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Abstract

This work is an experience with a deployed networked system
for digital agriculture (or DA). Digital agriculture is the use
of data-driven techniques towards a sustainable increase in
farm productivity and efficiency. DA systems are expected to
be overlaid on existing rural infrastructures, which are known
to be less robust. While existing DA approaches partially ad-
dress several infrastructure issues, challenges related to data
aggregation, data analytics, and fault tolerance remain open.
In this work, we present the design of Comosum, an exten-
sible, reconfigurable, and fault-tolerant architecture of hard-
ware, software, and distributed cloud abstractions to sense,
analyze, and actuate on different farm types. FarmBIOS is
an implementation of the Comosum architecture. We analyze
FarmBIOS by leveraging various applications, deployment
experiences, and network differences between urban and rural
farms. This includes, for instance, an edge analytics applica-
tion achieving 86% accuracy in vineyard disease detection.
An eighteen-month deployment of FarmBIOS highlights Co-
mosum’s fault tolerance. It was fault tolerant to intermittent
network outages that lasted for several days during many pe-
riods of the deployment. We introduce active digital twins to
cope with the unreliability of the underlying base systems.

1 Introduction

Digital agriculture (DA) is the use of data-driven techniques
towards a “sustainable intensification” [65] in farm productiv-
ity and efficiency. DA is the next generation stemming from
precision agriculture, which is local, offline, precise applica-
tion of farm inputs (e.g., water, fertilizer, etc.) [44,57,58]. In
contrast, DA systems involve more complex data processing
and communication, both on and off rural farms. DA sys-
tems are expected to be overlaid on existing rural infrastruc-
tures. However, rural infrastructures (e.g., Internet, power) are
known to be less robust than urban infrastructure [17]. This is
due, in part, to sparse populations [41], urban-centered tech-
nology design and standards [17], frequent outages [42], and
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limited maintenance [27]. These challenges make networked
data aggregation and analytics on rural farms difficult [87].

While state-of-the-art approaches address several of these
DA issues [26, 38, 84, 87], a lot of challenges related to
data aggregation, data analytics, and fault tolerance remain
open. First, although the diversity of sensor providers is grow-
ing [4,5,79,82,83,86], data aggregation is difficult because
of distributed data sources, incompatible sensors and data
formats, and software dependencies. Second, the set of data
analysis methods are increasingly leveraging advanced tech-
niques such as machine-learning (ML) [45, 53, 68]; however,
existing data analysis platforms rarely account for the vari-
ety of sensing mechanisms and crop types (e.g., Tow crop
vs specialty farms). Third, state-of-the-art platforms [78, 87]
partially address rural Internet and power challenges. How-
ever, fault tolerance is difficult to achieve across heteroge-
neous devices, networks, and cloud services. Overcoming
these challenges requires extensibility, reconfigurability, and
fault-tolerance in the (1) underlying sensors and networking,
(2) overlaying software, and (3) supporting cloud services.

In this paper, we present Comosum,' a cloud-based hard-
ware/software architecture that takes a significant step to-
ward this goal. Comosum is designed for researchers inte-
grating heterogeneous DA platforms. To address the hetero-
geneity, Comosum relies on prior strong systems concepts
such as separation of devices and device drivers [73], mod-
ularity [28, 43, 61], and reconfigurability of closed-source
software/hardware [18]. Our general approach to DA-enabled
farms is modular with abstractions for hardware (i.e., sensors
and networking devices), software, and the distributed cloud
(i.e., a cloud that combines the edge cloud at the farm, the
public cloud, and sensor vendor clouds).

Specifically, the Comosum design presents three principles:

* Extensible modules: Comosum modules (§§ 3.2) pro-
vide an abstraction on the acts of sensing, storing, com-
puting, and actuating farm data. This abstraction is de-

Named after Chlorophytum comosum, also known as spider plants, for
their extensible leaves and adaptability to many conditions [67].



rived from the object-oriented programming idea of in-
heritable instances, which can be customized for dif-
ferent DA applications. Note that these modules are
oblivious to the underlying hardware. This design con-
sideration follows from the principle of dumb switches
and smart control planes in Software-Defined Network-
ing (SDN) [18]. In this manner, given a uniform API,
the hardware (i.e., sensing and networking devices) and
software modules can evolve independently. Following
from Software-Defined Networking, Comosum is also
known as the Software-Defined Farm (or SDF) [75].

* Fault-tolerant distributed cloud: The Comosum dis-
tributed cloud (§§ 3.3) addresses challenges in support-
ing elastic, vendor-neutral, and fault-tolerant data ag-
gregation/analytics. Specifically, we highlight the com-
plex data path where some data must be pulled directly
from the sensor vendor, despite farm networking chal-
lenges. This need for networked data aggregation across
the farm (or “edge”) cloud, public (or “core”) clouds,
and private (or “vendor”) clouds distinguishes the con-
sequential fault tolerance trade-offs that are unique to
DA environments (e.g., plants might die if not irrigated
on time). Ultimately, by reimagining prior approaches
such as CloneCloud [19], the Comosum design enables
offline data collection and edge analytics during network
outages.

* Reconfigurable control plane: Given software abstrac-
tions and distributed cloud deployment environments,
the Comosum control plane (§§ 3.4) coordinates inter-
module communication. To maintain reconfigurability
and extensibility to heterogeneous devices, this com-
ponent draws from the separation of devices and de-
vice drivers, inter-process communication (IPC), and
SDN. Specifically, Comosum modules rely on a message-
passing [88,91] protocol to abstract away the distributed
deployment environments.

