
On One-Way Functions from NP-Complete
Problems
Yanyi Liu �

Cornell Tech, New York, NY, USA

Rafael Pass �

Cornell Tech, New York, NY, USA
Tel-Aviv University, Israel

Abstract
We present the first natural NP-complete problem whose average-case hardness w.r.t. the uniform
distribution over instances is equivalent to the existence of one-way functions (OWFs). The problem,
which originated in the 1960s, is the Conditional Time-Bounded Kolmogorov Complexity Problem:
let Kt(x | z) be the length of the shortest “program” that, given the “auxiliary input” z, outputs
the string x within time t(|x|), and let McKtP[’] be the set of strings (x, z, k) where |z| = ’(|x|),
|k| = log |x| and Kt(x | z) < k, where, for our purposes, a “program” is defined as a RAM machine.

Our main result shows that for every polynomial t(n) Ø n2, there exists some polynomial ’ such
that McKtP[’] is NP-complete. We additionally extend the result of Liu-Pass (FOCS’20) to show
that for every polynomial t(n) Ø 1.1n, and every polynomial ’(·), mild average-case hardness of
McKtP[’] is equivalent to the existence of OWFs. Taken together, these results provide the following
crisp characterization of what is required to base OWFs on NP ”™ BPP:

There exists concrete polynomials t, ’ such that “Basing OWFs on NP ”™ BPP” is equivalent
to providing a “worst-case to (mild) average-case reduction for McKtP[’]”.

In other words, the “holy-grail” of Cryptography (i.e., basing OWFs on NP ”™ BPP) is equivalent to
a basic question in algorithmic information theory.

As an independent contribution, we show that our NP-completeness result can be used to shed
new light on the feasibility of the polynomial-time bounded symmetry of information assertion
(Kolmogorov’68).

2012 ACM Subject Classification Theory of computation æ Computational complexity and crypto-
graphy

Keywords and phrases One-way Functions, NP-Completeness, Kolmogorov Complexity

Digital Object Identifier 10.4230/LIPIcs.CCC.2022.36

Related Version Full Version: https://eccc.weizmann.ac.il/report/2021/059/

Funding Rafael Pass: Work partially done while being on a sabbatical at Tel-Aviv University.
Supported in part by NSF Award SATC-1704788, NSF Award RI-1703846, AFOSR Award FA9550-
18-1-0267, and a JP Morgan Faculty Award. This material is based upon work supported by DARPA
under Agreement No. HR00110C0086. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the views of the
United States Government or DARPA.

Acknowledgements We are very grateful to Vinod Vaikuntanathan and Rahul Ilango for helpful
comments on an earlier version of this paper. We thank the anonymous reviewers for their helpful
comments.

© Yanyi Liu and Rafael Pass;
licensed under Creative Commons License CC-BY 4.0

37th Computational Complexity Conference (CCC 2022).
Editor: Shachar Lovett; Article No. 36; pp. 36:1–36:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yl2866@cornell.edu
mailto:rafael@cs.cornell.edu
https://doi.org/10.4230/LIPIcs.CCC.2022.36
https://eccc.weizmann.ac.il/report/2021/059/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

36:2 On One-Way Functions from NP-Complete Problems

1 Introduction

A one-way function (OWF) [15] is a function f that can be e�ciently computed (in polyno-
mial time), yet no probabilistic polynomial-time (PPT) algorithm can invert f with inverse
polynomial probability for infinitely many input lengths n. Whether OWFs exist is unequi-
vocally the most important open problem in Cryptography: OWFs are both necessary [34]
and su�cient for many of the most central cryptographic primitives and protocols (e.g.,
pseudorandom generators [10, 24], pseudorandom functions [19], private-key encryption [20],
digital signatures [56], commitment schemes [51], identification protocols [16], coin-flipping
protocols [9], and more). These primitives and protocols are often referred to as private-key
primitives, or “Minicrypt” primitives [33] as they exclude the notable task of public-key
encryption [15, 55].

While many candidate constructions of OWFs are known – most notably based on
factoring [55], the discrete logarithm problem [15], or the hardness of lattice problems [1]
– the question of whether OWFs can be based on some “standard” complexity-theoretic
assumption is mostly wide open. Indeed, a central open problem – often referred to as the
“holygrail of cryptography” – originating in the seminal work of Di�e and Hellman [15] is
whether the existence of OWFs can be based on the assumption that NP ”™ BPP.1 So far,
however, most results in the literature have been negative. Notably, starting with the work
by Brassard [13] in 1983, a long sequence of works have shown various types of black-box
separations between restricted types of OWFs (e.g., one-way permutations) and NP-hardness
(see e.g., [13, 12, 3, 53, 21, 47, 22, 11]). We emphasize, however, that these results only show
limited separations: they either consider restricted types of one-way functions, or restricted
classes of black-box reductions. Thus, even w.r.t. black-box reductions, the question of
whether OWFs can be based on the assumption that NP ”™ BPP, is wide open. In this work,
our focus is on providing a complexity-theoretic characterization of exactly what is required
for basing OWFs on NP ”™ BPP:

Is there a simple complexity-theoretic characterization of what is required for basing
OWFs on the assumption that NP ”™ BPP?

We believe that having a crisp complexity-theoretic characterization will be useful both for
obtaining more meaningful separation results, and towards the goal of eventually getting a
construction of OWFs based on NP ”™ BPP.

Towards Characterizing the Possibility of Basing OWFs on NP ”™ BPP. A first step
towards answering the above question is implied by a recent work by Liu and Pass [43]; they
demonstrated the first natural NP-language whose average-case hardness characterizes the
existence of OWFs. In more detail, they demonstrated that for any polynomial t(n) Ø 1.1n,
OWFs exist if and only the t-time-bounded Kolmogorov complexity problem, MK

t
P, is mildly

hard-on-average, where a language L is said to be mildly hard-on-average if there exists some
polynomial p(·) such that no PPT heuristic H can decide L with probability 1 ≠ 1/p(n) over
random n-bit instances for infinitely many input lengths n. (We provide more details on
the definition of MK

t
P below.) MK

poly
P is contained in NP, but it is unknown whether this

problem (which has been studied since the 1960s) is NP-complete. Indeed, this is one of the

1 Or more precisely, whether OWFs can be based on the assumption that NP ”™ ioBPP since the definition
of OWFs requires “almost everywhere” hardness. For convenience, in the introduction we are ignoring
this issue.

Y. Liu and R. Pass 36:3

long-standing open problems in algorithmic information-theory [38]. A simple corollary of
the result from [43] (as far as we know, this has not been previously observed) is that basing
OWFs on NP ”™ BPP is equivalent to (1) proving that MK

poly
P is NP-complete (perhaps with

a non-constructive reduction), and (2) providing a worst-case to average-case reduction for
MK

poly
P.2 To see why this is the case, note that if (1) and (2) are satisfied, then by the result

of [43], we have directly based OWFs on NP ”™ BPP. For the converse direction, note that if
OWFs can be based on NP ”™ BPP, then NP ”™ BPP implies the existence of OWF, which
by [43] implies that MK

poly
P is average-case hard (and thus also worst-case hard); thus we

have that (1) must hold. To see that (2) also holds, note that since MK
poly

P œ NP, it follows
that MK

poly
P ”™ BPP implies that NP ”™ BPP, which in turn implies OWF (by assumption)

which in turn by [43] implies that MK
poly

P is average-case hard, and thus (2) follows.
The above discussion, however, leaves open the question of whether a crisper charac-

terization can be obtained. In particular, if one can come up with a natural NP-complete
language L whose average-case hardness is equivalent to the existence of OWFs, then the
question of whether OWFs can be based on NP ”™ BPP would be equivalent to the question
of whether there exists a worst-case to average-case reduction for this particular problem.
This thus begs the question whether there exists some natural NP-complete language that
characterizes the existence of OWFs:

Does there exist some “natural” NP-complete language L such that OWFs exist i� L

is hard-on-average?

This question was recently raised (but not solved) in a paper by Allender et al [5] (and
without the above motivation). We note that “naturality” of the language L is key for this
question to make sense: It is easy to modify MK

poly
P into a new “artificial” language L

Õ

which is both NP-complete, yet (mild) average-case hardness of L
Õ is equivalent to mild

average-case hardness of MK
poly

P (and thus equivalent to the existence of OWFs).3 But such
an artificial problem would have no relevance to the central question that concerns us (i.e.,
providing a crisp characterization of when OWF can be based on NP ”™ BPP).

There is a long history of work on trying to base OWFs on average-case hardness of
NP-complete problems, starting with the work of Merkle and Hellman [50]. While the original
attempts failed to produce secure schemes (see [52] for a survey), more recent approaches
pioneered by Impaglizzo and Naor [35], Ajtai [1] and Ajtai and Dwork [2] produced not
just OWFs but also more advanced cryptographic primitives (such as collision-resistant
hash functions and public-key encryption) based on well-founded average-case hardness
assumptions on the subset sum problem (which is NP-complete). However, it is not known
whether the existence of OWFs implies average-case hardness of the subset sum problem
(i.e., they only have a one-sided implication).

In this work, we identify the first natural NP-complete language L – time-bounded
Conditional Kolmogorov-complexity [62, 42, 59, 48] – such that mild average-case hardness
of L (with respect to the uniform distribution on instances) is equivalent to the existence

2 We emphasize that we need a worst-case to 2-sided error average-case reduction. Hirahara’s elegant
work [25] makes partial progress on this question by presenting a worst-case (approximate) to errorless
average-case reduction; errorless average-case hardness does not su�ce for [43].

3 Simply consider the language LÕ of 2n-bit instances x||y where x, y œ {0, 1}n, and either (a) x = 0n

and y œ SAT, or (b) x ”= 0n and y œ MKpolyP. In other words, LÕ is a combination of SAT and MKpolyP,
so clearly this language is NP-complete, but when considering uniform statements, we only hit SAT
instances with negligible probability, and thus this language behaves essentially just like MKpolyP on
average.

CCC 2022

36:4 On One-Way Functions from NP-Complete Problems

of OWFs. As a consequence, we get that basing OWFs on NP ”™ BPP is equivalent to
providing a worst-case to average case reduction for this particular problem, yielding a simple
complexity-theoretic characterization of exactly what it takes to base OWFs on NP ”™ BPP.

1.1 Our Results
Before describing our results in detail, let us first briefly recall the notion of Time-bounded
Kolmogorov Complexity and the result of [43] that we will be relying on.

