there is no such

obfuscator for any class that contains a (puncturable) PRF.

This result naturally leads to the question of whether we can get a similar statement
for the case of perfect correctness. We are unable to get such a result for SXiO, but we
do get it for XiO, albeit with worse compression.3

Theorem 1.3. (informal) There exists a 2n(1−ε)-XiO for ε ∈ 1/poly log(n) with sta-
tistical security and perfect correctness for AC0.

3The obfuscator we get is weak due to two reasons. First, the class for which we obtain XiO does not
contain (puncturable) PRFs and thus is not sufficient for known transformations to iO. Second, the compression
we achieve is not enough for cryptographic applications.
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Table 2. Positive and negative results on statistically secure obfuscators.

Circuit Class Exists Assumption Correctness References

iO PRF No NP &⊆ SZK Perfect [57]
iO PRF No OWFs exist ∧coNP &⊆ AM Approximate [28]
2n

ε
-SXiO PRF No SAT &∈ AM[2nε ] Approximate This paper

2n(1−ε)-SXiO AC0 No SAT &∈ AM[2c(1−ε)n ] Perfect This paper
2n

ε
-SXiO AC0 Yes Approximate This paper

2n(1−1/poly log n)-XiO AC0 Yes Perfect This paper

Ruling out statistically secure XiO with any compression is left as an open problem.
We do show that unless SAT ∈ AM[2c(1−ε)n] for a universal constant c ∈ N, there is
no statistically secure and perfectly correct 2n(1−ε)-SXiO for AC0 (see Theorem 6.2). It
is known, by the recent result of Williams [93], that SAT ∈ AM[Õ(2n/2)]. However, it
might be that for larger values of ε (such as ε = 1 − (0.1/c) or even ε = 1 − o(1)) it
holds that SAT /∈ AM[2c(1−ε)n].

The positive results are based on classical (PAC) learning algorithms [78,91] and the
circuit compression algorithm of [37]. Both negative results above rely on and extend
the following analogous arguments from the iO literature [28,57]. The first is of Gold-
wasser and Rothblum [57] who showed that statistical iO with perfect correctness cannot
exist unless NP ⊆ SZK. The second is of Brakerski, Brzuska, and Fleischhacker [28]
who extended the result of [57] to handle statistical iO with approximate correctness
by showing that unless coNP ⊆ AM, it cannot exist (assuming additionally one-way
functions). We summarize results regarding statistically secure obfuscation in Table 2.

Correctness amplification Our results above suggest that approximate correctness
might be easier to achieve than perfect correctness, in an information theoretic set-
ting. Is this the case also in the computational setting? To address this question, we show
a transformation from approximately correct XiO to perfectly correct XiO, assuming
the original XiO applies to a large enough class of circuits. This transformation achieves
optimal parameters and only incurs polynomial security loss, indicating that correctness
is not the bottleneck in constructing XiO from standard assumptions.

Theorem 1.4. (informal) If there exists an XiO scheme for all polynomial size circuits
which is correct with probability (1/2 + 1/poly) over the inputs and the obfuscation,
then there exists a perfectly correct XiO scheme, assuming polynomially secure LWE
and NIZKs.4

Prior to this result, there were no correctness amplification procedures for XiO which
required only polynomial security or achieved optimal parameters. Correctness amplifi-
cations for related primitives, such as those of [2,21] for iO, do not apply to XiO, since
they involve a random self-reducibility step which inherently requires running the obfus-
cator on polynomial-size inputs. The transformation of Bitansky et al. [16] shows how

4Using the recent work of [69], we believe that the assumption on NIZKs can be removed. We leave this
modification to future work.
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to transform an XiO which is correct with probability 0.99 over the inputs and the obfus-
cation to a weak notion of functional encryption. This notion of functional encryption
was known to imply a relaxed notion of XiO, namely, XiO with preprocessing [75]. Our
transformation works for a much weaker notion of correctness (as opposed to .99) and
results in full-fledged, perfectly correct XiO (as opposed to XiO with preprocessing).

Technically, our regime of parameters introduces many difficulties which require us
to tailor a construction that is based on a delicate combination of various types of error-
correcting codes together with cryptographic primitives (inspired by [83]).

While we show this transformation for the case of XiO, our result extends natural-
ly to the case of SXiO. In particular, we can obtain perfectly correct XiO from the
transformation, or SXiO which is correct on all but a negligible fraction of obfuscations.

Universal construction Using our correctness amplification procedure, we obtain a
universal construction of an XiO (resp. SXiO), assuming only the mere existence of XiO
(resp. SXiO) with polynomial security and only (very weak) approximate correctness.
For XiO, the resulting universal construction satisfies perfect correctness. Note that in the
context of iO, perfect correctness is known to be achievable using only derandomization
assumptions [22]. Our result is obtained by adapting the robust combiner of Ananth et
al. [1] to the setting of XiO (resp. SXiO) and then using our correctness amplification
transformation.

1.2. Related Work

Universal construction and robust combiners It was shown in [61] that, in general,
a robust combiner implies the existence of a universal construction. A robust combiner
for a cryptographic primitive takes several candidate constructions of the primitive and
outputs one construction that is as good as any of the input constructions (see also
[64,65]). A combiner for encryption appears already in [11], and perhaps the most
known universal construction is that of one-way functions, due to [72].

Combiners for obfuscation were given in [1,2,44]. The work of [1] shows a robust
combiner for indistinguishability obfuscation with sub-exponential security loss, and
assuming either LWE or DDH. The work of [2] removes the sub-exponential assumption,
but does not go all the way to iO—it shows a transforming combiner from candidates
for indistinguishability obfuscation of which one of them is polynomially secure to a
secure functional encryption scheme.

Existence of iOMahmoody et al. [81] showed that iO cannot be based on random oracles
or on constant degree multilinear maps (in a black-box way). Garg et al. [48] showed
that iO cannot be constructed from any type of encryption that has an “all-or-nothing”
type of security (as in PKE or Witness Encryption). Lastly, Garg et al. [49] studied the
minimal compactness needed from a functional encryption scheme to imply iO, and
gave matching constructions, following [3,20]. In both [48,49], the results hold even if
the primitives upon which iO cannot be based can receive circuits containing gates for
each of the primitive’s subroutines.

Limitations on the power of iO were studied by Asharov and Segev [9,10] and by
Bitansky, Degwekar and Vaikuntanathan [15]. So far, we know that iO and one-way
functions do not imply collision-resistant hash functions [9], domain-invariant one-way
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permutations [10], and hardness inNP∩coNP [15]. Also, iO and one-way permutations
do not imply hardness in SZK [15].

Relaxations of iO In addition to (S)XiO, another relaxation of iO is decomposable
obfuscation (dO), which was recently introduced by Liu and Zhandry [79]. Decompos-
able obfuscation relaxes the security requirement of iO by requiring that obfuscations
of circuits which satisfy a new notion of functional equivalence are indistinguishable.
In particular, it is efficient to verify if two circuits satisfy their notion of functional e-
quivalence, unlike traditional functional equivalence. This is similar to the case of XiO,
because it is applied on circuits with only logarithmic input size for polynomial time
applications. In [79], they question whether iO with efficiently verifiable functional e-
quivalence implies public-key encryption. In fact, they have to assume the existence of
public-key encryption for all the applications of dO that they show which imply public-
key encryption. As mentioned above, we show a separation from XiO and OWFs to
public key encryption. Therefore, our result serves as further evidence to the hypothesis
that (non)-efficiently checkable functional equivalence is one of the key factors which
distinguishes iO from notions like XiO and dO.

Compressing primitives Recently, compressing witness encryption (WE) was studied
by Brakerski et al. [31]. Witness encryption, introduced by Garg et al. [46], allows
encrypting a message relative to a statement x ∈ L for a language L ∈ NP such that
anyone holding a witness to the statement can decrypt the message, but if x /∈ L , then
it is computationally hard to decrypt. A compressing WE is such that the encryption
time (and thus size) is less than the time it takes to solve the NP instance. Brakerski
et al. showed that such a WE scheme can be constructed under “standard” assumptions
(such as LWE or bilinear maps with sub-exponential security). This is in sharp contrast
to SXiO (or even XiO).

Subsequent work Recently (and subsequent to this paper) a breakthrough approach to
constructing XiO was proposed by Brakerski et al [29], and has led to constructions of
XiO and hence iO from plausible LWE-based assumptions. Specifically, they introduced
the notion of Split-FHE, which is a version of which is a version of Fully Homomorphic
Encryption where decryption can be done by first producing a short “hint” using the se-
cret key of the scheme, and then using this hint to publicly decrypt the ciphertext. They
showed that Split-FHE directly implies XiO and hence iO, and gave a heuristic construc-
tion of Split-FHE. Follow-up works [30,50,92] instantiated the split-FHE framework
by relying on new, falsifiable LWE-style assumptions, such as circular security conjec-
tures, thus relying on compressing obfuscation to make significant progress in the area
of obfuscation.

1.3. Paper Organization

We proceed with a technical overview of our results. Then, in Sect. 3 we overview our
definitions. In Sect. 4 we show our correctness amplification, and in Sect. 5 we prove
our impossibility result of construction key-agreement protocol from XiO and OWFs.
In Sect. 6 we present our positive and negative regarding statistically secure XiO.
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2. Technical Overview

In this section we provide a high-level overview of our results. We start with the cor-
rectness amplification (and its application to universal constructions) in Sect. 2.1. We
proceed with the limitations on the power of XiO in Sect. 2.2, and conclude with our
constructions and impossibilities of statistically secure XiO in Sect. 2.3.

2.1. Correctness Amplification

Our correctness amplification for XiO is a transformation from an approximately correct
XiO scheme to an XiO scheme that is perfectly correct. Here, by approximately correct,
we mean an XiO scheme which is correct with probability (1/2 + 1/poly) over the
inputs and the obfuscation, and by perfectly correct, we mean an XiO scheme which is
correct on all inputs and all obfuscations with probability 1. The starting point for our
correctness amplification is the transformation of Bitansky et al. [16], which transforms
an XiO scheme which is correct with probability .99 over the obfuscation and the inputs
to a functional encryption (FE) scheme which is correct on all inputs (with all but negli-
gible probability). At a high level, FE is a type of encryption which enables generating
functional keys, such that decryption of a ciphertext corresponding to a message m with
a functional key for a circuit C results in C(m). The hope is that if we can adapt the
[16] transformation to our case, then we can attempt to transform the correct FE back to
XiO.

From approximately correct XiO to correct FE In [16], they first observe that by
averaging and standard BPP-type amplification, their XiO scheme can be amplified to
one which is correct with probability .9 only over the inputs. Then, they transform this
XiO to a correct FE using an error-correcting code, as follows. To encrypt a message
m, they obfuscate a circuit Gm which, on input i , outputs an encryption of (m, i) using
a succinct functional encryption scheme sFE, that exists based on LWE [56]. Call
the resulting obfuscated circuit G̃m . To generate a functional key for a circuit C , they
generate an sFE functional key for a circuit C ′ that on input (m, i) outputs the i th bit of
ECC(C(m)), where ECC is an error-correcting code. To decrypt, they first evaluate the
obfuscated circuit G̃m on every input i to obtain a list of encryptions of (m, i) for all i .
Then, they use the sFE functional key to decrypt each of these encryptions and finally,
decode the result.

The reason why this is enough for [16] is that, first, by the BPP amplification, they ob-
tain correct encryptions of (m, i) for a .9 fraction of i’s, with all but negligible probability
over the obfuscation. This lets them calculate (ECC(C(m))i for a large (+ 3/4) fraction
of the i’s. Second, they rely on the error-correcting code which, given (ECC(C(m))i
for many (+ 3/4) i’s, can recover C(m).

In our case, a natural attempt would be to replicate their first step and then use an
error-correcting code with better parameters for the second step. However, this approach
fails: we are only guaranteed correctness with probability (1/2+1/poly(λ)) over the ob-
fuscation and the inputs, which is not enough for averaging and BPP-type amplification.
Nevertheless, the framework of [16] is still a convenient starting point for us.
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Our first challenge is to obtain every bit of the encryption of (m, i) for sufficiently
many i’s. One idea is to apply an error-correcting code to the output ofGm , so that for any
index i for which Gm correctly outputs enough of the bits of the encryption of (m, i), we
can decode successfully. While this is not possible for our regime of parameters using
classical binary error-correcting codes, this is achievable with binary list-decodable
codes, which output a list of possibilities upon decoding a codeword, rather than a unique
decoding. Therefore, we modify the circuit Gm to output a list-decodable encoding of
the encryption of (m, i), one bit at a time, which will be decoded at decryption time. This
introduces the complication that list-decoding gives many possibilities for the encryption
of (m, i) for each i . To address this, we employ a combination of NIZK proofs and
commitments which enable us to uniquely decode from the decoded list. At a high level,
we impose the requirement that in addition to the ciphertext of (m, i), the circuit Gm on
input i must output a NIZK proof certifying that the ciphertext is correct. This ensures
that we obtain sFE encryptions of (m, i) for a noticeable fraction of the inputs i . Thus,
we have replaced the BPP-type amplification of [16] with a list-decodable code, NIZK
proof, and commitment scheme.

After this change, we have that for a noticeable (but small, say 1%) fraction of the
i’s, we obtain a correct encryption of (m, i). If we decrypt this with the sFE secret
key of [16], we would hope to obtain (ECC(C(m)))i for enough i’s such that ECC
can successfully decode to C(m), but this does not quite work because we only have a
very small fraction of correct encryptions. Indeed, no (binary) error-correcting code can
recover from more than 50% error! To overcome this, we notice that we have additional
information (thanks to the NIZK)—we know exactly for which i’s we obtained correct
sFE encryptions of (m, i). Therefore, we replace the error-correcting code in the [16]
construction with a code that can recover from a high fraction (say 99%) of erasures.
To obtain optimal parameters, this requires us to have sFE output alphabet symbols
rather than bits, but this does not impact the correctness of the scheme. Combining
these two steps, we obtain an FE scheme with amplified correctness. As far as we know,
this combination of list-decodable codes and erasure-correcting codes is novel to this
work.

These techniques nearly work, with the caveat that our first step only gives us the
correct encryptions of enough (m, i) when the obfuscator uses “good” random coins.
Nevertheless, this can be remedied by using BPP-type amplification and leveraging the
fact that our FE scheme always decrypts to ⊥ or to the correct output, C(m). There-
fore, this results in an FE scheme which is correct for all inputs with all but negligible
probability.

From correct FE to correct XiO The only remaining step is to transform the FE back to
XiO. The FE scheme we obtain from the above transformations isweakly sublinear com-
pact, a weak notion of compactness which does not suffice for known transformations to
XiO without assuming sub-exponential security. FE with weak sublinear compactness
has the property that while the encryption time is proportional to the circuit size of cir-
cuits supported by the scheme, the ciphertext lengths are compact. We take advantage
of this by having an obfuscation consist of many “short” encryptions, which exactly
captures the requirement that the obfuscator has a long running time but a non-trivial
output length.
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In more detail, to obfuscate a circuit C , we encrypt a circuit Cx for each x ∈ {0, 1}n/2,
where Cx (·) = C(x‖·). Then, we generate a functional key sk for a circuit T , which,
given a circuit on n/2 bits, outputs its truth table. The ciphertexts and functional key
serve as our obfuscation, which gives the desired efficiency for XiO exactly because
of the weak compactness of FE. To evaluate the obfuscation on an input x = x1‖x2,
we use FE to decrypt the ciphertext corresponding to Cx1 with sk, and select the el-
ement of the truth table corresponding to x2. This transformation yields a correct and
secure XiO scheme, in which for any circuit C and every input x , it holds that the
obfuscation of C at the point x agrees with C(x) with all but negligible probabili-
ty.

In the technical section, we present the full construction in a more streamlined manner.
In particular, we compose the XiO to FE transformation with the FE to XiO transforma-
tion described above, which yields a transformation from approximately correct XiO to
XiO that is correct on any input with all but negligible probability over the randomness
of the obfuscator.

Given an XiO which is correct on any input with all but negligible probability, we
can then apply another BPP-style transformation (this time we apply parallel repetitions
and then take the majority vote) to get an obfuscator that for all but negligible fraction
of the obfuscations the obfuscated circuit completely agrees with the input circuit. To
conclude our correctness amplification, we observe that the running time for XiO allows
the obfuscator to compute the truth table of the circuit it obfuscates. Therefore, we
modify the obfuscator to check if an obfuscation C̃ of a circuit C is correct by running
over all inputs. If C̃ agrees with C , then C̃ is used as the obfuscation, and if not, we
simply output C in the clear. This takes advantage of the running time of XiO and incurs
only a negligible loss in security, resulting in a perfectly correct XiO.

2.1.1. A Universal Construction

An important application of correctness amplification is a universal construction. We
show a universal construction for XiO (resp. SXiO) by combining our correctness am-
plification with the results of [1].

A universal construction for a primitive can be obtained via a robust combiner for
that primitive, which is a transformation that takes several candidate constructions of
the primitive and outputs one construction that is as good as any of the input construc-
tions. It is robust in the sense that it should work even if some of the candidates have
weak correctness guarantees, have bad running times, etc. A universal construction is
then acquired by enumerating over all possible candidates while making sure not to be
“fooled” by bad faulty candidates so that we end up with a correct candidate. Thus, it is
guaranteed that the resulting candidate is correct and secure.

We observe that a combiner (i.e., a secure candidate assuming one exists) for XiO
(resp. SXiO) can be obtained by adapting the construction for iO of Ananth et al. [1]
which further relied on LWE. In the case of iO, their construction, on input circuit C ,
obfuscates a variant of C that has the same input domain as C . In the security proof,
they go “input-by-input” over this obfuscated circuit which results in a sub-exponential
security loss. We notice that, in the case of XiO (resp. SXiO), the number of inputs
in the above-obfuscated circuit is at most logarithmic, so the very same proof can be
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carried out, losing only a polynomial term. Then, to make the combiner robust we use our
correctness amplification procedure. This results in a universal construction of perfect
XiO (resp. imperfect SXiO), assuming the existence of XiO (resp. SXiO) with very weak
correctness.

2.2. Impossibility of Key-Agreement

To illustrate the difference between the power of compressing obfuscation and iO, we
revisit one of the primary applications of iO—transforming a private-key scheme into a
public-key one. In the context of iO, this transformation is performed by obfuscating the
encryption circuit of a private-key encryption scheme, while embedding the symmetric
secret key into the circuit. The public key is then simply the obfuscated circuit. In order
to encrypt a message m, one has to choose randomness r and run the obfuscated circuit
on (m, r) to obtain the ciphertext c. An important property of this construction is the
ability to obfuscate circuits with “hardwired cryptography,” e.g., the evaluation circuit
of a pseudorandom function with a hardwired PRF key.

Since XiO is efficient only when obfuscating circuits with logarithmic size input, one
cannot use the above approach with XiO even when the message space is limited to
a single bit. Given the public key, the adversary can learn the entire truth table of the
obfuscated circuit by enumerating over all inputs, thereby breaking the secrecy of the
underlying message. Our proof formalizes this intuition, and shows that other attempts at
such a transformation cannot succeed. We formalize this using a black-box separation,
showing that no perfectly complete bit-agreement protocol can be constructed from
perfectly correct XiO and one-way functions.

Modeling non-black-box constructionsConstructions that are based on indistinguisha-
bility obfuscation are almost always non-black-box in the underlying primitives. In the
example above, the circuit being obfuscated is the encryption algorithm of a private-key
encryption scheme and thus contains a specific circuit representation of the underly-
ing one-way function as a sub-circuit. More complex constructions also use techniques
which require obfuscating a circuit which itself may obfuscate smaller circuits (and
evaluate smaller obfuscations).

To capture these types of constructions, we extend the framework of Asharov and
Segev [9,10], which enables the obfuscator to run on oracle-aided circuits, i.e., circuits
that might contain oracle gates. In this manner, the specific representation of the one-
way function in the example above is replaced by an oracle gate, which allows the
construction to be black-box relative to the one-way function. While the results in [9,10]
hold relative to an obfuscator for circuits which can only contain one-way function gates,
our separation allows circuits to contain both XiO and one-way function gates. This
captures the known techniques to obtain public-key encryption from iO, and is similar
to the class of constructions captured in the framework of [48,49]. We refer to [9,10] for
details regarding this model (see also [15]), and for examples of how it captures common
techniques such as the punctured programming technique of Sahai and Waters [90] and
its variants.

The oracle Our result is obtained by presenting an oracle % relative to which the fol-
lowing properties hold: (1) there exists a one-way function f ; (2) there exists a perfectly
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correct, exponentially secure XiO scheme xiO for all oracle-aided circuits CxiO, f ; (3)
for any perfectly complete bit-agreement protocol between two parties, there exists an
eavesdropping adversary that makes polynomially many queries to the oracle % and suc-
ceeds to recover the bit from the transcript of the interaction. Our oracle consists of three
functions, similar to that of [10]: (1) a random function f that will serve as the one-way
function; (2) a random length-increasing function O that will serve as the obfuscator
(an obfuscation of an oracle-aided circuit C is a “handle” Ĉ = O(C, r) for a random
string r ), and (3) a function E that enables evaluations of obfuscated circuits: given some
obfuscated circuit Ĉ and an input x , the function E looks for the lexicographically first
pair (C, r) for which O(C, r) = Ĉ and returns C%(x). Note that if C is some circuit of
size s, it can only make oracle calls to % on inputs smaller than s, and thus the above
definition is not circular.

The main difference in modeling XiO as an oracle rather than iO as in [10] is the
expansion factor of the oracle O. In order to capture compressing obfuscation, the
expansion factor that we use is (sub-)exponential in the input size of the circuitC . While
this modification is somewhat minor in syntax, it has a major effect—if the expansion
factor is “small” then it is possible to construct apolynomial time key-agreement protocol
relative to such an oracle (following the construction of Sahai and Waters [90]), whereas
for a larger expansion factor this becomes impossible. As for the existence of one-way
functions and indistinguishability of obfuscated circuits, we derive these almost for free
from [10].

In what follows, we first discuss how to break a perfectly complete key-agreement
protocol relative to a random oracle as a warmup. We then discuss the challenges when
dealing with our (more structured) oracle, and discuss why our approach does not work
for iO.

Separating key-agreement from a random oracle As a warmup, we first give an
overview of the result of Impagliazzo and Rudich [66] and Brakerski et al. [32], who
show that for any two polynomial time oracle-aided algorithms A and B, if 〈A f ,B f 〉
implements a perfectly correct bit-agreement protocol for all functions f , then there
exists an oracle-aided algorithm E such that for any function f learns the agreed bit
with probability 1 by making only a polynomial number of oracle queries to f . The
adversary E is given a transcript T which is a result of an interaction of A and B relative
to some oracle f , and is required to find the key k& that A and B agreed on. Denote by
r&
A (resp. r&

B) the randomness used by A (resp. B) in the real interaction that produced
T . The adversary E initializes a set of queries/answers Q, which will contain the actual
queries made by E to the true oracle f . It also initializes a multiset K = ∅, and repeats
the following polynomially many times:

• Simulation: E simulates an oracle f ′ that is consistent with Q (i.e., f ′(w) = f (w)

for every w ∈ Q), and randomness r ′
A, r ′

B such that the interaction 〈A f ′
(r ′
A),

B f ′
(r ′
B)〉 (i.e., running the protocol with respect to the function f ′ with randomness

r ′
A for A and r ′

B for B) results in the transcript T and key k′. E adds k′ to K .
• Update: E asks f for all queries made to f ′ by A or B in the simulation that are

not already in Q, and updates the set Q.
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At the end of the attack, E outputs the majority value in K . The proof then relies on the
following observation: In each iteration, either (1) in the update phase, E finds at least
one new query that is also made by either A or B during the real interaction with the
function f that produced the transcript T ; or (2) E adds the real key k& to K .

Intuitively, if (1) does not hold, then the perfect correctness of the bit-agreement
protocol guarantees that (2) holds. In particular, in that case it is possible to construct
a “hybrid” oracle f̃ that behaves like f in the real execution of A, i.e., A f (r&

A), and
behaves like f ′ in the simulated evaluation of B, i.e., B f ′

(r ′
B). According to this hybrid

oracle, an execution of A with randomness r&
A and an execution of B with randomness

r ′
B would result in the transcript T , A would output k& (as in the real execution) and
B would output k′ (as in the simulation). Perfect correctness then tells us that k& = k′.
This hybrid oracle can be constructed since the intersection of the set of queries made
in the simulated execution and those made in the real execution is already contained in
Q, and therefore there are no contradicting queries (i.e., queries w that appear in both
executions for which f (w) &= f ′(w)). As the number of oracle queries A and B makes
during the execution of the protocol is some polynomial q, the majority value in K is
guaranteed to be the correct key after 2q + 1 iterations.

Attacking key-agreement relative to our oracle We extend the attack described above
relative to our oracle %, which is a significantly more structured than a random oracle and
therefore raises several challenges. Recall that our oracle % consists of a three functions
f ,O, and E , that are dependent. Following the above template, we construct an adversary
that simulates an execution that produces the transcript T with some simulated oracle
%′ = ( f ′,O′, E ′). There are three main challenges with this approach:

1. The first challenge is to show that A and B cannot gain “extra” information from
oracle queries that are not in the intersection of their query sets. In particular, in the
case of a random oracle, the shared information between A and B can be recovered
completely from their shared oracle queries and the transcript T . In our setting,
since the oracles f , O, and E have dependence, this may not be the case.