We implemented a version of Comosum which we call
FarmBIOS. We have deployed multiple FarmBIOS instances
in the Azure, AWS, and Google clouds. Further, we deployed
these instances on one commercial farm and two research
farms. Commercial farms are for-profit. In contrast, research
farms are associated with land-grant universities [1,9]. There-
fore, they benefit from the university’s resources. As a result,
we operate multiple deployments (both in open fields and
greenhouses) throughout the year with different Comosum
module, cloud, and control plane configurations. The con-
figurations differ such that they can meet the needs of ani-
mal (§§ 5.1), row crop (§§ 5.3), and specialty farms (§§ 5.2).

The results based on deployments and evaluation show
that Comosum supports extensible, reconfigurable, and fault-
tolerant DA systems. First, we applied FarmBIOS instances
to a plant water stress application and two ML-based appli-
cations yielding 86% and 97% training accuracy in vineyard

and dairy cow disease detection, respectively (§ 5). Second,
we present an 18-month deployment with a million sensor
readings from 80 sensors networked over cutting-edge hard-
ware in two farm edge clouds (§§ 5.3). We further analyze
Comosum’s reconfigurability trade-offs based on our exten-
sive deployment experience, application requirements, and
comparative spectrum measurements of a 55-acre urban farm
and a 615-acre rural farm (Appendix B). Third, we show Co-
mosum’s adaptability to faulty sensors in the field (§§ 6.2),
its tolerance to a network outage over multiple days (§§ 6.1)
at the edge, and the edge analytics’ resilience to network out-
ages (§§ 5.2). Experience deploying Comosum had several
surprising architectural implications. First, failures at the edge
(i.e., in the sensors and networking) vary differently than fail-
ure towards the core of the cloud (i.e., Internet and cloud
module failures), and the differences in failure scope had to
be identified, escalated, and optionally tolerated or repaired.
Intermittent network failures were tolerated through offline
data collection at the edge, or by directly performing analyt-
ics at the edge. Long-term sensor failures were escalated by
expanding the scope to their cloud-based digital twins and
notifying human operators. We call this an active digital twin.
A key takeaway was that the time to detect and need to toler-
ate a system component failure varied from seconds to weeks.
Second, frequent unannounced API or data format changes
by vendors led to many errors. Comosum evolved to shield
DA application developers from this complexity by provid-
ing a uniform API; specifically, a unstructured platform layer
and structured application layer. Third, Comosum was made
cloud provider agnostic by providing a cloud-independent
layer (i.e., through cloud-agnostic abstractions such as ta-
bles/functions) and a separate cloud-dependent layer (through
cloud-dependent services such as Azure Table and AWS Sim-
ple Notification Service).

We present an experience with a deployed networked sys-
tem for digital agriculture, our contributions are as follows:

e Three case studies to demonstrate DA research chal-
lenges, and how they motivate our design goals

* An integrative approach that applies and advances the
state-of-the-art to a portfolio of system challenges associ-
ated with building Comosum effectively across multiple
subsystems and contexts (Table 3)

* The design and implementation of Comosum, a cloud-
based architecture that unifies state-of-the-art DA ap-
proaches under a single interface by distilling largely
complex black-box technologies down to classical ideas

* Evidence that Comosum supports various applications,
tolerates intermittent network failures, and can be de-
ployed across different farm types and cloud providers

Paper outline: § 2 describes three DA case studies to mo-
tivate design goals. § 3 delves into the Comosum system



software architecture. § 4 instantiates FarmBIOS, a Como-
sum implementation that unifies otherwise incompatible DA
systems. § 5 describes three FarmBIOS applications and de-
ployment contexts. § 6 describes system adaptations to ensure
long-term maintenance. § 8 puts Comosum in the context
of prior work before concluding in § 9. Appendix B demon-
strates Comosum’s reconfigurability trade-offs.

2 Challenges: Why DA is Hard

Comosum is borne out of four years of collaborative research
building state-of-the-art systems to support DA. We describe
the main challenges in building on existing technologies to
motivate the architecture developed in § 3.

2.1 Challenge 1: Data Aggregation

Data aggregation involves pulling and processing data from
a variety of sources. It is crucial in obtaining a holistic pulse
on a farm’s Internet of living things (IoLT). Consider DA
researchers in animal science who need real-time monitoring
of dairy cows to facilitate early disease detection [33, 34,
54,72]. This requires integrating data from wearable and
non-wearable cow sensors, herd management software, and
manual data collection on site.

Existing wearable sensors capture behavioral, physiolog-
ical, and performance parameters such as physical activity,
rumination and eating time, estrous behavior, and internal tem-
perature (e.g., [2,3]). Non-wearable sensors include cameras,
weather stations, milk meters and near-infrared spectrometers,
and weight scales that deliver milk yield and body weight
from a static location as cows pass through with every milk-
ing session (e.g., [4,79,83]). The data monitoring is possible
via various sensor provider software running on the farm com-
puter (e.g., [5,82,86]). The sensor providers control and avail
the data for download either as raw files (via FTP dumps) or
JSON (via scripted API calls to the providers’ servers).

However, data aggregation efforts face five major hurdles.
First, the sensor data are siloed in monolithic platforms with
incompatible APIs. Second, the datasets are delivered in vari-
ous incompatible formats (e.g., Excel, JSON, or DIF). Third,
the data is distributed between the farm computer and numer-
ous sensor providers’ servers. Fourth, the patchy data integra-
tion programs are dependent on the farm computer’s operating
system (e.g., to run PowerShell scripts) and disk storage lay-
out (e.g., hardcoded, per-provider directories). Lastly, any ad
hoc integration protocol is likely to introduce data sparsity
as new sensors are incorporated and old sensors are retired.
These hurdles highlight the need to aggregate sensor data from
heterogeneous devices and platforms. The system should en-
able data aggregation from arbitrary sensor vendor platforms,
data formats, and data locations.