Time-bounded Kolmogorov Complexity and OWFs. What makes the string 1212121212
1212121 less random than 60484850668340357492? The notion of Kolmogorov complexity
(K-complexity) [58, 40, 14] from the field of algorithmic information theory provides an
elegant method for measuring the amount of “randomness” in individual strings: The K-
complexity of a string is the length of the shortest program (to be run on some fixed universal
Turing machine U) that outputs the string x. The notion of t(·)-time-bounded Kolmogorov
Complexity (Kt-complexity) is a computationally-restricted version of K-complexity: K

t(x)
is defined as the length of the shortest program that outputs the string x within time t(|x|).
As surveyed by Trakhtenbrot [59], the problem of e�ciently determining the K

t-complexity
for t(n) = poly(n) predates the theory of NP-completeness and was studied in the Soviet
Union since the 60s as a candidate for a problem that requires “brute-force search”. The
modern complexity-theoretic study of this problem goes back to Sipser [57], Ko [37] and
Hartmanis [23]. Let MK

t(·)
P denote the decisional t(n)-time bounded Kolmogorov complexity

problem; namely, the language of pairs (x, k) where |k| = Álog |x|Ë and K
t(x) Æ k.

As mentioned above, Liu and Pass [43] demonstrated that for every polynomial t(n) Ø 1.1n,
mild average-case hardness of MK

t
P is equivalent to the existence of OWFs. But as mentioned,

it is not known whether MK
t
P is NP-complete (for any polynomial t). Towards getting a

characterization of OWFs based on average-case hardness of an NP-complete problem, we
will consider a generalization of MK

t
P based on conditional Kolmogorov complexity.

Conditional Time-bounded Kolmogorov Complexity. The t(·)-time-bounded Conditional
Kolmogorov Complexity [62, 42, 59, 48] of a string x conditioned on the string z – denoted
K

t(x | z) – is the length of the shortest program that, given the “auxiliary input” z, outputs
the string x within time t(|x|). More formally,

K
t(x | z) = min

�œ{0,1}ú
{|�| : U(�(z), 1t(|x|)) = x},

where U is a universal Turing machine, and we let U(�(z), 1t) denote the output of the
program � on input z after t steps. Whereas the notion of a “program” typically is taken
to be a Turing machine, in this work we focus on the setting where a program is taken
to be a RAM-machine – namely � is now allowed to be a RAM-machine that can make
Random Access queries into the auxiliary string z. Let McK

t(·)
P[’(·)] denote the decisional

t(·)-time-bounded ’(·)-conditional Kolmogorov complexity problem; namely, the language
of triples (x, z, k) where |z| = ’(|x|), |k| = Álog |x|Ë and K

t(x | z) Æ k. Whereas conditional
(time-bounded) Kolmogorov complexity has been studied for decades (see e.g., [48]), it has
also remained an open question to determine whether this problem is NP-complete.4

4 We remark, however, that as far as we know, we are the first to consider this problem w.r.t. RAM
programs as opposed to Turing machines. In our view, this RAM version of the problem is as natural
(if not more) than the “standard” TM version.

Y. Liu and R. Pass 36:5

We observe that the result of [43] extends, with only relatively minor modifications in
the proof, also to conditional Kolmogorov complexity: We show that for every polynomial
t(·) Ø 1.1n, and every polynomial ’(·), mild average-case hardness of McK

t
P[’] is equivalent

to the existence of OWFs.

I Theorem 1.1 (closely following [43]). For every polynomial t(n) Ø 1.1n, every polynomial
’(·), mild average-case hardness of McK

t
P[’] is equivalent to the existence of OWFs.

So, if we could show that McK
t
P[’] is NP-complete for some polynomials t, ’, we would be

done. Our main theorem does exactly this.

I Theorem 1.2 (Main Theorem). For every polynomial t(n) Ø n
2, there exists some polyno-

mial ’(·), such that McK
t
P[’] is NP-complete (under randomized polynomial-time reductions).

Let us emphasize that the combination of Theorem 1.1 and Theorem 1.2, for instance,
yields the following crisp characterization of the “holygrail” of Cryptography:

There exists (concrete) polynomials t, ’ such that “Basing OWFs on NP ”™ BPP”
is equivalent to the existene of a worst-case to (mild) average-case reduction for
McK

t
P[’].

In other words, the “holy grail” of Cryptography is equivalent to a basic question in algorithmic
information theory. Furthermore, let us point out that for the unconditional time-bounded
Kolmogorov complexity problem MK

poly
P, some partial5 worst-case to average-case reductions

are known [25], so this gives us hope that a full worst-case to average-case reduction may be
possible also for McK

t
P.

As we shall discuss shortly, Theorem 1.2 is also interesting in its own right and has other
direct applications: we show how to shed new light on a long-standing open problem regarding
symmetry of information [62] for the setting of time-bounded Kolmogorov complexity.

Let us emphasize that for the NP-completeness result to hold, it is imperative that our
notion of conditional Kolmogorov complexity views programs as RAM-machines (as opposed
to Turing machines). We leave it as an intriguing open problem to determine whether the
“standard” conditional time-bounded Kolmogorov complexity (where interpreting a program
as a Turing machine) is also NP-complete.

We proceed to providing a proof overview of the main theorem (i.e. Theorem 1.2).

1.2 Proof Overview
We first note that it directly follows that for all polynomials t, ’, McK

t
P[’] œ NP – the witness

for an instance (x, z, k) is simply a RAM program � such that |�| Æ k and �(z) generates
x within t(|x|) steps. We turn to discussing how to prove that there exist polynomials t, ’,
such that McK

t
P[’] is NP-hard. On a high-level, our approach will start o� by using the

recent breakthrough approach by Ilango [29, 30] showing NP-hardness of an oracle-variant
of the circuit minimization problem (MCSP) [36] – that is, the problem of, given the truth
table of a boolean function, determining the size of the smallest circuit that computes the
function – and next extend it to deal with the conditional Kolmogorov complexity problem
by appropriately embedding the “oracles” used in the construction of [29] in the auxiliary
input.

5 The reduction only shows so-called errorless, as opposed to 2-sided error, average-case hardness.

CCC 2022

36:6 On One-Way Functions from NP-Complete Problems

In more detail, following [8, 28, 29, 30, 32], we will embed an (approximate) Bounded Set
Cover instance into an McK

t
P[’] instance; the approximate Bounded Set Cover problem is

known to be NP-complete [60]. Recall that in the Bounded Set Cover problem, we are given a
collection of sets S1, S2, . . . Sr, each of which is a constant-size subset of the universe U = [n]
and the goal is to find a minimal set of indexes, s, such that fiiœsSi = [n] (i.e., finding the
minimal collection S of sets Si that cover [n]). We start o� by generalizing an idea from
[29, 30, 32] and replace the universe U = [n] with n random strings Ai œ {0, 1}

m, where m(n)
is some su�ciently large polynomial (in the formal proof m(n) = n

3). Roughly speaking, the
rationale for doing this is that a set cover, intuitively, should give a succinct (proportional to
the size of the set cover) way to generate the random string A = A1||A2|| . . . ||An if we have
oracle access to the sets Si – we simply need to specify the sets in the set cover and can then
reconstruct the union of these sets. This construction was used in [29] to prove NP-hardness
of the oracle-version of the MCSP problem – the sets Si were simply placed into the oracle.
([30] provides a more elaborate construction that also shows NP-hardness of a conditional
variant of the MCSP problem; we will, however, not rely on that extension.)

To convert the above set-cover instance into a conditional Kolmogorov complexity problem,
our new idea will be to place the description of the sets Si (each of which consists of some set
of strings Ai) at random locations in the auxiliary string z and to make sure z is very long
(yet still only of polynomial length), and consider the conditional Kolmogorov complexity
problem of computing K

t(A | z) where A = A1||A2|| . . . ||An. Conceptually, one can view
this approach as a way to obfuscate the oracle used in [29] and placing the obfuscation in z.
Intuitively, since we are placing the descriptions of the sets Si at random locations in z, a
time-bounded algorithm can only access Si if it “knows” the random location where it has
been put, and thus, intuitively, we can view z as an information-theoretic obfuscation of
gates that compute these descriptions.6

If there exists a set cover s of size ¸, K
t(A | z) should be no more than ¸O(log n) + O(1),

by considering the program that simply hardcodes the location in z of the descriptions of
the sets Si for i œ s. The harder part is showing that if K

t(A | z) Æ ¸O(log n) then there
exists a set-cover of size O(¸). Relying on the intuition that z acts as an obfuscation of
the description of the sets {Si}, the intuition for why this holds is that if z is su�ciently
longer than t(|x|), and the descriptions of the sets are put into random positions of z, any
program with running-time t(|x|) that reconstructs the string A = A1||A2|| . . . ||An (which
with overwhelming probability has high Kolmogorov complexity) must “know” the location
in the auxiliary string z of sets {Si}iœs in some set cover s, in the sense that by running
this program, those positions can be “reconstructed”. In a bit more detail, by running this
program and looking at the memory access queries made by the program into z, we must be
hitting the locations where the sets have been put. But since these locations are random
(by construction of z), the program needs to basically “hard-code” them, or else we would
be able to compress the indexes of these locations, but these indexes have high Kolmogorov
complexity as they were picked at random, which is a contradiction.

The reader may note that, perhaps curiously, we are using an argument based on
Kolmogorov complexity to formalize the statement that K

t(A | z) ¥ ¸O(log n). In more
detail, we are relying on a Kolmogorov-complexity style compression argument to formalize

6 This intuition is somewhat misleading: since z is only of polynomial length, the “obfuscation” only
works with respect to a-priori time-bounded attackers (that can only explore a small fraction of z) and
can only have inverse polynomial security. But in our context, such a relaxed notion of security su�ces.

Y. Liu and R. Pass 36:7

that z acts as a good “obfuscation” of the description of the sets {Si}. This proof technique
bears similarities to the proof technique pioneered by Gennero and Trevisan [17] in the
context of proving that a random permutation is one-way w.r.t. polynomial-size circuits.

Let us end by noting that the above proof outline oversimplifies and misses several crucial
details that make the actual proof quite a bit more complicated.

