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Abstract—Non-interactive delegation schemes enable produc-
ing succinct proofs (that can be efficiently verified) that a machine
M transitions from c; to ¢ in a certain number of deterministic
steps. We here consider the problem of efficiently merging such
proofs: given a proof II; that M transitions from c; to c2, and
a proof 1l that M transitions from c; to c3, can these proofs
be efficiently merged into a single short proof (of roughly the
same size as the original proofs) that )M transitions from c; to
c3? To date, the only known constructions of such a mergeable
delegation scheme rely on strong non-falsifiable ‘“knowledge
extraction” assumptions. In this work, we present a provably
secure construction based on the standard LWE assumption.

As an application of mergeable delegation, we obtain a
construction of incrementally verifiable computation (IVC) (with
polylogarithmic length proofs) for any (unbounded) polynomial
number of steps based on LWE; as far as we know, this is the
first such construction based on any falsifiable (as opposed to
knowledge-extraction) assumption. The central building block
that we rely on, and construct based on LWE, is a rate-1
batch argument (BARG): this is a non-interactive argument
for NP that enables proving k NP statements xi,...,z; with
communication/verifier complexity m + o(m), where m is the
length of one witness. Rate-1 BARGs are particularly useful as
they can be recursively composed a super-constant number of
times.

I. INTRODUCTION

Consider some very long computation spanning over mul-
tiple generations of humans. Is there a way for the current
generation to ensure that the current state of the computation
is correct? The notion of incrementally verifiable computation
(IVC), proposed by Valiant [1], addresses exactly this problem.

An IVC scheme for a machine M and time bound T
consists of a key generation algorithm, and algorithms for
updating and verifying proofs. The key-generation algorithm
takes a security parameter A and outputs a public key that
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is used to prove and verify statements of the form (cf,cf’ ¢)
claiming that M starting from configuration cf reaches config-
uration cf’ after ¢ steps. To prove a statement (cfo, cf;, ) we
start from from the trivial statement (cf, cfo, 0) and the empty
proof IIy = &£ which is always accepted. We then apply the
proof updating algorithm ¢ times. The update algorithm takes
an accepting proof II, for the statement (cfy, cf;, ) were i < T'
and produces an accepting proof II;,; for the next statement
(Cfo, cfiv1, i+ 1).1

The computational soundness requirement states that no
polynomial-size attacker can find an accepting proof of a false
statement with ¢ < T'. For the IVC to be useful, we addition-
ally need the scheme to satisfy an efficiency requirement: the
proof for a statement = = (cf, cf’, t) is of length poly(\, log T)
(that is, essentially independent of 7") and the time to update
and verify proofs is |z|-poly(A, log T"). One may also consider
weakly-efficient IVC where the proof length, as well as update
and verification times are only required to be sublinear (as
opposed to poly-logarithmic) in 7.

The notion of IVC can be seen as a strengthening of non-
interactive delegation of computation (also known as SNARGs
for P). In delegation we require the same proof length and
verification time requirements as IVC. A delegation proof for
a statement x = (cf,cf’,t) can be generated in time |z| -
poly(A,T'). However, in contrast to IVC, delegation proofs
may not be updated.

IVC, on top of being a fascinating notion in its own right,
has several applications to delegation:

o Delegating computation with transferable intermedi-
ate proofs: Consider a client that outsourcing a long
computation to an untrusted server. Using delegation,
the client can make sure that final result is correct.
However, if the the server does not perform the com-
putation correctly, the client may only realize this once
the computation is over. Instead, using IVC, the client
can ask the server to provide the current state of the
computation together with a proof of correctness at any
point during the computation. If at some point the client
detects cheating, or if the cloud is unable to continue the

'We typically require the update algorithm to work for any accepting proof,
even adversarially generated ones. This means that given any accepting proof
for some partial computation, we are not only guaranteed that the current state
is correct, but also that we can continue to update the state and its proof.



computation, the client can hire another server to continue
the verifiable computation from its most recent verified
state

Time and Space-preserving delegation: While delega-
tion schemes enable fast verification, the prover typically
has significant computational overhead. In particular, in
existing solutions based on standard assumption [2]-[4]
both the time and the space of the prover grow poly-
nomially with running time of the original computation.
This is the case even if the original computation requires
small space. Ideally we would like a delegation scheme
that preserves both the time and space complexity of the
original computation up to quasi-linear overhead. While
such efficient arguments have been the focus of recent
work, existing solutions either have heuristic security [5]-
[7], or are restricted to the designated-verifier setting [8].2
An IVC directly enables proving the correctness of a
time-T" space-S computation in time 7" - poly(A,logT)
and space poly(A, S,logT).

As we shall discuss below, however, known construction of
IVC are either based on heuristics, non-falsifiable assumptions
(so-called knowledge-extraction assumptions) or only achieve
weak efficiency.

IVC from proof merging. Valiant’s original work proposed
an approach for constructing IVC based on proof merging: As-
sume that we are given a proof II; for the statement (cf, cf’, #;)
and another proof TI, for the statement (cf’, cf” ;). Can we
efficiently (in time that is independent of ¢1, ¢2) “merge” them
into a single proof for the statement (cf,cf” #; + to) that
is roughly the same length as each of the original proofs?
As observed by Valiant, proofs of length poly(A,logT) that
can be recursively merged logT' times imply IVC. The idea
is to incrementally construct a proof for each step of the
computation as it is executed and merge the proofs into
a single proof in the form of a binary tree. (Or, if the
computation time ¢ is not a power of two, into at most logt¢
proofs.)

1IVC under non-falsifiable assumptions. Valiant showed how
to instantiate this approach and construct IVC and mergeable
proofs, albeit, under a highly non-standard assumption: the
existence succinct non-interactive arguments of knowledge
for NP (SNARKSs) such that for any attacker A of size
< MogT (here exists a knowledge extractor of linear size
|A] - poly(A). All known SNARK constructions are based on
non-falsifiable so-called extractability/knowledge assumptions
or heuristic assumptions such as Fiat-Shamir and are subject
to strong limitations [9], [10]. Currently, we do not know of
any candidate SNARK construction with an explicit extractor,
let alone a linear one.

To relax the knowledge extraction assumption, Bitansky et
al. [6] showed that by merging proofs according to a tree of
fan-out \ instead of a binary tree, we can reduce the depth
of the “merge tree” to log, T instead of logT. This gives

2In designated-verifier delegation, the public key is generated together with
a secret key that is required to verify proofs.
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IVC for any bound T' = poly(\) based on SNARKs with a
polynomial-size (as opposed to linear-size) knowledge extrac-
tor. Assuming SNARKSs with sub-exponential security, their
construction gives IVC for T = A\°(°8 ) A recent line of work
[11]-[13] obtained IVC without relying directly on SNARKGS,
however, the assumptions underlying their constructions are
known to imply SNARKS. Accordingly, they suffer from the
same drawbacks and are subject to the same limitations as
previous IVC constructions.