2.2 Challenge 2: Data Analytics

Data analytics involves extracting actionable insights from big
data. It is important in managing and predicting farm inputs
and expected outputs, respectively. Consider DA researchers

in plant pathology who need fast methods to detect vineyard
diseases affecting grape and wine quality [7,22,68,92]. This
requires detecting symptoms typically visible on the leaves.
Existing grapevine disease detection methods include
molecular tests, remote sensing, and digital models. Molecular
tests involve plucking diseased leaves to be analyzed in labo-
ratories. Remote sensing and digital models combine aerial
imagery from Unmanned Aerial Vehicles (UAV), vegetation
indices, and machine learning (ML) techniques [45,52,53,68].
However, these existing data analytics approaches face
three challenges. First, current remote sensor data cleaning
and pooling processes, which are often manual, do not enable
cross-farm analytics. Secondly, ML models have been shown
to produce contradictory analyses depending on the choice of
hyperparameters [15,20, 80]. Lastly, molecular tests are slow
(i.e., on the order of days) to yield actionable results in a set-
ting where every second implies further disease spread. These
challenges highlight the need for a reconfigurable approach
for data storage and model training to enable fast iterations
in any environment. The system should enable fast plug-and-
play of different analytics modules and sensing mechanisms.

2.3 Challenge 3: Fault Detection/Tolerance

Fault tolerance involves detecting, recovering from, and op-
tionally repairing system faults. It is important in providing
timely manual or automated interventions when farm mon-
itoring assets such as sensors have failed. Consider DA re-
searchers in plant breeding who need to understand water sta-
tus effects on plant growth by controlling for variables such as
temperature, soil moisture, and CO2 levels [49,71, 85]. This
requires reliable sensor data collection with both short-term
and long-term storage, processing, and actuation.

Existing systems (e.g., [78,87]) generally comprise sens-
ing hubs, an Internet gateway device, and optional cloud
storage and processing. The sensor hubs communicate to
the gateway over various protocols such as unlicensed TV
White Spaces (TVWS) [87], ZigBee [40], etc. The gateway
relays the sensor data over various media (e.g., 4G/3G [40],
WiFi [84]) to diverse cloud-based routing hubs (e.g., Azure
IoT Hub [87], AWS IoT Core [46]) for long-term storage.
With a few exceptions [26,46], prototype deployments are
often outdoors [84, 87].

However, fault detection and tolerance are difficult due, in
part, to three challenges related to cascading failures. First,
faulty sensors affect data collection. Secondly, network out-
ages affect data storage and data processing both locally at the
farm and in the cloud. Lastly, the complexity and heterogene-
ity of existing hardware/software systems pose significant
troubleshooting issues in the field. Individually, these fail-
ures can present real consequences in farms (e.g., plants are
not irrigated, animals are not fed, etc.). This highlights the
importance of fault tolerance and detection in DA environ-
ments. The system should detect, localize, tolerate and/or
repair failures in sensor, network, and software components.



2.4 Summary and Design Goals

These case studies highlight interoperability issues within
state-of-the-art. These challenges map to three core system
design goals:

» Extensibility: In addressing data aggregation (§§ 2.1),
we aim to provide an extensible interface that can gen-
eralize sensing, analytics, and actuation across APIs,
clouds, hardware, and platforms.

Reconfigurability: In addressing data analytics (§§ 2.2),
we aim to allow different points in the configuration
space towards data models that can be trained and used
across different networking and cloud deployment sce-
narios.

Fault Tolerance: In addressing fault detec-
tion/tolerance (§§ 2.3), we aim to detect and/or
tolerate intermittent failures despite the heterogeneity
of hardware, farm types, and cloud services.

3 Comosum Architecture

3.1 Overview

In this section, we describe Comosum’s hardware, software
and distributed cloud - the main components in the quest to
sense, analyze, and actuate on rural farms (see Figure 1).

Hardware encompasses sensing, networking, and control
devices. Sensing devices produce updates based on changes
in real-world conditions such as temperature, soil moisture,
vegetation density, etc. Networking devices provide infras-
tructure support via data routing and transfer between other
devices, of which routers, switches, and antennas are typi-
cal representatives. Control devices offer digital interfaces
with programmable logic control (PLC) functions. While pro-
grammable, control devices are limited to firmware running
on a few kilobytes of memory.

Software encompasses possible manipulations of data gen-
erated by the hardware entities. The software modules, which
we describe from left to right as shown in Figure 1, offer
abstractions on the acts of sensing, storing, computing, and
intervening based on real-world changes. The changes are
communicated via interrupt and poll mechanisms (see Ta-
ble 1). The telemetry module serves as an interface to capture
and reflect physical and virtual state changes. Whereas phys-
ical updates read directly from sensing devices (e.g., GPIO
pins), virtual updates are third-party reports (e.g., Excel files)
from vendors on proprietary sensors (see §§ 3.3). The stor-
age module is a logical abstraction over storage structures
(databases, files, etc.) and formats (Excel, CSV, etc.). The
compute module captures the various networked, temporal,
and spatial arrangements of compute devices (see Cloud be-
low) to produce actionable results. Together, the storage and
compute modules form the analytics module. Henceforth, the

analytics module is used interchangeably with the storage and
compute modules. Lastly, the actuation module bridges the
analytics module to control devices and farm operators.

Distributed cloud encompasses ubiquitous, convenient, on-
demand network access [60] to storage media and compute
devices at the farm edge, the public cloud, and the private
cloud (i.e., sensor vendor servers, university servers, etc.).
Storage media vary from low-end USB sticks to a pool of
hard disk drives in the cloud. Compute devices span low-end
Raspberry Pis at the edge to high-end virtual machines (VMs).