2. The second challenge is due to the fact that queries made by A and B could cause
“hidden” oracle queries. Since we allow obfuscated circuits to contain oracle gates,
this could occur when obfuscated circuits are evaluated by A and B. In particular,
the output of the evaluation could reveal query-answer pairs on queries that were
never directly asked byA or B. Thus, we must show thatA and B cannot indirectly
learn too many query-answer pairs this way.

3. The third challenge is to show that a hybrid oracle %̃ = ( f̃ , Õ, Ẽ) can be con-
structed from the two sets of queries, i.e., from the simulated execution and the
real execution. As an example, suppose there is a query E(Ĉ, x) that is performed
in the real execution and a different query E ′(Ĉ, y) that appears in the simulated
execution. Such two queries raise a challenge for constructing a hybrid oracle Ẽ
which is consistent with these two queries simultaneously. In order to see this,
suppose that in the real execution, the lexicographically first pair (C, r) for which
O(C, r) = Ĉ is some pair (C1, r1), and in the simulated execution the lexicograph-
ically first pair (C, r) for which O′(C, r) = Ĉ is some pair (C2, r2) &= (C1, r1).
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As a result, E(Ĉ, x) in the real execution is mapped to C%
1 (x), whereas E ′(Ĉ, y)

is mapped to C%′
2 (y), but C1 &= C2.

We solve the first challenge by adding additional oracle queries to the set of real
queries that the parties make, which makes the dependence between the oracles more
explicit. We solve the second challenge by showing that any oracle query can only cause
polynomially many additional indirect queries. In particular, for a circuit C% of size s,
any indirect queries are on circuits smaller than s. We use this in conjunction with the
(sub-exponential) expansion factor of our oracle O to show that the number of indirect
queries is bounded, and thus the adversary E can learn any indirect queries that A and
B learn by only making polynomially many additional queries.

As for the third challenge, interestingly, our proof does not completely solve it, and
we do not fully control to which one of the two circuits C1 or C2 the hybrid oracle
Ẽ maps Ĉ . Nevertheless, we design the adversary such that, whenever there is such a
contradicting scenario between the real execution and the simulated execution, it must
hold that C1 and C2 are functionally equivalent with respect to the hybrid oracle %̃.
Otherwise, i.e., when there is some input for which C1 and C2 do not agree, we claim
that the adversary learns a new query that is associated with the real execution. As a
consequence, E learns the entire truth table of any obfuscated circuit Ĉ that is associated
with the real execution, which is possible due to the fact that querying the oracle % on
all inputs of Ĉ results in polynomially many queries. Notably, for a different expansion
factor of the oracle O (which results in iO and not XiO), this becomes an exponential
number of queries, and the above attack fails.

2.3. Statistically Secure Compressing Obfuscation

This set of results is composed of two main parts. One is positive results showing that
for small classes of circuits compressing obfuscation exists unconditionally. The other
complements the constructions and shows that improvements in the above obfuscator,
either in the compression factor or in the circuit class, will imply some non-trivial
speedup for protocols solving UNSAT. We have positive and negative results both for
the case of perfect correctness and for the case of approximate correctness.

Negative results First, we show that that approximately correct and statistically secure
2n

ε
-SXiO cannot exist unless coNP ⊆ AM[2nε ] for ε > 0. Here, we follow on the

approach of [28] from the world of iO. There, they show how to use iO and puncturable
PRFs to create two circuits that differ at a single point, but their obfuscations (as random
variables) are statistically far. Then, they use an algorithm that can distinguish these
two distributions to solve Unique-SAT which then implies that coNP ⊆ AM by a
result of Mahmoody and Xiao [82]. We modify the argument to work with compressing
obfuscation by making the two circuits receive only short inputs, and observe that the
proof still goes through, but then solving Unique-SAT on short inputs (say of poly-
logarithmic size). We then apply the result of Mahmoody and Xiao and finally obtain
our result by scaling the parameters.

Second, we show that perfectly correct and statistically secure 2n(1−ε)-SXiO cannot
exist unless coNP ⊆ AM[2(1−ε)n] (with large enough 0 < ε < 1). For this, we construct
an SZK[2(1−ε)n] protocol for all NP. In this protocol, the verifier, given x ∈ L for a
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language L , chooses a bit b uniformly at random and obfuscates a circuit that gets
a witness w as input, checks whether it is a valid witness for x and if so, it outputs b
(otherwise it outputs ⊥). This protocol can be shown to be honest-verifier statistical zero-
knowledge with a verifier that runs in time 2(1−ε)n for L . This argument is reminiscent to
the argument of [57,71] in the context of iO. We then carefully apply the transformation
of Okamoto [86] to translate this protocol into an (honest-verifier) SZK protocol for
every language in coNP. This implies that coNP ⊆ AM[2(1−ε)n].
Positive results We show that compressing obfuscators exists unconditionally for re-
stricted classes of circuits such as AC0 (the class of all constant-depth circuits) and Mon
(the class of all monotone functions). We again construct compressing obfuscators with
perfect correctness and approximate correctness. The approximately correct obfuscators
are obtained by running a classical (PAC) learning algorithm [91] on the given circuit
and outputting the hypothesis. Using the most efficient learning algorithms for AC0 and
Mon, we obtain compressing obfuscators for these classes. This construction is aligned
with the above impossibility that says that we are unlikely to be able to get such an
obfuscator for classes that contain a (puncturable) PRF.

In the perfect correctness case, we use a different tool called a circuit compression
algorithm [37]. In circuit compression one is given the truth table of a Boolean function
f computable by some unknown circuit from a known class of circuits, and the goal is
to find in time poly(2n) a circuit C (not necessarily from the aforementioned family)
computing f so that the size of C is less than the trivial circuit size ≈ 2n . We apply such
an algorithm on circuits in AC0 and get an obfuscator with small compression.

3. Preliminaries

In this section we present the notation and basic definitions that are used in this work.
For a distribution X we denote by x ← X the process of sampling a value x from the
distribution X . Similarly, for a set X we denote by x ← X the process of sampling a
value x from the uniform distribution over X . For a randomized function f and an input
x ∈ X , we denote by y ← f (x) the process of sampling a value y from the distribution
f (x). For an integer n ∈ N we denote by [n] the set {1, . . . , n}.

Throughout the paper, unless otherwise specified, we denote the security parameter
by λ. A function negl : N → R+ is negligible if for every constant c > 0 there exists
an integer Nc such that negl(λ) < λ−c for all λ > Nc. Two sequences of random
variables X = {Xλ}λ∈N and Y = {Yλ}λ∈N are computationally indistinguishable if for
any probabilistic polynomial-time algorithm A there exists a negligible function negl(·)
such that

∣∣Pr[A(1λ, Xλ) = 1] − Pr[A(1λ, Yλ) = 1]
∣∣ ≤ negl(λ) for all λ ∈ N.

When we deal with Boolean circuits, we parameterize them by their size s and the
number of inputs they accept n. As usual, the size of a circuit is defined to be the number
of wires in it.

Definition 3.1. For any functions s(·) and n(·), we define Cs,n to be the class of circuits
{Cλ}λ∈N for which for any C ∈ Cλ, the size of C is at most s(λ) and the input length of
C is at most n(λ). When we additionally need to specify the circuit depth by a function
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d(·), we let Cs,n,d be the corresponding class of circuits where Cλ consists of circuits
with depth at most d(λ).

Definition 3.2. We define the following classes of circuits:

• Plog: the collection of circuit classes Cs,n for which s is a polynomial, n is a loga-
rithmic function, and for which all circuits have one-bit outputs.

• P: the collection of circuit classes Cs,n for which s and n are polynomials.

Definition 3.3. For an (uniform) algorithm A with input x , we denote by Time [A(x)]
an upper bound on the running time of A on input x . We denote by Outlen [A(x)] an
upper bound on the output length of A when run on input x .

3.1. Compressing Obfuscation

We define a general notion of compressing obfuscation, generalizing the definition of
[75].

Definition 3.4. (Functional equivalence) We say that two circuits C and C ′ are func-
tionally equivalent and denote it by C ≡ C ′ if they compute the same function (i.e.,
∀x : C(x) = C ′(x)).

Definition 3.5. (Compressing obfuscation) An α-correct (t, !)-compressing obfusca-
tor for the circuit class Cs,n = {Cλ}λ∈N is a pair of algorithms (Obf,Eval) with the
following syntax:

• C̃ ← Obf(1λ,C): The obfuscator receives the security parameter 1λ and a circuit
C ∈ Cλ and outputs a circuit C̃ .

• Eval(C̃, x): The evaluator receives a circuit C̃ and an input x , and outputs a string
y or ⊥.

• α-Correctness. For all λ ∈ N, all C ∈ Cλ, and all x ∈ {0, 1}n , it holds that

Pr
Obf

[
C̃ ← Obf(1λ,C) : C(·) ≡ Eval(C̃, ·)

]
≥ α(λ)

• (t, !)-Compression. For all λ ∈ N and all C ∈ Cλ, there exists a polynomial
poly(·) such that the running time and output size of Obf(1λ,C) are bounded by
t (s, n) · poly(λ, n) and !(s, n) · poly(λ, n), respectively. That is, for n = n(λ) and
s = s(λ),

Time
[
Obf(1λ,C)

]
= t (s, n) · poly(λ, n),

Outlen
[
Obf(1λ,C)

]
= !(s, n) · poly(λ, n).

Several instantiations of s(·) and !(·) are of interest in this work. Fix ε > 0. One
setting is when the obfuscation size is exponential in (1 − ε)n, but the running time is
exponential in n. The other setting is when both the running time and the output size are
exponential in (1 − ε)n.
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Definition 3.6. (XiO) An exponentially efficient obfuscator (XiO) for a class Cs,n of
circuits is a (t, !)-compressing obfuscator with

!(s, n) = 2n(1−ε) · poly(s), t (s, n) = poly(2n, s).

Definition 3.7. (SXO) A strong exponentially efficient obfuscator (SXO) for a class
Cs,n of circuits is a (t, !)-compressing obfuscator with

t (s, n) = !(s, n) = 2n(1−ε) · poly(s)

For the security definition for a compressing obfuscator, we focus on the notion of
indistinguishability obfuscation [14,45].

Definition 3.8. (Indistinguishability obfuscation) An α-correct (t, !)-compressing ob-
fuscator O is an indistinguishability obfuscator (iO) for the class Cs,n = {Cλ}λ∈N if for
any probabilistic polynomial-time distinguisher D, there exists a negligible function
negl(·) such that for all λ ∈ N and all C0,C1 ∈ Cλ with C0 ≡ C1 and |C0| = |C1|, it
holds that

∣∣∣∣ Pr
Obf,D

[
D

(
Obf(1λ,C0)

)]
− Pr

Obf,D

[
D

(
Obf(1λ,C1)

)]∣∣∣∣ ≤ negl(λ).

When there exists a constant c > 0 such that for every distinguisher of size 2λc ,
the above distinguishing gap is bounded by 2−λc , we say that the obfuscator is sub-
exponentially secure.

3.2. Correctness of Obfuscation

In addition to the notion of α-correctness we gave above, we define three additional
notions of correctness for obfuscation, as in [21].

Definition 3.9. (Perfect Correctness) An α-correct obfuscator for a circuit class Cs,n =
{Cλ}λ∈N is perfectly correct if α(λ) = 1 for all values of λ.

Definition 3.10. (Worst-CaseandAlmostPerfectCorrectness) An obfuscator (Obf,Eval)
for a class of circuits Cs,n = {Cλ}λ∈N is α-worst-case correct if for all λ ∈ N and all
C ∈ Cλ, it holds that

Pr
Obf

[
C̃ ← Obf(1λ,C) : ∀x ∈ {0, 1}n : C(x) = Eval(C̃, x)

]
≥ α(λ).

When α(λ) ≥ 1 − negl(λ) for a negligible function negl, we say that the obfuscator is
almost perfectly correct.

Definition 3.11. (Approximate Correctness) An obfuscator (Obf,Eval) for a class of
circuits Cs,n = {Cλ}λ∈N is α-approximately correct if for all λ ∈ N and all C ∈ Cλ, it
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holds that

Pr
Obf

x←{0,1}n

[
C̃ ← Obf(1λ,C) : C(x) = Eval(C̃, x)

]
≥ α(λ).

3.3. Puncturable Pseudorandom Functions

Definition 3.12. (Puncturable PRF [90]) A puncturable pseudorandom function PRF
is given by a tuple of efficient algorithms PRF = (Key,Punc,Eval) and a pair of
computable functions !(·) and m(·) (where the PRF maps !-bit inputs to m-bit outputs)
which satisfy the following conditions:

• Functionality preserved under puncturing: For every polynomial size set S ⊆
{0, 1}!(λ) and for every x ∈ {0, 1}!(λ) \ S, we have that:

Pr
[
K ← Key(1λ), K̃[S] = Punc(K , S) : Eval(K , x) = Eval(K̃[S], x)

]
= 1.

• Pseudorandomness at puncturedpoints:For every probabilistic polynomial-time
adversary A and every point x∗ ∈ {0, 1}!(λ), there exists a negligible function
negl(·) such that for every λ ∈ N, it holds that

∣∣Pr
[
A(K̃x∗ ,Eval(K , x∗)) = 1

]
− Pr

[
A(K̃x∗ ,Um(λ)) = 1

]∣∣ ≤ negl(λ),

where K ← Key(1λ), K̃x∗ = Punc(K , x∗), and Um(λ) denotes the uniform distri-
bution over {0, 1}m(λ).

Theorem 3.13. [25,27,54,68] Assuming the existence of one-way functions, for any
computable functions !(·) and m(·) there exists a secure puncturable PRF family map-
ping {0, 1}!(λ) to {0, 1}m(λ).

3.4. Non-Interactive Zero Knowledge

In this work, we consider NIZK proof systems in the CRS model which support proving
and simulating multiple statements with the same CRS. We start with the definition of
a non-interactive zero knowledge proof system as in [45].

Definition 3.14. Let L be a language with a relation RL . Without loss of generality,
assume that for any (x, w) ∈ RL , it holds that |x | = |w| = n. A non-interactive
zero-knowledge proof system in the CRS model consists of a tuple of PPT algorithms
NIZK = (Gen,P,V) described as follows:

• σ ← Gen(1λ, 1n): The Gen algorithm takes as input the security parameter λ and
outputs the CRS σ .

• π ← P(σ, x, w): The prover algorithm P takes as input the CRS σ , a statement x
for the language L , and a witness w, and outputs a proof π .

• b ← V(σ, x,π): The verifier algorithm V takes as input the CRS σ , a statement x ,
and a proof π , and outputs a bit b ∈ {0, 1}.
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We require the following properties of the NIZK scheme.

• Perfect Completeness There exists a negligible function negl such that for every
x ∈ L and w ∈ RL(x), for all λ ∈ N,

Pr
[
σ ← Gen(1λ, 1n);π ← P(σ, x, w) : V(σ, x,π) = 1

]
= 1.

• Statistical Soundness For every (possible unbounded) adversary A, there exists a
negligible function negl such that for every λ ∈ N:

Pr
[
σ ← Gen(1λ, 1n) : (x,π) ← A(σ ) : V(σ, x,π) = 1 ∧ x &∈ L

]
≤ negl(λ).

• Computational Zero knowledge There exists a pair of PPT simulators (S1, S2)

such that for every x ∈ L , every w ∈ RL(x), and every λ ∈ N, the following two
distributions are computationally indistinguishable:

{σ ← Gen(1λ, 1n);π ← P(σ, x, w) : (σ, x,π)}
{(σ ′,aux) ← S1(1λ, 1n);π ′ ← S2(σ

′, x,aux) : (σ ′, x,π ′)}

We require the NIZK proof system to support proving and simulating polynomially
many theorems from one CRS. This is captured by the following definition, as in [53].

Definition 3.15. Let L be a language with relation RL . A Multi-NIZK proof system
(Gen,P,V) for L in the CRS model is multiple theorem computational zero knowledge
if for any polynomial m(·), there exists a pair of PPT simulators (S1, S2) such that for
any λ ∈ N and any {xi , wi }i∈[m(λ)] with wi ∈ RL(xi ) and |xi | = |wi | = n for all i , the
following two distributions are computationally indistinguishable:
{
σ ← Gen(1λ, 1n);πi ← P(σ, xi , wi ) ∀i ∈ [m(λ)] :

(
σ, {xi ,πi }i∈m[λ]

)}

{
(σ ′, aux) ← S1(1

λ, {xi }i∈m[λ]);π ′
i ← S2(σ

′, xi , aux) ∀i ∈ [m(λ)] :
(
σ ′, {xi ,π ′

i }i∈m[λ]
)}

.

It is known that NIZKs satisfying multiple-theorem computational zero knowledge
can be built from any NIZK proof system [53]. We stress that the CRS σ is of length λ,
and supports proving poly(λ) many statements of length poly(λ).

3.5. Commitment Schemes

For some of our constructions, we need a non-interactive commitment scheme such
that commitments of different strings have disjoint support. Jumping ahead, we will use
commitments in some encryption procedure that is not controlled by the adversary (i.e.,
it is honest). Therefore, we can relax the foregoing requirement and use non-interactive
commitment schemes that work in the CRS (common random string) model (for ease
of notation, we usually ignore the CRS).

Definition 3.16. A non-interactive commitment scheme is a tuple of PPT algorithms
(Gen,Commit,Open) described as follows:
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• c ← Commit(x, r): The commitment algorithm Commit takes a message x ∈
{0, 1}n for n = poly(λ) and a random string in {0, 1}λ and outputs a commitment
c to x .

• x ′ ← Open(c, r): The opening algorithm takes as input a commitment c and a
random string r ∈ {0, 1}λ, and outputs a message x ′.

We require the following properties of a commitment scheme.

• Hiding For any x1, x2, the distributions {Commit(x1,Uλ)}λ∈N and
{Commit(x2,Uλ)}λ∈N are computationally indistinguishable, where Uλ is the u-
niform distribution over {0, 1}λ.

• Binding For any x1, x2 ∈ {0, 1}n and r1, r2 ∈ {0, 1}λ, Commit(x1, r1) &=
Commit(x2, r2).

Commitment schemes that satisfy the above definition, in the CRS model, can be
constructed based on any pseudorandom generator [85] (which can be based on any
one-way functions [62]). We say that Commit(x, r) is the commitment to the value x
with the opening r .

3.6. Error-Correcting Codes

We review the definitions of error-correcting that are relevant to this paper. A code C
over an alphabet * of size q that has block length n, dimension k and minimal distance
d is denoted as an (n, k, d)q code. A code C can be thought of as a mapping from *k to
*n such that every two outputs of the mapping differ in at least d locations. The mapping
procedure is sometimes referred to as the encoding function of C . The relative distance
of C is d/n and the rate is k/n.

In this paper, we will use a Reed–Solomon code as an erasure-correcting code, which
can recover from a small enough fraction of deleted symbols in the codeword.

Theorem 3.17. (e.g., [59, Chapter 11]) The Reed–Solomon error-correcting code is
an (n, k, n − k+ 1)q code for k < n ≤ q that can be uniquely decoded by a polynomial
time algorithm from any fraction e of erasures satisfying en ≤ n − k + 1.

We will also use binary error correcting codes. It is known that binary error correcting
codes with unique decoding cannot correct a 1/2 fraction of errors, so we will need
the list-decoding relaxation that allows the decoder to output a (short) list of possible
messages such that the correct message is one of them.

Definition 3.18. (List decoding) A binary error-correcting code is (e, L)-list decodable
if for any c ∈ {0, 1}n , there are at most L codewords within distance e · n of c and there
is a polynomial time algorithm decode such that on input c ∈ {0, 1}n , outputs all such
codewords.

Theorem 3.19. [60, Corollary 4]For any integer k andγ > 0, there exists a polynomial
p(·) such that there exists a binary error correcting code of dimension k and block length
n where n = O

(
k/γ 8), that is ( 1

2 − γ
2 , p(n))-list decodable.
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3.7. Functional Encryption

Definition 3.20. (Functional Encryption [24,87]) A public-key functional encryption
(FE) scheme for a class of circuits Cs,n is a tuple of PPT algorithms (Setup,Keygen,
Enc,Dec) that behave as follows:

• (msk,pk) ← FE.Setup(1λ): The setup algorithm takes as input the security pa-
rameter λ and outputs the master secret key msk and public key pk.

• skC ← FE.Keygen(msk,C): The key generation algorithm takes as input the
master secret key msk and some circuit C ∈ Cλ and outputs the functional secret
key skC .

• ct ← FE.Enc(pk,m): The encryption algorithm takes as input the public key pk
and a message m and outputs a ciphertext cipher.

• y ← FE.Dec(skC , ct): The decryption algorithm takes as input the functional
secret key skC and ciphertext ct and outputs y ∈ {0, 1}∗.

We require the following conditions to hold:

• Correctness: There exists a negligible function negl such that for every λ ∈ N,
every C ∈ Cλ, and every message m ∈ {0, 1}n(λ), we have that:

Pr
[
C(m) = FE.Dec (FE.Keygen(msk,C),FE.Enc(pk,m))

]
≥ 1 − negl(λ),

where (pk,msk) ← FE.Setup(1λ), and the probability is taken over the random-
ness of FE.Setup, FE.Keygen and FE.Enc.

• q-selective security: For every probabilistic polynomial-time algorithm A, there
exists a negligible function negl(·) such that for every λ ∈ N, every collection of q
circuits C1, . . . ,Cq ∈ Cλ, and ever pair of messages m0,m1 ∈ {0, 1}n(λ) such that
Ci (m0) = Ci (m1) for all i ∈ [q], it holds that

∣∣∣∣Pr
[
A (z,FE.Enc(pk,mb)) = b

]
− 1

2

∣∣∣∣ ≤ negl(λ),

where z = (pk,C,m0,m1, {ski }i∈[q]), (pk,msk) ← FE.Setup(1λ), ski ←
FE.Keygen(msk,Ci ) for all i ∈ [q], and b ← {0, 1}. When q = 1, we say
that FE is selectively secure.

Definition 3.21. (Succinct Functional Encryption [3,21,75]) An FE scheme (Setup,
Keygen,Enc,Dec) for a class of circuits Cs,n with one-bit outputs is a succinct FE
scheme if it holds that

Time
[
Enc(pk,m)

]
= poly(λ, n(λ), log(s(λ))),

for every λ ∈ N, pk ← Setup(1λ) and m ∈ {0, 1}n(λ).

We will use the FE scheme of Goldwasser et al. [56] which is based on LWE (see
[23,75] for restatements). In particular, [56] gives a construction of succinct FE for NC1
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with one-bit outputs, or more generally a scheme for polynomial size circuits where
efficiency scales with the depth of the supported circuits.

Theorem 3.22. [56]AssumingLWE, there exists anFEscheme (Setup,Keygen,Enc,
Dec) for any class of polynomial-size circuits Cs,n,d = {Cλ}λ∈N with one-bit outputs.
Moreover, it holds that

Outlen
[
Setup(1λ)

]
= poly(λ, n, d)

Outlen
[
Keygen(msk,C)

]
= s · poly(λ, n, d)

Time
[
Enc(pk,m)

]
= poly(λ, n, d)

for fixed polynomials, where n = n(λ), s = s(λ), d = d(λ), (pk,msk) ← Setup(1λ),
C ∈ Cλ, and m ∈ {0, 1}n(λ). We call such a scheme depth-dependent.

Furthermore, we will need an FE scheme that supports functions with multiple output
bits and satisfies a specific notion of efficiency. We obtain the following corollary by
simple parallel repetition of the scheme of [56].

Corollary 3.23. [56,58] Let sFE be a depth-dependent FE scheme for the class of
polynomial-size circuits with one-bit outputs. Then, for every polynomial q = q(λ),
there exists a q-selectively secure FE scheme lFE for polynomial-size circuits with q
output bits. The output length and running time of all algorithms is q times that of sFE.
We call such a scheme q-output depth-dependent.

4. Correctness Amplification

In this section, we present a correctness amplification procedure for XiO. We show that
assuming the existence of an XiO scheme with very weak correctness, there exists an
XiO construction with a very strong correctness guarantee.

Theorem 4.1. Let p(·) be any polynomial. Let xiO be an XiO scheme for Plog that

is
(

1
2 + 1

p(λ)

)
-approximately correct. Assuming LWE and the existence of NIZKs, there

exists a perfectly correct XiO scheme for Plog.

The correctness amplification proceeds in three phases. First, in Sect. 4.1, we transform
an approximately correct XiO scheme to a (1/poly(λ) − negl(λ))-worst-case correct
XiO scheme. Then, in Sect. 4.2, we transform the (1/poly(λ) − negl(λ))-worst-case
XiO scheme to a (1 − negl(λ))-worst-case correct XiO scheme. Then, in Sect. 4.3, we
transform the (1 − negl(λ))-worst-case correct XiO scheme to a perfectly correct XiO
scheme. In Sect. 4.4, we prove Theorem 4.1 and conclude our correctness amplification.
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4.1. From Approximately Correct XiO to Worst-Case Correct XiO

Before giving the formal construction, we give an in-depth overview and discuss the
parameters we need for the transformation. As mentioned in Sect. 2.1, our construction
is the composition of two transformations: the first from XiO to FE (following [16,
75]), and the second from FE back to XiO, while amplifying from approximate to
worst-case correctness along the way. We start by giving an overview of the composed
transformation and then discuss the changes needed to ensure that the resulting XiO is
worst-case correct.