Weakly-efficient IVC under falsifiable assumptions. The
work of Kalai, Paneth and Yang (KPY) [2] provides the first
non-trivial IVC scheme from a falsifiable assumptions on
bilinear groups. Their scheme, however, only satisfies weak
efficiency with proofs of length 2V 0108 T 108 ) Their IVC is
based on a weak form a proof merging where many proofs are
merged in one shot, and the merged proof is longer than the
original proof by a factor of poly()A). To achieve sub-linear
proof size, proofs must be merged in a tree of fan-out > A.

Summarizing, to date, known IVC constructions require
either non-falsifiable knowledge-extraction assumptions or
heuristics, while weakly-efficient IVC is known under falsi-
fiable assumptions. The state of the art thus leaves open the
following question:

Is IVC possible under standard/falsifiable hardness
assumptions?

In this work, we resolve this question by presenting an IVC
scheme assuming polynomial hardness of the LWE assump-
tion.

A. Our results

Our main result is a new delegation scheme that enables
merging poly(\) many proofs into a single proof, by re-
cursively merging pairs of proofs in a binary tree of depth
O(log(A)). Our delegation scheme is for RAM computations
(which implies delegation also for Turing machines).

Theorem 1.1 (Mergeable Delegation from LWE): Assuming

the LWE assumption holds, there exists a mergeable delegation
scheme for RAM computations.
Previously, proof systems that can be merged with such effi-
ciently were only known based on non-falsifiable extractabil-
ity/knowledge assumptions or heuristics. Following [1], any
such a mergeable delegation scheme can be turned into an IVC
scheme. This yields the first IVC scheme under any falsifiable
assumption.

Theorem 1.2 (IVC from LWE): Assuming the LWE as-

sumption holds, there exists an IVC for any time bound
T = poly()).
More generally, for any T = T()), we get IVC for bound
T(A) under the T-hardness of LWE. This gives the first
IVC scheme with for quasi-polynomial (or larger) time bound
T under any assumption other than Valiant’s SNARKs with
linear-size knowledge extractor. In particular, by setting A\ =
polylog(T') and relying on the sub-exponential hardness of
LWE we can get IVC with proofs of length polylog T



Finally, as observed above, any IVC scheme directly implies
a time- and space-preserving delegation scheme, and as such
we also get the first space-preserving delegation scheme under
falsifiable assumptions.

Theorem 1.3 (Time and Space-Preserving Delegation from
LWE): For any T = T()), as assuming the LWE problem
is hard for algorithms of size poly(7'), there exists an non-
interactive delegation scheme where proving a time-1" space-S
computation, the prover requires time 7" - poly()\), and space
poly (), S, logT).

Rate-1 batch arguments for NP. Our main tool in construct-
ing mergeable delegation scheme is a new non-interactive
argument for conjunctions of NP statements. Given k NP
statements with witnesses of length m we can give a computa-
tionally sound proof of length m + O(m/A) + poly(}, log k)
for their conjunction. This is a strengthening of the notion
of batch arguments for NP [14] where the proof is of length
poly(\, m,log k). Therefore, our arguments can be viewed as
batch arguments with rate (the ratio between the witness length
and the proof length) approaching 1. In contrast to plain batch
arguments, where we must batch together many NP statements
to achieve non-trivial efficiency, rate-1 batch arguments are
useful even for two statements. Another important feature of
rate-1 batch arguments is that they can be composed together
recursively for a super-constant number of times without
blowing up the proof size.

We note that in adaptive setting where the NP statements
can be chosen by the adversary as a function of the public
key, batch arguments (with any non-trivial rate) satisfying the
standard notion of knowledge soundness are subject to strong
limitations [14]. Therefore, our arguments satisfy the relaxed
notion of somewhere argument of knowledge for adaptively
chosen statements introduced in [3]. This notion is sufficient
for our application to mergeable arguments. (See the technical
overview for more details.)

We show how to leverage the rate-1 FHE construction of
Brakerski et al. [15] together with the recent construction of
(plain) batch arguments of Choudhuri, Jain and Jin [3] (both
based on LWE) to construct rate-1 batch arguments.

Theorem 1.4: Assuming the LWE assumption holds, there
exist rate-1 batch arguments for NP.

B. Technical Overview

We first elaborate on the construction of rate-1 batch ar-
guments which is our main technical contribution. In Sec-
tion I-B2 we describe the construction of mergeable proofs
and IVC from from rate-1 batch batch arguments.

1) Rate-1 batch arguments: Our construction is based on
standard batch arguments with arbitrary rate. Recall that a
batch argument proves the conjunction of k NP statements
x',... 2" with a proof of length poly(\, m,logk) where m
is the size of one witness. In fact, we rely on a stronger
notion known as batch arguments for the index language
[3] were each statements x’ is simply the index 3. In more
detail, in a batch argument for the index language the prover
and verifier are given the NP verification machine M that
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takes the statement i € [k] and a witness w’. The prover is
also given witnesses w', ..., w" such that M(i,w’) accepts
for every ¢ € [k]. The batch argument verifier runs in time
|M] - poly(A, m,log k).?

The notion of soundness we require is somewhere ar-
gument of knowledge for adaptively chosen statements [3].
Roughly speaking, the requirement is that we can generate
a programmed public key for the statement 7 together with a
corresponding secret key such that the programmed public key
is indistinguishable from an honestly generated public key (in
particular, it hides 7). Moreover, for every efficient adversary,
if, given the programmed public key, the adversary produces an
NP verification machine M together with an accepting proof
II, then, given the secret key, we can extract a witness w
from II such that M (i, w) = 1 with overwhelming probability.
Batch arguments for the index language satisfing somewhere
argument of knowledge for adaptively chosen statements were
constructed in [3] based on the hardness of LWE.

Our approach. To construct rate-1 batch arguments, our
high-level idea is as follows. Given an NP verification machine
M, and given witnesses w', ..., w* € {0,1}™, we splits each
statement ¢ € [k] into n < m statements, each with a short
witness. We then prove all k£ - n statements together with a
single batch argument. In more detail, we define a new NP
verification machine M for k - n statements indexed by pairs
(i,7) € [k] x [n] such that the witness w} for the statement
(4,7) is of length poly(A) (independent of m). Therefore, a
batch argument for M has proof of length poly (), log k).

To split the statement i € [k], we first split the witness w*
into n blocks w! = (wi, ..., w!) each of length £ = m/n.
Then, we emulate the execution of M (i, w?) in a sequence
of n intervals implemented by RAM machines Ri,..., R
executed sequentially, with each machine starting from the
final configuration of the previously executed machine. For
every j € [n], the machine R} has the witness block w}
hard-coded. For j < n the machine R writes wj to memory
and terminates. The final machine R}, writes the final witness
block w!, to memory and then, once the entire witness w’ is
in memory, it emulates M (i, w?) and accepts if and only if
M accepts. Let cfé be the starting configuration of RY and
for j € [n], let cf§ be the final configuration of R}.