1.3 Applications to Polynomial-time Bounded Symmetry of Information
The celebrated symmetry of information theorem by Kolmogorov and Levin from 1967 [62]
states that for all strings x, y œ {0, 1}

ú:

K(xy) = K(y) + K(x | y) ± O(log |xy|)

where xy denotes the concatenation of the strings x, y. The proof of this theorem, however,
involves a computationally expensive exhaustive search through all strings of lengths |x|, |y|.
The question of whether a polynomial-time bounded version of information symmetry holds,
where K-complexity is replaced by K

t-complexity for polynomials t, has remained an open
problem. We refer to the assertion that there exists some constant 0 < ‘ Æ 1 such that for
all su�ciently large polynomials t, all x, y œ {0, 1}

ú (of polynomially-related length), it holds
that

K
t‘

(xy) Ø K
t(y) + K

t(x | y) ≠ O(log |xy|)

K
t1/‘

(xy) Æ K
t(y) + K

t(x | y) + O(log |xy|)

as the polynomial-time symmetry of information assertion (polySOI). The question of
whether a polynomial-time symmetry of information assertion holds goes back to a work by
Kolmogorov from 1968 [39]; as retold by Levin [41]:

Kolmogorov suggested at the time [39] that this information symmetry theorem may
be a good test case to prove that for some tasks exhaustive search cannot be avoided
(in today’s terms, P ”= NP)

The first formal complexity-theoretic investigation of this question goes back to works by
Longpré and Mocas [48] and Longpré and Watanabe [49]. They consider a length-restricted
version of the polySOI where we additionally add the requirement that |x| = |y| and show
that (1) the length-restricted polySOI assertion holds if NP = P, and (2) the length-restricted
polySOI assertion is false if one-way functions exist. We here focus our attention on the above
“length-unrestricted” version of the polySOI assertion, where x and y can be of arbitrary
polynomially-related lengths. We demonstrate, as a corollary of the techniques behind the
proof of Theorem 1.2, that the (length unrestricted) polySOI assertion is unconditionally
false.

I Theorem 1.3. The (length-unrestricted) polynomial-time symmetry of information asser-
tion is false.

Let us provide a brief overview of how this theorem is proven, and the instrumental role that
the proof of Theorem 1.2 plays in this proof. The proof, roughly speaking, proceeds in the
following steps:

Step 1: Polynomial increase in running-time can only decrease K
t(x) by

O(log |x|). We first show that polySOI implies that if we polynomially increase the
running-time bound, then this cannot have a significant e�ect on K

t; more precisely, for

CCC 2022

36:8 On One-Way Functions from NP-Complete Problems

large enough t, it holds that for all constants c, K
t(x) cannot be more than O(log |x|)

more than K
tc(x). Intuitively, this follows from polySOI by letting y be a su�ciently

long all “dummy” string, 0m. We note that this step inherently relies on us considering a
length unrestricted polySOI.
Step 2: Showing that a “strong” polySOI assertion holds. We next observe that
combining Step 1 with polySOI yields a strong form of the polySOI assertion where ‘ = 1;
i.e., it holds that

K
t(xy) = K

t(y) + K
t(x | y) ± O(log |xy|)

Step 3: Polynomial increase in running-time can only decrease conditional
K

t(x|z) by O(log |xz|). We then combine the “strong” polySOI assertion from Step 2
with Step 1 to show that an analog of Step 1 holds also with respect to conditional
time-bounded Kolmogorov complexity. More precisely, for large enough t, it holds that
for all constants c, K

t(x | z) cannot be more than O(log |xz|) larger than K
tc(x | z).

Step 4: Contradicting the construction in Theorem 1.2. We finally observe
that the statement of Step 3 contradicts the construction in the proof of Theorem 1.2.
In particular, in the proof of Theorem 1.2, we showed strings x, z where the condition
time-bounded Kolmogorov complexity K

t(x | z) is large (roughly the size of the set-cover).
However, this relied on t being su�ciently small so that the program cannot read all of
z. If t is large, so that the program can read all of z, then K

t(x | z) is tiny (x can be
trivially reconstructed from z). This contradicts the statement of Step 3.

Let us emphasize that Theorem 1.3 is incomparable to the result of [49]: [49] consider
a weaker “length-restricted” polynomial-time symmetry of information assertion (where
|x| = |y|), whereas we are considering a “length-unrestricted” version. While [49] show that
the length-restricted polySOI indeed holds if NP = P, we show that the length-unrestricted
version is unconditionally false. We do, however, note that the “standard” (non time-bounded)
symmetry of information theorem of [62] consider the length unrestricted case, in analogy
with what we do.

Furthermore, for our result to hold (and in contrast to [49]), it is crucial that we consider
RAM-programs as the model of computation, as opposed to the (more standard in the
context of time-bounded Kolmogorov complexity) notion of TM-programs; nevertheless, in
our eyes, considering RAM programs is equally motivated (if not more) than TM programs.

1.4 Related Works
As mentioned above, there has been a recent sequence of surprising works proving NP-
hardness results for variants of the MCSP problem [8, 28, 29, 30, 32]; in particular, as
mentioned, Ilango [30] proves that a conditional version of the MCSP problem is NP-hard.
As observed already in [59], and further explored in [4], the MCSP problem is closely related
to the time-bounded Kolmogorov complexity problem – intuitively, the two problems capture
the same concept, but using a di�erent model of computation – but a formal reduction
between these problems is not known so these results do not directly extend to the setting
we consider. (However, as mentioned above, the starting point for our approach is the result
of [29] showing NP-hardness for an oracle version of the MCSP problem.)

A recent result by Hirahara [26] directly addresses conditional time-bounded Kolmogorov
complexity and shows NP-hardness for a variant of this problem, McK

poly
P

SAT, where the
program has access to a SAT-oracle. (The McK

poly
P

SAT problem, however, is not known to
be in NP, but is in NP

NP, so NP-completeness is not shown).

Y. Liu and R. Pass 36:9

An intriguing recent paper by Allender et al [5] presented a natural NP-complete problem
L – a sparse variant of the MCSP problem – such that average-case hardness of L was
claimed to imply the existence of OWFs; the authors also claimed a “weak” converse of this
implication – that the existence of OWFs implies a very weak, so-called “non-trivial”, notion
of average-case hardness of the language7; unfortunately, an error was found in the paper.
Concurrently and independently from the current work, the authors of [5] show how to repair
the issues in their proof and present a di�erent NP-complete language whose average-case
hardness implies the existence of OWFs, and for which the same weak converse holds.8 While
their original posting [5] – which inspired the current work – attempted to base OWFs on the
average-case hardness of a sparse version of the MCSP problem, their new paper [6] instead
bases OWFs on average-case hardness of a conditional Kolmogorov complexity style problem,
just as in the current work. Their conditional Kolmogorov complexity problem di�ers from
ours in several aspects: (1) whereas we consider conditional Kolmogorov complexity w.r.t.
RAM programs, [6] considers it w.r.t. Turing machines with “oracle-access” to the auxiliary
input z; and (2) instead of considering a time-bounded version of conditional Kolmogorov
complexity (as we do), [6] instead charge for running-time in their notion of Kolmogorov
complexity, following the KT notion of [4]. Due to these di�erences, NP-completeness of
their problem follows essentially directly from the NP-completeness results of [29] (whereas
we have to work a lot harder, as explained above). However, due to these di�erences, they
only manage to show a one-directional implication between average-case hardness of their
problem and OWFs (and only a weak converse in the other direction), whereas we establish an
equivalence between average-case hardness of McK

t
P[’] (for any polynomials t(n) > 1.1n, ’(·))

and OWFs.
Subsequent to the initial posting [44] of this paper,9 [7] have shown, based on the results

in [54] that (mild) average-case hardness of the NP-complete problem considered in [6] is
equivalent to the existence of OWFs computable in log space; their work thus provides
an elegant characterization of what it means to base OWFs computable in logspace on
NP ”™ BPP.

After the initial posting of this paper, we were informed by Rahul Ilango [31] that he had
independently also shown NP-completeness of some conditional time-bounded Kolmogorov
complexity problem, but without writing down the results. Indeed, as far as we can tell, our
paper is the first to present any type of NP-completeness results for Kolmogorov complexity
problems.

Resource bounded notions of conditional Kolmogorov complexity are useful also in other
(related) contexts. In a companion paper to the current work [46], we rely on a notion of
space-bounded conditional Kolmogorov complexity (defined similarly to the time-bounded
notion of conditional Kolmogorov complexity used in the current paper) to characterize OWFs
in NC

0; alternative characterizations without relying on condition Kolmogorov complexity
were provided in [54].

In [46], we also identify a problem whose (infinitely-often) average-case hardness w.r.t.
error-less heuristics is equivalent to EXP ”= BPP (i.e., the problem is EXP-average-case
complete w.r.t. errorless heuristics), yet (two-sided error) average-case hardness of this
problem is equivalent to the existence of OWFs; related results were also obtained in [54].

7 Roughly speaking, that average-case hardness holds for an inverse exponential, as opposed to inverse
polynomial, fraction of inputs.

8 The papers were submitted to on ECCC/Eprint within one day of each other.
9 The initial posting [44] did not contain the results on polynomial-time symmetry of information

CCC 2022

36:10 On One-Way Functions from NP-Complete Problems

Taken together, the current work and [46, 54], demonstrate that the existence of OWFs can
be characterized through the average-case hardness of both NP-complete (this work) and
EXP-complete ([46, 54]) languages.

It has been recently shown in [27, 18] that some other variant of symmetry of information
holds under the assumption that NP is easy on average. We mention that our result (proved
in Theorem 1.3) combined with the aforementioned result in [27, 18] does not prove that
NP is hard on average unconditionally (due to the di�erence in formulating symmetry of
information). In the form used in [27, 18], they require that symmetry of information holds
with respect to individual running time bounds t œ N that are not polynomially-related
to |x| (or |y|), whereas we consider polynomially-related running time bounds and allow a
(polynomially) larger running time bound when the string is longer. Our proof does not work
in the setting of [27, 18] for technical reasons.

1.5 Outline
We will provide the formalizations and proofs of Theorem 1.2 in Section 3. We refer the
reader to the full version [45] for formal treatments of Theorem 1.1 and 1.3.

2 Preliminaries

We let [n] denote the set {1, 2, . . . , n} for any integer n œ N. For any two strings x, y, let x||y

denote the concatenation of x and y; whenever it is clear from context, we sometimes also use
xy to denote the concatenation of x and y. In this work, we sometimes consider strings that
contain a special symbol ‹ (besides 0 and 1). We will use the following standard encoding
scheme – which we refer to as simple the standard encoding scheme enc‹) to transform a
string that may contain ‹ into a binary string: enc‹(x), of a string x œ {0, 1, ‹}

ú is a 2|x|-bit
binary string where we replace each bit in x by 00 for 0, 01 for 1, and 11 for ‹.