Suppose we are given an approximately correct XiO scheme xiO for a class of circuits
Cs,n . To obfuscate a circuit C ∈ Cs,n , we split the domain into two parts. For now, fix any
integers a, b with a + b = n, so that each input x ∈ {0, 1}n can be split it as x = x1||x2
with |x1| = a and |x2| = b. As we will see later on, setting a and b appropriately will
ensure that the resulting scheme is sufficiently compressing.

We then use a depth-dependent functional encryption scheme sFE, which is an FE
scheme where encryption time is polynomial in the depth of supported circuits, linear
in their output length, yet independent of their overall size. Following [75], we combine
xiO and sFE as follows. For each x1 ∈ {0, 1}a , we will use xiO to obfuscate a circuit
Gx1 that on input i , generates an sFE encryption ctx1,i of (C(x1, ·), i), where C(x1, ·)
denotes C with the first a input bits hardcoded to x1. We can then generate an sFE
functional key skT for the “truth-table circuit” T that on input (C(x1, ·), i) outputs the
i th bit of the truth table of C(x1, ·). The obfuscation of C under the resulting scheme
xiO′ thereby consists of the sFE functional key skT and the obfuscation G̃x1 of Gx1 for
each x1 ∈ {0, 1}a .

To evaluate the resulting obfuscation on input x1||x2, we would like to evaluate G̃x1 on
each input i to obtain ctx1,i , and decrypt these with skT to get the truth table of C(x1, ·)
and hence the value of C(x1, x2). However, as xiO is only approximately correct, we
cannot hope to obtain all the bits of ctx1,i for any, let alone a noticeable fraction, of the
indices i .

To remedy this, as discussed in Sect. 2.1, we use a list-decodable code in combination
with a NIZK to ensure that for any i for which we get a large enough fraction of the bits
of ctx1,i , we can recover the full ciphertext. Specifically, we modify Gx1 such that on
input (i, j), it computes the ciphertext ctx1,i along with a proof π of its correctness, and
outputs the j th bit of LDC(ctx1,i ,π), where LDC is a list-decodable code. For each i , it
follows that whenever the obfuscation G̃x1 is correct on enough of the inputs (i, j), we
can rely on the list-decodable code and NIZK to obtain ctx1,i .

The remaining challenge for our construction is that there may only be a small fraction
of i’s for which the above occurs. To fix this, instead of generating an sFE functional
key for the truth table circuit T , we generate a key for an erasure-correcting version.
Specifically, we generate a key using sFE for a circuit U that on input (C(x1, ·), i), out-
puts the i th alphabet symbol of ECC(T (C(x1, ·))), where ECC is an erasure-correcting
code. As discussed in Sect. 2.1, it suffices for us to have an erasure-correcting code rather
than an error-correcting code here, which enables us to correct from a larger fraction of
errors.

We can now discuss the parameters. Recall that our goal is to construct a worst-case
correct XiO for Cs,n . We start by looking at the parameters for sFE, which depend on
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the supported functionality. In our case, this is the circuit U that computes the truth table
of a circuit on b bits, and then an erasure-correcting code ECC on the output. Let p be
the polynomial denoting the runtime of ECC. It follows that U can be implemented by
a circuit of size p(2b) + |T |, and T can be implemented by a circuit of size O(2b · s).
Looking ahead, the efficiency of U will impact the size of our obfuscation, because
(among other things) the functional key for U , whose size depends linearly on |U |, will
be given in clear, and we will be obfuscating a circuit that computes sFE ciphertexts,
whose complexity scales with the depth of U . Thus, in order for our XiO scheme to be
sublinear in the truth table size 2n , we require that |U | is sublinear in 2n and that it has
polynomial depth. To achieve this, it will be convenient to define d to be the constant
such that p is a polynomial of degree d − 1. Then, |U | ∈ O(2b(d−1) · s). Finally, we set
b = n/d to make this sublinear in 2n . Putting everything together, we require sFE for
the class of circuits with size s′ ≤ 2n(d−1)/d · s · poly(λ). We also note that U can be
shown to have depth independent of 2n , in particular because T can be implemented by
a circuit of depth s and ECC is in NC1.

It remains to discuss the parameters forLDC andECC, which are crucial to amplifying
the approximate correctness of xiO. Recall that LDC is used to encode ciphertexts ctx1,i ,
and ECC is used to encode the truth table of C(x1, ·) after decrypting ctx1,i with the
sFE functional key.

Suppose that xiO is (1/2+γ )-approximately correct. This means that for a (1/2+γ )

fraction of the random coins for xiO and inputs (i, j), we correctly obtain the j th bit of
the encoding of ctx1,i when evaluating the obfuscated circuit G̃x1 . At a high level, we
show that this implies that for a noticeable fraction of indices i , we obtain slightly more
than half of the bits of the encoding ctx1,i , and thus require LDC to be able to handle
errors at nearly half of the bits, and ECC to recover from all but a noticeable fraction of
erasures.

More precisely, we show in the proof below that by a sequence of averaging arguments,
a γ /2 of the random coins r for xiO are “good,” in the sense that obfuscations using
good randomness have at least a γ /4 fraction of inputs i such that the obfuscated circuit
is correct on input (i, j) for a 1/2 + γ /4 fraction of the values j . For any such r and i ,
it follows that upon evaluating the obfuscated circuit G̃x1 on (i, j) for all j , we obtain
at least 1/2+ γ /4 correct bits of ctx1,i . Therefore, we require LDC to be able to decode
from 1−(1/2+γ /4) = 1/2−γ /4 errors. We emphasize that this necessitates using list-
decodable codes rather than a standard error-correcting code. Upon decoding with LDC
and relying on the NIZK, this results in a γ /4 fraction of indices i for which we recover
ctx1,i whenever a good randomness r is used. Another averaging argument shows that for
a γ /8 fraction of these good r ’s, there are at least a γ /8 fraction of ciphertexts recovered.
Thus, we require ECC to be able to recover from a 1 − γ /8 fraction of erasures, which
results in a block length of 8/γ times the input to the code. Overall, since r is good with
probability γ /2, this results in the γ /16-worst-case correctness of xiO′.

Construction Next, we give our construction. Fix any class of circuits Cs,n ∈ Plog.
Throughout this section, we let s = s(λ) and n = n(λ). Our transformation relies on
the following primitives as building blocks:

• xiO = (xiO.Obf, xiO.Eval) is a (1/2+ γ )-approximately correct XiO scheme for
Plog, where γ = 1/p(λ) for some polynomial p.
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• ECC is a Reed–Solomon erasure correcting code with dimension K = 2
n
d /λ and

block length 8K/γ over a field of size 2λ, that can correct up to a (1 − γ
8 )-fraction

of erasures using the algorithm ECC.Dec. Here, d is defined as the integer such
that the size of the circuit ECC is given by a polynomial of degree d −1 in its input
length. We assume that all inputs to ECC are padded to size 2

n
d bits. We note that

the circuit ECC is in NC1. We let !1 = O(log(λ)) + n
d be the log of the output

length of ECC (that is, the length of an index specifying a bit in this output).
• LDC is a binary error-correcting code that is ( 1

2 − γ
4 ,poly)-list decodable using

the algorithm LDC.Dec. We let !2 = O(log(λ) + log(s) + log(n)) be the log of
the output length of LDC when run on inputs of size poly(λ, s, n).

• lFE = (lFE.Setup, lFE.Enc, lFE.Keygen, lFE.Dec) is aλ-output depth-dependent
FE scheme for the class Cs′,n′,d ′

with λ-bit outputs, where s′ = 2n− n
d · s · poly(λ),

n′ = s · poly(λ, n), and d ′ = poly(λ, s, n).
• PRF = (PRF.Key,PRF.Punc,PRF.Eval) is a puncturable PRF.
• C = (C.Commit,C.Open) is a commitment scheme.
• NIZK = (NIZK.Gen,NIZK.P,NIZK.V) is a Multi-NIZK proof system for the NP

language L given by L =
{
(ct, i, comC , com0,pk) : either

1. ∃r0, r1,C such that ct encrypts (C, i) and comC is a commitment to C , that
is, ct = lFE.Enc(pk, (C, i); r0) ∧ comC = C.Commit(C, r1), or

2. ∃r s.t. com0 = C.Commit(1, r)
}

,

We let t = t (λ) = poly(λ, s, n) denote the upper bound on the length of statements
and witnesses in L when instantiated with security parameter λ (with parameters
as used in the following scheme).

In what follows, we denote by Cx1...xk the circuit C with the first k bits hardwired to

x1 . . . xk . We let T denote a circuit of size O
(
s · 2

n
d

)
that receives as input a circuit of

size s on n/d bits and outputs its truth table. The transformation is as follows.

Worst-case correct XiO scheme xiO′:

• C̃ ← xiO′.Obf(1λ,C):

1. Sample (msk,pk) ← lFE.Setup(1λ).
2. Generate a key skU ← lFE.Keygen(msk,U) for the circuit U such that

U(D, i) = ECC(T (D))[i],

for any input circuit D, where ECC(T (D))[i] denotes the i th block of λ bits
of ECC(T (D)).

3. For every x ∈ {0, 1}n− n
d :

(a) Sample K x
0 , K

x
1 ← PRF.Key(1λ), and σ x ← NIZK.Gen(1λ, 1t ).

(b) Create commitments comx
Cx

= C.Commit(Cx , r x0 ) to Cx and comx
0 =

C.Commit(0, r x1 ) to 0 using randomness r x0 ← {0, 1}λ and r x1 ← {0, 1}λ.
(c) Generate the circuit Gx = Gx [Cx ,pk, K x

0 , K
x
1 , com

x
Cx
, comx

0, r
x
0 , σ

x ]
such that on input (i, j) does the following:
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i. Let ct ← lFE.Enc(pk, (Cx , i); PRF.Eval(K x
0 , i)).

ii. Construct a NIZK proof π = NIZK.P(σ x , v, w;PRF.Eval(K1, i))
for the statement v = (ct, i, comx

Cx
, comx

0,pk) using the witness
w = (Cx ,PRF.Eval(K x

0 , i), r
x
0 ).

iii. Output the j th bit of LDC(ct,π), denoted by (LDC(ct,π)) j .

The circuit Gx is padded to the same size as all circuits defined later
in the proof of security, which we will show all have size bounded by
poly(λ, s, n).

(d) Let G̃x ← xiO.Obf(1λ,Gx ) and let C̃ x = (G̃x , σ x , comx
Cx
, comx

0).

4. Output C̃ =
(
{C̃ x }

x∈{0,1}n− n
d
, skU ,pk

)
.

• y′ ← xiO′.Eval(C̃, x):

1. Let x = x1||x2 where |x1| = n − n
d .

2. For every i ∈ [2!1]:
(a) For every j ∈ [2!2 ], let ci j = xiO.Eval(G̃x1 , (i, j)).
(b) Run LDC.Dec(ci1ci2 . . . ci2!2 ) to obtain a list of possible decodings,

where the kth element of the list is (ctki ,π
k
i ).

(c) Let k& be the first index k such that NIZK.V(σ, vki ,π
k
i ) = 1 where vki =

(ctki , i, com
x1
Cx1

, comx1
0 ,pk). Set cti = ctk

&

i if k& exists and otherwise set
cti = ⊥.

(d) Run yi ← lFE.Dec(skU , cti ).

3. If there are at least γ
8 · 2!1 indices i for which cti &= ⊥, let y = y1y2 . . . y2!1

and run ECC.Dec(y) and output the element corresponding to x2. Otherwise,
output ⊥.

Theorem 4.2. Assume that PRF is a puncturable PRF, lFE is a selectively secure λ-
output depth-dependent FE scheme for Cs′,n′,d ′

, C is a commitment scheme, and NIZK
is a Multi-NIZK for L. Fix any class of circuits Cs,n ∈ Plog. Let p(·) be any polynomial.
Then, if xiO is a (1/2 + 1/p(λ))-approximately correct XiO scheme forPlog, then xiO′ is
a
(

1
16p(λ) − negl(λ)

)
-worst-case correct XiO scheme for Cs,n, for a negligible function

negl.

Proof. Fix any class Cs,n = {Cλ}λ∈N ∈ Plog and let γ = 1
p(λ) such that xiO is

( 1
2 + γ

)
-

approximately correct. Let xiO′ be the scheme resulting from the above transformation.
Let n = n(λ), s = s(λ), !1 = !1(λ), and !2 = !2(λ). We show that xiO′ is a ( γ

16 −
negl(λ))-worst-case correct XiO for Cs,n .

Worst-CaseCorrectnessTo show worst-case correctness for xiO′, we want to show that
there exists a negligible function negl such that for all λ ∈ N, C ∈ Cλ, and x ∈ {0, 1}n ,

Pr
xiO′.Obf

[
C̃ ← xiO′.Obf(1λ,C); xiO′.Eval(C̃, x) = C(x)

]
≥ γ

16
− negl(λ).
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Toward this end, let x = x1||x2 with |x1| = n − n
d . Let R denote the random coins used

by xiO′.Obf(1λ,C)which determine the part of the obfuscation used in the evaluation of
C̃ on x . In particular, this includes the randomness for generating the key pair (pk,msk),
the functional key skU , and the values in C̃ x1 .

Consider thexiO′ evaluation algorithmxiO′.Eval(C̃, x). It first evaluates G̃x1 to obtain
ci j ← xiO.Eval(G̃x1 , (i, j)) for each i ∈ [2!1] and j ∈ [2!2 ]. We start by an averaging
argument which shows that conditioned on the choice of R, there is a noticeable size set
of indices i for which the majority of the evaluations ci j are correct. Define

S =
{
R : Pr

i, j

[
G̃x1 ← xiO.Obf(1λ,Gx1 ; R) : xiO.Eval(G̃x1 , (i, j)) = Gx1 (i, j)

]
≥ 1

2
+ γ

2

}
,

which will be the set of “good” random strings R, for which the obfuscated circuit, when
obfuscated using randomness R, is correct on a majority of inputs. By an averaging
argument and the

( 1
2 + γ

)
-correctness of xiO, we have that a γ

2 -fraction of the R are in
S. Let

SR =
{
i : Pr

j

[
G̃x1 ← xiO.Obf(1λ,Gx1 ; R) : xiO.Eval(G̃x1 , (i, j)) = Gx1(i, j)

]
≥ 1

2
+ γ

4

}
,

which will be the set of “good” inputs i , such that whenC is obfuscated using randomness
R, for any i ∈ SR , the resulting obfuscation is correct on inputs (i, j) for a majority of
the j . Then, for any R ∈ S, by an averaging argument, it holds that a γ

4 -fraction of the
inputs i are in SR .

We now show that for any R ∈ S and i ∈ SR , the evaluation algorithm xiO′.Eval
obtains a valid lFE encryption of (Cx1, i). This is due to the guarantees of LDC, NIZK,
Commit, and lFE. Fix R ∈ S and i ∈ SR .

After computing ci j for all j , the evaluation algorithm runsLDC.Dec(ci1ci2 . . . ci2!2 ).
Since we are using a list-decoding algorithm, this results in a list of candidates of the
form (ctki ,π

k
i ) for polynomially many k. Recall that LDC.Dec is a

( 1
2 − γ

4 ,poly
)
-list-

decoding algorithm, and can therefore correct a
( 1

2 − γ
4

)
-fraction of errors. Since R ∈ S

and i ∈ SR , we have that at most a
( 1

2 − γ
4

)
-fraction of the ci j are incorrect, so the

correct encryption of (Cx1, i) is in the decoded list. Let k& be the index of the correct
element.

To identify k&, we check each proof πk
i . More concretely, for each k, let vki denote the

statement (ctki , i, com
x1
Cx1

, comx1
0 ,pk), such that πk

i is a proof for the statement vki . We

note that comx1
Cx1

, comx1
0 , and pk are part of the output of the obfuscation algorithm,

and i is used as input to obtain (ctki ,π
k
i ), so the only unknown part of vki is ctki . Recall

that the Multi-NIZK proof is for a language L such that (ct, i, comx1
Cx1

, comx1
0 ,pk) ∈ L

if either

1. There exists a circuitC ′ such that ct is an encryption of (C ′, i) underpk and comx1
Cx1

is a commitment of C ′. A witness for this statement consists of the randomness
used to generate ct, the opening for comx1

Cx1
, and the circuit C ′.

2. comx1
0 is a commitment to 1. A witness for this statement is the opening for comx1

0 .
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We now show that the decoding can correctly identify k&. For each k, the evaluation
algorithm checks if NIZK.V(σ, vki ,π

k
i ) = 1. Since k& is the index of the correct element,

then vk
&

i ∈ L . As a result, by the completeness of NIZK, the verification algorithm on
vk

&

i and πk&

i accepts, so at least one index k passes the verification.
We now show that for any index k that passes the verification, ctki is an encryption

of (Cx1, i). Suppose there exists k̂ such that the verification algorithm accepts π k̂
i for

the statement vk̂i . By the soundness of NIZK, if vk̂i &∈ L then the probability that the

verification passes for π k̂
i is negligible. Therefore, with overwhelming probability, vk̂i ∈

L . Note that by the binding property of the commitment scheme, there does not exist
an r̂ such that comx1

0 = C.Commit(1, r̂). Therefore, since vk̂i ∈ L , it satisfies the first
condition for being in L . Thus, by definition of L , it must be the case that there exists
r̂0, r̂1, Ĉ such that ctk̂i = lFE.Enc(pk, (Ĉ, i); r̂0) and comx1

Cx1
= C.Commit(Ĉ, r̂1).

However, recall that Commit is binding, so Cx1 = Ĉ . Therefore, by the correctness

of lFE.Enc, any index k̂ such that π k̂
i is an accepting proof of xk̂i corresponds to an

encryption of (Cx1 , i). Therefore, for every i ,

Pr
R

[
∃r̂ : cti = lFE.Enc(pk, (Cx1 , i); r̂) | i ∈ SR, R ∈ S

]
≥ 1 − negl(λ) (1)

for some negligible function negl, which depends on the soundness of NIZK.
Observe that even for i &∈ SR , any index k that passes the verification corresponds to

a correct encryption of (Cx1, i) by the argument above. Therefore, for any index i such
that cti &= ⊥, we have that with high probability, cti is an encryption of (Cx1, i), that is,

Pr
R

[
∃r̂ : cti = lFE.Enc(pk, (Cx1 , i); r̂) | cti &= ⊥, R ∈ S

]
≥ 1 − negl(λ).

After computing cti for each i , the evaluation algorithm runs yi ← lFE.Dec(skU , cti ).
By the correctness of lFE.Dec and by the argument above, there exists a negligible
function negl such that for every i ,

Pr
R

[
yi = ECC(T (Cx1))[i] | cti &= ⊥, R ∈ S

]
≥ 1 − negl(λ).

Let IR be the set of all indices i for which cti &= ⊥ when randomness R is used. Since
|IR | ≤ poly(λ), by a union bound we have that for some negligible function negl,

Pr
R

[
∀i ∈ IR : yi = ECC(T (Cx1))[i] | R ∈ S

]
≥ 1 − negl(λ). (2)

To finish the proof, we show that the evaluation algorithm correctly computes C(x)
with probability γ

16 − negl(λ). The evaluation algorithm proceeds by running
ECC.Dec(y1y2 . . . y2!1 ), which can correct up to a (1− γ

8 )-fraction of erasures. Because
we know the indices i for which we did not obtain yi , this implies thatECC.Dec(y1y2 . . .

y2!1 ) = T (Cx1) if there at most a (1 − γ
8 )-fraction of symbols that have been erased,
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and all symbols that have not been erased are correct. We show that IR satisfies these
requirements when R ∈ S. By Eq. (1),

Pr
R,i

[i ∈ IR | R ∈ S] ≥ Pr
R,i

[i ∈ IR | i ∈ SR, R ∈ S] · Pr
R,i

[i ∈ SR | R ∈ S]

≥ Pr
R,i

[cti &= ⊥ | i ∈ SR, R ∈ S] · γ

4

≥ Pr
R,i

[
∃r̂ : cti = lFE.Enc(pk, (Cx1 , i); r̂) | i ∈ SR, R ∈ S

]
· γ

4

≥ γ

4
− negl(λ)

for a negligible function negl. Therefore, by an averaging argument, we have that

Pr
R

[
|IR | ≥ γ

8
· 2!1

∣∣∣ R ∈ S
]

≥ γ

8
− negl(λ). (3)

Then, by a union bound, it follows from Eqs. (2) and (3) that

Pr
R

[
∀i ∈ IR : yi = ECC(T (Cx1))[i] ∧ |IR | ≥ γ

8
· 2!1

∣∣∣ R ∈ S
]

≥ γ

8
− negl(λ)

for a negligible function negl. Let y′ be the element of ECC.Dec(y1y2 . . . y2!1 ) corre-
sponding to x2. We have that

Pr
R

[
y′ = C(x)

]
≥ Pr

R

[
ECC.Dec(y1y2 . . . y2!1 ) = T (Cx1)

]

≥ Pr
R

[
ECC.Dec(y1y2 . . . y2!1 ) = T (Cx1) | R ∈ S

]
· Pr
R

[R ∈ S]

≥ Pr
R

[

∀i ∈ IR : yi = ECC(T (Cx1))[i] ∧ |IR | ≥ 2!1 · γ
8

∣∣∣ R ∈ S

]

· Pr
R

[R ∈ S]

≥
(γ

8
− negl(λ)

)
· γ

2
≥ γ

16
− negl(λ)

for some negligible function negl, as desired.

Compression Fix any C ∈ Cλ and x ∈ {0, 1}n , and let x = x1||x2 with |x1| = n − n
d .

We first show that lFE is indeed only required to support Cs′,n′,d ′
, so that we can rely on

the efficiency properties in our analysis. We then use this to bound the size of Gx1 , and
finally put everything together.

We start by bounding the circuitU that lFE is required to support. Recall thatU(Cx1, i)
computes ECC(T (Cx1))[i]. Here, T runs Cx1 on all 2n/d inputs and outputs its truth
table, which requires size O(s ·2n/d) and depth equal to the depth of C , which is at most
s. Then, when given the resulting 2n/d -size truth table as input, ECC can be computed
in NC1, and so requires depth O(n/d) and size at most 2n(d−1)/d . Finally, selecting the
i th block can be done in size 2n/d ·poly(λ) (the output length of ECC) and depth O(!1).
Putting everything together, we have

Depth(U) ≤ poly(n, s, !1) ≤ poly(λ, s, n) = d ′,
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Size(U) ≤ (s · 2n/d + 2n(d−1)/d + 2n/d) · poly(λ) ≤ 2n− n
d · s · poly(λ) = s′,

where in the last line we used the fact that we can set d ≥ 2, and so lFE indeed is only
required to support Cs′,n′,d ′

.
Next, we bound the size of the circuit Gx1 obfuscated during xiO′.Obf(1λ,C). We

have that Gx1(i, j) computes an lFE encryption ct, a NIZK proof π , an LDC encoding,
and evaluations of PRF. The LDC encoding and PRF run in time polynomial in their
input. For |ct| and |π |, we have that

|ct| =
∣∣lFE.Enc(pk, (Cx1 , i))

∣∣ = λ · poly(λ, n′, d ′) ≤ poly(λ, s, n)

by the efficiency of lFE, and

|π | = poly
(
|ct| , |i | ,

∣∣∣comx1
Cx1

∣∣∣ ,
∣∣comx1

0

∣∣ , |pk|
)

+ poly
(∣∣Cx1

∣∣ ,
∣∣PRF.Eval(K x1

0 , i)
∣∣ ,

∣∣∣comx1
Cx1

∣∣∣
)

= poly(λ, s, n),

because NIZK.P is polynomial in the length of the statements and witnesses for L ,
where we used the fact that |pk| ≤ poly(λ, s, n). Putting everything together, |Gx1 | ≤
poly(λ, s, n) before analyzing the padding on Gx1 .

Recall that Gx1 is padded to the size of the circuits defined in the hybrid arguments
below. Each of these circuits differs from Gx1 by having hardcoded ciphertexts, random-
ness for the commitment, NIZK proofs, or punctured PRF keys, as well as constructing
different outputs based on its first input i ∈ {0, 1}!1 . All of these increase the size
of the circuit by a polynomial factor in poly(λ, s, n, !1) ∈ poly(λ, s, n). Therefore,
|Gx1 | ≤ poly(λ, s, n).