Shrinking the sub-statements with RAM delegation. Note
that we cannot simply include the configuration cf; as part of
the witness w; since it is too long (recall that W should be
of length poly()) independent of m). Therefore, we instead
verify the computation of each interval using a delegation
scheme for RAM machines. Such delegation scheme allows us
to verify that the machine Rg transitions from configuration
ci‘j-_1 to cfj- without knowing the (potentially long) configura-
tions. Instead, to verify the delegation proof we only need to
know the short digests h?_,, h of cf’:;17 cf;’» respectively. The

J=L1g J
length of the delegation proof is poly(A) and the verification

3Batch arguments for the index language imply standard batch arguments
by considering a verification machine M that has the instances x!,...z"
hard-coded in it.



time is |R; |- poly(A). The soundness of the delegation scheme
states that an efficient adversary cannot produce configurations
cff_y,cf’ together with digests ho_y, ﬁ; and an accepting
proof IT} such that Rj transitions from cf;_; to cf;_; and
h%_, is the digest of cf;_;, but h’ is not the digest of cf;.
We proceed to describe a simplified version of the NP
verification machine M and witness w': For every (i,j) €
[k] x [0,n] we compute the digest h’; of the configuration cfj
as above, and generate a delega;ion proof II’ that the machine
R; transitions from cf}_; to cf;. We then compute a hash tree
over the k - (n + 1) pairs {y} = (w},h)} (we set wf = 1)
and hard-code the root h of the tree into M. The witness w’

) . J
contains the pairs y;_;, y;, their authentication paths to h, and

the delegation proof IT}. To verify @?, the machine M checks
that the authentication paths are valid and that the delegation
proof for the machine R (with w} hard-coded) and the digests
h%_,h% is accepting. If j = 1 (resp. j = n), M also checks
that h{, (resp. h) is the digest of the starting (resp. accepting)
configuration.*

Towards somewhere argument of knowledge. If we simply
use the underlying batch argument for M as a batch argument
for M we cannot prove that it satisfies the somewhere argu-
ment of knowledge property. Recall that to prove somewhere
argument of knowledge we must be able to program the public
key and extract a complete witness w! for M(i) from any
accepting proof. However, the underlying batch argument for
M only lets us extract one short witness 12)]‘ We may try to
execute the adversary with different public keys and extract
ﬁ); for each j € [n]. However, since the adversary may
choose M adaptively, it may contain a different root h in each
execution and, therefore, the extracted witness blocks may not
be consistent.

To resolve this, we add to the proof a separate mechanism
for extracting w’ based on the notion of somewhere extractable
hashing [3], [16]. A somewhere extractable hash is a collision
resistant hash that can shrinks k blocks y',...,y* into a
single root h and supports local opening. Additionally, in a
somewhere extractable hash we can generate a programmed
hash key for any index ¢ (that is indistinguishable from an
honestly generated key) together with a corresponding secret
key that can be used to efficiently extract the block %° from
the root h. In fact, even if the root h is generated adversarially,
as long as there exists a valid authentication path from 3’ to
h, we can extract yi from h.

We modify the construction of M as follows: Instead
of computing a hash tree directly over the k - n pairs
{y; = (wé, h;-)}, we compute the hash in two stages. First,
for every j € [n], we use a somewhere extractable hash to
compute a hash tree over the k pairs y}, .. .,yf and obtain
a root h;. Then we compute a (standard) hash tree over the
n roots hy,...,h, and hard-code the root h into M. The
witness 1113 is unchanged except that we replace the direct

4Assume WLOG that R?, clears its memory before accepting and, there-
fore, it has a unique accepting configuration.

authentication path from y; to h with two paths: one from y;
to h; and one from h; to h (and similarly for yj_,).

The final batch argument for M consist of the underlying
batch argument for M together with the the n roots {h;}. To
verify, the batch argument for M, we check that the underlying
batch argument for M is accepting and that the root h hard-
codded in M is indeed the hash of hy, ..., h,,.

To get a rate-1 proof, the somewhere extractable hash we
use must also have good rate. We observe that instantiating the
hash construction of [16] based on FHE, with the rate-1 FHE
of [15] gives a somewhere extractable hash where each root
h; is of length £4+O(¢/\) (assuming that the block length £ is
a sufficiently large polynomial in \) and therefore the length
of all n roots together is m + O(m/\).

Ensuring consistency. Our final step is to modify the NP
verification machine M to check that the witness encoded in
the machines R%, ..., R} is the same witness extracted from
the roots hy, ..., h,. Otherwise, there is no guarantee that the
extracted witness is a valid. The idea is to change the way we
compute the root h hard-codded in M. Instead of computing
a hash tree directly over the k - n pairs {y; = (w;-7 h;)}, we
compute a hash tree over the n roots hy,..., h, (recall that
each h; is itself the root of a hash tree over the the k pairs
{y;} using a somewhere extractable hash) and set h to be its
root. Moreover, instead of a direct authentication path from y/
to h, we give two paths: one from y; to h; and one from h; to
h. Finally, to verify the batch argument for M, we check that
the underlying batch argument for M is accepting and that the
root h hard-codded in M is indeed the hash of hy,..., h,.

The proof of security. We argue that our final construction
satisfies the somewhere argument knowledge property: To
extract a witness for the statement i € [k], we program the
somewhere extractable hash key and for every j € [n], we
extract ¢ = (w’,h%) from the root h;. We condition on the
event that the batch argument proof for M is accepting and we
show that the extracted witness w’ = (w?,...,w!) must be
valid with overwhelming probability. To this end, we emulate
the machines R, ..., RY, with the hard-coded witness blocks
i, ..., w!, and obtain the configurations cfy, . . ., cf,. We say
that the digest H§- extracted from h; is “good” if it is indeed
the digest of c_f;. Below we argue that for every j € [n],
h} is good with overwhelming probability. However, before
proving that, we show that assuming all digests h’; are good,
the witness w* must be valid.

To show that @’ is valid, consider an experiment where we
program the public key of the underlying batch argument and
extract the witness 0’. Since the programmed public key is
indistinguishable from the real key (even when extracting from
the somewhere extractable hash) we still have that h is good
with overwhelming probability. Recall the witness w?, contains
the pair 3, = (wf,h?) and its authentication path to h. We
have that with overwhelming probability M accepts ﬁzj‘ and,
therefore, the authentication path is valid and h}, is the digest
of the accepting configuration of R?. By collision resistance
and the extraction guarantee of the somewhere extractable
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hash, we have that h¥, = h’. Since h’, is good and, again, using
collision resistance, we have that cf,, must be the accepting
configuration of R}, and, thus, @’ is valid.

It remains to argue that for every j € [n], Hg is good with
overwhelming probability. For j = 0, h{, is good by definition.
If for some j > 1, hi_, is good but h is not with noticeable
probability, then we break the soundness of the delegation
scheme as follows. First, we program the public key of the
underlying batch argument and extract the witness 117; Since
the programmed public key is indistinguishable from the real
key (even when extracting from the somewhere extractable
hash) we still have that hi_, is good but h} is not with
noticeable probability. Recall the witness w] contains the pairs
y;'—i ;

= (wj_y,h}_y) and y} = (w},h?), their authentication
paths to h, and the delegation proof H; We have that M
accepts w; with overwhelming probability and, therefore, the
authentication paths and the delegation proof are all valid.
By collision resistance and the extraction guarantee of the
somewhere extractable hash we have that gj;'-_l = y§_1 and
y; = y;, thus to break the soundness of the delegation scheme

for the machine R; with u’}} hard-coded, we produce the

. cf;, the digests h’_, h!

configurations cf;_,, i1, N5

IT%.