2.1 Set Cover
Let n be an integer and S1, S2, . . . , S¸, T be sets ™ [n]. We say that the sets S1, S2, . . . , S¸

cover T if T ™ S1 fi S2 fi . . . fi S¸. Let S be a collection of sets. We define cover(T, S) to be
the minimum number of sets in S necessary to cover T .

We recall the “-Bounded Set Cover Problem:
Input: (1n

, 1¸
, S) where n, ¸ are integers œ N and S = {S1, S2, . . . , Sr} is a collection of

subsets ™ [n]. It is guaranteed that all the sets in S covers [n] together and for all i œ [r],
|Si| Æ “.
Decide: Is cover([n], S) Æ ¸.

We also consider the approximate version of the “-Bounded Set Cover problem. The –-
approximate “-Bounded Set Cover Problem is a promise problem (�yes, �no) where �yes
contains (1n

, 1¸
, S) such that cover([n], S) Æ ¸ and �no consists of (1n

, 1¸
, S) such that

cover([n], S) > – · ¸.
Trevisan [60] showed that approximating the “-Bounded Set Cover Problem within a

constant factor is NP-hard:

I Theorem 2.1 ([60]). For every constant – Ø 1, there exists a constant “ œ N such that the
–-approximate “-Bounded Set Cover Problem is NP-hard. More concretely, for any language
L œ NP, there exists a polynomial-time algorithm R such that on input x œ L, R(x) outputs
an instance in �yes; on input x ”œ L, R(x) outputs an instance in �no, where (�yes, �no)
denotes the –-approximate “-Bounded Set Cover Problem.

Y. Liu and R. Pass 36:11

2.2 The RAM Model
A RAM program � = (M, y) consists of a CPU “next-step” Turing machine M , and some
initial input y œ {0, 1}

ú. Let state = 0 be an initial state. The execution of this RAM
program � on input z œ {0, 1}

ú (which may be empty) proceeds as follows.
At initialization, the memory is set to y||‹||z, and the “read bit” b

read is set to ‹. (For
simplicity, we assume that each memory position contains a symbol œ {0, 1, ‹}.10 We
assume that the memory is of infinite length and the rest of the positions in the memory
are filled with ‹.)
At each CPU step, M receives as input state œ {0, 1}

ú, the most recently read bit b
read,

and outputs a new state state
Õ
œ {0, 1}

ú, a read position i
read, a write position i

write and
some bit b

write (to be written to position i
write).11

The execution of this step replaces state with state
Õ, sets b

read to the content of memory
position i

read, and replaces the content of memory position i
write by b

write.
When state = Á (i.e., the empty string), the computation ends and the output of the of
the computation is defined as the content of the memory tape up to the symbol ‹.12

The running time of � is defined to be the sum of the running time of M in all CPU
steps.

Note that any polynomial-time Turing machine can be simulated by a polynomial-time RAM
program by simply copying the content of the memory into state, next letting M run the
original Turing machine using state as its tape, and finally copying the content of state back
into the memory.

2.3 Time-bounded Conditional Kolmogorov Complexity
We introduce the notion of time-bounded conditional Kolmogorov complexity with respect
to RAM programs. Roughly speaking, the t-time-bounded Kolmogorov complexity, K

t(x | z),
of a string x œ {0, 1}

ú conditioned on a string z œ {0, 1}
ú is the length of the shortest RAM

program � = (M, y) such that �(z) outputs x in t(|x|) steps.
Let U be some fixed Universal Turing machine that can emulate any RAM program �

with polynomial overhead. Let U(�(z), 1t) denote the output of �(z) when emulated on U

for t steps. We now define the notion of t-time-bounded conditional Kolmogorov complexity.

I Definition 2.2. Let t be a polynomial. For all x œ {0, 1}
ú and z œ {0, 1}

ú, define

K
t(x | z) = min

�œ{0,1}ú
{|�| : U(�(z), 1t(|x|)) = x}

where |�| is referred to as the description length of �. When there is no time bound, we
define

K(x | z) = min
�œ{0,1}ú

{|�| : U(�(z), 1tÕ
) = x for some finite t

Õ
}

10When we implement this, we always use the standard encoding scheme, enc‹. We also note that the
string y and z can never contain the symbol ‹ (since they exclusively consist of 0s and 1s). When we
load y and z into the memory, instead of storing y and z directly, we store the standard encoding of y
and z (where 0 becomes 00 and 1 becomes 01).

11 Formally, the inputs and outputs of M are separated by the ‹ symbol so that state can be of variable
length.

12 In a real execution, the content of the memory is encoded by the standard encoding scheme. The output
of the computation is then defined by the decoded content of the memory.

CCC 2022

36:12 On One-Way Functions from NP-Complete Problems

We also consider the decisional variant of the minimum t-time-bounded conditional
Kolmogorov complexity problem. Let t, ’ be two polynomials, and let McK

t
P[’] denote the

language of triples (x, z, k), having the property that K
t(x | z) Æ k, where z œ {0, 1}

’(|x|)

and k œ {0, 1}
Álog nË.

We note that for any string z œ {0, 1}
ú
, x œ {0, 1}

ú, for any polynomial t(·), K
t(x | z), is

always upper bounded by |x| + O(1).
I Fact 2.3. There exists a constant c œ N such that for all polynomial t(·), for all string
z œ {0, 1}

ú
, x œ {0, 1}

ú, K
t(x | z) Æ |x| + c.

Proof. Consider the RAM program � = (M, x) where M is a Turing machine that directly
sets state = Á. Note that in the execution of �, x will be put into the memory and � will
halt immediately. Thus � will output the string x. Note that M is a constant-size machine,
so the description length of � is at most |x| + c for some constant c. J

We finally remark that for any polynomials t(·), ’(·), McK
t
P[’] œ NP.

B Claim 2.4. For all polynomials t(·), ’(·), McK
t
P[’] œ NP.

Proof. On input an instance (x, z, k) œ McK
t
P[’], and a witness �, checking if |�| Æ k,

|z| = ’(|x|) and U(�(z), 1t(|x|)) = x can be done in polynomial time. C

2.4 One-way Functions
We recall the definition of one-way functions [15]. Roughly speaking, a function f is one-way
if it is polynomial-time computable, but hard to invert for PPT attackers.
I Definition 2.5. Let f : {0, 1}

ú
æ {0, 1}

ú be a polynomial-time computable function. f is
said to be a one-way function (OWF) if for every PPT algorithm A, there exists a negligible
function µ such that for all n œ N,

Pr[x Ω {0, 1}
n; y = f(x) : A(1n

, y) œ f
≠1(f(x))] Æ µ(n)

We may also consider a weaker notion of a weak one-way function [61], where we only
require all PPT attackers to fail with probability noticeably bounded away from 1:
I Definition 2.6. Let f : {0, 1}

ú
æ {0, 1}

ú be a polynomial-time computable function. f is
said to be a –-weak one-way function (–-weak OWF) if for every PPT algorithm A, for all
su�ciently large n œ N ,

Pr[x Ω {0, 1}
n; y = f(x) : A(1n

, y) œ f
≠1(f(x))] < 1 ≠ –(n)

2.5 Average-case Hard Languages
We turn to defining what it means for a language to be average-case hard (for PPT algorithms).
We will be considering languages that are only defined on some input lengths (such as
McK

t
P[’]). We say that a language L is defined over inputs lengths s(·) if L ™ finœN{0, 1}

s(n).
For concreteness, note that McK

t
P[’] is defined on input lengths s(n) = n + ’(n) + Álog nË.

We now turn to defining average-case hardness.
I Definition 2.7. We say that a language L defined over inputs lengths s(·) is –(·) hard-on-
average (–-HoA) if for all PPT heuristic H, for all su�ciently large n œ N,

Pr[x Ω {0, 1}
s(n) : H(x) = L(x)] < 1 ≠ –(n)

In other words, there does not exist a PPT “heuristic” H that decides L with probability
1 ≠ –(n) on infinitely many input lengths n œ N over which L is defined.

We refer to a language L as being mildly HoA if there exists a polynomial p(·) > 0 such
that L is 1

p(·) -HoA.

Y. Liu and R. Pass 36:13

3 NP-Hardness of McKtP[’]

In this section, we prove our main theorem: We show that there exists a reduction from the
approximate “-Bounded Set Cover Problem to McK

t
P[’] when t, ’ are su�ciently large.

I Theorem 3.1. For all polynomial t(n) Ø n
2, there exists a polynomial ’(n) such that

McK
t
P[’] is NP-hard under many-one randomized polynomial-time reductions.

Proof. The theorem follows from Proposition 3.3 and Proposition 3.4 (stated and proved in
Section 3.2), and Theorem 2.1. J

In fact, we note that the reduction only has one-sided errors:

I Theorem 3.2. For all polynomial t(n) Ø n
2, if there exists a polynomial ’(n) such that

McK
t
P[’] œ coRP, then NP ™ coRP.

Proof. By Proposition 3.3, our reduction succeeds with probability 1 on YES instances. By
Proposition 3.4, our reduction succeeds with high probability (Ø 1

2) on NO instances. Finally,
the corollary follows from Theorem 2.1. J

3.1 A Reduction from the “-Bounded Set Cover Problem to McKtP
Let “ be a constant, let t(n) Ø n

2 be a polynomial, and consider ’(n) = (t(n))4
n

2“ . We will
show that there exists a randomized reduction from the “-Bounded Set Cover Problem to
McK

t
P[’].

Given an instance (1n
, 1¸

, S) where S = {S1, S2, . . . , Sr} of the “-Bounded Set Cover
Problem, we proceed as follows:

Let m = n
3; for each i œ [n], sample a random string Ai œ {0, 1}

m, and consider the
length-(n ◊ m) concatenation A = A1||A2|| . . . ||An of the sampled strings. Think of Ai

as a randomized encoding of the element i in the Set Cover problem. See Figure 1 for an
illustration of these strings.

101...0 001...1 110...1 ... 010...0

A₁ A₂ A₃ Aₙ

A:

000...0 A₂ 000...0 ... AₙW₁:

A₁ 000...0 A₃ ... AₙW₂:

...

000...0 000...0 A₃ ... 000...0Wᵣ:

0...0z: ... 0...0 W₂ ... 0...0 W₁ ... 0...0 Wᵣ ... 0...0 0...0

k₂location: k₁ kᵣ

Figure 1 An illustrative example for the string A.