Finally, we can bound the efficiency of xiO′. We have that xiO′.Obf(1λ,C) runs
PRF.Key, NIZK.Gen, C.Commit for each x ∈ {0, 1}n− n

d , which all have time bounded
by poly(λ, s, n), as well as lFE.Setup, lFE.Keygen, and 2n− n

d instances of xiO.Obf.
Therefore, by the compression of xiO and efficiency of lFE,

Time
[
xiO′.Obf(1λ,C)

]

= 2n− n
d ·

(
poly(λ, s, n)+ Time

[
xiO.Obf(1λ,Gx1)

])
+ Time

[
lFE.Setup(1λ)

]

+ Time
[
lFE.Keygen(msk,U)

]

≤ poly(λ, s, 2n)+ 2n− n
d · poly

(
λ,

∣∣Gx1
∣∣ , 2!1+!2

)
+ poly(λ, n′, d ′)+ s′ · poly(λ, n′, d ′)

≤ poly(λ, s, 2n)+ 2n− n
d · poly

(
λ, s, n, 2O(log(λ)+log(s)+log(n))+ n

d

)

+ poly(λ, s, n)+ poly(λ, s, 2n)

≤ poly(λ, s, 2n)

and

Outlen
[
xiO′.Obf(1λ,C)

]
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=
∣∣skU

∣∣+ |pk| + 2n− n
d

(
2
∣∣∣comx1

Cx1

∣∣∣+
∣∣σ x1

∣∣+Outlen
[
xiO.Obf(1λ,Gx1)

])

≤ s′ · poly(λ, n′, d ′)+ poly(λ, n′, d ′)+ 2n− n
d

(
poly(λ, s)+ poly(λ, s, n)+ poly(λ,

∣∣Gx1
∣∣) · 2(!1+!2)(1−ε)

)

≤ 2n− n
d · poly(λ, s, n)+ poly(λ, s, n)

+ 2n− n
d · 2

n
d (1−ε) · poly(λ, s, n)

≤ 2n− n
d+ n

d ·(1−ε) · poly(λ, s, n) ≤ 2n
(
1− ε

d

)
· poly(λ, s)

for a constant ε which depends on the efficiency of xiO, where we used the fact that
!1 = O(log(λ))+ n

d and !2 = O(log(λ)+ log(s)+ log(n)).

Indistinguishability We now turn to the security of xiO′. Let C0,C1 ∈ Cλ be function-
ally equivalent. We show that for all PPT adversaries A, the probability of outputting b
on input (C0,C1, xiO′.Obf(1λ,Cb)) is at most negligibly far from 1

2 where b ← {0, 1}.
To do this, we first show that for each x ∈ {0, 1}n− n

d , the probability of outputting b
on input (C0,C1,pk, skU , C̃ x ) is at most negligibly far from 1

2 where b ← {0, 1}, and
pk, skU , C̃ x are as in xiO′.Obf(1λ,Cb). To formalize this, let xiO′.Obf(1λ,C)[pk, x]
denote the steps of xiO′.Obf which result in C̃ x . In particular, xiO′.Obf(1λ,C)[pk, x]
does the following:

1. Sample K0, K1 ← PRF.Key(1λ), and σ ← NIZK.Gen(1λ, 1t ).
2. Create commitments comCx = C.Commit(Cx , r0) to Cx and com0 =

C.Commit(0, r1) to 0 using randomness r0 ← {0, 1}λ and r1 ← {0, 1}λ.
3. Generate the circuit G = G[Cx ,pk, K0, K1, comCx , com0, r0, σ ] such that on

input (i, j) does the following:

(a) Let ct ← lFE.Enc(pk, (Cx , i); PRF.Eval(K0, i)).
(b) Construct a NIZK proof π = NIZK.P(1λ, σ, v, w;PRF.Eval(K1, i)) for the

statement v = (ct, i, comCx , com0,pk) using the witness w = (Cx ,PRF.
Eval(K0, i), r0).

(c) Output the j th bit of LDC(ct,π), denoted by (LDC(ct,π)) j .

4. Let G̃ ← xiO.Obf(1λ,G) and output C̃ x = (G̃, comCx , com0, σ ).

Then, we can write xiO′.Obf(1λ,C) as follows:

1. Sample (msk,pk) ← lFE.Setup(1λ).
2. Generate a key skU ← lFE.Keygen(msk,U) for U , where U(Cx , i) =

ECC(T (C))[i].
3. For every x ∈ {0, 1}n− n

d , run C̃ x ← xiO′.Obf(1λ,C)[pk, x].
4. Output C̃ =

(
{C̃ x }

x∈{0,1}n− n
d
, skU ,pk

)
.

We use this formulation and notation to prove security of xiO′.Obf (in particular, for ease
of notation, we omit the superscript x from the values K0, K1, comCx , com0, σ, r0, r1
and G used to generate C̃ x when it is clear from context). We first show that for each
x , the probability of outputting b on input (C0,C1,pk, skU , xiO′.Obf(1λ,Cb)[pk, x])
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is at most negligibly far from 1
2 where b ← {0, 1}. For this part of the proof, for each

x ∈ {0, 1}n− n
d we have the following hybrids:

Phase I: Changing the commitment com0 We begin with the real execution,
where pk and skU , and xiO′.Obf(1λ,Cb)[pk, x] are generated honestly. In partic-
ular, xiO′.Obf(1λ,Cb)[pk, x] uses xiO to obfuscate the circuit G such that on input
(i, j), generates a ciphertextct of (Cb

x , i) and a proofπ that (ct, i, comCb
x
, com0,pk)

satisfies the first condition for being in L . Since the opening to com0 is not used,
we can change com0 to be a commitment com1 to 1, relying on the hiding property
of the commitment scheme.
Phase II: Switching the witness for theMulti-NIZK proof We then go through a
series of hybrids to switch the witness for the proof π generated by G to be a witness
for the second condition to being in L . This relies on the witness indistinguishability
of the Multi-NIZK, which follows from the ZK property.
Phase III: Switching the commitment ofCb

x Because the Multi-NIZK π generated
by G now uses a witness to the second condition for being in L , the opening
to comCb

x
no longer needs to appear in the circuit G. Therefore, we can change

comCb
x

to a commitment comC0
x

ofC0
x . Indistinguishability follows from the hiding

property of the commitment scheme.
Phase IV: Switching the encryption We then go through a sequence of hybrids
to switch ct from an encryption of (Cb

x , i) to an encryption of (C0
x , i). After this

change, the output of xiO′.Obf(1λ,Cb)[pk, x] is independent of b.

Fix any x ∈ {0, 1}n− n
d . We now present the formal description of each hybrid.

Phase I: Changing the commitments com0.

• Hyb1(λ): In this hybrid, we first sample (msk,pk) ← lFE.Setup(1λ) and skU ←
lFE.Keygen(msk,U) as in the real execution of xiO′.Obf(1λ,Cb). Then, we run
xiO′.Obf(1λ,Cb)[x,pk] as in the real execution, as follows:

1. Sample K0, K1 ← PRF.Key(1λ), and σ ← NIZK.Gen(1λ, 1t ).
2. Create commitments comCb

x
= C.Commit(Cb

x , r0) and com0 =
C.Commit(0, r1) using randomness r0, r1.

3. Obfuscate the following circuitG1=G1[Cb
x ,pk, K0, K1, comCb

x
, com0, r0, σ ]

to obtain G̃, such that G1(i, j) does the following:

(a) ct ← lFE.Enc
(
pk, (Cb

x , i);PRF.Eval(K0, i)
)
.

(b) π = NIZK.P
(
σ, v,

(
Cb
x ,PRF.Eval(K0, i), r0

)
; r̂

)
where v =

(ct, i, comCb
x
, com0,pk) and r̂ = PRF.Eval (K1, i).

(c) Output LDC(ct,π)) j .

4. Output C̃ x = (G̃, comCb
x
, com0, σ ).

The output of this experiment is (pk, skU , C̃ x ).
• Hyb2(λ): This experiment is obtained from the previous experiment by replacing
com0 with com1 = C.Commit(1, r0).

This is indistinguishable from the previous hybrid by the hiding property of the commit-
ment scheme.

Phase II: Switching the witness for the Multi-NIZK proof
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• Hyb3.1
z (λ) for z ∈ {0, 1}!1 : This experiment is obtained from the previous experi-

ment by modifying xiO′.Obf(1λ,Cb)[pk, x] as follows:

1. Generate K0, K1, σ, r0, r1, comCb
x
, and com1 as in the previous hybrid.

2. Puncture K1 to obtain K̃ [z]
1 ← PRF.Punc(K1, z).

3. Set r& = PRF.Eval(K1, z).
4. Set ct& = lFE.Enc

(
pk, (Cb

x , z);PRF.Eval(K0, z)
)
.

5. Set π& = NIZK.P(σ, v, w; r&), where the statement v = (ct&, z, comCb
x
,

com1,pk) and the witness w = (Cb
x ,PRF.Eval(K0, z), r0).

6. Obfuscate the following circuit G3.1
z = G3.1

z [Cb
x ,pk, K0, K̃

[z]
1 , comCb

x
,

com1, r0, r1, σ,π
&] to obtain G̃, such that G3.1

z (i, j) does the following:

(a) ct ← lFE.Enc
(
pk, (Cb

x , i);PRF.Eval(K0, i)
)
.

(b) π =






NIZK.P
(
σ, v, r1; r̂

)
if i < z

π& if i = z
NIZK.P

(
σ, v,

(
Cb
x ,PRF.Eval(K0, i), r0

)
; r̂

)
if i > z

where v = (ct, i, comCb
x
, com1,pk) and r̂ = PRF.Eval

(
K̃ [z]

1 , i
)

. That is, if i ≥ z, π

uses a witness for the first condition to being in L , and if i < z, then π uses a witness
for the second condition to being in L .
(c) Output (LDC(ct,π)) j .

7. Output C̃ x = (G̃, comCb
x
, com0, σ ).

For z = 0!1 , we will show that Hyb2(λ) is computationally indistinguishable from
Hyb3.1

z (λ), and for z > 0!1 , we will show that Hyb3.4
z (λ) and Hyb3.1

z+1(λ) are computa-
tionally indistinguishable. Both of these proofs are due to the fact that the G̃ generated
in the corresponding hybrids are obfuscations of functionally equivalent circuits.

• Hyb3.2
z (λ) for z ∈ {0, 1}"1 : This experiment is obtained from the previous experiment

by replacing r& with a truly random value.
This experiment is indistinguishable from the previous hybrid because the output of
the PRF is pseudorandom at punctured points.

• Hyb3.3
z (λ) for z ∈ {0, 1}"1 : This experiment is obtained from the previous experiment

by letting π& = NIZK.P(σ, (ct&, z, comCb
x
, com1,pk), r1; r&), that is, π& is now

generated using a witness to the second condition for being in L .
This is indistinguishable from the previous hybrid due to the witness indistinguisha-
bility of NIZK.

• Hyb3.4
z (λ) for z ∈ {0, 1}"1 : This experiment is obtained from the previous experiment

by changing r& to PRF.Eval(K1, z).
This is indistinguishable from the previous hybrid because the output of the PRF is
pseudorandom at punctured points.

• Hyb4(λ): This experiment is obtained from the previous experiment by changing
xiO′.Obf(1λ,Cb)[pk, x] to do the following:

1. Generate K0, K1, σ, r0, r1, comCb
x
, and com1 as in the previous hybrid.

2. Obfuscate the circuit G4 = G4[Cb
x ,pk, K0, K1, com1, r1, σ ] to obtain G̃ such

that G4(i, j) does the following:
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(a) ct ← lFE.Enc(pk, (Cb
x , i);PRF.Eval(K0, i)).

(b) π = NIZK.P(σ, (ct, i, comCb
x
, com1,pk), r1; PRF.Eval(K1, i)), that

is, π is always a proof using r1 as the witness to the second condition for
being in L .

(c) Output (LDC(ct,π)) j .

3. Output C̃ x = (G̃, comCb
x
, com1, σ ).

This is indistinguishable from the previous hybrid Hyb3.4
1!1 (λ) since the circuits gener-

ated in both hybrids are functionally equivalent.

Phase III: Switching the commitment comCb
x
.

• Hyb5(λ): This experiment is obtained from the previous experiment by changing
the commitment comCb

x
to comC0

x
= Commit(C0

x , r0).
This is indistinguishable from the previous hybrid due to the hiding property of the
commitment scheme.

Phase IV: Switching the encryption

• Hyb6.1
z (λ) for z ∈ {0, 1}"1 : This experiment is obtained from the previous experi-

ment by changing xiO′.Obf(1λ,Cb)[pk, x] to do the following:

1. Generate K0, K1, σ, r0, r1, comC0
x

and com1 as in the previous hybrid.

2. Puncture K0 to obtain K̃ [z]
0 ← PRF.Punc(K0, z).

3. Set r& = PRF.Eval(K0, z).
4. Set ct& = lFE.Enc(pk, (Cb, z); r&).
5. Obfuscate the following circuit G6.1

z = G6.1
z [C0

x ,C
b
x ,pk, K̃

[z]
0 , K1, comC0

x
,

com1, r1, σ, ct&] to obtain G̃ such that G6.1
z (i, j) does the following:

(a) ct =






lFE.Enc
(
pk, (C0

x , i); PRF.Eval
(
K̃ [z]

0 , i
))

if i < z

ct& if i = z

lFE.Enc
(
pk, (Cb

x , i); PRF.Eval
(
K̃ [z]

0 , i
))

if i > z

.

(b) π ← NIZK.P(σ, (ct, i, comC0
x
, com1,pk), r1; PRF.Eval(K1, 1)).

(c) Output (LDC(ct,π)) j .

6. Output (G̃, comC0
x
, com1, σ ).

We will show thatHyb6.1
0!1 (λ) andHyb5(λ) are computationally indistinguishable and that

Hyb6.1
z+1(λ) and Hyb6.4

z (λ) are computationally indistinguishable for all z ≥ 0!1 . These
hold because the obfuscated circuits are functionally equivalent.
• Hyb6.2

z (λ) for z ∈ {0, 1}"1 : This experiment is obtained from the previous experiment
by replacing r& with a truly random value.
This is indistinguishable from the previous hybrid because the output of the PRF is
pseudorandom at punctured points.

• Hyb6.3
z (λ) for z ∈ {0, 1}"1 : This experiment is obtained from the previous experiment

by generating the hardcoded ciphertext as ct& = lFE.Enc(pk, (C0
x , z); r&), that is, ct&

is now an encryption of C0
x .
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This is indistinguishable from the previous hybrid because of the semantic security of
lFE.

• Hyb6.4
z (λ) for z ∈ {0, 1}"1 : This experiment is obtained from the previous experiment

by calculating r& as PRF.Eval(K0, z).
This is indistinguishable from the previous experiment because the output of the PRF
is pseudorandom at punctured points.

• Hyb7(λ): This experiment is obtained from the previous experiment by changing
xiO′.Obf(1λ,Cb)[pk, x] to do the following:

1. Generate K0, K1, σ, r0, r1, comC0
x
, and com1 as in the previous hybrid.

2. Obfuscate the following circuitG7 = G7[C0
x ,pk, K0, K1, comC0

x
, com1, r1, σ ]

to obtain G̃ such that G7(i, j) does the following:

(a) ct = lFE.Enc
(
pk, (C0

x , i); PRF.Eval(K0, i)
)
.

(b) π = NIZK.P(σ, (ct, i, comC0
x
, com1,pk), r1; PRF.Eval(K1, i)).

(c) Output (LDC(ct,π)) j .

3. Output (G̃, comC0
x
, com1, σ ).

This is indistinguishable from the previous hybrid because the circuit G7 is func-
tionally equivalent to the circuit G6.4

1!1
. Observe that at this point, the output of xiO′.

Obf(1λ,Cb)[pk, x] is independent of b, and therefore, no adversary can guess b in
this experiment with probability noticeably far from 1

2 .

We proceed by showing that each consecutive pair of hybrid experiments is compu-
tationally indistinguishable.

Claim 4.3. For any PPT A, it holds that
∣∣∣Pr

[
A(Hyb1(λ)) = 1

]
−

Pr
[
A(Hyb2(λ)) = 1

] ∣∣∣ ≤ negl(λ) for a negligible function negl.

Proof. The difference between these two hybrids is that in Hyb1(λ), com0 is a com-
mitment to 0 and in Hyb2(λ), it is replaced with com1, a commitment to 1. Note that the
opening r1 to com0 and com1 is not included in the circuits G1 or G2. Therefore, these
hybrids are computationally indistinguishable by the hiding property of the commitment
scheme. !

Claim 4.4. For any PPT A, it holds that
∣∣∣ Pr

[
A(Hyb2(λ)) = 1

]
−

Pr
[
A(Hyb3.1

0!1 (λ)) = 1
] ∣∣∣ ≤ negl(λ) for a negligible function negl.

Proof. The difference between these two hybrids is that inHyb2(λ), G̃ is an obfuscation
of G2 and in Hyb3.1

0!1 (λ), G̃ is an obfuscation of G3.1
0!1

. We show that these two circuits
are functionally equivalent.

When i &= 0!1 , the difference between the two circuits is thatG2(i, j) uses the PRF key
K1 to generate the proof π and G3.1

0!1
(i, j) uses the punctured PRF key K̃ [z]

1 to generate
π . Since neither circuit evaluates the PRF on the punctured point when i &= 0!1 , the
outputs of the two circuits are the same.
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For i = 0!1 , we have that the ciphertext ct generated by both circuits are the same,
because both are computed with the unpunctured PRF key K0. For the Multi-NIZK
proof, the circuit G3.1

0!1
has a hardcoded proof π& which is calculated using the ciphertext

ct&. Since ct& is exactly the ciphertext generated by G2(0!1, j), then it holds that π& is
generated exactly as the proof π in G2(0!1, j).

Therefore, the obfuscations of G2 and G3.1
0!1

are computationally indistinguishable by
the security of xiO. !

Claim 4.5. For all z ∈ {0, 1}!1 , for any PPT adversary A, it holds that∣∣∣ Pr
[
A(Hyb3.1

z (λ)) = 1
]

− Pr
[
A(Hyb3.2

z (λ)) = 1
] ∣∣∣ ≤ negl(λ) for a negligible func-

tion negl.

Proof. This holds due to the pseudorandom property at punctured points. The differ-
ence between these hybrids is that on input (z, j), the circuit G3.1

z computes π as a
hardcoded proof π& calculated using PRF.Eval(K1, z) as the randomness, and G3.2

z
computes π& using a truly random value for the randomness of the proof. If there was an
adversary A that could distinguish between these two hybrids, then one could construct
an adversary B that receives as input the punctured key K̃ [z]

1 , and a challenge r̂ which
is either PRF.Eval(K1, z) or a uniformly random value. Then, B could sample pk and
skU honestly, and simulate generating C̃ x for A as in Hyb3.1

z (λ), with the exception that
B would set r& = r̂ as the randomness for the hardcoded proof π&. Then, the distin-
guishing advantage of A would directly translate into the distinguishing advantage for
B. Therefore, these hybrids are computationally indistinguishably by the security of the
PRF. !

Claim 4.6. For all z ∈ {0, 1}!1 , For any PPT adversary A, it holds that∣∣∣ Pr
[
A(Hyb3.2

z (λ)) = 1
]

− Pr
[
A(Hyb3.3

z (λ)) = 1
] ∣∣∣ ≤ negl(λ) for a negligible func-

tion negl.

Proof. This holds due to the witness indistinguishability of the Multi-NIZK. The differ-
ence between these hybrids is that inHyb3.2

z (λ), π& is a proof that (ct&, z, comCb
x
, com1,

pk) ∈ L using a witness to the first condition for being in L , while in Hyb3.3
z (λ), π& is a

proof for the same statement using a witness to the second condition for being in L . Indis-
tinguishability between adjacent hybrids follows from the witness indistinguishability
of the Multi-NIZK. !

Claim 4.7. For all z ∈ {0, 1}!1 , for any PPT adversary A, it holds that∣∣∣ Pr
[
A(Hyb3.3

z (λ)) = 1
]

− Pr
[
A(Hyb3.4

z (λ)) = 1
] ∣∣∣ ≤ negl(λ) for a negligible func-

tion negl.

Proof. This holds due to the pseudorandom property at punctured points. The difference
between these hybrids is that on input (z, j), the circuit G3.3

z computes π as a hardcoded
proof π& calculated using a truly random value r& as the randomness for the proof, and
G3.4

z computes π& using r& = PRF.Eval(K1, z) for the randomness. Therefore, if there
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were an adversary that could distinguish between these hybrids, one could construct an
adversary that would embed a PRF challenge as r& and thus break the security of the
PRF. !

Claim 4.8. For every z ∈ {0, 1}!1 \ {1!1}, for any PPT A, it holds that∣∣∣ Pr
[
A(Hyb3.4

z (λ)) = 1
]

Pr
[
A(Hyb3.1

z+1(λ)) = 1
] ∣∣∣ ≤ negl(λ) for a negligible function

negl.

Proof. This holds due to the security of xiO. Specifically, the difference between these
two circuits is the way that the Multi-NIZK proofs are calculated in the circuits G3.1

z+1
and G3.4

z . When i &∈ {z, z + 1}, the computation done by the circuits is identical.
When i = z, the circuit G3.4

z (z, j) calculated π as a hardcoded proof π& for the state-
ment v = (ct&, z, comCb

x
, com1,pk) using the witness w = r1, and using randomness

PRF.Eval(K1, z). Similarly, G3.1
z+1(z, j) generates π for the same statement v and wit-

ness w, using randomness PRF.Eval(K̃ [z]
1 , z). Since this is the only difference between

the two proofs, these are functionally equivalent, because the functionality of the PRF
at non-punctured points is preserved under puncturing.

For i = z + 1, the difference between the two circuits is that G3.1
z+1 uses a hardcoded

proof π& to calculate π , where π& is calculated using a ciphertext ct& and randomness
r&. We have that

G3.4
z (z + 1, j) =

(
LDC(ct,NIZK.P(σ, (ct, z + 1, comCb

x
, com1,pk),

w;PRF.Eval(K̃ [z]
1 , z + 1))

)

j

=
(
LDC(ct&,NIZK.P(σ, (ct&, z + 1, comCb

x
, com1,pk),

w;PRF.Eval(K̃ [z]
1 , z + 1))

)

j

=
(
LDC(ct&,NIZK.P(σ, (ct&, z + 1, comCb

x
, com1,pk),

w;PRF.Eval(K1, z + 1))) j

=
(
LDC(ct&,NIZK.P(σ, (ct&, z + 1, comCb

x
, com1,pk), w; r&)

)

j

=
(
LDC(ct&,π&)

)
j = G3.1

z+1(z + 1, j),

where ct = lFE.Enc(pk, (Cb
x , z + 1);PRF.Eval(K0, z + 1)) and w = (Cb

x ,

PRF.Eval(K0, z+1), r0). Therefore, G3.1
z+1 and G3.4

z are computationally indistinguish-
able by the security of xiO. !

Claim 4.9. For any PPT A, it holds that
∣∣∣Pr

[
A(Hyb3.4

1!1 (λ)) = 1
]

− Pr
[
A(Hyb4(λ)) = 1

] ∣∣∣ ≤ negl(λ) for a negligible function negl.
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Proof. We show thatG3.4
1!1

andG4 are functionally equivalent. For any input (i, j)where
i &= 1!1 , the difference between these hybrids is that the proof generated in G3.4

1!1
(i, j) is

calculated using the punctured PRF key K [1!1 ]
1 , and the proof in G4(i, j) is calculated

using the non-punctured key K1. Both are equivalent because neither uses the PRF on
the punctured point.

When i = 1!1 , we have that the ciphertexts ct generated by both circuits are both
lFE.Enc(pk, (Cb

x , i);PRF.Eval(K0, i)), and thus are the same. For the proof π , the
circuit G3.4

1!1
has a hardcoded proof π& which is calculated using the ciphertext ct&. This

ciphertext ct& is identical to the ciphertext ct generated by G4, and both proofs are for
the same statement and witness. Moreover, π& uses the unpunctured key K1 to generate
the randomness for the proof, just as π generated by G4. Therefore, both the ciphertexts
and proofs generated by both circuits are identical, and thus the circuits are functionally
equivalent. Therefore, these are computationally indistinguishable by the security of
xiO. !

Claim 4.10. For any PPT A, it holds that
∣∣∣Pr

[
A(Hyb4(λ)) = 1

]

− Pr
[
A(Hyb5(λ)) = 1

] ∣∣∣ ≤ negl(λ) for a negligible function negl.

Proof. This is due to the computational hiding property of the commitment scheme.
In particular, the commitment comCb

x
is hardwired into the circuit G4 and is part of the

statement for the Multi-NIZK proof, but the opening r0 to comCb
x

is not used and in
particular is not included in the circuit G4. Therefore, if one could distinguish between
these hybrids, it would break the hiding property of the commitment scheme. Therefore,
these are computationally indistinguishable. !

Claim 4.11. For any PPT A, it holds that
∣∣∣Pr

[
A(Hyb5(λ)) = 1

]
−

Pr
[
A(Hyb6.1

0!1 (λ)) = 1
] ∣∣∣ ≤ negl(λ) for a negligible function negl.

Proof. We show that the two circuits G5 and G6.1
0!1

agree on all inputs (i, j). When
i &= 0!1 , the difference between the two circuits is that G5 uses the unpunctured PRF
key K0 to generate the randomness for the ciphertext ct, while G6.1

0!1
uses the punctured

key K̃ [0!1 ]
0 to generate the randomness for ct. Since neither circuit evaluates the PRF

on the punctured point when i &= 0!1 , it holds that G5(i, j) = G6.1
0!1

(i, j) for i &= 0!1

because functionality is preserved under puncturing.
For i = 0!1 , the difference between the two circuits is that G6.1

0!1
uses a hardcoded

ciphertext ct& to compute the ciphertext ct, which is equivalent to ct generated by G5.
In particular, we have that

G5(0!1 , j) =
(
ct,NIZK.P(σ, (ct, i, comC0

x
, com1,pk), r1;PRF.Eval(K1, 0!1)

)

j

=
(
ct&,NIZK.P(σ, (ct&, i, comC0

x
, com1,pk), r1;PRF.Eval(K1, 0!1)

)

j
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= G6.1
0!1

(0!1 , j)

where ct = lFE.Enc(pk, (C0
x , i;PRF.Eval(K0, 0!1)). Therefore,G5 andG6.1

0!1
are func-

tionally equivalent, so these hybrids are computationally indistinguishable by the secu-
rity of xiO. !