2) Mergeable proofs and IVC: We overview our construc-
tion of mergeable delegation for RAM machines based on
rate-1 batch arguments. Recall that in delegation for a RAM
machines, we can verify that a RAM machine R transitions
from configuration cf to cf’ in ¢ steps without knowing the
(potentially long) configurations. Instead, the verifier is only
given access to the short digests h,h’ of cf,cf’ respectively.
Soundness states that an efficient adversary cannot produce
(cf,cf’,t) such that R transitions from cf to cf’ in ¢ steps,
together with a “hashed statement” (h, h’,¢) and an accepting
proof II such that h is indeed the digest of cf, but h’ is not
the digest of cf’. We note that delegation for RAM implies
delegation for Turing machines since the verifier can compute
the digests of the configurations in the statement itself.

The high-level idea behind out construction is as follows.
Given two accepting proofs II;, I, under some public key
pk for the hashed statements z; = (h,h’,t;) and z3 =
(h’,h",t5) respectively, we merge them into a single proof
IT for (h,h” t; + t2). The proof II contains both statements
x1,T2 as well as a batch argument for the following NP
verification machine M with & = 2. The machine M has
the hashed statements x1, 2, the public key pk and the code
of the RAM machine R hard-coded. Given an index i € [2]
and a witness II;, the machine M checks that the original
delegation verifier given the public key pk, the RAM machine
R and the hashed statement x; accepts the proof II;. We
verify a merged proof II for a hashed statement (h,h’ ¢) as
follows. The proof II contains a pair of instances z1, x5 where
x; = (h;,hl,t;) and a batch argument proof. We first verify
that the hashed statements are indeed of the correct form. That
is, (h1,h%,t1 +t2) = (h,h',t) and h} = hy. Then, we accept
if and only if the batch argument proof for the machine M

and the proof
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hard-coded with the hashed statements x1, o (as well as pk
and R) is accepting.

The proof of security. To argue the soundness of the merged
proof, consider an adversary that cheats with noticeable prob-
ability e. That is, the adversary outputs a true statement
(cf,cf” t), a hashed statement (h,h” t) and an accepting
merged proof IT such that h is the digest of cf, but h” is not the
digest of cf”. Let r1,x2 be the hashed statements contained
in the proof. If the proof is accepting these statements must
be of the form x; = (h,h’,¢;) and x2 = (h',h",¢3) where
t; +to = t. Let cf’ be the configuration that follows ¢; steps
after cf and let h’ be its digest. Conditioned on the adversary
cheating, we have that either h’ = h’ or h’ # h’ must hold
with probability at least 1/2. Say that the adversary cheats and
h’ # h’ with probability > ¢/2 (the proof in the other case is
similar). To break the underlying delegation scheme we run
the adversary with a programmed public key and extract the
witness II; for ¢ = 1. Since the programmed public key is
indistinguishable from an honestly generated one, the event
that the adversary cheats and h’ # h’ still occurs with roughly
the same probability > €/2. By the somewhere argument
of knowledge property, if the batch argument proof in II
is accepting, then M(1,1I;) accepts with all but negligible
probability and, therefore, 1I; is an accepting proof for the
hashed statement x;. To break the the underlying delegation
scheme we output the true statement (cf, cf’,#;), the hashed
statement 1 = (h,h’,t;) where h' # h’ and the accepting
proof IT;. Similarly, if b’ = h’ with probability at least €/2, we
program the batch argument public key, extract the witness II5.
To break the underlying delegation scheme we output the true
statement (cf’, cf” ¢;), the hashed statement x5 = (h',h” t;)
where h’ = h’ and the accepting proof II,.

Recursive merging. Since we are using rate-1 batch argu-
ments, we can marge proofs recursively with the proof length
the proof growing from m to m+ O(m/A) 4 poly(A) in each
level. Therefore, we can recursively merge proofs O()) times
while keeping the length of the merged proofs bounded by
poly(\). However, to prove soundness of recursively merged
proofs we apply the argument above inductively, halving the
adversary’s advantage with each level. Therefore, to ensure
that the advantage remains noticeable we must bound the depth
of nested proofs to be logarithmic or, more generally, log T’
assuming 7-hardness. This allows us to marge 7" proofs and,
therefore, it is sufficient for constructing IVC for bound 7.

IVC from mergeable delegation. The construction of
IVC from mergeable delegation follows the outline of
[1]. The high-level idea is as follows. Given a statement
(cf,cf’,t) we split it into d < logt consecutive statements
{(Cfi7cfi+17ti =2b) e TM}iE[dfl] such that (cfy,cfy)
(cf, cf’) and for every i, £; > £;41. The proof II for (cf,cf’,t)
consist of one mergeable delegation proof for each of the d
segments, where the proof for the i-th segment is of level ;.
To increment the proof II by one step we create a new level-0
proof for the statement (cf’,cf”, 1) and append it to II. If II
contains two proofs of the same level ¢ we merge them into a



single proof of level £ + 1 (note that such proofs will always
be for two consecutive statements) . We repeat this merging
operation until II no longer contains two proof of the same
level and it is a valid proof for the statement (cf,cf” ¢+ 1).

II. PRELIMINARIES

For a deterministic Turing machine M, let Unq be the
language that contains (x,t) if and only if the machine M
accepts x in t steps. A deterministic RAM machine R with
a word size of A has random access to memory of size 2*
bits and a local state of size O(X). At every step, the machine
reads or writes a single memory bit and updates its state. For
a Turing or RAM machine M, we refer to the machine’s state
and the content of its memory/tapes at a given timestep as its
configuration. Let T be the language that contains (cf, cf’, t)
if and only if the machine M starting from configuration cf
transitions to configuration cf’ in t steps.

A. Incrementally Verifiable Computation

In this section we define incrementally verifiable computa-
tion scheme for deterministic Turing machines. The definition
is adapted from [2].

An incrementally verifiable computation scheme for deter-
ministic Turing machines consists of algorithms (G, U, V) with
the following syntax:

G: The randomized setup algorithm takes as input a security
parameter A € N. It outputs a public key pk.

U: The deterministic update algorithm takes as input the
public key pk, a machine M, a statement (cf, cf’, ) and
a proof IIL. It outputs a proof II'.

V: The deterministic verifier algorithm takes as input the
public key pk, a machine M, a statement (cf, cf’, ) and
a proof 1. It outputs an acceptance bit.

Definition 2.1: A T'(-)-secure incrementally verifiable com-
putation scheme for deterministic Turing machines satisfies the
following requirements:

Incremental Completeness. For every A € N and machine
M:

« For every configuration cf:

Pr [ pk « G())
V(pk, M, (cf,cf,0),E) =1 ] =1 .

o For every t < 2*, pair of statements x,z’ € Trq of
the form z = (cf,cf’,t) and 2’ = (cf,cf”,¢ 4+ 1) and
a proof II:

pk < G()\)

I + U(pk, M, z,1II)
V(pk, M, z,1I) = 1
V(pk, M, 2/, II') = 0

Pr
=0.