To achieve reconfigurability and extensibility, Como-
sum draws inspiration from Software Defined Networks
(SDNs) [18]. Here, the data plane spans the hardware and
software. The control plane then is the custom configuration
process of hardware components and software modules to
solve individually unique DA problems (e.g., Case 1-3in § 2).
Borrowing from the object-oriented design paradigm (OOP),
the fundamental Comosum unit is the instance.

Comosum instance modules operate in an event-driven
approach with per-module processes [88]. Independent,
message-passing [91] modules have two advantages. First,
this enables modules to be deployed anywhere in the dis-
tributed cloud. Secondly, it simplifies reasoning about appli-
cation correctness for multi-threaded modules. For instance,
irrigation should be triggered in the actuation module only
after a dry forecast is observed in the compute module.

To summarize, each Comosum instance is a configuration
of sensor, compute, storage, and actuation modules to map and
solve different sets of real-world agricultural challenges. In
the following subsections, we describe in depth the extensible
Comosum modules, the Comosum distributed cloud architec-
ture and its vendor neutrality goal (§§ 3.3), and the Comosum
control plane’s reconfiguration capabilities (§§ 3.4).

3.2 Comosum Modules

Telemetry Module. The telemetry module is the entry point
into a Comosum instance’s data plane. The telemetry module
requires that any interested parties (observers) are notified of
new sensor readings. To that end, we design the module as an
abstract class following the observer design pattern [61]. The
interface comprises register, notify, read, and run operations.
In managing observers, the observer argument is an abstract
data type (ADT). Upon being notified, observers receive a
message indicating the state change. The message is similarly
an ADT, and it is used to receive new updates through an
invocation of the telemetry module’s read method. By using
an ADT, the module enables chained updates where down-
stream modules may serve as observables (other telemetry
modules) and observers (any abstraction implementing the
observer pattern). In practice, sensor updates are consumed
by the analytics module.

Storage Module. The storage module partly follows the
classic UNIX [73] file system interface with simple read
and write operations. To align with another prevalent storage
model, the change feed, the module additionally supports
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Figure 1: The Comosum distributed cloud partitions modules between the farm (“edge"), remote (“core"), and sensor vendor clouds.

change_feed and next methods that operate on iterators of
new data (inserts, updates). Besides maintaining UNIX and
database semantics, we strive for transparent access of stored
objects [76]. In other words, similar to the observer argument
in the telemetry module, the path argument in reads and writes
is an ADT. This makes the storage module extensible to
storage calls of various structures and data formats. Finally,
to accommodate modules operating with topic-based storage
services, the storage module supports the publish/subscribe
paradigm. The pub-sub interface enables other modules to
push data in addition to subscribing to updates based on topics
of interest. Thus, the storage module exposes subscribe, push,
pull, and notify operations.

Compute Module. The compute module operates on
state changes from the telemetry and storage modules.
Therefore, the module similarly follows the observer design
paradigm. Acting as an observer, the compute interface sup-
ports four operations, namely notification_sensor_rcv, notifi-
cation_storage_rcv, analytics, and run. The first two can be
invoked to receive data based on previous compute module
registrations and subscriptions to the telemetry and storage
modules, respectively. The analytics method receives new
procedure calls off the wire, and it uses the metadata and
data to execute local/remote application logic. Optionally, the
compute module invokes the storage module’s write or push
methods to store intermediary results.

Actuation Module. The actuation module is the final end-
point in the data plane. Like the sensor module, the actuation
module provides an interface to physical operation of and
virtual notification to real-world entities. That is, the actua-
tion is either automated or mediated. For automated actuation,
devices between the farmhouse and the field issue command
messages. In this context, the module issues activate calls to
the appropriate control devices. The command argument op-
tionally identifies the device to execute the command. Upon
an activate invocation in a mediated actuation scenario, the
actuation module effectively is a wrapper for push notification
services such as text messages and email.

3.3 The Comosum Distributed Cloud

The motivating case studies (§ 2) demonstrated that the
sources of data consumed by DA applications greatly varies.
While the sensor data is mostly generated locally, the initial
storage and compute operations are executed on-demand by
remote servers which are often owned by the sensor providers.
Thus, another challenge for Comosum is achieving vendor
neutrality. That is, hardware/software innovations must not
be tied to a particular cloud-based service vendor.

To that end, we introduce the Comosum distributed cloud
abstraction to support elastic, vendor-neutral sensing, stor-
age, compute, and actuation capabilities. The Comosum dis-
tributed cloud (Figure 1) consists of the farm (or “edge”), pub-
lic (or “core”), and private (or “vendor”) clouds. The vendor
cloud maps the more complex data path where some data must
be pulled from sensor vendor servers instead of directly from
the sensor abstracted away by Comosum. Unlike the “edge”
and “core” clouds, Comosum modules cannot be deployed in
the vendor clouds. Further, the Comosum distributed cloud de-
sign is similar in motivation to CloneCloud [19]. CloneCloud,
which offloads computation from remote devices to the cloud,
assumes an always-available, more powerful compute pool
in the cloud. In contrast, Comosum enables computation and
fault tolerance at the edge (remote device) when the (core)
cloud is unavailable or too expensive to use.

While the edge cloud, core cloud and vendor cloud separa-
tion meets the resource elasticity and vendor neutrality goals,
it also collides with limited bandwidth at farms.

On one hand, the edge cloud provides storage and computa-
tion closer to the data source. For applications with ephemeral
storage and computation needs, this eliminates core cloud con-
nectivity and latency challenges. Specifically, by leveraging
networking advances such as LoRa [8] and TVWS [12], the
edge cloud is capable of completely disconnected operation
in deployments with large variations in area and granularity.
Conversely, the edge cloud is generally unsuitable for storage-
and compute-intensive Comosum applications (e.g. §§ 2.2).