Claim 4.12. For every z ∈ {0, 1}!1 , for any PPT A, it holds that∣∣∣ Pr
[
A(Hyb6.1

z (λ)) = 1
]

− Pr
[
A(Hyb6.2

z (λ)) = 1
] ∣∣∣ ≤ negl(λ) for a negligible func-

tion negl.

Proof. This holds due to the pseudorandom property of the PRFs at punctured points.
The difference between these two hybrids is that Hyb6.1

z (λ) calculates r& = PRF.Eval
(K0, z) and Hyb6.2

z (λ) calculates r& as a truly random value. If there were an adversary
A that could distinguish between these two hybrids, we could construct an adversary
B that receives the punctured key K̃ [z]

0 and a value r̂ and constructs the circuits G6.1
z

and G6.2
z uses r̂ as r&. Then, the distinguishing advantage of A would translate exactly

into the distinguishing advantage of B in breaking the security of the puncturable PRF.
Therefore, these are computationally indistinguishable. !

Claim 4.13. For all z ∈ {0, 1}!1 , for any PPT adversary A, it holds that

Pr
[
A(Hyb6.2

z (λ)) = 1
]

− Pr
[
A(Hyb6.3

z (λ)) = 1
]

≤ negl(λ) for a negligible function

negl.

Proof. This holds due to the λ-selective security of lFE. In particular, the difference
between these two hybrids is the hardcoded ciphertext ct& in G6.2

z and G6.3
z . In the

first, the hardcoded ciphertext ct& = lFE.Enc(pk, (Cb
x , i); r&) and in the second,

c& = lFE.Enc(pk, (C0
x , i); r&). We show that these hybrids are computationally in-

distinguishable in two steps. First, we show that Hyb6.2
z (λ) is indistinguishable from an

intermediate hybrid Hyb6.2.5
z (λ) which is the same as Hyb6.2

z (λ), except that we change
ct& to lFE.Enc(pk, 0s+!1; r&). We show that if there exists an adversary A that can
distinguish between Hyb6.2

z (λ) and Hyb6.2.5
z (λ) with noticeable probability, there exists

an adversary B that breaks the selective security of lFE.
For any set of λ circuits {Fk}k∈[λ] (in the circuit class for lFE) with Fk(C0

x , i) =
Fk(C0

x , i) for all k, and with F0 = U , let skk = lFE.Keygen(msk, Fk) for each k. The
adversaryB acts as follows.B receives (pk, {Fk}, (Cb

x , i), 0n+!1 , {skk}), and a challenge
ciphertext ĉt from the challenger, where ĉt is either an encryption of Cb

x or of 0n+!1 .
We also let C0

x and C1
x be given to B. Then, B generates K0, K̃

[z]
0 , K1, σ, r0, r1, comC0

x
,

and com1 as in Hyb6.2
z (λ). Then, B generates a circuit G ′ following the description

of G6.2
z in Hyb6.2

z (λ), with the only difference being that the hardwired ciphertext
ct& is set to the challenge ciphertext ĉt. B then obfuscates G ′ to obtain G̃ and sends
pk, sk0, (G̃ ′, comC0

x
, com1, σ ) to A as the output of FE.Enc(pk,Cb

x ). It is easy to see

that if ĉt is an encryption of Cb
x , then we are in Hyb6.2

z (λ), and if ĉ is an encryption of
0n+!1 , then we are in Hyb6.2.5

z (λ). Therefore, the distinguishing advantage of B is the



On the Complexity of Compressing Obfuscation Page 41 of 78 21

same as that of A, thereby breaking the selective security of lFE. The same proof holds
to show that Hyb6.2.5

z (λ) and Hyb6.3
z (λ) are computationally indistinguishable, except

that ĉ will either be an encryption of 0n+!1 or ofC0
x . Therefore, this shows thatHyb6.2

z (λ)

and Hyb6.3
z (λ) are computationally indistinguishable by the security of lFE. !

Claim 4.14. For every z ∈ {0, 1}!1 , for any PPT A, it holds that∣∣∣ Pr
[
A(Hyb6.3

z (λ)) = 1
]

− Pr
[
A(Hyb6.4

z (λ)) = 1
] ∣∣∣ ≤ negl(λ) for a negligible func-

tion negl.

Proof. This holds due to the pseudorandom property of the PRFs at punctured points.
The difference between these two hybrids is that Hyb6.3

z (λ) calculates r& as a truly ran-
dom value and Hyb6.4

z (λ) calculates r& = PRF.Eval(K0, z). If there were an adversary
A that could distinguish between these two hybrids, we could construct an adversary
B that receives the punctured key K̃ [z]

0 and a value r̂ and constructs the circuits G6.3
z

and G6.4
z uses r̂ as r&. Then, the distinguishing advantage of A would translate exactly

into the distinguishing advantage of B in breaking the security of the puncturable PRF.
Therefore, these are computationally indistinguishable. !

Claim 4.15. For every z ∈ {0, 1}!1 \ {1!1}, for any PPT A, it holds that∣∣∣ Pr
[
A(Hyb6.4

z (λ)) = 1
]

− Pr
[
A(Hyb6.1

z+1(λ)) = 1
] ∣∣∣ ≤ negl(λ) for a negligible func-

tion negl.

Proof. This holds due to the security of xiO. Specifically, it is easy to see that the
two circuits G6.4

z and G6.1
z+1 agree on all inputs (i, j) where i &∈ {z, z + 1} because the

functionality of the PRF at non-punctured points is preserved under puncturing.
When i = z, the difference between the two circuits is thatG6.4

z (z, j) uses a hardcoded
ciphertext ct& to generate the ciphertext. We have that

ct& = lFE.Enc(pk, (C0
x , z);PRF.Eval(K0, z))

= lFE.Enc(pk, (Cb
x , z + 1);PRF.Eval(K̃ [z+1]

0 , z)) = ct

where ct is the ciphertext generated by G6.1
z+1(z, j). This implies that the proofs π gen-

erated by both circuits are the same, because the only difference between the proofs is
the use of ct in the statement being proven.

For i = z+ 1, we have a similar argument. The difference between the two circuits is
that G6.1

z+1(z + 1, j) uses a hardcoded ciphertext ct& to generate the ciphertext. We have
that

ct& = lFE.Enc(pk, (Cb
x , z + 1);PRF.Eval(K0, z + 1))

= lFE.Enc(pk, (Cb
x , z + 1);PRF.Eval(K̃ [z]

0 , z + 1)) = ct

where ct is the ciphertext generated by G6.4
z (z + 1, j). As above, this implies that the

proofs π generated by both circuits are identical. Therefore, these circuits are function-
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ally equivalent, so the hybrids are computationally indistinguishable by the security of
xiO. !

Claim 4.16. For any PPT A, it holds that Pr
[
A(Hyb6.4

1!1 (λ)) = 1
]

− Pr
[
A(Hyb7

0(λ)) = 1
]

≤ negl(λ) for a negligible function negl.

Proof. We show that the two circuits G6.4
1!1

and G7 agree on all inputs (i, j).
When i &= 1!1 , the difference between the two circuits is that G7(i, j) uses the

unpunctured PRF key K0 to generate the randomness for the ciphertext ct, while G6.4
1!1

uses the punctured key K̃ [1!1 ]
0 to generate the randomness for ct. Since the value of the

PRF on the punctured point is not needed for either of these computations, it holds that
G6.4

1!1
(i, j) = G7(i, j) because functionality is preserved under puncturing.

For i = 1!1 , the difference between the two circuits is that G6.4
z (1!1 , j) calculates the

ciphertext as a hardwired ciphertext ct&. We have that

ct& = lFE.Enc(pk, (C0
x , 1!1);PRF.Eval(K0, 1!1)) = ct

where ct is the ciphertext generated by G7. Therefore, G6.4
1!1

and G7 are functionally
equivalent, so these hybrids are compuatationally indistinguishable by the security of
xiO. !

By considering the sequence of hybrids, we conclude that probability of distinguish-
ing between Hyb1(λ) and Hyb7(λ) is (6 + 9 · 2!1) · negl(λ) ≤ poly(λ) · negl(λ)
which is negligible in λ for a negligible function negl. Since Hyb1(λ) is the real ex-
periment, the probability of outputting b in the real experiment is at most 1

2 + negl(λ).
Recall that this shows that the probability of any PPT adversary outputting b on input
(C0,C1,pk, skU , C̃ x ) is at most 1

2 + negl(λ).
We now conclude the proof by showing that no PPT adversary can output b on input

(C0,C1, xiO′.Obf(1λ,Cb)) with probability negligibly far from 1
2 . Define a sequence

of hybrids Hx (λ) for x ∈ {0, 1}n− n
d , as follows:

• H0n− n
d (λ):This is the real experiment, where b ← {0, 1} and the adversary receives

(C0,C1, xiO′.Obf(1λ,Cb)). In particular, in the calculation of xiO′.Obf(1λ,Cb)),
for each x , C̃ x is generated as in Hyb0(λ), i.e., as an obfuscation corresponding to
Cb
x .

• Hx(λ) for x ∈ {0, 1}n− n
d \ {0n− n

d }: This hybrid is obtained from Hx−1(λ) by
replacing C̃ x with the value of C̃ x generated according to Hyb7(λ), i.e., C̃ x is now
independent of b.

Observe that H0n− n
d (λ) corresponds to the real experiment and H1n− n

d (λ) is indepen-
dent of b. We now show the following claim.

Claim 4.17. ForanyPPTA, it holds that
∣∣Pr

[
A(Hx (λ) = 1

]
− Pr

[
A(Hx+1) = 1

]∣∣ ≤
negl(λ) for every x ∈ {0, 1}n− n

d \ {1n− n
d } for a negligible function negl.
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Proof. Let x ∈ {0, 1}n− n
d \ {1n− n

d } and suppose for contradiction that there exists an
adversaryA and polynomial p such that for infinitely many values of λ,A can distinguish
between Hx (λ) and Hx+1(λ) with probability 1

p(λ) . We construct an adversary B that

can distinguish between Hyb0(λ) and Hyb7(λ) corresponding to x + 1.
B receives as input (pk, skU , C̃&) where (pk,msk) ← lFE.Setup(1λ) and skU ←

lFE.Keygen(msk,U), as in both Hyb0(λ) and Hyb7(λ). The value C̃& either corre-
sponds Cb

x+1 according to Hyb0(λ) or C0
x+1 according to Hyb7(λ). Then, B chooses

a bit b′ ← {0, 1}. Then, for all x ′ < x + 1, B uses pk to generate C̃ x ′
according to

xiO′.Obf(1λ,C)[pk, x ′] as in Hyb7(λ), and for all x ′ > x + 1, B uses pk to gener-
ate C̃ x ′

according to xiO′.Obf(1λ,C)[pk, x ′] as in Hyb1(λ) using Cb′
x ′ . Then, B sets

C̃ x+1 = C̃& and sends
(
pk, skU , {C̃ x }

x∈{0,1}n− n
d

)
to A. Finally, B outputs the response

b′′ that B receives from A.
Observe that if b′ = b, then if C̃& corresponds toHyb0(λ) then A’s input is distributed

exactly asHx (λ), and if C̃& corresponds toHyb7(λ), thenA’s input is distributed accord-
ing to Hx+1(λ). Therefore, if b′ = b, then B succeeds with probability 1

p(λ) . Therefore,

B has advantage 1
2p(λ) in distinguishing between Hyb0(λ) and Hyb7(λ) corresponding

to x+1, which is a contradiction. Therefore,Hx (λ) is computationally indistinguishable
from Hx+1(λ). !

Therefore, no adversary can distinguishH0n− n
d andH1n− n

d with probability more than
2n− n

d ·negl(λ) for a negligible function negl. Since n ∈ O(log(λ)), this is negligible in
λ, thus concluding the proof of security for xiO′.

4.2. (1/poly − negl)-Worst Case XiO to (1 − negl)-Worst Case XiO

In this section, we show how to modify the construction of our (1/poly(λ)− negl(λ))-
worst-case correct XiO to obtain a (1 − negl(λ))-worst-case correct XiO. This trans-
formation involves creating many parallel repetitions of the given XiO scheme, such
that one of them will be correct with high probability. This correctness of the resulting
scheme relies on the fact that we can identify repetitions that did not succeed. Let xiO
be the

( γ
16 − negl(λ)

)
-worst-case correct XiO scheme resulting from the above trans-

formation, for any class of circuits Cs,n ∈ Plog. We define the almost perfectly correct
scheme xiO′ as follows. This scheme is parameterized by N = 16λ

γ .
(1/poly)-worst-case correct XiO to (1 − negl)-worst-case correct XiO:

• C̃ ← xiO′.Obf(1λ,C):

1. For each z ∈ [N ], let C̃ z ← xiO.Obf(1λ,C)

2. Output {C̃ z}z∈[N ].

• y ← xiO′.eval(C̃, x):

1. For every z ∈ [N ], run yz = xiO.Eval(C̃ z, x). Let z& be the first index for
which yz &= ⊥.

2. Output yz
&
, or ⊥ if yz

&
is not defined.
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Claim 4.18. Let p(·) be any polynomial. If there exists a ( 1
16p(λ) − negl(λ))-worst-

case correct XiO scheme for a circuit class Cs,n for some negligible function negl, then
there exists a (1−negl′(λ))-worst-case correct XiO scheme for Cs,n for some negligible
function negl′.

Proof. Let xiO be the
( γ

16 − negl(λ)
)
-worst-case correct XiO scheme from the trans-

formation in Sect. 4.1 for Cs,n = {Cλ}λ∈N, where γ = 1
p(λ) . Let xiO′ be the resulting

scheme in the above construction. The efficiency and security of xiO′ follow direct-
ly from the fact that xiO′ consists of polynomially many parallel repetitions of xiO.
Therefore, we focus on showing (1 − negl(λ))-worst-case correctness.

Worst-Case Correctness To show correctness of xiO′, consider the probability that for
C ∈ Cλ and x ∈ {0, 1}n , C̃ ← xiO′.Obf(1λ,C) and evaluation of C̃ on x succeeds.
The evaluation algorithm xiO′.Eval(C̃, x) starts by running yz ← xiO.Eval(C̃ z, x) for
each z ∈ [N ], and selects the first index z& for which yz

& &= ⊥; we set z& = ⊥ if no
such index exists. We want to show that with high probability, such an index z& exists
and yz

& = C(x). Let rz denote the randomness used by the zth obfuscation.
We first show that the probability that z& = ⊥ is small. Let Xz = 1 if yz = ⊥, and let

Xz = 0 otherwise. Then,

Pr
rz

[
Xz = 1

]
= Pr

rz

[
yz = ⊥

]
≤ Pr

rz

[
yz &= C(x)

]
≤ 1 − γ

16
− negl(λ)

by the worst-case correctness of xiO. Therefore, since the repetitions are independent,

Pr
[
z& = ⊥

]
= Pr

[
∀z, Xz = 1

]
= (Pr [X1 = 1])

16λ
γ

≤
(

1 − γ

16
− negl(λ)

) 16λ
γ ≤

(
1 − γ

16

) 16λ
γ ≤ 1

eλ
,

so the probability that z& = ⊥ is negligible in λ.
We now show that for any z for which yz &= ⊥, it holds that yz = C(x) with

high probability. To do so, we briefly recall the xiO evaluation algorithm and introduce
notation for the zth instance. The algorithm xiO.Eval(C̃ z, x) does the following:

1. Parse x = x1x2 with |x1| = n − n
d and evaluate the obfuscated circuit G̃x1,z on all

inputs (i, j) to obtain czi j = xiO.Eval(G̃x1,z, (i, j)).

2. For each i , run LDC.Dec(czi1 . . . c
z
i2!2

) to obtain a list of (ck,zi ,πk,z
i ) for polyno-

mially many k.
3. For each i and each k, runNIZK.V(σ, xk,zi ,πk,z

i ) to check if the statement xk,zi ∈ L ,
where xk,zi = (ctk,zi , i, comx1,z

Cx1
, comx1,z

0 ,pkz). For the first index k for which the

verification passes, set ctzi = ctk,zi .
4. For each i , decrypt to obtain yzi = lFE.Dec(skUz , ct

z
i ).

5. Let yz be the x2th element of ECC.Dec(yz1 . . . y
z
2!1

) and output yz .
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Therefore, for any z, we have that

Pr
[
yz &= C(x) | yz &= ⊥

]
≤ Pr

[
ECC.Dec(yz1 . . . y

z
2!1

) &= T (Cx1) | yz &= ⊥
]

= Pr
[
∃i : yzi &= ⊥ ∧ yzi &= ECC(T (Cx1))[i] | yz &= ⊥

]
,

where the last equality holds because yz &= ⊥ implies that there are sufficiently many
yzi which are not ⊥, and thus ECC.Dec could only output the wrong answer due to an
index i that is incorrect. Then, by the correctness of lFE, we have that for some negligible
function negl, this is

Pr
[
∃i : yzi &= ⊥ ∧ yzi &= ECC(T (Cx1))[i] | yz &= ⊥

]

≤ Pr
[
∃i : ctzi &= ⊥ ∧ ∀r : ctzi &= lFE.Enc(pkz, (Cx1 , i); r) | yz &= ⊥

]
+ negl(λ)

= Pr
[
∃i : NIZK.V(σ, xk,zi ,π

k,z
i ) = 1 ∧ ∀r : ctzi &= lFE.Enc(pk, (Cx1 , i); r) | yz &= ⊥

]

+ negl(λ)

≤ negl(λ)

by the soundness of NIZK, because if czi &= lFE.Enc(pk, (Cx1 , i); r) for all r then
xzi &∈ L . Therefore, we conclude that

Pr
[
yz

& &= C(x)
]

≤ Pr
[
yz

& &= C(x) ∧ yz
& &= ⊥

]
+ Pr

[
yz

& = ⊥
]

≤ Pr
[
∃z : yz &= C(x) | yz &= ⊥

]
+ negl(λ) ≤ negl(λ)

because there are polynomially many indices z. Therefore, Pr
[
yz

& = C(x)
]

≥ 1 −
negl(λ), thereby showing (1 − negl(λ))-worst-case correctness of xiO′. !

4.3. (1 − negl)-Worst Case Correct XiO to Perfectly Correct XiO

Claim 4.19. Let xiO be a (1 − negl(λ))-worst case correct XiO scheme for the class
of circuits Cs,n. Then, there exists a perfectly correct XiO scheme for the class of circuits
Cs,n.

Proof. Let xiO be the scheme for Cs,n = {Cλ}λ∈N. We show that xiO can be amplified
to a scheme xiO′ which satisfies almost perfect correctness, security, and compression,
and that xiO′ can then be amplified to a scheme xiO& which is perfectly correct. Let
s = s(λ) and n = n(λ).

Given xiO, we apply a standard BPP-style amplification. We define a new xiO′ that on
input circuit C runs xiO poly-many times (in n), say O(n2) times, and outputs all of the
obfuscations. Evaluation is done by running all of the obfuscations and then outputting
the majority value. This transformation reduces the probability of being wrong on each
x ∈ {0, 1}n to negl(λ) · 2−n . Now, we apply a union bound and get that

Pr
[
C̃ ← xiO.Obf(1λ,C) : ∀x ∈ {0, 1}n : xiO.Eval(C̃, x) = C(x)

]
≥ 1 − negl(λ),
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thereby showing that xiO′ is almost perfectly correct. xiO′ satisfies compression and
security because it consists of poly(n) parallel repetitions of xiO.

Now, we change the resulting xiO′ to a perfectly correct xiO& as follows. After ob-
fuscating a circuit it goes over all inputs (in time 2n which is polynomial) and checks
whether the obfuscation is perfectly correct. If so, it outputs this obfuscation. If not, it
outputs the circuit in the clear (padded to the correct length, and modifying xiO&.Eval
as necessary). The resulting obfuscation is clearly perfectly correct. The security of it
suffers from an extra negligible factor due to the cases where the obfuscation was not
correct. Overall, the final obfuscation is secure and perfectly correct.5 !

4.4. Wrapping Up: Proof of Theorem 4.1

Let Cs,n be any class in Plog. Let xiO be a (1/2 + 1/p(λ))-approximately correct XiO
scheme for all Plog. Thus, the circuits Gx in the transformation in Sect. 4.1 can be
obfuscated when the XiO resulting from that transformation is for the class Cs,n ∈ P.
Then, by Theorem 4.2, Corollary 3.23, and Theorem 3.17, assuming LWE and the
existence of NIZKs, there exists a

(
1

16p(λ) − negl(λ)
)

-worst-case correct XiO scheme
for the class Cs,n ∈ P. Then, by Claim 4.18, there exists a (1 − negl(λ))-worst-case
correct XiO scheme for Cs,n . Then, by Claim 4.19, there exists a perfectly correct XiO
scheme for Cs,n . Since this holds for any class Cs,n ∈ Plog, we therefore obtain perfectly
correct XiO for all of Plog.

5. Impossibility of Key Agreement from XiO and OWFs

In this section, we show a separation from XiO and one-way functions to key agreement.
In particular, we present an oracle % relative to which there exists a one-way function
and XiO for oracle-aided circuits, but there does not exist an oracle-aided bit-agreement
protocol. This separation is in largely based on [9,10] and in particular follows the
framework of black-box separations presented in [66]. We extend the model of [9,10]
to capture obfuscation for oracle-aided circuits with all possible gates, as in [48,49]. We
begin with some preliminaries.

5.1. Preliminaries

Throughout this section, for ease of notation we denote both the security parameter and
the size of circuits by s. While these could be decoupled, it is natural to combine them in
this way. Therefore, in this section, we use the notation {Cs,n}s,n∈N to denote the circuit
class where each C ∈ Cs,n has size s and input length n.

5While the whole proof can be applied to XiO, this last step does not work for SXiO since we cannot go
over all inputs and check the correctness of the obfuscation.
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Definition 5.1. (Oracle-Aided Circuits) We say that C is a class of oracle-aided circuits
if it consists of circuits, represented as a directed acyclic graph, with gates that are either
Boolean operations or oracle gates. Without loss of generality, we consider oracle-aided
circuits that output a single bit.

In the above definition, we note that oracle gates could output ⊥ (not only 0 or 1).
Since we intend to capture oracle-aided circuits for all functionalities, we define ⊥ ∨ 1
to output 1 and we let all other Boolean operations involving ⊥ output ⊥.6

Definition 5.2. (Query types) Let M be an oracle-aided algorithm with oracle access
to %. Then, any query Q that M makes to % is called a direct query of M . Moreover, if
%(Q) issues a query Q′ to % for any such Q, we say that Q′ is an indirect query of M
caused by Q.

Definition 5.3. (q-Query Algorithm) We say that an algorithm M with oracle access
to % is a q-query algorithm if for every s ∈ N, the total number of direct queries that
M(1s) makes to % is at most q(s), and each query made by M(1s) has size at most q(s).

We note that the above definition is without loss of generality. In particular, with
regard to the size of the queries made by M , in this paper we consider unbounded
adversaries that make a sub-exponential number of queries. However, an adversary
that makes very large queries could use them to learn new oracle query-answer pairs
indirectly. Therefore, the above definition captures the notion that the adversary can
only learn a sub-exponential number of query-answer pairs, but may do any amount of
computation on that information.

5.1.1. Oracle-Aided Bit Agreement

We next define oracle-aided bit agreement protocols. We are interested in protocols
where both parties A and B run in polynomial time. Therefore we start by defining a
PPT oracle-aided algorithm and then continue with the definition of an oracle-aided bit
agreement protocol.

Definition 5.4. (PPT Oracle-Aided Algorithm) We say that an oracle-aided algorithm
M is a PPT oracle-aided algorithm with respect to an oracle % if there exists polynomials
q1, q2, q3 such that for any s ∈ N, it holds that M(1s) is a q1-query algorithm, all queries
that M(1s) makes to % have query and answer size bounded by q2(s), and M(1s) runs
in time q3(s).

Definition 5.5. An oracle-aided bit agreement protocol + = (A,B) is a tuple of PPT
oracle-aided algorithms relative to an oracle % with the following syntax:

• (kA, kB, T ) ← 〈A#(1s; rA),B#(1s; rB)〉: For random tapes rA and rB (that are
poly in s), we denote the execution of the protocol by 〈A%(1s; rA),B%(1s; rB)〉. In
the output, kA is the output bit of A, kB is the output bit of B, and T is the protocol
transcript, consisting of messages exchanged between A and B.

6This formalization allows us to capture functionalities like mux, even if an oracle gate returns ⊥.
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We require that the following conditions hold:

• Perfect Completeness For any s ∈ N, it holds that

Pr
rA,rB

[
(kA, kB, T ) ← 〈A%(1s; rA),B%(1s; rB)〉 : kA = kB

]
= 1.

• Security For any PPT oracle-aided algorithm E , there exists a negligible function
negl such that for all sufficiently large s ∈ N,

AdvKA%,+,E (s)
def=

∣∣∣∣Pr
[
ExpKA%,+,E (s) = 1

]
− 1

2

∣∣∣∣ ≤ negl(s),

where the experiment ExpKA%,+,E (s) is defined as follows:

1. (kA, kB, T ) ← 〈A%(1s),B%(1s)〉.
2. k′ ← E%(1s, T ).
3. If k′ = kA then output 1, otherwise output 0.