For each i œ [r], we construct a “gadget” string Wi œ ({0, 1}
m)n (for set Si). We partition

Wi into n blocks Wi,1, Wi,2, . . . , Wi,n where each block is of size m. We let Wi,j = Aj if
j œ Si, and otherwise Wi,j = 0m. In other words, Wi reveals the strings Aj for all j œ Si;
think of Wi as a randomized encoding of the set Si. See Figure 2 for an illustration of
there strings.
Let ⁄ = 4 log r + 4 log t(nm). For each i œ [r], we sample a “key” ki œ {0, 1}

⁄ for Wi. For
simplicity, we assume that the sampled keys are distinct with each other. (If this is not
the case, the reduction just aborts; since this happens only with negligible probability we
may ignore this event in the analysis.)
We are finally ready to describe the “auxiliary input” z. The idea is to hide the gadgets
{Wi} in z at random locations specified by the keys so as to ensure that the only way for
a t-time bounded program to recover Wi is to essentially hard-code the key ki as part of
its description. In more detail, we consider a string z of length 2⁄

◊ n ◊ m; partition z

CCC 2022

36:14 On One-Way Functions from NP-Complete Problems101...0 001...1 110...1 ... 010...0

A₁ A₂ A₃ Aₙ

A:

000...0 A₂ 000...0 ... AₙW₁:

A₁ 000...0 A₃ ... AₙW₂:

...

000...0 000...0 A₃ ... 000...0Wᵣ:

0...0z: ... 0...0 W₂ ... 0...0 W₁ ... 0...0 Wᵣ ... 0...0 0...0

k₂location: k₁ kᵣ

S₁=(2,...,n)

S₂=(1,3,...,n)

Sᵣ=(3,...)

Figure 2 An illustrative example for the gadget strings Wi. Note that if we have a Set Cover
(i1, i2, . . . , i¸), then the bitwise OR of the strings Wi1 , Wi1 , . . . Wi¸ equals A.

into 2⁄ blocks z0⁄ , z0⁄≠11, . . . , z1⁄≠10, z1⁄ where for all p œ {0, 1}
⁄, |zp| = n ◊ m. For all

p œ {0, 1}
2⁄ , let zp = Wi if p = ki for some i œ [r], and otherwise, let zp = 0n◊m. See

Figure 3 for an illustration of these strings.

101...0 001...1 110...1 ... 010...0

A₁ A₂ A₃ Aₙ

A:

000...0 A₂ 000...0 ... AₙW₁:

A₁ 000...0 A₃ ... AₙW₂:
...

000...0 000...0 A₃ ... 000...0Wᵣ:

0...0z: ... 0...0 W₂ ... 0...0 W₁ ... 0...0 Wᵣ ... 0...0 0...0

k₂location: k₁ kᵣ

Figure 3 An illustrative example of the “auxiliary” input z.

Finally, the reduction will output YES if K
t(A | z) Æ 2⁄¸. Note that the length of z is

upper bounded by ’(|A|), and thus this is a syntactically valid reduction to an McK
t
P[’]

instance.

We turn to analyzing the success probability of the reduction.

3.2 Analyzing the Reduction
We will prove that the above reduction gives us a 4-approximation of the “-Bounded Set
Cover Problem. We first show that if [n] can be covered by a small number (Æ ¸) of sets,
the time-bounded Kolmogorov complexity of A conditioned on the string z will be small
(Æ 2⁄¸): the program computing A simply needs to hard-code the keys ki corresponding to
the ¸ sets in the set cover; it can look into z at the positions specified by the keys and output
the bitwise OR of the content of those positions.

I Proposition 3.3. If cover([n], S) Æ ¸ then K
t(A | z) Æ K

tÕ(A | z) Æ 2⁄¸ where t
Õ(n) = n

2.

Proof. Let Si1 , Si2 , . . . , Si¸ be the ¸ sets in S that cover [n]. (Since the sets are “-Bounded,
it follows that ¸ Ø n/“.) Let � be a RAM program with n, m, ⁄ and the keys ki1 , . . . , ki¸

hardwired in it. For each j œ [¸], � first reads W
Õ
ij

= zkij
from the kij -th block of the string

z (where |zkij
| = n ◊ m). (Recall that z is partitioned into 2⁄ blocks and each block is of

size n ◊ m.) � then obtains W
Õ
i1 , . . . , W

Õ
i¸

and � simply outputs

W
Õ
i1 ‚ W

Õ
i2 ‚ . . . ‚ W

Õ
i¸

where ‚ denotes the bitwise OR for binary strings.
We first show that � indeed outputs the string A. Note that by the construction of string

z, it holds that

(W Õ
i1 , . . . , W

Õ
i¸

) = (zki1
, . . . , zki¸

) = (Wi1 , . . . , Wi¸).

Y. Liu and R. Pass 36:15

Recall that in the construction of the gadget string Wij (for each j œ [¸]), Wij is partitioned
into n blocks Wij ,1, . . . , Wij ,n. And for each block b œ [n], Wij ,b = Ab if b œ Sij , and otherwise
Wij ,b = 0m. Since the sets Si1 , . . . , Si¸ cover [n], for all b œ [n], there exists an index j such
that the b-th block of the gadget string Wij matches Ab. Thus, Wi1 ‚ Wi2 ‚ . . . ‚ Wi¸ = A.

We then show that � can be described within 2⁄¸ bits. Recall that � contains the values
n, m, ⁄ (which takes O(log n) bits to describe), the keys ki1 , . . . , ki¸ (which takes ⁄¸ bits),
and the code of � (which takes O(1) bits). We will provide a more fine-grained analysis in
the full version [45] to show that the code of � is of constant-bit length in the RAM model.
Thus, � can be represented using ⁄¸ + O(log n) Æ 2⁄¸ bits.

Finally, note that � runs in time O(¸nmpoly log n) Æ (nm)2 = t
Õ(|A|) Æ t(|A|) (since in

each CPU step, the CPU next-step machine takes O(poly log n) time). (We refer the reader
to the full version [45] for a more detailed running time analysis.) Thus, we conclude that
K

tÕ(A | z) Æ K
t(A | z) Æ 2⁄¸. J

The key part of the analysis is showing that if K
t(A | z) Æ 2⁄¸ then cover([n], S) Æ 4¸:

I Proposition 3.4. With probability at least 1 ≠ 2/n over the random choice of k1, k2, . . . , kr

(which determines z) and A, it holds that if K
t(A | z) Æ 2⁄¸ then cover([n], S) Æ 4¸.

The proof of Proposition 3.4 is provided in Section 3.3. Proposition 3.3 together with
Proposition 3.4 concludes that our reduction achieves a 4-approximation.

3.3 Proof of Proposition 3.4
Let � be a RAM program such that |�| Æ 2⁄¸ and �(z) prints A in Æ t = t(|A|) CPU steps
(where t is the running time bound associated with the problem McK

t
P[’]). The existence of

such � is implied by the assumption that K
t(A | z) Æ 2⁄¸. We will now show how to use

�, z to extract out a Set Cover of size 4¸. Towards this, recall that when executing �(z), in
each CPU step, �(z) will read one bit from the memory. Let

q1, q2, . . . , qt

be the memory positions that �(z) reads in the execution of �(z) (such that in CPU step
i, �(z) reads the content of memory position qi). Note that the string z will be stored in
the memory of �(z), and we are interested in the memory positions where the string z is
stored. So, we let d be the memory position such that z is stored from position d to position
d + |z| ≠ 1. In addition, most of the bits in z are just zeros and zk1 , zk2 , . . . , zkr are the only
informative blocks. (Recall that z is partitioned into 2⁄ blocks of size n ◊ m.) Thus, let

pi = Â(qi ≠ d)/(n ◊ m)Ê

be the index of the block in z from which �(z) reads one bit in CPU step i. When pi matches
some key kj , zpi = zkj = Wj . When pi does not match any of the keys, zpi = 0n◊m.13

We say that �(z) makes a useful access to the string z in CPU step i if there exists j œ [r]
such that pi = kj and for all i

Õ
< i, pi ”= piÕ . In other words, �(z) makes a useful access when

it first reads some bit in the block zkj for some j œ [r]. We say that �(z) hits some block zp

if in some CPU step i, �(z) reads one bit from zp.

13 Here we discuss the string z constructed by the reduction, instead of the one stored in the memory. (So
� can not manipulate values in z.) Thus, when pi is out of the range (e.g., pi < 0), it still holds that
zpi = 0n◊m.

CCC 2022

36:16 On One-Way Functions from NP-Complete Problems

Bounding the number of useful accesses. We first present an upper-bound on the number
of useful accesses. The following central claim shows that if the number of useful accesses is
large, then the Kolmogorov complexity of Keys must be small.

B Claim 3.5. Let Keys = k1||k2|| . . . ||kr be the concatenation of k1, k2, . . . , kr. If �(z) makes
– (or more) useful accesses to the string z, then

K(Keys | A, S) Æ |�| + (r ≠ –)⁄ + –(log t + log r) + O(log n)

We defer the proof of Claim 3.5 to Section 3.4
We observe that since Keys are picked at random, their (conditional) Kolmogorov com-

plexity is high.

B Claim 3.6. For all A œ {0, 1}
n◊m, with probability 1 ≠ 1/n (over the random choice of

Keys), it holds that

K(Keys | A, S) Ø |Keys| ≠ log n = r⁄ ≠ log n.

Proof. Note that the total number of RAM programs with description length < r⁄ ≠ log n is
at most 2r⁄≠log n

Æ
2r⁄

n , while the total number of the choices of Keys is 2r⁄); thus the claim
follows. C

By combining Claim 3.5 and Claim 3.6 we get the following bound on the number of
useful accesses.

I Corollary 3.7. With probability 1 ≠ 1/n over the random choice of Keys, if |�| Æ 2⁄¸, it
holds that �(z) makes at most 4¸ useful accesses

Proof. Assume not. Then by Claim 3.5,

K(Keys | A, S) Æ |�| + (r ≠ 4¸)⁄ + 4¸(log t + log r) + O(log n)
Æ 2⁄¸ + r⁄ ≠ 4⁄¸ + 4¸(log t + log r) + O(log n)
Æ r⁄ ≠ (2⁄¸ ≠ 4¸(log t + log r) ≠ O(log n))
Æ r⁄ ≠ (2 · 4(log t + log r) · ¸ ≠ 4¸(log t + log r) ≠ O(log n))

Æ r⁄ ≠ (n

“
≠ O(log n))

< r⁄ ≠ log n

which contradicts Claim 3.6. J

Extracting a small Set Cover. We now turn to showing that we can extract a Set Cover
from �, z which is bounded in size by the number of useful accesses. We first show that if
�(z) manages to output the string A, yet does not make useful accesses such that the union
of all the blocks that are hit by �(z) equal A, then the Kolmogorov complexity of A must be
small.