Efficiency. In the incremental completeness experiments
above:
o The generation algorithm runs in time poly ().
o The verifier and update algorithms run in time (]JM|+
|z[) - poly(A).
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T(-)-Soundness. For every poly(T(\))-size adversary Adv,
there exists a negligible function p such that for every
AeN:

P pk < G(X)
"l (M, 2 = (cf, cf, 1), IT) + Adv(pk)
t<T(\)
V(ipk, M 2, I1) =1 | < u(T(N)) .
z & Tm

We say that the scheme is polynomially secure if it is 7(+)-
secure for every polynomial 7'

B. RAM delegation

In this section, we define non-interactive delegation for
RAM. The definition is a strengthening of the definition in [2]
(see discussion following Theorem 2.3). In a RAM delegation
scheme, the prover convinces the verifier of a statement of
the form (cf, cf’,t) € Tx. Since the configurations might be
long, the verifier only needs to know a hashed down version of
the statement (h,h’,¢) where h, h’ are short digests of cf, cf’
respectively.

A non-interactive delegation scheme for RAM consists of
algorithms (G, H, P, V) with the following syntax:

G: The randomized setup algorithm takes as input a security
parameter A\ € N. It outputs a public key pk.

H: The deterministic digest algorithm takes as input the public
key pk and a configuration cf € {0,1}". It outputs a
digest h.

P: The deterministic prover algorithm takes as input the
public key pk, a RAM machine R and a statement
(cf,cf’,t). It outputs a proof II.

V: The deterministic verifier algorithm takes as input the
public key pk, a RAM machine R, a hashed statement
(h,h’,t) and a proof II. It outputs an acceptance bit.

Definition 2.2: A T(-)-secure non-interactive delegation
scheme for RAM satisfies the following requirements.
Completeness. For every A € N, RAM machine R, t € [2*]

and statement (cf,cf’,t) € Tz we have that:

pk < G(A)

h < H(pk, cf)

h’ < H(pk, cf’)

I < P(pk, R, (cf,cf’ 1))

© V(pk, R, (h,h,t),I) =1] =1 .

Pr

Efficiency. In the completeness experiment above:

The generation algorithm runs in time poly(A).

The digest algorithm on cf runs in time |cf| - poly())
and outputs a digest of length poly(\).

The prover algorithm runs run in time |R|- poly(\, t)
and outputs a proof of length poly ().

The verifier algorithm runs in time |R/| - poly(\).

SThe definition only bounds the verification time of honestly generated
proofs. We can assume WLOG that the same bound holds also for maliciously
generated proofs by capping the verifier execution time.



T(-)-Collision Resistance. For every poly(T'(\))-size adver-
sary Adv, there exists a negligible function y such that
for every A € N:
pk < G(A)
Pr /
(cf, cf’) < Adv(pk)
cf # cf’
H(pk, cf) = H(pk, cf’) < u(TR) -
T(-)-Soundness. For every poly(7T'(\))-size adversary Adv,
there exists a negligible function p such that for every
reN:
Pr pk < G(A)
(R, cf,cf’ h, h',t TT) < Adv(pk)
t<T(N
V(pk, R, (h,h’, 1), 1I) =
(cf,cf',t) € Tk
h = H(pk, cf)
h’ # H(pk, cf’)

We say that the scheme is polynomially secure if it is 7(-)-
secure for every polynomial 7.

Theorem 2.3 ( [3]): Assuming the LWE problem is 7'(-)-
hard, there exists a 7'(-)-secure non-interactive delegation
scheme for RAM.

We remark that the notion of RAM delegation considered
in [3] is slightly weaker than the notion in Definition 2.2.
We explain how to modify the [3] construction to obtain our
notion:

o In [3], the RAM machine R is fixed while in our notion
the prover and verifier are given the description of R.
We can realize this by using the scheme of [3] for the
universal machine and encoding the description of R as
part of the machine’s configuration.

In [3], the setup algorithm is given the time ¢ for the
statement proven while in our notion the prover and
verifier are given ¢ as part of the statement. We can realize
this by using A copies the scheme of [3]: for every i € [A]
we generate a public key for time 2°. To prove a statement
with time ¢, we divide the ¢ execution steps into at most
A segments, each of length that is a power of two. The
proof contains each of the segments and its proof under
one of the public keys.

While [3] only argue polynomial security of their scheme,
it is straightforward to extend their proof to show 7T'(-)-
security under the 7'(-)-hardness of LWE.

C. Tree Hash

A tree hash consist of algorithms (G, H, V) with the follow-
ing syntax:

G: The randomized generation algorithm takes as input the
security parameter A. It outputs a public key pk.

H: The deterministic hashing algorithm takes as input the
public key pk and messages xi,...,xr € {0,1}[. It
outputs a hash h and opening 11, ..., II.

V: The deterministic verification algorithm takes as input the
public key pk, a hash h, a message = € {0, 1}Z, an index
i € [k] and a proof II. It outputs an acceptance bit.

1
<u(TQ)) -
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Definition 2.4: A T(-)-secure tree hash satisfies the follow-
ing requirements:
Completeness. For every A € N, & < 2% messages

a1,..., 2 € {0,1}" and index i € [k]:
pk < G(A)
Pr
(h, (ILy, ..., II})) <

H(pk, (xl, ce X))
. V(pk, h, a:z,z,l'[ )=1] =
Efficiency. In the completeness experiment above:
o The generation algorithm runs in time poly(\).
o The hashing algorithm runs in polynomial time in its
input length and outputs a hash of length poly(A).
« The verification algorithm runs in time £ - poly ().
T(-)-Collision Resistance. For every poly(7'(\))-size adver-
sary Adv there exists a negligible function p such that
for every A € N:

pk < G()\)

(h,z, 2,4, 11, II") + Adv(pk)
x#a
V(pk,h,z,7,1I) =1
V(pk, h, 2,4, IT') = 1

Pr

S u(TA) -

We say that the scheme is polynomially secure if it is 7(-)-
secure for every polynomial 7'

Theorem 2.5 ( [17]-[19]): Assuming the LWE problem is
T'(-)-hard, there exists a T'(-)-secure tree hash.

D. Somewhere Extractable Hash

In this section, we define somewhere extractable hash. The
definition is a strengthening of the definition in [3] restricted to
the case when the set of “binding coordinates” is of size 1. We
explicitly define the hash to operate on long strings (rather than
on bits as in [3]) to enable rate-1 constructions. A somewhere
extractable hash consist of algorithms (G, T, H, V, E) with the
following syntax:

G: The randomized generation algorithm takes as input the
security parameter A. It outputs a public key pk.

The randomized trapdoor generation algorithm takes as
input the security parameter A\ and an index ¢ € N. It
outputs a public key pk and a secret key sk.

: The deterministic hashing algorithm takes as input the
public key pk and messages xi,...,2r € {O,l}é. It
outputs a hash h and openings Iy, ..., Ig.

: The deterministic verification algorlthm takes as input the

public key pk, a hash h, a message = € {0, 1} an index
i € [k] and a proof II. It outputs an acceptance bit.

: The deterministic extraction algorithm takes as input the
secret key sk and a hash h. It outputs a message = €
{0,1}".