5.1.2. XiO for Oracle-Aided Circuits

We now define XiO relative to an oracle, similar to the definition of iO relative to an
oracle given in [9,10]. We strengthen the [9,10] framework to capture XiO for circuits
which may contain all possible oracle gates. We first need the definition of functional
equivalence relative to an oracle.

Definition 5.6. Let C0 and C1 be two oracle-aided circuits relative to an oracle %. We
say that C0 and C1 are functionally equivalent relative to %, denoted C%

0 ≡ C%
1 , if for

all inputs x it holds that C%
0 (x) = C%

1 (x).

Definition 5.7. A perfectly correct XiO scheme relative to an oracle % for a class C =
{Cs,n}s,n∈N of oracle-aided circuits is a tuple of oracle-aided algorithms xiO = (Obf,
Eval) with the following syntax:

• C̃ ← Obf#(1s,C): The obfuscator receives the security parameter 1s and a circuit
C ∈ Cs and outputs a circuit C̃ .

• eval#(C̃, x): The evaluator receives a circuit C̃ and an input x , and outputs a string
y or ⊥.

We require the following conditions to hold:

• Perfect Correctness For all s, n ∈ N and all C ∈ Cs,n it holds that

Pr
[
Ĉ ← Obf%(1s,C) : C% ≡ Ĉ%

]
= 1

• Indistinguishability For any PPT distinguisher D = (D1,D2), there exists a neg-
ligible function negl(·) such that for every s ∈ N,

AdvXiO%,xiO,D,C(s)
def=

∣∣∣∣Pr
[
ExpXiO

%,xiO,D,C(s) = 1
]

− 1
2

∣∣∣∣ ≤ negl(s)
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where the random variable ExpXiO
%,xiO,D,C(s) is defined as follows:

· b ← {0, 1}.
· (C0,C1, state) ← D%

1 (1
s) where |C0| = |C1| = s and C%

0 ≡ C%
1 .

· Ĉ ← Obf%(1s,Cb).
· b′ ← D%

2 (state, Ĉ).
· If b′ = b then output 1. Otherwise, output 0.

• Efficiency Obf% satisfies the required compression for XiO.

Exponential Security We say that an obfuscator relative to an oracle % is exponentially
secure if for any q-query adversary A, if there exists some 0 ≤ γ < 1 such that
q(s) ≤ 2γ s , then AdvXiO%,xiO,A,C(s) is at most 1/q(s).

5.1.3. The Class of Reductions

In this section, we present the class of reductions that we capture. At a high level, we say
that a black-box construction of oracle-aided key agreement relative to % from a one-
way function and XiO is a key agreement protocol with the property that any adversary
that can break the security of the key agreement protocol can be used either to invert
the one-way function or break the security of XiO. Moreover, this definition captures
constructions from XiO for circuits which are allowed to contain all possible oracle
gates.

Definition 5.8. An (A,B,M, TM , εM,1, εM,2)-fully black-box construction of an oracle-
aided bit-agreement protocol from a one-way function f and an XiO scheme xiO for
the class of oracle-aided circuits C (which may contain circuits with both f gates and
xiO gates) consists of a tuple of PPT oracle-aided algorithms (A,B), an oracle-aided
algorithm M that runs in time TM (·), and functions εM,1(·) and εM,2(·) such that the
following holds:

• Perfect completeness: For any s ∈ N, it holds that

Pr
rA,rB

[
(kA, kB, T ) ← 〈A f,xiO(1s; rA),B f,xiO(1s; rB)〉 : kA = kB

]
= 1.

• Black box proof of security: For any function f = { fs}s∈N, any scheme xiO =
(Obf,Eval) satisfying the syntax of perfectly correct XiO for the circuit class C,
any oracle-aided algorithm E that runs in time TE (·), and any function εE (·), if

∣∣∣∣Pr
[
ExpKA( f,xiO),(A,B),E (s)

]
− 1

2

∣∣∣∣ ≥ εE (s)

for infinitely many values of s ∈ N, then either

Pr
x←{0,1}s

[
fs
(
M f,xiO,E ( fs(x))

)
= fs(x)

]
≥ εM,1

(
TE (s) · ε−1

E (s)
)
· εM,2(s)
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for infinitely many values of s ∈ N, or

∣∣∣∣Pr
[
ExpXiO

( f,xiO),xiO,ME ,C(s) = 1
]

− 1
2

∣∣∣∣ ≥ εM,1

(
TE (s) · ε−1

E (s)
)
· εM,2(s)

for infinitely many values of s ∈ N.

The security loss function Since we intend to capture constructions that may be based
on super-polynomial security assumptions, we allow the algorithm M to run in arbitrary
time TM (s) and to have an arbitrary security loss. Moreover, we distinguish between the
“adversary-dependent” security-loss εM,1(TE (s)·ε−1

E (s)), and “adversary-independent”
security loss εM,2(s). See [9,10] for further discussion.

5.2. Proof Overview and the Oracle %

We prove the following theorem.

Theorem 5.9. Let (A,B,M, TM , εM,1, εM,2) be a fully black-box construction of a
bit-agreement protocol from a one-way function and from XiO for a class of oracle-
aided circuits C. Then, at least one of the following holds:

• The reduction runs in exponential time, i.e., TM (s) ≥ 2γ s for some γ > 0.
• The security loss is exponential, i.e., εM,1(sd) · εM,2(s) ≤ 2−s/2 for some constant
d ≥ 1.

We prove Theorem 5.9 by presenting a distributionS! over oracles % relative to which
the following properties hold: (1) there does not exist a key-agreement protocol; (2) there
exists an (exponentially) secure one-way function, and (3) there exists an (exponentially)
secure XiO. In this section we present the distribution over oracles for which the above
occur. In Sect. 5.3 we prove that there exists a one-way function relative to %, and in
Sect. 5.4 we show the existence of XiO relative to %. Finally, in Sect. 5.5 we show that
there does not exist a key-agreement protocol relative to %. We start by defining the
distribution of oracles that we consider.

The oracle %. Let ! be a 2-ary function with !(s, n) > s. We now define the distribution
S! over oracles % = ( f,O, E) =

(
{ fs}s∈N, {Os,n}s,n∈N, {Es,n}s,n∈N

)
. In order to define

%, for every s ∈ N, let %<s consist of oracles in % that can be queried on inputs s′ < s. In
particular, let %<s = ( f<s,O<s, E<s), where f<s = { fs′}s′<s , O<s = {Os′,n}s′<s,n≤s′ ,
and E<s = {Es′,n}s′<s,n<s′ . We can now define ( f,O, E):
• The function f = { fs}s∈N. For every s ∈ N, the function fs : {0, 1}s → {0, 1}s is

a uniformly chosen function. We will use f to implement a one-way function.
• The function O = {Os,n}s,n∈N. For every s ∈ N and n ≤ s, the function Os,n :
{0, 1}2s → {0, 1}10!(s,n) is a uniformly chosen function. Intuitively, Os,n will re-
ceive a description of a circuit with size s and input length n, as well as a string of
length s (which represents the randomness of the obfuscator), and will increase this
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to a uniformly chosen string of length 10!(s, n). This will be used to implement
the XiO obfuscator.

• The function E = {E#<s
s,n }s∈N,n∈N. For every s ∈ N and n ≤ s, we define the

function E%<s
s,n : {0, 1}10!(s,n) × {0, 1}n → {0, 1}∗ as follows. On input (Ĉ, x) ∈

{0, 1}10!(s,n) × {0, 1}n , the function E%<s
s,n finds the lexicographically first oracle-

aided circuit C of size s and input size n, and a string r ∈ {0, 1}s such that
Os,n(C, r) = Ĉ , and outputs C%<s (x). In particular, C may contain queries to
any oracles in %<s , and Es,n forward the queries to the corresponding oracles. If
no such (C, r) exists, it outputs ⊥. Looking ahead, the oracle E will be used to
implement the XiO evaluator.

We note that the above oracles are well-defined because any circuit of size s can only
have an oracle gate of size smaller than s. In particular, if any circuit C ∈ Cs,n has an
Es′,n′ gate, then the input to the oracle gate has size !(s′, n′) > s′ which can be at most
s, and thus s′ < s. If C has an Os′,n′ gate, then the input to the gate has size 2s′ which
can be at most s, and thus s′ < s. If C has an fs′ gate, then there are 2s′ input and output
wires in total, and thus s′ < s. We next upper bound the number of indirect queries in
an execution of a q-query algorithm, relative to any % in the support of S!.

Claim 5.10. Let !(s, n) = 2nε · s2 for any constant 0 < ε < 1.7 Let % be any oracle in
the support ofS!, and let M be an oracle-aided q-query algorithm relative to %. Then,
every query made by M causes at most q(s)4 indirect queries, and the total number of
indirect queries made by M is bounded by q(s)5.

Proof. We want to upper bound the number of indirect queries made by M . Suppose
that M makes q = q(s) direct queries. By construction of %, the only indirect queries
caused by M are due to querying E . Observe that for any Es,n query, the maximum
number of oracle gates in the circuit evaluated by Es,n is at most s. Moreover, any such
oracle gate which is an Es′,n′ gate must have s′ < s

1
2 and n′ < 1

ε log(s), because the size
of the gate must be bounded by s.

Therefore, consider any Es,n query y made by M for s > 1 (if s = 1, there can be
no indirect queries). We can view the indirect queries caused by y as a tree of queries
rooted at y, where each node containing an E query has a child for every oracle gate in the
circuit evaluated by E on this query. By the above logic, for any node at depth i , if it is an

E query, it corresponds to a circuit of size si < s
1
2i and input length ni < 1

ε·2i−1 log(s).
Moreover, each E query at depth i can cause at most si queries at the depth i + 1.
Therefore, letting s0 := s and noting that the tree can have depth at most log log(s), an
upper bound on the total number of nodes in the tree (and thus the number of indirect
queries caused by a single query made by M) is

log log(s)∑

i=0

i∏

j=0

s j <
log log(s)∑

i=0

i∏

j=0

s
1

2 j =
log log(s)∑

i=0

s
∑i

j=0
1

2 j

7Throughout this section, we will restrict !(s, n) = 2nε · s2, but we note that the proof holds when
!(s, n) = 2nε · sc for any constant c > 1.
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<

log log(s)∑

i=0

s2 = (log log(s)+ 1) · s2 ≤ s4

Since M is a q-query algorithm, then s ≤ q and thus the total number of indirect queries
is bounded by q · s4 ≤ q5. !

We now bound the probability of certain bad events related to %. We start by bounding
the probability that the oracle Os,n is not injective, which will be helpful in the proof of
Theorems 5.18 and 5.9.

Definition 5.11. Let injective%
s,n be the event thatOs,n is injective when % = ( f,O, E)

is sampled from S!. Let injective%
≥s =

∧
s′≥s,n′≤s′ injective

%
s′,n′ be the event that Os′,n′

is injective for all s′ ≥ s, and let injective% = ∧
s,n injective

%
s,n be the event that Os,n

is injective for all s, n.

Claim 5.12. For any s, n ∈ N with n ≤ s and any function !(s, n) > s, it holds that

Pr
[
¬injective%

s,n

]
≤ 2−6s and Pr

[
¬injective%

≥s

]
≤ 2−(5s+1), where the probability is

over % ← S!.

Proof. We have that for any s, n ∈ N with n ≤ s,

Pr
%←S!

[
¬injective%

s,n

]

≤ Pr
%←S!

[
∃ C, r,C ′, r ′ : (C, r) &= (C ′, r ′) ∧ Os,n(C, r) = Os,n(C ′, r ′)

]

≤
(

22s

2

)
· 1

210!(s,n) ≤ 1
210!(s,n)−4s ≤ 1

210s−4s = 2−6s ,

since !(s, n) > s. Therefore, by a union bound,

Pr
%←S!

[
¬injective%

≥s

]
≤

∞∑

s′=s

s′∑

n′=1

Pr
%←S!

[
¬injective%

s′,n′
]

≤
∞∑

s′=s

s′∑

n′=1

1
26s′

=
∞∑

s′=s

s′

26s′ ≤
∞∑

s′=s

1
25s′ ≤ 2

25s .

!

We next bound the probability of an oracle-aided algorithm “guessing” a point in the
image of Os,n without receiving it as the answer to a query. This will be helpful in the
proof of Theorem 5.18.

Definition 5.13. Let ! be any two-ary function and let % ← S!. For any oracle-aided
algorithm M , let spoof%s,n be the event that there exists C̃ ∈ {0, 1}10!(s,n) and x ∈ {0, 1}n
such that both of the following occur:
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1. C̃ is not the output of any direct or indirect Os,n query made by M(1s).
2. M(1s) makes either a direct or indirect query to Es,n on input (C̃, x) and Es,n

(C̃, x) &= ⊥.

Let spoof% = ∨
s,n spoof

%
s,n .

We now show that conditioned on injective%
≥s , the probability that any q-query algo-

rithm M causes spoof%s,n to occur is small. This proof follows ideas similar to [47].

Claim 5.14. Let !(s, n) = 2nε · s2 for some constant 0 ≤ ε < 1. Then, for any
oracle-aided q-query algorithm M, for any (s, n), it holds that

Pr
%←S!

[
spoof%s,n | injective%

≥s

]
≤ 22s · q(s)

210s − 2q(s)5 .

We prove this claim using the following lemma, which bounds the probability of an
adversary who doesn’t make queries to E \ {E<s} “guessing” a point in the image of
Os,n .

Lemma 5.15. Let !(s, n) = 2nε · s2 for a constant 0 ≤ ε < 1. Let A be a q ′-query
adversary with oracle access to % that only makes queries to f,O, E<s . Then, letting
win%

s,n denote the event that A(1s) outputs a value C̃ in the image of Os,n without
receiving C̃ as the answer to any query, it holds that

Pr
%←S!,A

[
win%

s,n | injective%
≥s

]
≤ 22s

210s − q ′(s)
.

Proof. When % ← S!, the choice ofOs,n is independent of the choice of f ,O\{Os,n},
and E<s , because each query to these oracles cannot reveal any point in the image of
Os,n . Therefore, when conditioning on injective%

≥s , for any adversary A which only
makes queries to ( f,O, E<s), the answers to Os,n queries reveal exactly one point in the
image of Os,n , while the answers to all other queries are independent of Os,n .

Recall that Os,n is a function from {0, 1}2s to {0, 1}10!(s,n). Therefore, for any such
q ′-query A, there are at most 22s points in the image of Os,n that A can output which
would cause win%

s,n to occur, out of a total of at least 210!(s,n) − q ′(s) points for A to
choose from (because A could have learned at most q ′(s) points in the image of Os,n).
Therefore,

Pr
%←S!,A

[
win%

s,n | injective%
≥s

]
<

22s

210!(s,n) − q ′(s)
<

22s

210s − q ′(s)
,

as desired. !

Proof of Claim 5.14. Let p(s) = 22s ·q(s)
210s−2q(s)5 and suppose for contradiction there exists

a q-query algorithm M such that for infinitely many s, Pr%←S!

[
spoof%s,n | injective%

≥s

]
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>p(s). Let p = p(s) and q = q(s). We will show that M can be used to construct an
adversary A that makes q ′ = 2q5 queries to ( f,O, E<s) and contradicts Lemma 5.15.
Toward that end, let win%

s,n be the event that A(1s) succeeds at outputting a point in the
image of Os,n without receiving it from a query.

The adversary A does the following. First, sample i& ← [q], and then run M up until
query i&, responding to all oracle queries as follows:

• For any query to f , O, or E<s , query the real oracle and forward the corresponding
answer. Store all query-answer pairs for O queries.

• For any query Es′,n′(C̃, x) for s′ ≥ s, if C̃ corresponds to a circuitC from a previous
Os′,n′ query, evaluate C%<s′ (x) (responding to indirect queries as specified) and
output the result. Otherwise, output ⊥.

After M makes the query with index i&, if it is an Es,n query on some (C̃, x) where C̃
was not in any previous Os,n query, output C̃ to the challenger. Otherwise, output ⊥.

Observe that A makes at most 2q5 queries by Claim 5.10, because it makes all of M’s
queries to f , O, and E<s , and the remaining queries it makes are M’s indirect queries
for some oracle in the support of S!. We now analyze the success probability of A. We
have that

Pr
[
win%

s,n | injective%
≥s

]
= Pr

[
win%

s,n ∧ spoof%s,n | injective%
≥s

]

+ Pr
[
win%

s,n ∧ ¬spoof%s,n | injective%
≥s

]

= Pr
[
win%

s,n | spoof%s,n ∧ injective%
≥s

]

· Pr
[
spoof%s,n | injective%

≥s

]

≥ Pr
[
win%

s,n | spoof%s,n ∧ injective%
≥s

]
· p

≥ Pr
[
i& is the first instance of spoof%s,n | spoof%s,n ∧ injective%

≥s

]
· p

= p · 1
q
,

where the probability is over % ← S! and the random coins of A. The first inequality
is due to our assumption that M causes spoof%s,n to occur with probability at least p.

The second inequality is because the view of MA%
is distributed exactly as in M% up

until the first instance of spoof%s,n . This is because all of M’s queries to f , O, and
E<s are answered using the real oracle, and all queries (C̃, x) to Es′,n′ for s′ ≥ s are
either answered by evaluating a pre-image of C̃ under Os′,n′ , or with ⊥. Since we are
conditioning on injective%

≥s , then if there is a pre-image of C̃ from a previous query, it
is the unique pre-image. Otherwise, since we are only considering queries before the
first instance of spoof%s,n , then any other queries to Es′,n′ are answered with ⊥, which is
consistent with the distribution over %.

Therefore,

Pr
[
win%

s,n | injective%
≥s

]
≥ p

q
= 22s · q

q · (210s − 2q5)
= 22s

210s − 2q5 ,
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in contradiction with Lemma 5.15. !

5.3. Existence of a OWF Relative to %

Theorem 5.16. Let !(s, n) = 2nε · s2 for some constant 0 ≤ ε < 1. Then, given any
oracle-aided q-query algorithm A, it holds that for all s ∈ N,

Pr
x←{0,1}s ,%←S!

[
A%( fs(x)) ∈ f −1

s ( fs(x))
]

≤ q(s)5

2s−1

In particular, this implies that for large enough s, if q(s) < 2s/20, this probability is
bounded by 2−s/2.

Proof. The proof of this theorem is similar to that of [10], with the difference that we
must emulate indirect E queries. Suppose for the sake of contradiction that there exists
a PPT oracle-aided q-query adversary A that can invert fs with oracle access to %. We
construct an adversary B that only makes queries to O and f , and simulates all queries
to E . The adversary B runs A(1s) and responds to all oracle queries (including direct
and indirect queries made by A) as follows:

• For any query to O or f , the adversary B forward the query to % and returns the
corresponding answer.

• For any query to Es′,n′ for any s′ on (C̃, x), the adversary B enumerates over all
pairs (C, r) ∈ {0, 1}2s; in lexicographic order, queries Os′,n′(C, r), and checks if
the response is C̃ . In the case that such a pre-image (C, r) is found, B evaluates
C%<s′ (x) (responding to all oracle queries accordingly). Otherwise, if no pre-image
is found, B returns ⊥.

Observe that B simulates an oracle in the support of S!, because for every E query,
it finds the lexicographically first pre-image and evaluates it, just as done by the real
oracle. The queries that B makes to fs fall into two categories—direct queries made
by A to fs , and queries to fs caused by indirect queries made by A. Because A is a
q-query algorithm, there are at most q(s) direct queries to fs and by Claim 5.10, at most
q(s)5 indirect oracle queries. Therefore, the number of queries made by B is bounded
by 2q(s)5. Since fs is a random function, any such algorithm B can output an inverse

of fs(x) with probability at most 2q(s)5

2s . !

5.4. Existence of XiO Relative to %

In this section we show that relative to % there exists an XiO scheme for the class C
of all polynomial-size oracle-aided circuits. We proceed with the construction of the
obfuscator.

Construction 5.17. Let !(s, n) = 2nε · s2 for a constant 0 ≤ ε < 1, and let % ← S!.
Then, for any class of oracle-aided circuits {Cs,n}s,n∈N relative to %, define xiO% =
(Obf%,Eval%) as follows:
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• C̃ ← Obf%(1s,C): On input C ∈ Cs,n, sample r ← {0, 1}s and queryOs,n(C, r) to
obtain Ĉ. Then, enumerate over all inputs x ∈ {0, 1}n and check that Es,n(Ĉ, x) =
C%<s (x). If this holds for all x, output (0, Ĉ). Otherwise, output (1,C), i.e., the
original circuit (padded to size 10!(s, n)).8

• y ← Eval%((b, C̃), x): Eval receives as input (b, C̃) ∈ {0, 1} × {0, 1}10!(s,n) and
x ∈ {0, 1}n. If b = 0, then the algorithm Eval queries Es,n(C̃, x) and outputs the
result. If b = 1, then Eval just evaluates C̃%<s (x) and outputs the result.

Theorem 5.18. For any class of oracle-aided circuitsC, it holds that xiO% is a perfectly
correct XiO for C. Moreover, for any for any q-query adversaryD, if q(s) < 2s/20, then

∣∣∣∣Pr
[
ExpXiO

%,xiO,D,C(s) = 1
]

− 1
2

∣∣∣∣ ≤ 2−s/4.

Proof. We show that xiO satisfies perfect correctness, compression, and the indistin-
guishability requirement.

Perfect correctness It is straightforward to verify that the xiO construction achieves
perfect correctness. Given a circuit C as input, the algorithm Obf queries O to obtain Ĉ
and then enumerates over all inputs of the obfuscated circuit to see that the evaluation
agrees withC . If the obfuscated circuit Ĉ is perfectly correct, it is used as the obfuscation.
Otherwise, the obfuscator outputs C , which trivially satisfies perfect correctness.

Compression We show that xiO satisfies the efficiency required of XiO. For any C ∈
Cs,n , it holds that

Outlen
[
Obf%(1s,C)

]
≤ max{s, 10!(s, n)} + 1 = 2nε · s2 + 1 ≤ 2nε · poly(s),

for some polynomial poly.
With respect to the running time of the obfuscator on input C , it samples r ← {0, 1}s ,

makes a single Es,n query to obtain Ĉ , and then for each input x , evaluates Ĉ%<s (x).
By Claim 5.10, it holds that Ĉ%<s (x) can only cause s4 indirect queries for each x .
Moreover, the input and output lengths of each such query are bounded by 10!(s, n).
Therefore, we have that

Time
[
Obf%(1s,C)

]
= s + poly(2n · s4 · 10!(s, n)) ≤ poly(2n, s)

for polynomials that depend on the oracle O, thereby satisfying the compression of XiO.

Security This proof is an adaptation of the proof in [10]. In particular, we have the
following claim.

8We note that this technique, of enumerating all inputs, can only be done because we are constructing
XiO. In particular, this step is the reason that this separation does not apply to perfectly correct SXiO.
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Claim 5.19. For any for any q-query adversary D, if q(s) < 2s/20, then

∣∣∣∣Pr
[
ExpXiO

%,xiO,D,C(s) = 1
]

− 1
2

∣∣∣∣ ≤ 2−s/4.

Proof Sketch. To show this, we follow the outline in [10]. Our oracle differs from theirs
in three aspects. First, our oracle O is not necessarily injective, and [10] restrict O to
be a length-increasing injective function. Second, the expansion factor of the oracle O
is different from that of [10]. Third, we allow circuits C to be oracle-aided with oracle
access to %<s , while [10] only allow circuits to have oracle access to f . We address
these differences throughout the proof and use results from [10] when relevant.

Let the challenge circuits be C0,C1 ∈ Cs,n . The proof follows from a sequence of
claims.

1. Suppose that there exists a q-query distinguisherD that winsExpXiO
%,xiO,D,C(s)with

probability at least 1
2 + δ for some δ > 0. Let q = q(s). It is easy to see that for

such a distinguisher D, if we focus on the case where Os′,n′ is injective for all
s′ ≥ s, it holds that

Pr
[
ExpXiO

%,xiO,D,C(s) = 1 | injective%
≥s

]
≥ 1

2
+ δ − Pr

[
¬injective%

≥s

]
.

2. Given such a distinguisher D, there exists a (2q5)-query distinguisher D′ that
only makes oracle queries to ( f,O, E<s) with a related success probability. Let

Ẽxp
XiO
%,xiO,D′,C(s) denote the experiment where the distinguisher D′ does not make

oracle calls to E \ E<s . It follows from [10] that, conditioned on injective%
≥s

and ¬spoofD,!
s,n , the advantage of D in ExpXiO

%,xiO,D,C(s) is equal to that of D′

in Ẽxp
XiO
%,xiO,D′,C(s). In particular, by conditioning on injective%

≥s , we construct
the adversary D′ just as in [10] with the difference that D′ only has oracle access
to E<s (rather than E−s = {Es′,n′}s′<s,n′≤s′ , as in [10]) and must simulate indi-
rect queries of D as well. Thus, by Claim 5.10, D′ is a q ′-query algorithm with
q ′(s) < 2q(s)5. Therefore, this implies that

Pr
[
Ẽxp

XiO
%,xiO,D′,C(s) = 1 | injective%

≥s

]

≥ Pr
[
ExpXiO

%,xiO,D,C(s) = 1 | injective%
≥s

]
− Pr

[
spoofD,!

s,n | injective%
≥s

]

≥ 1
2
+ δ − Pr

[
¬injective%

≥s

]
− Pr

[
spoofD,!

s,n | injective%
≥s

]
.