B Claim 3.8. Assume that
�(z) makes – useful accesses;
�(z) outputs the string A.
zp1 ‚ zp2 ‚ . . . ‚ zpt ”= A; 14

14 When pi < 0 or pi Ø 2⁄, we assume that zpi is an all-zero string and zpi = 0n◊m.

Y. Liu and R. Pass 36:17

Then,

K(A | S) Æ |�| + (n ≠ 1)m + –(log t + log r) + O(log n)

We defer the proof of Claim 3.8 to Section 3.4.
We observe that since A is a random string, its (conditional) Kolmogorov complexity

must be high.

B Claim 3.9. With probability 1 ≠ 1/n (over the random choice of A), it holds that

K(A | S) Ø |A| ≠ log n Ø nm ≠ log n.

Proof. Note that the total number of RAM programs with description length < nm ≠ log n

is at most 2nm≠log n
Æ

2nm

n (while the total number of the choices of A is 2nm); thus the
claim follows. C

Combining Claim 3.8 and Claim 3.9, we conclude that the union of all the blocks hit

by �(z) must equal A (provided that �(z) prints the string A and makes at most 4¸ useful

accesses).

I Corollary 3.10. With probability 1 ≠ 1/n over the random choice of A, if |�| Æ 2⁄¸,
�(z) = A, and �(z) makes at most 4¸ useful accesses, it holds that zp1 ‚ zp2 ‚ . . . ‚ zpt = A.

Proof. Assume not. Then by Claim 3.8,

K(A | S) Æ |�| + (n ≠ 1)m + 4¸(log t + log r) + O(log n)
Æ 2⁄¸ + (n ≠ 1)m + 4¸(log t + log r) + O(log n)
= nm ≠ (m ≠ (2⁄¸ + 4¸(log t + log r) + O(log n)))
< nm ≠ log n (since m = n

3
, ⁄ Æ n, ¸ Æ n)

which contradicts to Claim 3.9. J

We finally show that if the union of all the blocks hit by �(z) matches A, then we can
extract out a Set Cover whose size is bounded by the number of useful accesses �(z) made.

B Claim 3.11. If �(z) makes at most 4¸ useful accesses and zp1 ‚ zp2 ‚ . . . ‚ zpt = A, then
cover([n], S) Æ 4¸.

Proof. Let – be the number of useful accesses made by �(z). Let

i1, i2, . . . , i–

be the CPU steps when �(z) makes a useful access; that is, i1, i2, . . . , i– is a sequence of
CPU step indices such that for each l œ [–], �(z) will make a useful access in CPU step il.
(Recall that except for zk1 , . . . , zkr , the blocks in the string z are all-zero strings.) Recall
that �(z) makes a useful access when it first reads some bit in the block zkj for some j œ [r].)
Thus, by the definition of useful access, it follows that

zpi1
‚ zpi2

‚ . . . ‚ zpi–
= zp1 ‚ zp2 ‚ . . . ‚ zpt = A

Since �(z) makes a useful access in CPU step il, pil must equal some key. We let
j1, j2, . . . , j– œ [r] be a sequence of indices of the keys such that

(pi1 , pi2 , . . . , pi–) = (kj1 , kj2 , . . . , kj–)

CCC 2022

36:18 On One-Way Functions from NP-Complete Problems

Note that (by the construction of the string z)

(Wj1 , Wj2 , . . . , Wj–) = (zpi1
, zpi2

, . . . , zpi–
)

Thus, it follows that

Wj1 ‚ Wj2 ‚ . . . ‚ Wj– = zpi1
‚ zpi2

‚ . . . ‚ zpi–
= A

Finally, we argue that Sj1 , Sj2 , . . . , Sj– cover [n], which concludes the proof (since – Æ 4¸).
We recall that for each l œ [–], Wjl is the gadget string for Sjl . Furthermore, Wjl is partitioned
into n blocks, Wjl,1, Wjl,2, . . . , Wjl,n. For each block b œ [n], Wjl,b = Ab if b œ Sjl , and
otherwise Wjl,b = 0m. Since Wj1 ‚ Wj2 ‚ . . . ‚ Wj– = A, it follows that for all blocks b œ [n],

Wj1,b ‚ Wj2,b ‚ . . . ‚ Wj–,b = Ab.

Thus, for all b œ [n], there must exist l œ [–] such that b œ Sjl . We conclude that the sets
Sj1 , Sj2 , . . . , Sj– indeed cover [n]. C

We can now conclude the proof of Proposition 3.4:

Proof of Proposition 3.4. By Corollary 3.7, with probability 1≠1/n, �(z) makes at most 4¸

useful accesses. By Corollary 3.10, with probability 1≠1/n, it holds that zp1 ‚zp2 ‚. . .‚zpt = A.
Finally by Claim 3.11, it holds that cover([n], S) Æ 4¸, which happens with probability at
least 1 ≠ 2/n (by a union bound). J

3.4 Proof of Claim 3.5 and Claim 3.8
In both Claim 3.5 and Claim 3.8, the goal is to compress some strings (either Keys or
A) provided that �(z) prints A. Towards doing this, we need be able to find a short
representation of the information needed to perform the execution of �(z). Towards this, it
will be helpful to track when �(z) makes a useful access. Furthermore, note that every useful

access corresponds to some key kj such that zkj stores the gadgets Wj of the set Sj . For
each such useful access, we will also track this “key index” j. As we shall see, given �, A

and S, as well as the sequence of CPU steps and key indexes (of useful accesses), the whole
execution of �(z) can be emulated without having access to z. In fact, as we shall formalize
now, we actually do not even need the full content of A and S, but rather just the gadgets
Wj corresponding to the sets hit by the useful accesses.

To formalize this, let t = t(|A|) be the maximum number of CPU steps that �(z) can
run, and let – be some integer bounded by the number of useful accesses made by �(z). We
refer a pair of sequences of CPU steps and key indexes Ê = ((i1, i2, . . . , i–), (j1, j2, . . . , j–)) œ

[t]– ◊ [r]– as a configuration. We say that �(z) matches Ê if the first time �(z) makes a
useful access is in CPU step i1 and �(z) reads one bit from the block zkj1

(and recall that
zkj1

= Wj1), and the second time �(z) makes a useful access is in CPU step i2 and �(z)
reads one bit from the block zkj2

, and so on.

I Lemma 3.12. Let – œ N, and Ê = ((i1, . . . , i–), (j1, . . . , j–)) be a configuration in [t]– ◊ [r]–.
If �(z) matches Ê then one can emulate �(z) for i– CPU steps using the code of �, the
configuration Ê, and Wj1 , Wj2 , . . . , Wj– (without having access to z).

Proof. We now describe how to emulate the execution of �(z) for i– steps using the code of
�, the configuration Ê, and Wj1 , Wj2 , . . . , Wj– . Recall that d is the memory position where z

starts at; that is, z is stored in memory positions d to d + |z| ≠ 1.

Y. Liu and R. Pass 36:19

Given the code of �, we start to emulate �(z) with the content of memory positions
d, d + 1, . . . , d + |z| ≠ 1 (which are supposed to store z) set to 0. In the simulation, we keep
track of all memory positions that �(z) has written to. In each CPU step i, if i matches
some value in {i1, i2, . . . , i–} (and suppose i = il), we proceed as follows:

Let qi be the memory position which � will read from in CPU step i and proceed as
follows.
Let pi = Â(qi ≠ d)/(n ◊ m)Ê. Put the string Wjl œ {0, 1}

n◊m into the memory from
position d + pi ◊ nm to position d + pi ◊ nm + nm ≠ 1, with the following exception:
If � has ever previously written into a memory between position d + pi ◊ nm and
d + pi ◊ nm + nm ≠ 1, we keep those bits unchanged.
Finally, let � will read the bit from the memory (just as if the string z had been there),
and we continue to emulate the execution of �(z) in the rest of CPU step i.

If i does not appear in {i1, i2, . . . , i–}, we simply emulate the execution honestly. When
i = i–, we stop to emulate �(z).

We argue, by induction, that the above procedure perfectly emulates the execution of
�(z) in the first i– CPU steps. For the base case, we consider CPU step i = 0, in which �(z)
has not started yet, so the statement is trivially true. For any i Æ i–, we now assume that in
all the steps Æ i ≠ 1, our simulation perfectly emulates �(z), and we will prove that also in
CPU step i, the simulation does so as well. First note that if, in CPU step i, � attempts to
read from a memory position qi that has (1) previously been written or read from, (2) the
memory position is not within the range [d, d + |z| ≠ 1], or (3) the memory access to qi is not
a useful access, then the induction step directly follows from the induction hypothesis and
the fact that the step is performed in exactly the same way in the simulation as in the real
execution. We thus only need to consider the case when the memory access to qi is a useful

access. But whenever this happens, by the induction hypothesis, the simulation will produce
exactly the same content in the block of z where qi is contained, as in the real execution of
�(z). It thus follows that also this step is perfectly emulated.

Thus, we conclude that �(z) can be emulated for i– steps using the code of �, the
configuration Ê, and Wj1 , Wj2 , . . . , Wj– . J

We are now ready to prove Claim 3.5, which we restate for the convenience of the reader.