Definition 2.6: A T(-)-secure somewhere extractable hash

satisfies the following requirements:

Completeness For every A € N, & < 2% messages

T:

1,..., 2z € {0,1}" and index i € [k]:
Pr pk < G(X)
(h,(Hl,...,Hk)) H pk (11,...,xk))
: V(pk,h,z;,4,1L) =1 =1



Efficiency. In the completeness experiment above:

o The generation, trapdoor generation and verification
algorithms run in time ¢ - poly()).6

o The hashing and extraction algorithms run in polyno-
mial time in their input length.

o We defined the additive overhead, «(A,{), of the
scheme as |h| — ¢.

T'(-)-Key Indistinguishability. For every poly(7T'()\))-size
adversary Adv there exists a negligible function x such
that for every A € N and index i < 2*:
Pr[pk < G(X\) : Adv(pk) = 1]
—Pr[(pk,sk) < T(\,4) : Adv(pk) = 1] ’
< u(T(N) -
Extraction. For every A € N, hash h, message z € {0, 1}2,
index i € [2*] and opening II:
Pr [ (pk, sk) < T(A,4)
x* < E(sk, h)
V(pk’ h’ x’ 7:’ H) = 1
N =0.
T F#w
We say that the scheme is polynomially secure if it is 7°(-)-
secure for every polynomial 7.
Under the hardness of the LWE problem, we can construct
a rate-1 somewhere extractable hash by instantiating the con-
struction of [16] based on rate-1 FHE [15].
Theorem 2.7: Assuming the LWE problem is 7'(-)-hard,
there exists a 7T'(-)-secure somewhere-extractable hash with
additive overhead a(\, ¢) = f + poly(A).
Proof sketch: As shown in [15], assuming the LWE
problem is T'(-)-hard, there exists an FHE scheme that enables
encrypting a message of length ¢ = poly(\) (for sufficiently
large /) into a ciphertext of length ¢ + §. We next observe
that the construction of somewhere extractable hash from [3],
[16] the hash value is simply an FHE ciphertext encrypting
one of the message hashed. If employing the rate-1 FHE from
[15], the construction will satisfy the desired additive overhead
requirement. |

E. Batch Arguments

In this section, we define non-interactive batch arguments
for the index language. The definition is a strengthening of
the definition in [3] (see discussion following Theorem 2.9).

A non-interactive batch argument for the index language
consist of algorithms (G, T, P, V, E) with the following syntax:
G: The randomized generation algorithm takes as input the

security parameter A and the witness length m. It outputs
a public key pk.

T: The randomized trapdoor generation algorithm takes as
input the security parameter A, the witness length m and
an index ¢ € N. It outputs a public key pk and a secret
key sk.

%The definition only bounds the verification time of honestly generated
hash and opening. We can assume WLOG that the same bound holds also
for maliciously generated hash and opening by capping the verifier execution
time.
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P: The deterministic prover algorithm takes as input the
public key pk, a machine M and witnesses wy, ..., wy €
{0,1}™. It outputs a proof IL.

V: The deterministic verifier algorithm takes as input the
public key pk, a machine M, and a proof II. It outputs
an acceptance bit.

E: The deterministic extraction algorithm takes as input the
secret key sk and a proof II. It outputs a witness w €
{0,1}"™.

If the generation and trapdoor generation algorithms do not
require m, we say that the batch argument has unbounded
witness length and omit m from the algorithms input.

Definition 2.8: A T(-)-secure non-interactive batch argu-
ment for the index language satisfies the following require-
ments:

Completeness. For every A € N, k,m,t < 2}, machine M
and witnesses ws, ..., wx € {0,1}"™ such that for every
i € [k]: ((4,w;),t) € Upq we have that:

. pk < G(A,m)
HeP(pk,M,(wl,...,wk))
C V(pk, M, I =1] =1 .

P

Efficiency. In the completeness experiment above:

The generation and trapdoor generation algorithms run
in time poly(A,m), or poly()\) if the argument has
unbounded witness length.

The prover algorithm runs in time | M|-poly (A, m, k, t)
and outputs a proof of length poly(\, m).
The verification algorithm runs in time
poly(\,m).

The extraction algorithm runs in polynomial time in its
input length.

We defined the additive overhead, a(\,f), of the
scheme as |II| — m.

M| -

T'(-)-Key Indistinguishability. For every poly(T'()\))-size
adversary Adv and polynomial m(\) there exists a neg-
ligible function p such that for every A € N and index
i< 2N

Pr[pk «+ G(A\,m) : Adv(pk) = 1]
—Pr[(pk,sk) < T(A\,m,q) : Adv(pk) = 1]
<u(T) -

T'(-)-Somewhere Argument of Knowledge. For every
poly(T'(\))-size adversary Adv and polynomials
E(N),m(A),t(X) there exists a negligible function p
such that for every A € N and index i € [k]:

(pk, sk) <= T(A, m,1)
(M, II) + Adv(pk)
w < E(sk, IT)
V(pk, M,TI) = 1
((iv w)a t) ¢ u/\/l
TThe definition only bounds the verification time of honestly generated

proofs. We can assume WLOG that the same bound holds also for maliciously
generated proofs by capping the verifier execution time.

Pr

<u(TN) -



We say that the scheme is polynomially secure if it is 7(-)-
secure for every polynomial 7'

Theorem 2.9 ( [3]): Assuming the LWE problem is 7'(-)-
hard, there exist a 7'(-)-secure non-interactive batch argument
for the index language.

We remark that the notion of batch arguments defined in
[3] is slightly different than the notion in Definition 2.8. We
explain how to modify the [3] construction to obtain our
notion:

o In [3], the prover and verifier are given a circuit imple-
menting the NP verification procedure and the setup al-
gorithm is given the size of this circuit. In our notion, the
NP verification procedure is given by a Turing machine
and the setup algorithm is not given a bound on the size or
running time of the machine but only the witness length
m. As discussed in [3, Section 6], this can be realized
by combining the notion of [3] with a RAM delegation
scheme satisfying Definition 2.2. Such a RAM delegation
scheme is also known under the LWE assumption (see
Theorem 2.3).

In [3], the setup algorithm is given the number of state-
ments k while in our notion the the number of statements
is not fixed ahead of time. We can realize this by using A
copies the scheme of [3]: for every ¢ € [A], we generate
a public key for 2° statements. To prove k statements,
divide the statements into at most A groups, each of size
that is a power of two. The final proof contains, for each
group, a proof under one of the public keys. Here we use
the fact that in the batch arguments of [3], the setup time
is poly-logarithmic in the number of statements.

While [3] only argue polynomial security of their scheme,
it is straightforward to extend their proof to show T'(-)-
security under the T'(-)-hardness of LWE.

III. RATE-1 BATCH ARGUMENTS

In this section, we prove Theorem 3.1 giving batch ar-
guments with unbounded witness length and small additive
overhead.

Theorem 3.1: Assume the existence of:

o A T(-)-secure non-interactive batch argument for the

index language.

e A T(-)-secure somewhere extractable hash with additive

overhead av(\, £) = £ + poly(\).

e A T(-)-secure non-interactive delegation scheme for

RAM.
Then there exist a T'(-)-secure non-interactive batch argument
for the index language with unbounded witness length and
with additive overhead a(A,m) = 2 + poly()).