3. For (b, r∗) ∈ {0, 1} × {0, 1}s , we let Ẽxp
XiO
%,xiO,D′,C(s; b, r∗) denote the experi-

ment in which the obfuscated circuit that the challenger delivers to D′ is C̃ =
Os,n(Cb, r∗). We define the following two events:

• Let initialHits,n be the event that D′ makes an Os,n query on either (C0, r∗) or
(C1, r∗) prior to receiving the challenge circuit C̃ from the challenger.
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• Let hits,n be the event thatD′ makes anOs,n query on either (C0, r∗) or (C1, r∗)
after receiving the challenge circuit C̃ from the challenger.

In [10], it is shown that for all s, n ∈ N, the distinguishing probability of D′ is
exactly 1/2 when both initialHits,n and hits,n do not occur. This applies to our
case as well, because we are conditioning on injective%

≥s , and there are no indirect
queries that can reveal points in the image of Es,n or Os,n . Therefore, the results of
[10] imply that if D′ succeeds to distinguish with probability greater than 1/2+ δ′

conditioned on injective%
≥s , then the probability that initialHits,n or hits,n occur,

conditioned on injective%
≥s , is greater than δ′.

4. On the other hand, [10] also showed that for every q ′-query algorithm that does
not make any queries to Es,n , it holds that

Pr
O

(b,r∗)

[
initialHits,n ∨ hits,n

]
<

q ′

2s − q ′ (4)

which applies to our case when conditioning on injective%
≥s and because D′ does

not make any queries to E \ E<s .

Putting everything together, assume toward a contradiction that there exists a q-query
distinguisher D such that

∣∣∣∣∣∣
Pr
O

(b,r∗)

[
ExpXiO

%,xiO,D,C(s; b, r∗)
]

− 1
2

∣∣∣∣∣∣
> δ

for infinitely many s ∈ N. This implies the existences of a q ′-query algorithm D′ with
q ′(s) < 2q(s)5 that does not make any queries to E \ E<s for which

∣∣∣∣∣∣
Pr
O

(b,r∗)

[
Ẽxp

XiO
%,xiO,D′,C(s; b, r∗) | injective%

≥s

]
− 1

2

∣∣∣∣∣∣

≥ 1
2
+ δ − Pr

[
¬injective%

≥s

]
− Pr

[
spoofD,!

s,n | injective%
≥s

]

≥ 1
2
+ δ − 1

25s−1 − 22s · q
210s − 2q5 ≥ 1

2
+ δ − 1

24s − 22s · q
210s − 2q5

for infinitely many s ∈ N and n = n(s), by Claims 5.12 and 5.14. Taking q < 2s/20,
and δ = 2−s/4, we have that q5 < 2s/4 and thus the above implies that

Pr
O

(b,r∗)

[
initialHits,n ∨ hits,n | injective%

≥s

]
>

1
2s/4 − 1

24s − 22s · 2s/20

210s − 2s/4+1

>
1

2s/4 − 1
24s − 1

26s >
1

2s/4+1 .
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On the other hand, applying q < 2s/20 in Eq. (4) with q ′ = 2q5, we get that

Pr
O

(b,r∗)

[
initialHits,n ∨ hits,n | injective%

≥s

]
<

2q5

2s − 2q5 <
2s/4+1

2s − 2s/4+1

= 1
23s/4−1 − 1

≤ 1
2s/4+1

for s ≥ 5. Since the above holds for infinitely many s, this is a contradiction.

This completes the proof of Theorem 5.18. !

5.5. Breaking Perfect Key Agreement Relative to %

In this section, we will consider a key agreement protocol relative to % between A and
B, and construct an adversary E that breaks the key agreement protocol.

Theorem 5.20. Let !(s, n) = 2nε ·s2 for a constant 0 < ε < 1. Then, for any perfectly
correct oracle-aided bit agreement protocol 〈A,B〉 in which A and B run in time at
most q(s), there exists an oracle-aided adversary E that makes q(s)O(1) oracle queries
such that

∣∣∣∣Pr
[
ExpKA%,(A,B),E (s) = 1

]
− 1

2

∣∣∣∣ ≥ 7
16

,

where the probability is over % ← S!, and the randomness of A, B, and E. Moreover,
the algorithm E can be implemented in polynomial time given access to a PSPACE-
complete oracle.

Proof. Fix !(s, n) as above and an execution of the key agreement protocol
〈A%(1s; r&

A),B
%(1s; r&

B)〉. We start by defining some notation.

Notation Let QA, QB, and QE denote the set of oracle queries made by A, B, and E ,
respectively. Let [O(x) = y] ∈ Qp denote that a party p queried an oracle O on x and
received y. Let QAB = QA ∪ QB be the set of oracle queries in the real protocol.

Since A and B are PPT algorithms, let q = q(s) be a polynomial which upper bounds
on the number of queries, size of each query-answer pair, and running time of A and B.
Thus, all Os,n and Es,n queries in the real execution of the protocol satisfy s ≤ q and
2nε · s2 ≤ q. This implies that n ≤ 1

ε log q. We will use this bound on n to show that A
and B can only query O on circuits with logarithmic size input, and thus the adversary
can learn the truth table of any circuit queried this way by only making a polynomial
number of queries.

We now define an extended set of queries for any query-answer set Q. Intuitively,
this captures queries that are “known” to an algorithm that makes the queries in Q. For
example, suppose an algorithm M queriesOs,n on some (C, r) and obtains C̃ , and queries
%<s on all queries in the evaluation of C%<s (x) and learns that C%<s (x) = y. Then,
intuitively M knows that Es,n(C̃, x) = y (up to the probability of O being injective),
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even without making any Es,n query. The following definition captures this dependence
between the oracles.

Definition 5.21. Given a query-answer set Q and an oracle %, the augmented query-
answer set Aug(Q) with respect to % is defined recursively as follows:

1. Every query-answer pair in Q is also in Aug(Q).
2. For every C̃ such that there exists a query [Os,n(C, r) = C̃] ∈ Aug(Q) or

[Es,n(C̃, x) = y] ∈ Aug(Q), the set Aug(Q) contains the following queries (and
the corresponding answers):

(a) Os,n(C ′, r ′), if there exists a pair (C ′, r ′) which is the lexicographically first
such pair such that Os,n(C ′, r ′) = C̃ .

(b) Es,n(C̃, w) for all w ∈ {0, 1}n .
(c) All indirect queries made in the evaluation of Es,n(C̃, w) for all w ∈ {0, 1}n .

We note that while the above definition is recursive, the set Aug(Q) is well-defined.
In particular, for every C̃ for which there is a related query in Aug(Q) to Os,n or Es,n , the
set adds one Os,n query, 2n queries to Es,n , and all indirect queries due to those queries.
The Os,n and Es,n queries correspond to the same circuit, C̃ , and thus do not cause
circularity, and the indirect queries must be for circuits of smaller sizes. We now bound
the size of Aug(Q) for any query-answer set Q made by a PPT algorithm. This will be
helpful in bounding the number of queries that the adversary makes when simulating
queries made by A and B.

Claim 5.22. Let !(s, n) = 2nε · s2 for a constant 0 ≤ ε < 1, and let % ← S!. Let M
be a PPT oracle-aided algorithm relative to %, and let Q be the set of queries made by
M(1s). Then, there exists a polynomial poly such that |Aug(Q)| = poly(s).

Proof. Let q = q(s) be a polynomial upper bound on the size of the queries and
answers for all queries made by M . Without loss of generality, assume that Q contains
only one query (if Q contains k queries, the resulting bound will have an additional
multiplicative factor of k). For any value C̃ , let C̃ be associated with Q if there is a
query Os,n(C, r) = C̃ or Es,n(C̃, x) = y in Q. Moreover, for any C̃ associated with Q,
letExtend(C̃) denote the set of queries added in one iteration of Step 2 of Definition 5.21
due to C̃ . With this notation, the process to form Aug(Q) from Q can be written as:

While there exists a value C̃ associated Aug(Q) such that Extend(C̃) &⊆
Aug(Q), add Extend(C̃) to Aug(Q).

To prove the claim, we first bound the size of Extend(C̃) for any C̃ associated with
Aug(Q), and then we bound the number of such associated values. To bound |Extend(C̃)|,
observe that for any C̃ associated with Q, by definition there is a query Os,n(C, r) = C̃
or Es,n(C̃, x) = y in Q. Both of these queries have size greater than !(s, n) = 2nε · s2.
Therefore, the size of each query is bounded above by q, it holds that s < q

1
2 and

n < 1
ε log(q). By definition of the augmented set, this extends to any C̃ associated

with Aug(Q). Moreover, for any C̃ ∈ {0, 1}10!(s,n) associated with Aug(Q), the set
Extend(C̃) contains at most 1 query to Os,n , 2n queries to Es,n , and at most 2n · s5
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queries to %<s , because each query to Es,n can cause at most s5 indirect queries by
Claim 5.10. Therefore, we have that

|Extend(C̃)| ≤ 1 + 2n + 2n · s5 ≤ 1 + 2
1
ε log(q) + 2

1
ε log(q) · q 5

2 ≤ 3q
5
2+ 1

ε = 3qd

for a constant d = 5
2 + 1

ε .
We now turn to bound the number of values C̃ associated with Aug(Q). Toward this

end, observe that for any C̃ , the set Extend(C̃) can be partitioned into two sets A and
B as follows:

• A contains all queries to Os,n , Es,n , and f .
• B contains all queries to O<s and E<s . In particular, since B contains all indirect

queries due to queries to Es,n , any query in B must be to Os′,n′ or Es′,n′ for some
s′ ≤ s

1
2 .

Using this notation, we have that Aug(Q) can be written as A ∪ Aug(B), because the
queries in A are those that do not cause new values to be associated with Aug(Q), while
the queries in B are those that cause further recursion. Moreover, the queries in B all
have size bounded by s

1
2 ≤ q

1
2 . Therefore, letting T (q) denote an upper bound on the

size of the augmented set for any set of queries with query size bounded by q, we have
that

T (q) ≤ |A| + |B| · T (q 1
2 ) ≤ 3qd + 3qd · T (q 1

2 ),

where we used the fact that both A and B have size bounded by |Extend(C̃)| ≤ 3qd .
Noting that there can be at most log log(q) levels of recursion and enumerating shows
that

T (q) ≤
log log(q)∑

i=0

3i+1 · q
∑i

j=0
d

2 j ≤ 3log log(q)+1
log log(q)∑

i=0

·q
∑i

j=0
d

2 j

< 3 log2(q) ·
log log(q)∑

i=0

qd
∑i

j=0
1

2 j

< 3 log2(q) ·
log log(q)∑

i=0

q2d = 3 log2(q) · (log log(q)+ 1) · q2d = qO(1).

Therefore, |Aug(Q)| is polynomial in q and thus polynomial in s, as desired. !

Let q ′ = q ′(s) denote the polynomial upper bound on |Aug(QAB)| computed in
Claim 5.22. We are now ready to define the adversary E .

The adversary E .

• Input: A transcript T of an execution 〈A%(1s; r&
A),B

%(1s; r&
B)〉.

• Oracle Access: % = ( f,O, E).
• Algorithm:
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1. Initialize a set QE = ∅ and a multiset K = ∅.
2. Learning Im(%s) for small s: For every s such that 210s − 22s < 2q ′, query

%s on all inputs and add these query-answer pairs to QE .
3. Repeat the following 2q ′ + 1 times:

(a) Simulation phase: Find a valid oracle %′ = ( f ′,O′, E ′) and random
strings r ′

A, r
′
B such that the following holds:

i. Every query in QE is answered the same way in %′ as in QE .
ii. O′

s,n is injective for all s, n ∈ N.
iii. The transcript T ′ outputted by 〈A%′

(1s; r ′
A),B

%′
(1s, r ′

B)〉 is the same
as T .

Abort if no such %′, r ′
A, r

′
B exist. Let k′

A be the key outputted by A in this
simulation, and add k′

A to K .
(b) Update phase: Let QSim be the queries made by A and B in the execution

〈A%′
(1s; r ′

A),B
%′
(1s, r ′

B)〉, and consider the set Aug(QSim) with respect
to %′. Query % with all queries in Aug(QSim) \ QE and update QE with
these queries and answers.

• Output: The majority key k in K .

Lemma 5.23. E makes poly(q) many queries some polynomial poly.

Proof. E first queries %s on all inputs for small integers s′ satisfying 210s′ − 22s′ <
2q ′. Since q ′ is polynomial in q, this can be done by querying Os′,n′ on all inputs for
s′ ∈ O(log(q)), thus resulting in polynomially many queries in q. E then makes at most
|Aug(QSim)| queries in the update phase in each iteration. Since |QSim| < q, it holds
that |Aug(QSim)| is polynomial in q. Moreover, E runs for 2q ′ + 1 iterations, which is
polynomial in q, thus proving the lemma. !

Bad event We will show that the adversary E always succeeds to find the key computed
in the real protocol, assuming that O is an injective function. We define injective%

s,n and
injective% as in Definition 5.11. By Claim 5.12, we have that

Pr
[
¬injective%

]
≤

∞∑

s=1

1
26s ≤ 2−4.

We proceed to our main lemma.

Lemma 5.24. Let k& denote the key computed by A and B in the real execution of the
protocol. If injective% holds, then E does not abort, and in each iteration either (1) E
adds a query in Aug(QAB) to QE , or (2) E adds k& to K .

Proof. We first show that assuming injective% holds, E does not abort. Recall that E
aborts if it cannot find a valid oracle %′ and strings r ′

A, r ′
B such that %′ is consistent

with QE , the oracle O′
s,n is injective, and the transcript T ′ outputted by the simulated
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execution with respect to %′, r ′
A and r ′

B is the same as the real transcript T . As the real
oracle % and the real randomness r&

A, r&
B satisfy these properties, there exists at least one

valid oracle and pair of random strings and therefore E does not abort.
We now show that in every iteration, either (1) E adds a query in Aug(QAB) to QE ,

or (2) E adds k& to K . Consider some iteration in which (1) does not hold. We will show
that E adds k& to K in this iteration. Let %′, r ′

A, r ′
B be the oracle and random strings

chosen by E in this iteration. By definition, the transcript of this execution is T . Let k′

be the key outputted by 〈A%′
(1s; r ′

A),B%′
(1s; r ′

B)〉. Assuming that (1) does not hold,
we now show that there exists a hybrid oracle %̃ for which

(k′, k&, T ) ← 〈A%̃(1s; r ′
A),B%̃(1s; r&

B)〉.

That is, we show an oracle %̃ such that when A uses the randomness of the simulation
and B uses the randomness of the real protocol and both run with respect to %̃, A outputs
k′ (as in the simulation) while B outputs k& (as in the real), and the execution produces
the transcript T (as in both the real and simulated protocols). Given the existence of such
an oracle, by the perfect correctness, it must hold that k′ = k&, and therefore, since E
adds k′ = k& to K , the claim follows.

We construct the hybrid oracle %̃ = ( f̃ , Õ, Ẽ) as follows:

• The oracle f̃ . For every s, for every x such that [ f ′
s (x) = y] ∈ Aug(QSim), set

f̃s(x) = y. For every x such that [ fs(x) = y] ∈ Aug(QAB), set f̃s(x) = y. For
every other x , set f̃s(x) = 0.

• The oracle Õ. For every s and n, proceed as follows. For every (C, r) ∈ {0, 1}2s for
which [O′

s,n(C, r) = Ĉ] ∈ Aug(QSim), set Õs,n(C, r) = Ĉ . Likewise, for every
(C, r) ∈ {0, 1}2s for which [Os,n(C, r) = Ĉ] ∈ Aug(QAB), set Õs,n(C, r) = C̃ .
For every other (C, r) ∈ {0, 1}2s for which Õs,n is not yet defined, set the value
Os,n(C, r) arbitrarily, such that it avoids the set avoids,n , defined as

avoids,n
def=

{
C̃ : [Os,n(&, &) = C̃] ∈ Aug(QAB) or [Es,n(C̃, &) = &] ∈ Aug(QAB)

}

∪
{
C̃ : [O′

s,n(&, &) = C̃] ∈ Aug(QSim) or [E ′
s,n(C̃, &) = &] ∈ Aug(QSim)

}

where & represents an arbitrary value (that may be ⊥). In particular, the set avoids,n
will ensure that for any string C̃ ∈ {0, 1}10!(s,n) that is associated withAug(QAB)or
Aug(QSim), there will not be a pre-image of C̃ under Õ other than the one specified
by Aug(QAB) or Aug(QSim). This helps us show that there are no conflicting
evaluations under Ẽs,n . Moreover, note thatavoids,n has size at most |Aug(QAB)|+
|Aug(QSim)| ≤ 2q ′, while Os,n has a domain of size 22s and a range of size
210!(s,n) > 210s . Note that for any s such that 210s − 2q ′ < 22s , all C already have
images under Õ because E queries %s on all queries for these s. Thus, for any s
such that an arbitrary image of (C, r) is chosen under Os,n , there are enough strings
such (C, r) will have an image under Os,n .

• The oracle Ẽ . This oracle is defined iteratively. For each s ∈ N and each n ≤ s,
define Ẽs,n deterministically based on f̃<s , Õ<s and Ẽ<s , exactly as Es,n is defined
with respect to %<s .
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We now analyze an execution of the protocol with respect to the oracle %̃, while A uses
the randomness r ′

A (as in the simulation) and B uses randomness r&
B (as in the real). Let

(̃kA, k̃B, T̃ ) ← 〈A%̃(1s; r ′
A),B

%̃(1s; r&
B)〉.

We will show that T̃ = T , k̃A = k′, and k̃B = k&. Toward this end, it is enough to show
that %̃ agrees with % on all queries in Aug(QAB) and that %̃ agrees with %′ on all queries
in Aug(QSim). Since E adds all queries in Aug(QSim) \ QE to QE in each round, and
we assumed that E does not add any queries in Aug(QAB) to QE in this iteration, it
implies that all query and answer pairs in Aug(QSim) ∩ Aug(QAB) agree with the real
oracle %. As a result, it is enough to show that all queries in Aug(QSim) ∪ Aug(QAB)
are answered the same in Aug(QSim) ∪ Aug(QAB) as in %̃.

First, it is easy to see that f̃ is consistent with all queries to f and f ′ in Aug(QAB)∪
Aug(QSim) because there are no contradicting queries between Aug(QAB) and
Aug(QSim). Similarly, Õ is consistent with all queries to O and O′ in Aug(QAB) ∪
Aug(QSim).

As for Ẽ , to show that Ẽ is consistent withE andE ′ queries inAug(QAB)∪Aug(QSim),
we show the following stronger statement by induction on s. For every s ∈ N, the
following holds:

(a) For every n ≤ s, consider any query on (C, r) to Os,n or O′
s,n in Aug(QAB) ∪

Aug(QSim). If there exists a (C ′, r ′) such that Õs,n(C, r) = Õs,n(C ′, r ′), then C
and C ′ are functionally equivalent with respect to %̃.

(b) Assuming (a) holds for s, then for any n ≤ s, any Es,n or E ′
s,n query that appears

in Aug(QSim) ∪ Aug(QAB) is answered the same by Ẽs,n .

We show (a) for O queries in Aug(QAB) and (b) for E queries in Aug(QAB). The cases
of O′ or E ′ queries in Aug(QSim) follow analogously.

Base case of (a) Consider any query [O1,1(C, r) = Ĉ] ∈ Aug(QAB). The existence of
this query implies that Õ1,1(C, r) = Ĉ . Suppose there is a pair (C ′, r ′) &= (C, r) such
that Õ1,1(C, r) = Õ1,1(C ′, r ′) = Ĉ . We want to show that C is functionally equivalent
to C ′ relative to %̃. Note that C and C ′ have no oracle gates due to their size, so we only
need to show that that C and C ′ are functionally equivalent.

Recall that Õ “inherits” all query-answer pairs from queries toO andO′ inAug(QAB)
∪Aug(QSim), and chooses arbitrary images for inputs that are independent ofAug(QAB)∪
Aug(QSim). Thus, the only way that there exists a (C ′, r ′) &= (C, r) such that Õ1,1(C ′, r ′)
= Ĉ is if there is a query [O′

1,1(C
′, r ′) = Ĉ] ∈ Aug(QSim). In particular, O1,1(C ′, r ′)

cannot result in Ĉ because O1,1 is injective, and Ĉ cannot be chosen as an arbitrary
image of C ′, r ′ under Õ because it is in avoid1,1.

Therefore, there exist queries [O1,1(C, r) = Ĉ] ∈ Aug(QAB) and [O′
1,1(C

′, r ′) =
Ĉ] ∈ Aug(QSim), and our goal is to show that C and C ′ are functionally equivalent. Be-
causeO′

1,1 andO1,1 are injective, by definition ofAug(QAB) andAug(QSim), there exist
queries [E ′

1,1(Ĉ, x) = C ′(x)] ∈ Aug(QSim) and [E1,1(Ĉ, x) = C(x)] ∈ Aug(QAB) for
every x ∈ {0, 1}. Since there are no contradicting queries in Aug(QAB) ∪ Aug(QSim),
this implies thatC(x) = C ′(x) for every x ∈ {0, 1}. Therefore,C andC ′ are functionally
equivalent.
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Base case of (b) Here, we show that any E1,1 query that appears in Aug(QAB) is
answered the same by Ẽ1,1. There are two cases to consider.

• [E1,1(Ĉ, x) = y] ∈ Aug(QAB) with y &= ⊥. In this case, because O is injective,
there exists a unique pair (C, r) such that [O1,1(C, r) = Ĉ] ∈ Aug(QAB) with
C(x) = y. Now, consider the hybrid oracle Ẽ1,1. On input (Ĉ, x), the oracle Ẽ1,1
finds the lexicographically first pair (C ′, r ′) with Õ1,1(C ′, r ′) = Ĉ . Here, since
[O1,1(C, r) = Ĉ] ∈ Aug(QAB), it implies that Õ1,1(C, r) = Ĉ , so we can apply
the base case of (a)which gives us thatC is functionally equivalent toC ′. Therefore,
Ẽ1,1(Ĉ, x) = C ′(x) = C(x) = y, as desired.

• [E1,1(Ĉ, x) = ⊥] ∈ Aug(QAB). In this case, observe that any pre-image of Ĉ
under O1,1 would be too small to have oracle gates. Thus, if an E1,1 query on (Ĉ, x)
returns ⊥, it must be that Ĉ is not in the image of O1,1. This also holds with respect
to the simulated and hybrid oracles.

Therefore, since our goal is to show that Ẽ1,1(Ĉ, x) = ⊥, it is enough to show that Ĉ is
not in the image of Õ1,1. Suppose for contradiction that Ĉ is in the image of Õ1,1. By
construction of Õ1,1, it must be that there exists a (C, r) such that [O′

1,1(C, r) = Ĉ] ∈
Aug(QSim). By definition of the augmented set and the fact that O′

1,1 is injective, this
implies the existence of a query [E ′

1,1(Ĉ, x) = C(x)] ∈ Aug(QSim). Note that C is too
small to have oracle gates and thus C(x) &= ⊥. However, this implies that E learns a new
query in Aug(QAB) during the update phase, in contradiction.

We now show the inductive step. Suppose that (a) and (b) hold for all s′ with s′ < s.

Inductive step for (a) We now show that (a) holds for s. Fix any n ≤ s and consider
any query [Os,n(C, r) = Ĉ] ∈ Aug(QAB). This implies that Õs,n(C, r) = Ĉ . Suppose
that there exists a pair (C ′, r ′) &= (C, r) with Õs,n(C, r) = Õs,n(C ′, r ′) = Ĉ . Our goal
is to show that C and C ′ are functionally equivalent under %̃. By the same logic as the
base case of (a), by construction of %̃, the only way that such a (C ′, r ′) exists is if there
is a query [O′

s,n(C
′, r ′) = Ĉ] ∈ Aug(QSim).

Therefore, there exists queries [Os,n(C, r) = Ĉ] ∈ Aug(QAB) and [O′
s,n(C

′, r ′) =
Ĉ] ∈ Aug(QSim). Because both Os,n and O′

s,n are injective, these queries imply that
(C, r) and (C ′, r ′) are the unique pre-images of Ĉ under Os,n and O′

s,n , respectively.
Therefore, there exist queries [Es,n(Ĉ, x) = C%<s (x)] ∈ Aug(QAB) and [E ′

s,n(Ĉ, x) =
C ′%′

<s (x)] ∈ Aug(QSim) for all x ∈ {0, 1}n (where the evaluations of C%<s and C ′%′
<s

may be ⊥), by definition of the augmented sets.
Recall that we want to show that C is functionally equivalent to C ′ under %̃. This

amounts to showing thatC %̃<s (x) = C ′%̃<s (x) for every x . Therefore, fix any x ∈ {0, 1}n .
Because there can be no contradicting queries between Aug(QAB) and Aug(QSim), the
existence of the E and E ′ queries mentioned above imply that C%<s (x) = C ′%′

<s (x). All
indirect queries by C and C ′ have sizes smaller than s. Moreover, all indirect queries
made byC%<s (x) appear inAug(QAB), and all indirect queries made byC ′%′

<s (x) appear
in Aug(QSim). Therefore, by part (b) of the inductive hypothesis, %̃<s agrees with %<s
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and %′
<s on each of these queries. Therefore,

C %̃<s (x) = C%<s (x) = C ′%′
<s (x) = C ′%̃<s (x),

so C and C ′ are functionally equivalent under %̃.
Inductive step for (b) Assuming (a) holds for s, we now show that (b) holds for s. Let
n ≤ s and suppose there is a query [Es,n(Ĉ, x) = y] ∈ Aug(QAB), where y may be ⊥.
We want to show that Ês,n(Ĉ, x) = y, that is, the hybrid oracle agrees with the given
query. There are two cases to consider.