On the other hand, the core and vendor clouds offer sig-



Module Interface Method In/Out? Int/Poll? Description
register(observer) Input Int Add sensor update observer

telemetry  notify(update) Output Int Notify observers of a new update
read(update) Output Poll Read latest update
run() Input Int Run the sensor module
write(path, data) Input Int Write to storage medium
read(path) Output Poll Read from a storage medium
change_feed() Input Poll Offer an iterator to new data

storage next(iterator) Output Poll Get the next record from an iterator
subscribe(subscriber, topics) Input Int Register a new subscriber
push(topic, data) Input Int Publish new updates to storage
notify(subscriber, data) Output Int Push new updates to subscribers
pull(topic) Output Poll Pull recent updates, if any
run() Input Int Run the storage module
notification_sensor_rcv(context) Input Int Receive data from sensor update

compute  notification_storage_rcv(new_data)  Input Int Receive data from storage subscription
analytics(arg) Input Int Execute application business logic
run() Input Int Run the compute module

actuation  activate(cmd) Output Int Execute a command on a control device
run() Input Int Run the actuation module

Table 1: The unified Comosum API is built from classic system design approaches (e.g., design patterns [61], UNIX file system [73]).

nificantly more storage and computation capacity, albeit at
a higher network latency cost. Therefore, faced with ‘reli-
ably unreliable’ [42] Internet at remote locales, an application
whose progress relies on a consistent connection to the core
and vendor clouds is bound to fail. Losing connection to
cloud-based time critical decisions risks real consequences
for farmers; plants may perish from water stress; cows may
die from preventable diseases or difficult births; and vast vine-
yard swaths may succumb to virus infection.

In summary, the edge cloud, core cloud, and vendor cloud
separation meets Comosum’s resource elasticity and ven-
dor neutrality goals. Note, however, that it also reveals dif-
ficult system trade-offs; for instance, latency in the context
grapevine disease detection (§§ 5.3).

3.4 The Comosum Control Plane

An important Comosum goal is that initial design allows for
the integration of devices and software modules. This is the
guiding principle of the Comosum control plane. The con-
trol plane draws inspiration from device drivers, inter-process
communication (IPC), and SDNs. Comosum leverages a di-
verse array of networking and storage primitives. These prim-
itives in turn define extensible libraries and configuration
templates that accommodate communication between devices
and software modules from current and future DA systems.

On the hardware front, sensing devices require wrappers
for new serial device drivers or wrappers to existing standard
interfaces (e.g., RS485 [69]). Networking devices necessitate
new packet processing interfaces. Finally, control devices
typically expose wrappers for their PLCs.

On the software and cloud components, the control plane
specifies inter-module communication. Due to the distributed

nature of Comosum modules, we use message passing [88,91]
where modules communicate as follows.

Modules call a dispatcher with a message specifying the
peer module to contact. The dispatcher in turn maps message
queues to socket connections to the peer modules. In this
scheme, the modules remain oblivious to the underlying net-
working. Further, this simplifies part of the control plane to IP
address tuples which can be edited as the underlying network
changes. While communication between Comosum modules
is sockets-based, any module calls to other systems (e.g sen-
sor vendor clouds) uses whatever higher-level abstraction that
the external systems expose (e.g., REST APIs).

As discussed in the overview (§§ 3.1), a key Comosum goal
is to easily reconfigure devices and software modules to fit
different applications. Therefore, Comosum implementations
must remain as close to a set of reusable configuration and
compilation templates as possible. Configuration templates
include cloud connection strings, sensor SKUs, IP addresses,
etc. Compilation templates include Docker files [24], remote
procedure call (RPC) definition files, package dependencies,
etc. Thus, the hardware and software components are recon-
figurable to solve various DA challenges.

4 FarmBIOS: A Comosum Implementation

The particular instantiation of the Comosum architecture pre-
sented here is the Farm Basic Input Output System (Farm-
BIOS), drawing inspiration from its unification of routinely
incompatible hardware and software systems. Henceforth, we
use FarmBIOS and Comosum interchangeably. FarmBIOS
code and research datasets are open source (Appendix A).



We built FarmBIOS in Python, atop Google’s protocol
buffers (also known as protobufs) [35]. Protobufs provide
a language-independent, efficient serialization protocol that
allows not only the construction of Comosum modules in
numerous languages, but also extensibility of RPC templates
to enable integration with arbitrary DA systems. Figure 2
shows the FarmBIOS stack. Next, we briefly describe the
most salient components of FarmBIOS instances.

[ Applications }
¢ config
| FarmBIOS Control Plane (build, init scripts) |

run & run run
\ 4 y
[ Telemetry } [ ‘ [ Actuation }

‘ FarmBIOS RPC Protocol (register, read, notify, etc) ‘

§

‘ Format |[o1110110]] ‘

4

| Network (TCP Sockets) |

Compute}

Figure 2: FarmBIOS - an implementation of Comosum

4.1 FarmBIOS Control Plane

At the top of the FarmBIOS stack, applications specify soft-
ware configurations to the FarmBIOS control plane, which
(1) provisions the appropriates edge and core cloud compute
and storage resources (e.g., VMs, databases), (2) instantiates
the required modules, and (3) builds any required Docker con-
tainers. Based on the application specific requirements, the
modules are deployed and started in the edge or core cloud.
Note, however, that not all modules in the middle layer are
required by every application. These a la carte application con-
figurations are at the heart of Comosum’s vendor neutrality
(e.g., pairing Azure compute and AWS storage).