Construction. We construct a 7'(-)-secure, non-interactive
batch argument (Ggn, Tgas Pea, Via, Ega) with additive over-
head 3% + poly(\) using the following building blocks:

e A T(-)-secure non-interactive batch argument for the

index language (GBAy TBA7 PBA, VBA, EBA)-

e A T()-secure  somewhere  extractable

(GEH, Ten, Hen, Ven, EEH) with  additive
f + Q1()\) for some polynomial Q.

hash
overhead
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e A T(-)-secure non-interactive delegation scheme for
RAM (Gp, Hot, Poi, Vou)-

o A T(-)-secure tree hash (Gty,Htn,VrH) with hash of
length Q2(\) for some polynomial Q.

We are given an NP verification machine M and a sequence
of witnesses (w',...,w"), each of length m. Let ¢ be the
running time of M on each witness. We first split each
witness w® into n blocks w® = (wi,...,wt) where each
block is of length ¢ = m/n. For every i € [k], we define a
computation checking that ((i,w?),t) € Unq. The computation
is made of a sequence of n intervals implemented by RAM
machines R}, ..., R’. We run the machines sequentially on
the same memory, that is, each machine starts from the
final configuration of the previous one. For every j € [n],
the machine Rz- has Fhe Witness block w; hard-coded. For
J <n the machine R’ writes wj to memory and terminates.
The final machine R;, writes the final witness block w}, to
memory and then, once the entire witness w' is in memory,
it emulates M (i, w?) for ¢ steps and accepts if and only if
M accepts. Let cff) be the starting configuration of R¢ and
for j € [n], let cfz- be the final configuration of Rj Using
a RAM delegation scheme we compute the digest h; of the
configuration cfé- and generate a proof Hj- that the machine
Ré- indeed transitions from cf;’;1 tp cf;. Therefore, given
the witness w® and the digests {h;-}j we can verify that
((i,w?),t) € Uns by checking that h§ and h? indeed are
the digests of the correct starting and accepting configurations
respectively, and that all the proofs {IT}} ; are accepting.

The next step is to prove that all proofs are accepting using a
single batch argument. To this end, we use the witness blocks
and the digests to define a collection of NP statements and
hash them down. In more details, we first use a somewhere
extractable hash to compute for every j € [n], the hash h;
of the k pairs {wé, h;)}z Then, we further hash the n hash
values {h;}, to a single hash h using a tree hash. We can
now define the NP verification machine M’ for which we
provide the batch argument. The machine M’ given index
(4,7) accepts a witness that contains (a) valid openings of h
to h;_1 and hy, (b) valid openings of h;_1 and h; to (w?, h%))
and (wj,h})) respectively, and (c) an accepting proof II’; for
the RAM machin_e R; (recall that the ma_chine R; can be
computed from w?) and the digests (h}_;, h’). The final proof
consist of the hash values {h; }j and the batch argument proof
for M.

We proceed with a formal description of the construction.
The machine R'. For i € [k], j € [n], a string = € {0, 1}* and
a machine M, let R’[x, M| be the following RAM machine:

o Writes = to memory starting at location (j — 1) - £ + 1.
o If j =n:
- Emulate M on input (i, w?) where w' is the given in
the first m = n - £ memory locations.
— Empty the memory and accept if and only if M
accepts.
(£ + |M| +t) - poly(A) be the running time of the

Let t;-



machine R[x, M]. Let cf’,. be the starting configuration of
Ri[z, M] and let cflccept be the accepting configuration of
‘R;, with empty memory.

The machine M’. Given a public key pk =
(PkTys PKens PkpL), @ machine M and hash value h, let
M[pk, M, h] be the machine on input an index i’ and a
witness w':

wl = ((‘Z.b’ h%LaH%H7hEH7H§|’H)b€{0,I} ) 1_[DL) )

proceeds as follows:

e Leti € [k], j € [n] be such that ' = (i — 1) - n + j.

e« For b € {0,1}, check that Vry(pkpy,h,hdy, i —
b,11%,,) = 1.

« For b € {0,1},
VEH(pkEH7 h}éHa (xb7 hll)jl_)a ia H}EH) =1L

o Check that Vpi(pkpy, R} [z, M], hpy, h, 5, TlpL) =
1.

o If j = 1 check that h}, = Hpy(pkpi, cflar)-

o If j = n check that h}, = HDL(kaL,cficcept).

o Accept if and only if all checks pass.

check that

Let m’ = £ - poly(\) be the length of the witness w'.
The batch argument algorithms.

Gga: Given as input the security parameter A the genera-
tion algorithm is as follows:
o Set £=X-(Q1(\) + Q2(N)).
o Set PkBA — GBA()\y m’).
o Set pkry < Gru(A).
o Set pkgy < Gen(A).
o Set kaL — GDL(/\).
o Output pk = (pkga, Pkry, Pken, PkpL)-
Tga: Given as input the security parameter A and an index
1, the trapdoor generation algorithm is as follows:
o Setl=M\- (Ql(/\) + QQ()\))
Set pkga < Gga(A,m/).
Set pkry < GTr(A).
Set (pkgy,sk) < Ten(A,4).
Set pkp < GpL()).
Output (pk = (pkga; PkTH, Pkens PkpL) 5 k).
Pga: Given as input the public key pk, a machine M
and witnesses w1, ...,w, € {0,1}", the prover
algorithm is as follows:

o Let pk = (pkga, Pky, PKen, PKpy)-

o Setn ="
o For i€ [k] let w' = (wi,...,w;) where each w}

is of length /.

o For i € [k] set wj = 0°.

o For i € [k] set cff, = cfl,..

e For i € [k] and j € [n] compute the final con-
figuration cf’ of R [wh, M] when starting from
configuration cfj-_l.

e For i € [k] and j € [n] set ﬁ; —
P(pkpL, R, cff_,cf}, th).

e For i € [k] and j €

[0,n] set hi <
Hb (pkpy , cf?).

e For j € [0,n] set (hj,(H;,...,H;?)) —
HEH(pkEHv((wgl'vh§)7"'7('w§7h§)))'

« Set (h7(H0,,HH)) —
Hru(pken; (ho, - . hn)).

e For i € [k] and j € [n] set w/ =

) ] (i—=1):n+j
(wj—p, 0}y Iy by, I p)peqo.ny 5 115).
o Set
Pkgas
Iga < Pea | M'[(Pkrh; Pken, Pkpr ), M, h],
(wh, ... wp.,)

e Output II = ((hg,...,hy), Ilga).
Vga: Given as input the public key pk, a machine M and
a proof 11, the verifier algorithm is as follows:

o Let pk = (pkga, PkTh, PKken, Pkpp)-

o Let II = ((ho7 ey hn) s HBA)-

o Set (h7(H07-~-7Hn)) —
HEH(pkEH7 (h(], ey hn)).

o Output the same as

Vea(pkga: M[(Pkri, Pken, Pkpy ), M, h], Tga).