• There exists a query [Os,n(C, r) = Ĉ] ∈ Aug(QAB). Then, because O is injective,
it holds that (C, r) is the unique pre-image of Ĉ under Os,n . Thus, Es,n(Ĉ, x) eval-
uates C%<s (x) to obtain y. Now, consider the hybrid oracle Ẽs,n(Ĉ, x), which looks
for the lexicographically first pre-image of Ĉ under Õs,n . Because there are no con-
tradicting queries in Aug(QAB) ∪ Aug(QSim), we know that Õs,n(C, r) = Ĉ , but
(C, r) may not be the lexicographically first pair for which this holds. Nevertheless,
we can apply part (a) of the inductive hypothesis for s to show that Ẽs,n(Ĉ, x) =
C %̃<s (x). Since %̃<s agrees with %<s on all queries in the evaluation of C %̃<s (x)
by part (b) of the inductive hypothesis, it holds that C %̃<s (x) = C%<s (x) = y.
Therefore, Ẽs,n(Ĉ, x) = y as desired.

• There is no (C, r) such that [Os,n(C, r) = Ĉ] ∈ Aug(QAB). In this case, it must
be that there is no pre-image of Ĉ under Os,n , so y = ⊥. Thus, we want to show
that Ẽs,n(Ĉ, x) = ⊥. If Ĉ is not in the image of Õs,n , it directly implies that
Ẽs,n(Ĉ, x) = ⊥, so we focus on the case where Ĉ is in the image of Õs,n . This case
could only if there exists a pair (C ′, r ′) such that [O′

s,n(C
′, r ′) = Ĉ] ∈ Aug(QSim),

by construction of Õs,n .
We show that this is analogous to the first case of the inductive step. The query [O′

s,n(C
′, r ′)

= Ĉ] ∈ Aug(QSim) implies the existence of the query [E ′
s,n(Ĉ, x) = ⊥] ∈ Aug(QSim),

because if this query did not result in ⊥, there would be a contradicting query in
Aug(QAB)∪Aug(QSim). Thus, we can apply the same logic as the first case, replacing
queries to % with those to %′ and replacing y with ⊥, which completes the proof.

We reiterate that the cases for (a) and (b) corresponding to queries in Aug(QSim) rather
than Aug(QAB) are analogous. This completes the proof of Lemma 5.24. !

WrappingupGiven a perfectly correct key agreement protocol 〈A,B〉 bounded by some
running time q(s), we showed the existence of an adversary E that makes qO(1) queries
and finds the key k& with probability at least 1 − 2−4. Because q(·) is a polynomial, we
conclude that E makes at most polynomial number of oracle queries to %. Moreover,
all other computations that are done by E can be done using a polynomial number of
queries to a PSPACE-complete oracle (as in the work of Impagliazzo and Rudich [66]):
In each iteration, sampling r ′

A, r ′
B and Aug(QSim) can be done in polynomial space,

requires access only to Q which is of polynomial size and does not require access to %.
!

We note that similarly to the work of Impagliazzo and Rudich [66] and subsequent
works (e.g., [32]), E can be made efficient by assuming that P &= NP instead of relying
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on a PSPACE oracle. Specifically, it suffices for E to sample r ′
A, r ′

B and Aug(QSim)

without sampling the entire oracleO′ as an injective oracle, which can be done efficiently
if P = NP. This can then be used to rule out semi black-box reductions assuming
P = NP. We leave the details to future work.

5.6. Proof of Theorem 5.9

Equipped with Theorems 5.16, 5.18 and 5.20, we are now ready to prove Theorem 5.9.

Proof of Theorem 5.9. Let (A,B,M, TM , εM,1, εM,2) be a fully black-box construc-
tion of a bit-agreement protocol from a one-way function f and an XiO scheme xiO for
a class of oracle-aided circuits C = {Cs,n}s,n∈N relative to % ← S!, where !(s, n) =
2nε ·s2 for a constant 0 ≤ ε < 1. By Theorem 5.20, there exists an oracle-aided algorithm
E that runs in polynomial time TE (s) such that

∣∣∣∣Pr
[
ExpKA%,(A,B),E (s) = 1

]
− 1

2

∣∣∣∣ ≥ 7
16

,

where the probability is over % ← S!, and the internal randomness of A,B, and E . By
Definition 5.8, it therefore holds that either E can be used to invert the one-way function
f , or to break the security of xiO.

E can be used to invert the one-way function f . In the first case, by Definition 5.8, it
holds that

Pr
[
MEPSPACE ,%( f (x)) ∈ f −1( f (x))

]
≥ εM,1

(
16
7

· TE (s)
)
· εM,2(s).

for infinitely many values of s ∈ N, where the probability is taken over the choice of
s ← {0, 1}s and over the internal randomness of M . The algorithm M may invoke E on
various security parameters (i.e., in general M is not restricted to invoking E only on the
security parameter s), and we denote by L(s) the maximal security parameter on which
M invokes E (when M itself is invoked on the security parameter s). This, viewing ME

as a single oracle-aided algorithm that has access to a PSPACE-complete oracle and to
%, its running times TME (s) satisfies TME (s) ≤ TM (s) · TE (L(s)), as M may invoke E
at most TM (s)-times, and the running time of E on each invocation is at most TE (L(s)).

Viewing M ′def=MEPSPACE
as a single oracle-aided algorithm that has oracle access to %,

this implies that M ′ is a q-query algorithm where q(s) = TME (s). Theorem 5.16 then
implies that either q(s) ≥ 2s/20 or εM,1 (TE (s) · 16/7) · εM,2(s) ≤ 2−s/2. We have:

• In the first case (i.e., q(s) ≥ 2s/20), noting that L(s) ≤ TM (s), we obtain that

2s/20 ≤ q(s) = TME (s) ≤ TM (s) · TE (L(s)) ≤ TE (s) · TE (TM (s)) .

The running times TE (s) of the adversary E (when given access to a PSPACE-
complete oracle) is some fixed polynomial in s, and therefore TM (s) ≥ 2γ s for
some constant γ > 0.
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• In the second case, i.e., εM,1 (TE (s) · 16/7) · εM,2(s) ≤ 2−s/2, since TE (s) < sd

for some constant c, we obtain that εM,1(sd) · εM,2(s) ≤ 2−s/2 for some constant
d ≥ 1.

E can be used to break xiO. In the second case we obtain from Definition 5.8 that
∣∣∣∣Pr

[
ExpXiO

( f,xiO),xiO,ME ,C(s) = 1
]

− 1
2

∣∣∣∣ ≥ εM,1

(
16
7

· TE (s)
)
· εM,2(s)

for infinitely many values of s ∈ N, where % ← S!. As in the previous case, viewing

M ′def=MEPSPACE
as a single oracle-aided algorithm that has oracle access to %, implies

that M ′ is a q-query algorithm where q(s) = TME (s). Theorem 5.18 then implies that
either 2s/20 ≤ q(s) or εM,1(TE (s) · 16/7) · εM,2(s) ≤ 2−s/4. As previously, this implies
that either TM (s) ≥ 2γ s for some constant γ > 0, or εM,1(sd) · εM,2(s) ≤ 2−s/4 for
some constant d > 1. !

6. Compressing Obfuscation with Statistical Security

In this section we study the possibility for compressing obfuscation with perfect
(information-theoretic) security. We will distinguish between approximately correct and
perfectly correct compressing obfuscators and show almost tight results.

For approximately correct obfuscators, on the one hand, we show that there exists a
statistically secure compressing obfuscator for the class of bounded depth circuits. On the
other hand, we show that this is almost tight as any class that contains a (puncturable) PRF
cannot be obfuscated with statistical secure (under complexity theoretic conjectures).
See Theorems 6.4 and 6.6 for the precise parameters.

For perfectly correct obfuscators, on the one hand, we show that there exists a sta-
tistically secure compressing obfuscator for the class of bounded depth circuits, but the
compression factor will be very weak (the obfuscation time is poly(2n)). On the other
hand, we show that even for depth two circuits, better compression with better running
time is implausible. See Theorems 6.2 and 6.8 for the precise parameters.

6.1. Negative Results

We show that it is unlikely that there is a statistically secure compressing obfuscator
with good enough compression.

Our first result says that if such an obfuscator exists with strong enough compression,
namely a (2εn, 2εn)-compressing obfuscator with statistical security and perfect correct-
ness, then SAT (the problem of deciding whether a SAT formula is unsatisfiable) has an
AM protocol in which the verifier’s running time is bounded by 2εn . This is not believed
to be likely for small enough values of ε > 0, according to the best of our knowledge.
Note that for this result we only need an obfuscator for depth-2 circuits. This argument
relies on ideas from [71] and can be seen as an extension of an argument from [57].



On the Complexity of Compressing Obfuscation Page 69 of 78 21

Definition 6.1. We denote by AM[t, !] the class of all languages on instances of size
n that have an AM protocol in which the running time of the verifier is at most t (n) and
its messages size is at most !(n). The class coAM[t, !] is defined, analogously, to be
the class that contains all the complement languages. In case that t = !, we will write
AM[t] to denote AM[t, t] and coAM[t] to denote coAM[t, t].

Theorem 6.2. There exists a universal constant c > 0 such that the following holds. If
there is 0 < ε < 1 and a statistically secure and perfectly correct (2εn, 2εn)-compressing
obfuscation for depth-2 circuits, then SAT ∈ AM[2cεn].

The conclusion in Theorem 6.2 can be stated more generally as a conjecture that is
interesting on its own right. This conjecture is parameterized by an 0 < ε < 1 and it
says that SAT is not in AM[2εn].

Definition 6.3. (Conjecture) There exist ε > 0 for which SAT /∈ AM[2εn].

It is known that the conjecture is false for ε = 1/2 by the recent result of Williams
[93] who showed that SAT ∈ AM[Õ(2n/2)]. However, for smaller values of ε it is still
unknown. The conjecture is particularly appealing in the case that ε is sub-constant
(some o(1)).

Additionally, we give evidence that a compressing obfuscator with statistical security
and only approximate correctness cannot exist for classes of functions that contain a
(puncturable) PRF. This argument relies on and extends the proof of [28].

Theorem 6.4. (Restatement of Theorem 1.2, part II) There exists a universal constant
c > 0 such that the following holds. If there is 0 < ε < 1 and a statistically secure and
approximately correct (2n

ε
, 2n

ε
)-compressing obfuscation for all circuits, then SAT ∈

AM[2nε ].

Proof of Theorem 6.2. Our proof will work by constructing a compressing (2-round)
SZK protocol for all NP (in the analog sense of the non-trivial AM above where the
verifier’s running time and message size are of slightly non-trivial size). Then, we observe
that this protocol can be used to get a protocol for the complement of NP, thereby
implying that NP has a non-trivial AM protocol.

We define the class HVSZK[t, !] to consist of all languages for which there is an
(honest-verifier) statistical zero-knowledge protocol in which the verifier runs in time
at most t and sends a message of size at most !. We show that compressing obfuscation
with statistical security implies a non-trivial SZK protocol for all NP.

Claim 6.5. If statistically secure and perfectly correct (t, !)-compressing obfuscation
O exists, then NP ⊆ HVSZK[t, !].

Note that when t = 2n , where n is the input size to the NP instance, it is true that
NP ⊆ HVSZK[t, !] since the verifier can solve the instance by itself. However, to the
best of our knowledge, as long as ! = t < 2n (say, t = 2n

ε
or even t = 2εn for small

ε > 0) it is not believed to hold. Thus, the above claim is useful only when t < 2n .



21 Page 70 of 78 G. Asharov et al.

Proof of Claim 6.5. We construct such a (2-round) protocol for a language L ∈ NP
with associated relation RL . In this protocol, the prover gets an instance x and a witnessw
and the verifier gets only the instance. Let +s

x (w) be a circuit that outputs s ifw ∈ RL(x);
otherwise, it outputs ⊥. The verifier V on input a statement x ∈ {0, 1}n picks a random
s ← {0, 1}n , generates an obfuscation C ← O(+s

x ) and sends it to the prover. The
prover P , on input x , a witness w, and receiving C from V , lets s′ ← C(w) and sends
s′ back to V . V accepts if and only if s = s′.

The protocol is complete since if the prover has a valid witness w, she can evaluate
the obfuscated circuit, get s, and send it back to the verifier. Also, perfect honest-verifier
zero-knowledge holds since we can construct a simulator that simulates the whole view
of the verifier. The simulator samples a random tape for the verifier, which includes s
and just outputs it.

To show soundness, consider some cheating prover P∗ that convinces V with inverse
polynomial probability 1/p(|x |) for infinitely many x /∈ L . Consider some x /∈ L .
Note that +s

x is functionally equivalent to the “dummy” circuit +⊥ that always outputs
⊥. Thus, by the indistinguishability property of O, C is indistinguishable from C ′ =
O(+⊥). It follows that in a modified experiment where V sends C ′ instead of C , P∗ also
convinces V with inverse polynomial probability 1/p′(|x |) for infinitely many x /∈ L .
However, in this experiment P∗’s view is independent of s and it can thus only guess s
with probability 2−|s|, which is a contradiction. !

Next, by applying the transformation of Okamoto [86], we can transform the above
HVSZK protocol into a HVSZK protocol for coNP. The transformation is done in two
steps. First, the HVSZK protocol is turned into a public-coin HVSZK protocol, where
the verifier’s messages are just its coin flips. Applying this transformation, we get a
verifier whose running time is a fixed polynomial in the running time of the simulator of
the original protocol. Second, we transform the latter HVSZK public-coin protocol into
an HVSZK protocol for the complement language (i.e., coNP). This step also blows up
the complexity of the verifier by a fixed polynomial in the running time of the simulator
of the protocol we started with (the public-coin one).

Overall, the overhead in the transformation above is some fixed polynomial in the
running time of the simulator of the original protocol. Let c ∈ N be the exponent of
this polynomial. Thus, since the simulator runs in time at most t (n) = 2εn , then the
complexity of the verifier in the new HVSZK protocol will be a fixed polynomial in
t (n), namely 2cεn . This completes the proof since:

SAT ∈ coNP ⊆ SZK[2cεn, 2cεn] ⊆ AM[2cεn, 2cεn].

!

Proof of Theorem 6.4. We will largely follow the argument in [28] who showed an
analogous result for iO. Let us sketch their argument. Based on puncturable PRFs and
an approximately correct statistically secure iO, the construct a distribution over pairs
of circuits (that will be later indexed by SAT formulas) such that the circuits differ only
on one point and yet the obfuscator will produce distributions that are statistically far.
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Let k be a key for a puncturable PRF family F , let x0 be a random point in the domain,
and let k{x0} be the punctured key k at the point x0. They consider the function fk{x0},y
that, on input x outputs Fk(x) if x &= x0, and outputs y if x = x0. On the one hand,
by definition, fk{x0},y for a random y and fk{x0},y0 for y = Fk(x0), are functionally
equivalent at any point except maybe at x0. On the other hand, by the security of the
puncturable PRF, when k, x0, and y are chosen at random the distributions iO( fk{x0},y)
and iO( fk{x0},y0), are statistically far.

They use this idea to distinguish between (uniquely) satisfiable and unsatisfiable for-
mulas. The idea is to hardwire in f the formula ψ and instead of checking whether
x = x0, we check ψ(x) = 1 and if so output the hardwired point y. To make the
argument work, they need ψ(x) = 1 to hold (if it holds at some point) at a random
point, so they hardwire a randomly “shifted” version of the formula. Now, the above
argument can be repeated and the result is that USAT ∈ BPPGapSD, where USAT is the
problem of deciding whether a SAT formula is uniquely satisfiable and where GapSD is
the SZK complete problem [89] that requires to distinguish between efficient samplers
for statistically close distributions from statistically far distributions. They then apply
an argument of Mahmoody and Xiao [82] that says that if USAT ∈ BPPGapSD, then
SAT ∈ AM ∩ coAM.

We will repeat the above argument with a (2n
ε
, 2n

ε
)-compressing obfuscator as as-

sumed in the statement. The only change we need to make is to modify the circuit fk{x0},y
to accept inputs of size n′ = log1/ε n so that an obfuscation is of size at most polyno-
mial in n. Denote the USAT problem on formulas with n′ variables by USAT[n′]. The
above argument shows that USAT[n′] ∈ BPPGapSD. By the result of [82], this implies
that SAT[n′] ∈ AM ∩ coAM, or in other words that SAT[n′] ∈ AM. The result in the
statement now follows by scaling the parameters and applying the result with a formula
with n′′ = 2n

ε
. !

6.2. Positive Results

We show that for small classes of circuits there is a compressing obfuscation with perfect
security. We start with the constructions that give approximate correctness.

Theorem 6.6. (Restatement of Theorem 1.2, part I) There exist constants 0 < α < 1
and 0 < β < 1 such that there exists a (1 − s/2n

β
)-approximately correct (2n

α
, 2n

α
)-

compressing obfuscator with perfect security for the class of polynomial-size constant-
depth n-input Boolean circuits.

Theorem 6.7. There exists a polynomial p(·) and a constant α > 0 such that there
exists a (1−1/p(n))-approximately correct (2(1−α)n, 2(1−α)n)-compressing obfuscator
with perfect security for the class of monotone n-input Boolean functions.

We show that the class of bounded-depth circuits above can also be obfuscated with
perfect correctness, while still resulting with a compressing obfuscator. However, the re-
sulting compression is very weak (in particular, such compression, even for compressing
obfuscation for all circuits is not known to imply full-fledged obfuscation).



21 Page 72 of 78 G. Asharov et al.

Theorem 6.8. (Restatement of Theorem 1.3)There exists a perfectly correct (poly(2n),
2n−n/O(log s)d−1

)-obfuscator with perfect security for the class of size s depth d, n-input
Boolean circuits.

All of the obfuscators above treat their input circuit as a black box and run a classical
learning or compression algorithm on it. We introduce these tasks next.
Preliminaries on PAC learning We begin by introducing the concept of PAC learning.
The Probably Approximately Correct (PAC) learning model, introduced by Valiant [91],
is one of the most central definitions in the learning community and in computer science
in general. We focus on PAC learning over the uniform distribution with membership
queries. In this setting the learner may query the oracle at any point x and get back the
value of the oracle at that point.

Definition 6.9. (PAC learning over the uniform distribution with membership queries)
Let F be a class of Boolean functions over n inputs. The class F is (ε, δ)-PAC learnable
if there exists an algorithmA that gets as input two parameters ε, δ > 0, has membership
query access to a function f ∈ F , and outputs with probability 1 − δ (over its internal
randomness) a circuit C that agrees with f on all but an ε-fraction of the inputs. That is,

Pr
A

[
C ← A f (ε, δ); Pr

x←{0,1}n
[C(x) &= f (x)] ≤ ε

]
≥ 1 − δ.

The running time of A is measures as a function of n, 1/ε, 1/δ, and the circuit size of f .

There has been a tremendous amount of work on obtaining efficient algorithms for PAC
learning various classes of functions (see [63] for a survey). It is known that no poly(n)-
time algorithm can learn arbitrary Boolean functions f : {0, 1}n → {0, 1} to accuracy
non-negligibly better than 1/2, but many positive results are known for restricted classes
of functions. We fix δ = 2/3, and note that this choice is somewhat arbitrary and enough
for all of our applications. We thus say that a class is ε-PAC learnable if it is (ε, 2/3)-PAC
learnable.

One well-known example is the quasi-polynomial time algorithm of Linial, Mansour,
and Nisan [78] for the class of functions computed by AC0 circuits (constant depth
circuits with AND, OR, and NOT gates of unbounded fan-in and fan-out).

Theorem 6.10. (Learning bounded-depth circuits [78]) The class of size-s depth-d
circuits is ε-PAC learnable within nO(logd−1(s/ε)) queries.9

Another notable example that is relevant for us is the algorithm of Bshouty and Tamon
[34] for learning arbitrary monotone functions.

Theorem 6.11. (Learning monotone functions [34]) The class of monotone functions
is ε-PAC learnable within nO(

√
n/ε) queries.

9In Theorems 6.10 and 6.11 it is enough that the labels are for uniformly random inputs (i.e., random
examples).
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A more recent result of Carmosino et al. [35] showed a (quasi-polynomial-time)
learner for AC0[p], the class of Boolean constant depth circuits with unbounded fan-in
and fan-out with AND, OR, NOT, and MOD-p gates.10

Theorem 6.12. (Learning bounded-depth circuits with mod gates [35]) For every
prime p > 1, the class ofAC0[p] circuits of size s is ε-PAC learnablewithin 2poly log(ns/ε)

queries.

We are now ready to show that the above learning procedures imply the claimed
obfuscators.

Proof of Theorem 6.6. Given an n-input circuit C of size s and depth d, we obfuscate
it by running the learning algorithm from Theorem 6.10, simulating each oracle query
with input x by executing C on x and returning the reply.

It is guaranteed that the resulting circuit is of size nO(logd−1(s/ε)) and it approximates
the original circuit on all but ε fraction of the inputs. Since the dependence on 1/ε is
logarithmic in the exponent, we can choose it to be ε = s

2 2d−2√n
. This bounds the running

time of the learner (and thus its output size) by

nO(logd−1(s/ε)) ≤ 2log n·O(logd−1(2
2d−2√n)) = 2O(

√
n·log n).

Since our obfuscator treats its input circuit as a black-box, the resulting obfuscation
can be perfectly simulated with only oracle access to the circuit. !

Proof of Theorem 6.7. Given an n-input circuit C that computes a monotone function
we obfuscate it by running the learning algorithm from Theorem 6.11, simulating each
oracle query with input x by executing C on x and returning the reply.

It is guaranteed that the resulting circuit is of size nO(
√
n/ε) and it approximates the

original circuit on all but ε fraction of the inputs. We set ε = 1/n0.499 and get that the
running time of the obfuscator and size of the resulting circuit are bounded by 20.9999n .
As before, since our obfuscator treats the input circuit as a black-box, the resulting
obfuscation is perfectly secure. !

Tightness of the approach The approach of constructing obfuscators via learning al-
gorithms is inherently limited. As observed by Valiant [91], any class that contains a
pseudorandom function cannot be learned with non-trivial savings. Moreover, this ap-
proach, as shown above, gives the very strong notion of perfect security, which does not
exist for all functions (even the computational version, known as virtual black-box, does
not exist for circuits that contain a PRF [14]). Thus, to get an obfuscator (that satisfies
only indistinguishability obfuscation) for a larger class of functions, one has to use the
fact that the obfuscator has access to a circuit rather than treating it as a black-box.

10Recently, Carmosino et al. [36] generalized their result to get an implication from “tolerant” natural
proofs to agnostic learning [67]. In agnostic learning, it is the same as in PAC learning except that the learner
is only guaranteed that f is close to the concept class C (rather than assuming it belongs to it).
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Preliminaries on circuit compression In the problem of circuit compression, studied
by Chen et al. [37], one is given the truth table of a Boolean function f computable
by some unknown circuit from a known class of circuits, and the goal is to find in time
poly(2n) a circuit C (not necessarily from the aforementioned family) computing f so
that the size of C is less than the trivial circuit size ≈ 2n . For general functions this is
impossible as a counting argument shows that there are functions that require this size,
so the focus is on restricted classes.

Definition 6.13. (C-compression) Given the truth table of an n-variate Boolean func-
tion f ∈ C, find a Boolean circuit of size < 2n/n that is functionally equivalent to
f .

As mentioned in [37], compression of Boolean functions is related to the setting of
exact learning with membership and equivalence queries [6]. In this learning setting,
the size of the hypothesis produced by the learning algorithm is upper-bounded by
the running time of the algorithm. In the circuit compression setting, the hypothesis
(compressed image) size and the running time of the learning (compression) algorithm
are decoupled: we allow more running time, but ask for a small-size compression. This
may enable improvements in the class of circuits that we can handle. Concretely, exact
learning is strictly stronger as any result in exact learning yields a compression algorithm
for the corresponding class of functions, but the opposite direction is not known.

We notice that in general good enough compression implies compressing obfuscation
where the output size is non-trivial, but the running time can be large enough to read the
truth table of the function (i.e., as in XiO). However, the other direction is not known
since in the obfuscation setting one is given a witness (i.e., a circuit rather than the truth
table). The most relevant circuit compression result that is relevant for us is stated next.

Theorem 6.14. [37] If a Boolean n-variate function is computed by an AC0 circuit of
size s and depth d, then it is compressible to a circuit of size at most 2n−n/O(log s)d−1

.

As in the case of learning algorithms, the above compression algorithm directly implies
a perfectly correct compressing obfuscator satisfying perfect security. We will avoid
repetition and skip the proof of Theorem 6.8 (which follows directly from Theorem 6.14).

Note that, as in the case of learning, it is impossible to compress a class of circuits
that contains a PRF. For this, consider a PRF with key size n2 and input size n which is
exponentially secure (namely, secure for adversaries running in time 2/(n2)).11 In this
case, the PRF-or-Random adversary is allowed to query the oracle at all 2n inputs and
yet it still cannot distinguish PRF from random. The impossibility of compression for
such a family of circuits now follows from the fact that random functions cannot be
compressed.

11The argument works even with sub-exponential security by increasing the size of the key.
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