4.2 FarmBIOS Library

The FarmBIOS library (FarmBIOS Lib) is the implemen-
tation of the Comosum module abstraction. That is, the li-
brary allows the customization of base telemetry, storage,
compute, and actuation module classes to fit the purposes
and configurations of different applications. Practically the li-
brary deals with challenges related to perpetual deprecation of
hardware in the field and software libraries. The FarmBIOS
Lib addresses this data processing challenge by providing
wrappers to an array of services such as tables, databases,
CSYV readers, and email clients. In the current implementa-
tion, we provide wrappers around the Azure Table [62], Azure
CosmosDB SQL [63], Azure Machine Learning Workspace

(Azure ML) [64], Twilio [48], and OpenWeather [47] ser-
vices in addition openpyxl [32] and CSV readers - with more
templates to be added as our array of supported applications
expands. Therefore, FarmBIOS Lib is a structured, cloud-
independent application layer.

4.3 FarmBIOS RPC Protocol

FarmBIOS is built in a network-agnostic manner. This imple-
mentation choice is crucial for Comosum’s extensibility to
arbitrary DA platforms. Specifically, the modules are unaware
of differences between local and remote peer modules. By
local we mean modules operating within the same host. Local
and remote operations entail modules passing and receiving
messages to/from their dispatcher. The dispatcher is tasked
with routing the procedure call to the appropriate peer module
based on the control plane configuration. The RPCs rely on a
client-server architecture built on TCP sockets wrapped by a
selector operating per-connection queues, and each connec-
tion tunnels to a peer module. In both scenarios, any data
communication occurs over the common FarmBIOS RPC
protocol. Note that the underlying (TCP) communication pro-
tocol is known only to the dispatcher, but not the modules.
Further, the RPC protocol makes no assumptions on the data
formats, thereby maintaining data introspection/formatting
flexibility for applications through FarmBIOS Lib.

4.4 FarmBIOS Message Format

The Comosum modules exploit OOP, UNIX, IPC, and other
intuitive semantics. In practice, however, the underlying im-
plementations addresses two major obstacles (i.e., numerous
data formats and host operating system (OS) dependencies).
First, the number of data formats, which represent technical
compatibility negotiations between research farms and sen-
sor providers, are both unwieldy and subject to unexpected
changes [23]. Therefore, similar to the Linux file abstrac-
tion, Comosum offers a uniform, byte-addressable format for
inter-module data communication - the FarmBIOS Message
Format. This format is an unstructured platform layer. Sec-
ondly, host operating systems eventually get upgraded or lose
long term support. Comosum achieves independence from
the host OS by leveraging application orchestration tools such
as Docker [24] and Kubernetes [29].

5 Applications & Deployment Experiences

In this section, we describe the hardware contexts, FarmBIOS
usage (§ 4), and deployment contexts of the motivating chal-
lenges ( § 2) to showcase Comosum’s range of applications.
Specifically, the applications are different Comosum configu-
rations that meet the needs of animal farms ( §§ 5.1), specialty
farms ( §§ 5.2), and row crop farms ( §§ 5.3).

5.1 CowsOnFitbits
Building on Challenge 1 (§§ 2.1), CowsOnFitbits is a data

aggregation component supporting early disease prediction
models which achieve 97% training accuracy [59]. The edge



Training Data Location Data Size Compute Storage Runtime Accuracy
Edge Local 4MB 8 CPUs 256GB 27.1s 84%
Edge Cloud - 8 CPUs 256GB 35.6s 86%

Azure ML Cloud - 2 vCPUs 100GB 86.5s 86%

Table 2: Grapevine disease detection: model training runtime and accuracy for various WineGuard configurations

cloud is a farm PC (16GB RAM, 500GB storage) running the
Windows 10 Enterprise OS. The OS features a Docker engine
deployed on its Windows Subsystem for Linux (WSL). The
edge is connected to vendor clouds and a university cloud via
a 1Gbps Ethernet connection.

CowsOnFitbits leverages FarmBIOS modules (packaged as
Linux containers) as follows. Sensor reports are made avail-
able by the providers via FTP dumps to the edge cloud. The
telemetry module continuously polls the local disk, awaiting
the FTP dumps. New reports trigger the telemetry module’s
notify function call which, in turn, notifies its local compute
module. The telemetry module’s read method is called by the
compute module. The compute module aggregates sensor data
from multiple streams to be stored in the private university
cloud, where a module exposes a REST API for data access
and queries by ML applications. In the cloud, cows are iden-
tifiable across data streams through farm-unique cow ID’s.
The storage calls are made to an intermediate, non-FarmBIOS
module operating a Cassandra database [70].

CowsOnPFitbits has been actively tracking approximately
1,500 cows in a commercial farm for nearly three years;
having collected 23GB of datasets at the time of writing.
The testing/deployment experience with CowsOnFitbits of-
fers two observations. First, the unstructured platform layer
(§§ 4.4) is more stable than the structured application layer
(§§ 4.2). Specifically, unannounced API/format changes on
the vendor side, which routinely occur every few weeks, intro-
duce breaking changes in FarmBIOS Lib. The API breaking
changes affected the API to the vendor-specific application
layer changes (i.e., breaks). FarmBIOS tolerates these API
changes by insulating itself with vendor-independent layers
that use unstructured files to store data from the vendor along
with methods that can interpret the unstructured data accord-
ing to the latest vendor interface definition. The CowsOnFit-
bits system adapted to a recent change in approximately one
day. This required minor application changes and deploying a
new Docker container. Subsequent versions may benefit from
Kubernetes [29], especially its rollbacks and canary deploy-
ments. Second, we observed missing/duplicate data in the
core cloud due to mismatched interpretation of floating points
in protobufs vs Python, missing vendor reports, unexpected
signal interference between RFID tags and electrical engines
for manure systems, or farm workers tripping over wires. The
floating point issue was resolved through meticulous end-to-
end testing of FarmBIOS modules over the course of a year.
The missing report and power outage issues remain as open
issues, though we propose a potential fix (see § 6, § 7).