B Claim 3.13 (Claim 3.5, restated). Let Keys = k1||k2|| . . . ||kr be the concatenation of
k1, k2, . . . , kr. If �(z) makes – (or more) useful accesses to the string z, then

K(Keys | A, S) Æ |�| + (r ≠ –)⁄ + –(log t + log r) + O(log n)

Proof. If �(z) makes at least – useful accesses, �(z) must match some configuration

Ê = ((i1, i2, . . . , i–), (j1, j2, . . . , j–))

where Ê œ [t]– ◊ [r]–. We let {j
Õ
1, j

Õ
2, . . . , j

Õ
r≠–} = [r] ≠ {j1, j2, . . . , j–} be the set of key

indices that do not appear in Ê.
We consider the following program �Õ that prints the string Keys = k1||k2|| . . . ||kr with

the string A and the collection of sets S as auxiliary information. �Õ has the values n, m,
⁄, –, t, r hardwired in it, and the code of �Õ also includes the configuration Ê, the code of
�, and the r ≠ – keys kjÕ

1
, kjÕ

2
, . . . , kjÕ

r≠–
. �Õ first computes Wj1 , Wj2 , . . . , Wj– from A and

S. �Õ then emulates the execution of �(z) (using the code of �, the configuration Ê, and
Wj1 , Wj2 , . . . , Wj– , using the method described in Lemma 3.12) for i– CPU steps (recall that
i– is the CPU step when �(z) makes its –’th useful access). Let d be the index such that z

is initially stored in the memory from position d to the position d + |z| ≠ 1. Let

q1, q2, . . . , qi–

CCC 2022

36:20 On One-Way Functions from NP-Complete Problems

be the memory positions that �(z) reads (such that in CPU step i, �(z) reads one bit
from memory position qi) in the first i– CPU steps. We will decode kj1 , kj2 , . . . , kj– from
q1, q2, . . . , qi– as follows: For each i Æ i–, let

pi = Â(qi ≠ d)/(n ◊ m)Ê

Since �(z) matches Ê, it follows that

pi1 = kj1 , pi2 = kj2 , . . . , pi– = kj–

Thus, �Õ has access to kjÕ
1
, kjÕ

2
, . . . , kjÕ

r≠–
(hardwired) and can compute kj1 , kj2 , . . . , kj– as

specified above. Thus, �Õ can recover and output the string Key = k1||k2|| . . . ||kr.
Finally, we show that the description length of �Õ is at most |�| + (r ≠ –)⁄ + –(log t +

log r) + O(log n). To describe �Õ, we require:
|�| bits to store the code of �;
(r ≠ –)⁄ bits to store the r ≠ – keys kjÕ

1
, kjÕ

2
, . . . , kjÕ

r≠–
;

–(log t + log r) bits to store the configuration Ê.
O(log n) bits to store the values n, m, ⁄, –, t, r.
O(1) bits to describe the CPU next-step machine.

Thus, the description length of �Õ is at most |�| + (r ≠ –)⁄ + –(log t + log r) + O(log n), and
from this we conclude that

K(Keys | A, S) Æ |�| + (r ≠ –)⁄ + –(log t + log r) + O(log n)

which completes the proof. C

We next proceed to prove Claim 3.8, which we first restate:

B Claim 3.14 (Claim 3.8, restated). Assume that
�(z) makes – useful accesses;
�(z) outputs the string A.
zp1 ‚ zp2 ‚ . . . ‚ zpt ”= A; 15

Then,

K(A | S) Æ |�| + (n ≠ 1)m + –(log t + log r) + O(log n)

Proof. Consider some �, z satisfying the pre-conditions of the claim. Since �(z) has the
property that

zp1 ‚ zp2 ‚ . . . ‚ zpt ”= A,

and recalling that each zpi is divided n m-size blocks, zpi,1, . . . , zpi,n, it follows that there
exists a block index b œ [n] such that for each block zpi œ {0, 1}

n◊m that �(z) reads,
zpi,b = 0m. In addition, note that �(z) makes – useful accesses, so �(z) must match some
configuration

Ê = ((i1, i2, . . . , i–), (j1, j2, . . . , j–))

where Ê œ [t]– ◊ [r]–. Since �(z) matches Ê, we know that

(Wj1 , Wj2 , . . . , Wj–) = (zpi1
, zpi2

, . . . , zpi–
)

15 When pi < 0 or pi Ø 2⁄, we assume that zpi is an all-zero string and zpi = 0n◊m.

Y. Liu and R. Pass 36:21

Thus,

Wj1 ‚ Wj2 ‚ . . . ‚ Wj– ”= A

It follows that for all l œ [–], Wjl,b = 0m. From this, we can conclude that the gad-
get strings Wj1 , Wj2 , . . . , Wj– can be constructed from S and all randomized encodings
A1, . . . , Ab≠1, Ab+1, . . . , An excluding Ab.

Based on this observation, let us show how to construct a program �Õ that outputs the
string A given S as auxiliary information. The program �Õ embeds the values n, m, ⁄, –, r,
t, the value of b, the code of �, the configuration Ê, and strings A1, . . . , Ab≠1, Ab+1, . . . , An

into its code. �Õ first computes Wj1 , Wj2 , . . . , Wj– from A1, . . . , Ab≠1, Ab+1, . . . , An and S.
�Õ then simulates the execution of �(z) using the code of �, the configuration Ê, and the
gadget strings Wj1 , Wj2 , . . . , Wj– (making use of Lemma 3.12), and finally outputs whatever
�(z) outputs. Note that since �(z) makes exactly – useful accesses, �Õ can emulate �(z) all
the way until it terminates. Furthemore, recall that by assumption �(z) outputs A, so �Õ

will do so as well.
We finally show that the description length of �Õ is at most |�| + (n ≠ 1)m + –(log t +

log r) + O(log n). To see this, note that to specify �Õ, we require:
|�| bits to include the code of �;
(n ≠ 1)m bits to store strings A1, . . . , Ab≠1, Ab+1, . . . , An;
–(log t + log r) bits to save the configuration Ê.
O(log n) bits to strore the values n, m, ⁄, –, r, t, b

O(1) bits to implement the CPU next-step machine:
Thus, we have that the description length of �Õ is at most |�| + (n ≠ 1)m + –(log t + log r) +
O(log n). From this we conclude that

K(A | S) Æ |�| + (n ≠ 1)m + –(log t + log r) + O(log n).

which proves the claim. C

References
1 Miklós Ajtai. Generating hard instances of lattice problems (extended abstract). In Gary L.

Miller, editor, Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of
Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996, pages 99–108. ACM, 1996.
doi:10.1145/237814.237838.

2 Miklós Ajtai and Cynthia Dwork. A public-key cryptosystem with worst-case/average-case
equivalence. In Frank Thomson Leighton and Peter W. Shor, editors, Proceedings of the
Twenty-Ninth Annual ACM Symposium on the Theory of Computing, El Paso, Texas, USA,
May 4-6, 1997, pages 284–293. ACM, 1997. doi:10.1145/258533.258604.

3 Adi Akavia, Oded Goldreich, Shafi Goldwasser, and Dana Moshkovitz. On basing one-way
functions on NP-hardness. In STOC ’06, pages 701–710, 2006. doi:10.1145/1132516.1132614.

4 Eric Allender, Harry Buhrman, Michal Kouckỳ, Dieter Van Melkebeek, and Detlef Ronneburger.
Power from random strings. SIAM Journal on Computing, 35(6):1467–1493, 2006.

5 Eric Allender, Mahdi Cheraghchi, Dimitrios Myrisiotis, Harsha Tirumala, and Ilya Volkovich.
One-way functions and a conditional variant of MKTP. Electron. Colloquium Comput.
Complex., 28:9, 2021. Revision 2; October 19, 2021.

6 Eric Allender, Mahdi Cheraghchi, Dimitrios Myrisiotis, Harsha Tirumala, and Ilya Volkovich.
One-way functions and a conditional variant of MKTP. Electron. Colloquium Comput.
Complex., 28:9, 2021. Revision 1; April 18, 2021.

7 Eric Allender, Mahdi Cheraghchi, Dimitrios Myrisiotis, Harsha Tirumala, and Ilya Volkovich.
One-way functions and a conditional variant of MKTP. Electron. Colloquium Comput.
Complex., 28:9, 2021.

CCC 2022

https://doi.org/10.1145/237814.237838
https://doi.org/10.1145/258533.258604
https://doi.org/10.1145/1132516.1132614

36:22 On One-Way Functions from NP-Complete Problems

8 Eric Allender, Lisa Hellerstein, Paul McCabe, Toniann Pitassi, and Michael E. Saks. Minimizing
disjunctive normal form formulas and ac0 circuits given a truth table. SIAM J. Comput.,
38(1):63–84, 2008. doi:10.1137/060664537.

9 Manuel Blum. Coin flipping by telephone - A protocol for solving impossible problems.
In COMPCON’82, Digest of Papers, Twenty-Fourth IEEE Computer Society International
Conference, San Francisco, California, USA, February 22-25, 1982, pages 133–137. IEEE
Computer Society, 1982.

10 Manuel Blum and Silvio Micali. How to generate cryptographically strong sequences of
pseudo-random bits. SIAM Journal on Computing, 13(4):850–864, 1984.

11 Andrej Bogdanov and Christina Brzuska. On basing size-verifiable one-way functions on
NP-hardness. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, Theory of Cryptography -
12th Theory of Cryptography Conference, TCC 2015, Warsaw, Poland, March 23-25, 2015,
Proceedings, Part I, volume 9014 of Lecture Notes in Computer Science, pages 1–6. Springer,
2015.

12 Andrej Bogdanov and Luca Trevisan. On worst-case to average-case reductions for np problems.
In FOCS ’03, pages 308–317, 2003.

13 Gilles Brassard. Relativized cryptography. IEEE Transactions on Information Theory,
29(6):877–893, 1983.

14 Gregory J. Chaitin. On the simplicity and speed of programs for computing infinite sets of
natural numbers. J. ACM, 16(3):407–422, 1969.

15 Whitfield Di�e and Martin Hellman. New directions in cryptography. IEEE Transactions on
Information Theory, 22(6):644–654, 1976.

16 Uriel Feige and Adi Shamir. Witness indistinguishable and witness hiding protocols. In STOC
’90, pages 416–426, 1990. doi:10.1145/100216.100272.

17 Rosario Gennaro and Luca Trevisan. Lower bounds on the e�ciency of generic cryptographic
constructions. In 41st Annual Symposium on Foundations of Computer Science, FOCS 2000,
12-14 November 2000, Redondo Beach, California, USA, pages 305–313. IEEE Computer
Society, 2000.

18 Halley Goldberg and Valentine Kabanets. A simpler proof of the worst-case to average-case
reduction for polynomial hierarchy via symmetry of information. Electronic Colloquium on
Computational Complexity (ECCC), 2022. URL: https://eccc.weizmann.ac.il/report/

2022/007.
19 Oded Goldreich, Shafi Goldwasser, and Silvio Micali. On the cryptographic applications of

random functions. In CRYPTO, pages 276–288, 1984.
20 Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput. Syst. Sci., 28(2):270–

299, 1984.
21 S. Dov Gordon, Hoeteck Wee, David Xiao, and Arkady Yerukhimovich. On the round

complexity of zero-knowledge proofs based on one-way permutations. In LATINCRYPT, pages
189–204, 2010.