Ega: Given as input the secret key sk and a proof II, the

extraction algorithm is as follows:

o Let T = ((hg,...,h,), Tga).

o For j € [n], set (wj, h) < Egn(sk, hy)

e Output w = (wq,...,w,).
The analysis of the construction appears in the full version

of this work.

IV. MERGEABLE DELEGATION

A mergeable delegation scheme for RAM is a non-
interactive delegation scheme for RAM that is equipped with
an additional merging algorithm M. Given the proofs for two
statements (cfy, cfo,t1), (cfa,cfs,t2) € Tr the merging algo-
rithm efficiently generates a proof for the combined statement
(cf1,cfs, 1 +t2) € Tr. What makes this notion non-trivial is
the compactness requirement which states that the the merged
proof is not much longer than (the longer one of) the original
proofs. In essence, merging compresses two proofs into a
single proof of roughly the same size.

Our notion of mergeable delegation allows proofs to be
merged recursively. In more detail, for each proof we maintain
a level, where newly generated proofs are of level 0 and
merging two proofs of level ¢ results in a proof of level ¢ + 1.
Similarly to the notion of levelled-FHE, We restrict attention
to schemes that support an a-priori bounded number of levels,
say A.

Formally, a mergeable non-interactive delegation scheme
for RAM is a non-interactive delegation scheme for RAM
(G,H,P,V) augmented with algorithms (M, L) with the fol-
lowing syntax:

M: The deterministic merging algorithm takes as input a
public key pk, a RAM machine R and a pair of hashed
statements and proofs ((h;, hj,2;),11;);c2). It outputs a
new proof II.
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L: The deterministic level algorithm takes as input a proof II,
it outputs a level £ € N.

Definition 4.1: A T(-)-secure non-interactive delegation
scheme for RAM is mergeable if it satisfies the following
requirements:

Completeness with Level 0. Forevery A € N, ¢t < 2* RAM
machine R and statement (cf,cf’,¢) € T we have that:

pk < G(X)

h < H(pk, cf)

h’ < H(pk, cf’)

I < P(pk, R, (cf,cf’ 1))
V(pk, R, (h,h',2),II) =1 | _
L(IT) = 0 -

Pr

1.

Completeness of Merge. For every A € N, public key pk,
¢ < A, RAM machine R and a pair of hashed statements
and proofs (x; = (hy, hj,t;),11;);c|2) such that hy = hy
and for every i € [2], V(pk, R, z;,II;) = 1 and L(IL;) = ¢
we have that:

Pr [ II - M(pk, R, (2, 11;);c[2))
V(pk,R, (hl, h/2,t1 =+ tQ),H) =1

L(I) = £+ 1 =1

Efficiency. In the completeness experiments above:
o The merging algorithm runs in time |R| - poly(A) and
outputs a proof of length poly()).
o The level algorithm runs in time poly(\).

T'(-)-Soundness for Bounded Level Proofs. For every
poly(T'(X\))-size adversary Adv there exists a negligible
function  such that for every A € N:

pk — G(\)

(R, cf,cf’ h, h' ¢t TT) < Adv(pk)
t<T(\)
L(IT) < log T'(\)
V(pk, R, (h,h’,t),II) = 1
(cf,cf 1) € Tr
h = H(pk, cf)
h’ # H(pk, cf’)

Pr

<u(TQ)) -

We say that the scheme is polynomially secure if it is 7(-)-
secure for every polynomial 7'
We make some remarks on Definition 4.1:

o The completeness with level 0 requirement is exactly the
same as the plain completeness requirement of delegation
except that we require that freshly created proofs are of
level 0.

The soundness for bounded levels requirement is exactly
the same as the plain soundness requirement except that
we restrict the level of the proof to be O(logT'(\)).

We only require completeness of merge for a pair of
proofs at the same level and up to level A. Therefore,
constructing a proof of level ¢ requires merging 2¢ proofs
in a full binary tree (some of these proof may be for 0
computation steps).

Theorem 4.2: Assume the existence of:
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o A T(-)-secure non-interactive batch arguments for the in-
dex language with unbounded witness length and additive
overhead a(\,m) = % + poly ().

e« A T(-)-secure non-interactive delegation scheme for
RAM.

Then there exists a 7'(-)-secure mergeable non-interactive
delegation scheme for RAM.

Construction. We construct a mergeable non-interactive
delegation scheme (Gp, ,Hp,, Pps Vb, Mp s Lp.) using the
following building blocks:

o A T(-)-secure non-interactive batch argument for the in-
dex language (Gga, Tga, Pea, Vea, Ega) with unbounded
witness length and additive overhead (A, m) = % +
poly(A).

e« A T(-)-secure non-interactive delegation scheme for
RAM (Gp, Hpi, PoL, VoL ).

We proceed with a formal description of the construction.
We start by defining a verification procedure for proofs of
each level. The level-0 verification algorithm V? is simply the
verifier Vp of the underlying delegation scheme. For ¢ €
[A], the level-¢ verification algorithm V* is given as input the
public key pk = (pkg, ..., pk,), a RAM machine R, a hashed
statement = = (h, h’,¢) and a proof II. It proceeds as follows:

o LetII = (1’1 = (hl, hll,tl),xg = (hg, h/27t2)7H/).

o If h} # hy or (hy,hf, ¢4 + t2) # (h,h',t) then reject.

o Let M = M’[pk, R, (21, 22)] be the machine that on

(i7 ﬁ) outputs Véil((pk07 AR pk£71)7 R7 L, ﬁ)

« Output Vga(pk,, M* II')

The delegation scheme algorithms.

bL: Given as input a security parameter A € N, the setup
algorithm is as follows:
o Set pky < GpL(A).
o For £ € [A], set pk; < Gga()).
« Output pk = (pkg, ..., pky)-

Hp : Given as input the public key pk = (pk, ..., pky)
and a configuration cf € {0, 1}", the digest algorithm
outputs Hpy (pkg, cf).

PpL: Given as input the public key pk, a RAM machine
R, and a statement (cf,cf’,t) the prover algorithm
is as follows:
o Let pk = (pkg, ..., pky).
o Set IT < Ppy(pky, R, (cf, cf’, 1)).
« Output (0,1I)

bL: Given as input the public key pk = (pky,. .., pky),

a RAM machine R, a hashed statement 2 and a
proof II = (¢,1I') the verifier algorithm outputs
V(((pkm R pk€)7R7$7 Hl)

Mp,: Given as input a public key pk, a RAM machine

R and a pair of hashed statements and proofs
(w; = (hi,h}, ), 11;) [, the merging algorithm is
as follows:

o Let pk = (pky, ..., pky).

o Fori e [2], let II; = (¢;,I1}).

o If /1 # {5 then reject.



[10]

[11]

Setl{ =101 +1

o Let M* = Mpk, R, (z1,22)] be
the  machine that on (4,II)  outputs
VZ_I((pkm RN pk[—l)’ Rv Li, H)

Set 1 - PBA(PkeaMZ»( /17H/2))

Output (¢, (x1, z2,1I))

Given as input a proof II = (¢,II'), the level
algorithm outputs £.

/.
DL

The analysis of the construction appears in the full version

of this work.
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