5.2 WineGuard

Building on Challenge 2 (§§ 2.2), WineGuard is a data ana-
lytics platform for grapevine disease detection; achieving up
to 86% training accuracy. WineGuard’s sensor data originates
from plane flights over California vineyards in September
2020 using NASA’s Airborne Visible/Infrared Imaging Spec-
trometer (AVIRIS) [36]. The spectroscopic sensor data is
publicly accessible from the NASA cloud [66]. The AVIRIS
data is merged with disease ground truth data from molecular
tests on select leaves from the same period. The merged data
are uploaded to the Azure Cloud for experimental retrieval.

WineGuard employs FarmBIOS modules as follows. We
built a wrapper for Azure ML [64] to kickstart a reconfig-
urable model training pipeline. Note that the application can
similarly be built using equivalent tools from other cloud
providers such as Amazon SageMaker [77]. The model train-
ing configuration includes Azure subscription ID strings, the
name of a pre-provisioned workspace, the location of the
training data, and a text file with required Python packages.
Upon issuing the compute module’s analytics command, the
configuration is deployed for training.

We deployed the WineGuard training pipeline in an edge
cloud and in the Azure Cloud (see Table 2) . This deploy-
ment presents several insights. First, the model accuracy is
relatively stable regardless of training location, and, as ex-
pected, training at the edge with local data incurs the least
runtime. Second, there is a 31% runtime overhead when fix-
ing the location at the edge. We observed that this is due to
an initial "warm-up" of the training data download from the
cloud. In the best case, cloud-based training and inference
are instantaneous. Otherwise, during disconnected periods,
inference can be done faster and locally at the edge. Third, the
satellite coordinate data were occasionally off by a few meters
compared to the ground truth disease data. Without requiring
manual intervention, analytics on sparse data in near real-time
was necessary to correct the errors. In particular, FarmBIOS
enabled the rectification of the divergence by selecting only
spectroscopic bands with reliable data while still enabling the
training/inference to proceed.

5.3 WaterGuard

Building on Challenge 3 (§§ 2.3), WaterGuard is a plant
water stress alert system for research farms. WaterGuard is
prototyped with research software and hardware provided by

>We tried to use a Raspberry Pi 4B (4 CPUs, 32GB storage) as the edge
cloud. However, the ARM processor could not execute Docker containers
built on an x86-64 architecture (the alternative edge used here) [14]. Building
on an armv7 base image also failed due to end of support for distro updates.



Edge Cloud 2: LoRa + 4G

4G hotspot

Figure 3: The Comosum hardware repertoire deployed for 18 months. Edge Cloud 1 (active since October 2020) serves an apple orchard
water stress study. Edge Cloud 2 (active since March 2021) serves high-throughput corn, hemp, and strawberry breeding experiments.

Microsoft Research [87] ( Figure 3). The hardware features
sensor hubs from Seeed Studio operating on eight D-size bat-
teries and supporting up to 13 analog and digital sensors. The
sensor readings are networked over LoRa [8] to a base station
comprised of an edge device, a LoRa module, and LoRa an-
tenna (5dBi, 900MHz). The edge device is a general purpose
UpBoard (4GB RAM, 32GB storage) running the Windows
10 IoT Core OS. In addition to the LoRa components, the de-
vice is connected to a TVWS Client (6Harmonics Inc), which
provides physical and data link connectivity over a single
TV channel (18, 497MHz) to a TVWS Base Station (TVBS)
located at a research barn approximately a quarter of a mile
away. Finally, the TVBS is wired to the university’s 1Gbps
fiber-optic Internet as a gateway for sensor data to Azure.

WaterGuard relies on FarmBIOS modules as follows. Sen-
sor readings are relayed to Azure. Note that Azure table stor-
age offers no change feed for observer notifications. Thus, the
telemetry module relies on periodic reads (i.e., polling the
storage module) to detect inserts that, in turn, should trigger
its notify method. The analytics unit is notified via a notifi-
cation_sensor_rcv call to the compute module. Next, based
on the configuration received from the new update, the com-
pute module reads from the shared storage module to get
data on the appropriate sensor hub and start the analytics.
Finally, upon reaching an irrigation decision, the compute
module calls activate on the actuation module which notifies
the researchers over text message using the Twilio API [48].

WaterGuard has been deployed for 18 months in two edge
clouds with nine sensor hubs (Figure 3). Each sensor hub av-
erages eight sensors and 223 days of data collection. Together,
the hubs have collected over a million sensor readings. The
biggest insight from this deployment was the unexpected mun-
dane work required to adapt experimental DA systems ( [87])
to new settings where failures can happen anywhere in the
sensor-to-cloud continuum (see § 6).

6 Adapting to the Wild

The previous section described the hardware configurations,
API usage, and deployment experiences/insights from three
FarmBIOS instances. Here, we present the successes and
system adaptations necessary for long-term Comosum main-
tenance. Though the adaptations are specific to WaterGuard,
the key idea of active digital twins is broadly applicable.

6.1 Offline Data Collection Is Not Enough

WaterGuard is capable of tolerating days-long network out-
ages by relying on offline data collection and standard hard-
ware redundancy. As shown in 4a, the pilot sensor hub (Sen-
sor Hub 1) achieved disconnected operation during a snow
storm and heat wave in February 2021 and May 2021, respec-
tively. Until the 4G hotspot connectivity was restored, the
sensor data was simply stored at the edge device.

However, data aggregation and analytics are still affected
by faulty sensors and human error. Concretely, faulty CO2
sensors drained the batteries faster than expected ( 4b) and/or
slight misconfigurations place data in incorrect columns. Both
faults effectively result in data discontinuities ( 4c).