22 Iftach Haitner, Mohammad Mahmoody, and David Xiao. A new sampling protocol and
applications to basing cryptographic primitives on the hardness of NP. In IEEE Conference
on Computational Complexity, pages 76–87, 2010.

23 J. Hartmanis. Generalized kolmogorov complexity and the structure of feasible computations.
In 24th Annual Symposium on Foundations of Computer Science (sfcs 1983), pages 439–445,
November 1983. doi:10.1109/SFCS.1983.21.

24 Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom
generator from any one-way function. SIAM J. Comput., 28(4):1364–1396, 1999.

25 Shuichi Hirahara. Non-black-box worst-case to average-case reductions within NP. In 59th
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018, pages 247–258,
2018.

https://doi.org/10.1137/060664537
https://doi.org/10.1145/100216.100272
https://eccc.weizmann.ac.il/report/2022/007
https://eccc.weizmann.ac.il/report/2022/007
https://doi.org/10.1109/SFCS.1983.21

Y. Liu and R. Pass 36:23

26 Shuichi Hirahara. Unexpected hardness results for kolmogorov complexity under uniform
reductions. In Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath,
and Julia Chuzhoy, editors, Proccedings of the 52nd Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 1038–1051.
ACM, 2020.

27 Shuichi Hirahara. Symmetry of information in heuristica. Manuscript, 2021.
28 Shuichi Hirahara, Igor Carboni Oliveira, and Rahul Santhanam. Np-hardness of minimum

circuit size problem for OR-AND-MOD circuits. In Rocco A. Servedio, editor, 33rd Computa-
tional Complexity Conference, CCC 2018, June 22-24, 2018, San Diego, CA, USA, volume
102 of LIPIcs, pages 5:1–5:31. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.
doi:10.4230/LIPIcs.CCC.2018.5.

29 Rahul Ilango. AC0[p] lower bounds and NP-hardness for variants of MCSP. Electron.
Colloquium Comput. Complex., 26:21, 2019. URL: https://eccc.weizmann.ac.il/report/

2019/021.
30 Rahul Ilango. Approaching MCSP from above and below: Hardness for a conditional variant

and ACˆ0[p]. In 11th Innovations in Theoretical Computer Science Conference, ITCS 2020,
pages 34:1–34:26, 2020.

31 Rahul Ilango. Personal communication, 2021.
32 Rahul Ilango, Bruno Lo�, and Igor Carboni Oliveira. NP-hardness of circuit minimization

for multi-output functions. In 35th Computational Complexity Conference, CCC 2020, pages
22:1–22:36, 2020.

33 Russell Impagliazzo. A personal view of average-case complexity. In Structure in Complexity
Theory ’95, pages 134–147, 1995.

34 Russell Impagliazzo and Michael Luby. One-way functions are essential for complexity based
cryptography (extended abstract). In 30th Annual Symposium on Foundations of Computer
Science, Research Triangle Park, North Carolina, USA, 30 October - 1 November 1989, pages
230–235, 1989.

35 Russell Impagliazzo and Moni Naor. E�cient cryptographic schemes provably as secure as
subset sum. In 30th Annual Symposium on Foundations of Computer Science, Research
Triangle Park, North Carolina, USA, 30 October - 1 November 1989, pages 236–241. IEEE
Computer Society, 1989.

36 Valentine Kabanets and Jin-yi Cai. Circuit minimization problem. In Proceedings of the
Thirty-Second Annual ACM Symposium on Theory of Computing, May 21-23, 2000, Portland,
OR, USA, pages 73–79, 2000.

37 Ker-I Ko. On the notion of infinite pseudorandom sequences. Theor. Comput. Sci., 48(3):9–33,
1986. doi:10.1016/0304-3975(86)90081-2.

38 Ker-I Ko. On the complexity of learning minimum time-bounded turing machines. SIAM J.
Comput., 20(5):962–986, 1991.

39 A. N. Kolmogorov. Several theorems about algorithmic entropy and algorithmic amount of
information (a talk at a moscow math. soc. meeting 10/31/67). An abstract in Usp. Mat.
Nauk, 23(2):201, 1968.

40 A. N. Kolmogorov. Three approaches to the quantitative definition of information. International
Journal of Computer Mathematics, 2(1-4):157–168, 1968.

41 L. A. Levin. The tale of one-way functions. Problems of Information Transmission, 39(1):92–
103, 2003. doi:10.1023/A:1023634616182.

42 Leonid A. Levin. Universal search problems (russian), translated into English by BA Trakhten-
brot in [59]. Problems of Information Transmission, 9(3):265–266, 1973.

43 Yanyi Liu and Rafael Pass. On one-way functions and Kolmogorov complexity. In 61st IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA,
November 16-19, 2020, pages 1243–1254. IEEE, 2020.

CCC 2022

https://doi.org/10.4230/LIPIcs.CCC.2018.5
https://eccc.weizmann.ac.il/report/2019/021
https://eccc.weizmann.ac.il/report/2019/021
https://doi.org/10.1016/0304-3975(86)90081-2
https://doi.org/10.1023/A:1023634616182

36:24 On One-Way Functions from NP-Complete Problems

44 Yanyi Liu and Rafael Pass. On one-way functions from np-complete problems. Cryptology
ePrint Archive, Report 2021/513, 2021. ; received on April 19, 2021. URL: https://ia.cr/

2021/513.
45 Yanyi Liu and Rafael Pass. On one-way functions from np-complete problems. Electron.

Colloquium Comput. Complex., 28:59, 2021. URL: https://eccc.weizmann.ac.il/report/

2021/059.
46 Yanyi Liu and Rafael Pass. On the possibility of basing cryptography on EXP ”= BPP. In

CRYPTO, 2021.
47 Noam Livne. On the construction of one-way functions from average case hardness. In ICS,

pages 301–309. Citeseer, 2010.
48 Luc Longpré and Sarah Mocas. Symmetry of information and one-way functions. In Wen-Lian

Hsu and Richard C. T. Lee, editors, ISA ’91 Algorithms, 2nd International Symposium on Al-
gorithms, Taipei, Republic of China, December 16-18, 1991, Proceedings, volume 557 of Lecture
Notes in Computer Science, pages 308–315. Springer, 1991. doi:10.1007/3-540-54945-5_75.

49 Luc Longpré and Osamu Watanabe. On symmetry of information and polynomial time
invertibility. In Algorithms and Computation, pages 410–419, Berlin, Heidelberg, 1992. Springer
Berlin Heidelberg.

50 R. Merkle and M. Hellman. Hiding information and signatures in trapdoor knapsacks. IEEE
Transactions on Information Theory, 24(5):525–530, 1978.

51 Moni Naor. Bit commitment using pseudorandomness. J. Cryptology, 4(2):151–158, 1991.
52 A. M. Odlyzko. The rise and fall of knapsack cryptosystems. In In Cryptology and Computa-

tional Number Theory, pages 75–88. A.M.S, 1990.
53 Rafael Pass. Parallel repetition of zero-knowledge proofs and the possibility of basing cryp-

tography on NP-hardness. In 21st Annual IEEE Conference on Computational Complexity
(CCC 2006), 16-20 July 2006, Prague, Czech Republic, pages 96–110. IEEE Computer Society,
2006.

54 Hanlin Ren and Rahul Santhanam. Hardness of KT characterizes parallel cryptography.
Electron. Colloquium Comput. Complex., 28:57, 2021. URL: https://eccc.weizmann.ac.il/

report/2021/057.
55 Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining digital

signatures and public-key cryptosystems (reprint). Commun. ACM, 26(1):96–99, 1983. doi:

10.1145/357980.358017.
56 John Rompel. One-way functions are necessary and su�cient for secure signatures. In STOC,

pages 387–394, 1990.
57 Michael Sipser. A complexity theoretic approach to randomness. In Proceedings of the 15th

Annual ACM Symposium on Theory of Computing, 25-27 April, 1983, Boston, Massachusetts,
USA, pages 330–335. ACM, 1983.

58 R.J. Solomono�. A formal theory of inductive inference. part i. Information and Control,
7(1):1–22, 1964. doi:10.1016/S0019-9958(64)90223-2.

59 Boris A Trakhtenbrot. A survey of Russian approaches to perebor (brute-force searches)
algorithms. Annals of the History of Computing, 6(4):384–400, 1984.

60 Luca Trevisan. Non-approximability results for optimization problems on bounded degree
instances. In Je�rey Scott Vitter, Paul G. Spirakis, and Mihalis Yannakakis, editors, Proceedings
on 33rd Annual ACM Symposium on Theory of Computing, July 6-8, 2001, Heraklion, Crete,
Greece, pages 453–461. ACM, 2001. doi:10.1145/380752.380839.

61 Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (extended abstract). In
23rd Annual Symposium on Foundations of Computer Science, Chicago, Illinois, USA, 3-5
November 1982, pages 80–91, 1982.

62 A. K. Zvonkin and L. A. Levin. the Complexity of Finite Objects and the Development of the
Concepts of Information and Randomness by Means of the Theory of Algorithms. Russian Math-
ematical Surveys, 25(6):83–124, December 1970. doi:10.1070/RM1970v025n06ABEH001269.

https://ia.cr/2021/513
https://ia.cr/2021/513
https://eccc.weizmann.ac.il/report/2021/059
https://eccc.weizmann.ac.il/report/2021/059
https://doi.org/10.1007/3-540-54945-5_75
https://eccc.weizmann.ac.il/report/2021/057
https://eccc.weizmann.ac.il/report/2021/057
https://doi.org/10.1145/357980.358017
https://doi.org/10.1145/357980.358017
https://doi.org/10.1016/S0019-9958(64)90223-2
https://doi.org/10.1145/380752.380839
https://doi.org/10.1070/RM1970v025n06ABEH001269

	1 Introduction
	1.1 Our Results
	1.2 Proof Overview
	1.3 Applications to Polynomial-time Bounded Symmetry of Information
	1.4 Related Works
	1.5 Outline

	2 Preliminaries
	2.1 Set Cover
	2.2 The RAM Model
	2.3 Time-bounded Conditional Kolmogorov Complexity
	2.4 One-way Functions
	2.5 Average-case Hard Languages

	3 NP-Hardness of McK^tP[zeta]
	3.1 A Reduction from the gamma-Bounded Set Cover Problem to McK^tP
	3.2 Analyzing the Reduction
	3.3 Proof of Proposition 3.4
	3.4 Proof of Claim 3.5 and Claim 3.8