6.2 The Fix: Active Digital Twins

To streamline fault detection, Comosum evolved to include
reactive monitoring [89]. That is, detecting, escalating, and op-
tionally repairing system faults at different failure scopes. The
Comosum design easily lends itself to this task by introducing
active digital twins. A digital twin is a digital representation
of a physical object, process, or environment that behaves
like its real-world counterpart. In contrast, active digital twins
combine the traditional digital twin concept with Comosum’s
actuation design.

The active digital twins were an emergent concept as we
iterated over FarmBIOS to make it more fault-tolerant, espe-
cially in outdoor research farm deployments where a delayed
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Figure 4: Adapting FarmBIOS to (a) network outages, (b) faulty sensors, and (c) data discontinuities

detection could imply troubleshooting sensor hubs in two
feet of hardened snow (Figure 4a, [75]). When the digital
twin diverges from its physical twin beyond a reconfigurable
margin (e.g., five minutes), an action is taken by the system
such as sending notifications to human operators. In Como-
sum, only the sensor hubs are twinned. We modeled timely
data collection, and divergence from the physical system is
characterized by missing telemetry over a 30 minute period.

Concretely, we implemented a web-based, reconfigurable
notification system with three key functions. The Status page
leverages the WaterGuard sensor hubs’ digital twins to display
their connection state and last activity. The Configuration page
provides an interface for retrieving and editing each sensor
hub’s port configurations. Lastly, the Notifications page pro-
vides a reconfigurable set of functions including (1) whether
the notification system is enabled, (2) an editable threshold
(in minutes) for triggering outage notifications, (3) an editable
frequency for outage checks, and (4) the set of emails to be
notified during outages. Note that the notification system
relies on data aggregation and analytics across multiple, sepa-
rate cloud services (i.e., Azure IoT Hub, Azure Table, AWS
Simple Notification Service), and the implementation simply
plugs Comosum module implementations of these services
with minimal or no change to other modules. Therefore, it is
broadly applicable to detect failures at different stages from
the sensors at the farm to the modules in the cloud.

7 Practical Insights and Limitations

The motivating challenges (§ 2) highlighted major interop-
erability issues within state-of-the-art DA platforms (see Ta-
ble 3 for a summary). We mapped these challenges to three
core system design goals: extensibility, reconfigurability, and
fault tolerance. We summarize below both persistent and new
lessons from our experiences, and, more importantly, how
FarmBIOS practically addressed the challenges. We also state
the system’s current limitations.

* Extensibility to new DA vendors comes with (minor)
costs: Table 3 details the challenges in DA data aggre-
gation. Our design goal was to provide an extensible

interface that can generalize across APIs, clouds, hard-
ware, and platforms. FarmBIOS provides a unified inter-
face to merge/analyze/actuate datasets spread across the
distributed cloud. For instance, CowsOnFitbits (§§ 5.1)
enables the merging of datasets from four different ven-
dors. The tradeoff is that, for each new vendor, a new
script (less than 50 lines of code) must be written to
move vendor reports to the appropriate directories for
FarmBIOS module triggers.

¢ The cloud is surprisingly unstable: Table 3 details dif-
ficulties in system reconfigurations to support different
farm networking and analytics pipelines. Our design goal
was to allow different points in the configuration space
towards data models that can be trained and used across
different networking and cloud deployment scenarios. In-
deed, we explored numerous hardware/software config-
uration possibilities (see Appendix B). However, as ob-
served in WineGuard (§§ 5.2), the interface between the
cloud and the long-lived deployed systems was not stable.
In particular, the Azure ML APIs were subject to param-
eter deprecations which affect the WineGuard compute
configurations. FarmBIOS evolved around these exter-
nalities by treating incoming parameters in telemetry and
analytics modules as abstract data types. The result is a
stable platform that shields users from these volatilities.

* Failure in DA systems is the norm, not the excep-
tion: Table 3 details the heterogeneity and failure cases
that complicate DA system deployments and mainte-
nance. Our design goal was to detect and/or tolerate
intermittent failures despite the heterogeneity of hard-
ware, farm types, and cloud services. In CowsOnFit-
bits (§§ 5.1) for instance, we observed missing data due
to sensing/networking failures (frequency interference
between sensors and manure systems), human factors
(tripping over wires), etc. In another instance (Wine-
Guard, (§§ 5.2)), analytics on sparse data is a necessity
for deployed DA systems. We demonstrate how Farm-
BIOS cope with the unreliability of the underlying sys-
tems through the broadly applicable idea of active digital



Why It Is Hard System Challenge Design/Implement Decisions Supporting Results & Contributions
Incompatible platforms Reuse classic ideas (§§ 3.1, §§ 3.2) Unified platform API (§ 5)
Incompatible formats Byte-addressable payloads (§§ 4.4) Extensible libraries (§§ 4.2)

Data Aggregation  Distributed data Mask data path/sources (§§ 3.3) Merged across clouds (§§ 5.1)
Host dependence Containerization (§§ 4.4) Cross-architecture transfer (§§ 5.1)

RPC dispatcher (§§ 4.3) Cross-platform transfer (§§ 5.1)

Manual processing Comosum design (§ 3) Automated processing (§§ 5.2)

Data Analytics Unreproducible models Reconfig. models (§§ 3.3, §§ 3.4) Distributed training (§§ 5.2)

Data sparsity

5
Active digital twins (§§ 6.2)

Divergence detection (§§ 5.2)

Slow actuation

Comosum design (§ 3)

Sub-minute inference (§§ 5.2)

Faulty sensors

Standard hardware redundancy (§§ 6.1)

18-month deployment (§§ 5.3)

Active digital twins (§§ 6.2)

Reconfig. notification system (§§ 6.2)

Reconfig. control plane (§§ 3.4)

Reconfig. networks (§§ 5.2, Appendix B)

Fault tolerance Network outages

Edge analytics design (§§ 3.3)

Edge inference (§§ 5.2)

Offline data collection (§§ 3.3)

Tolerate 7-day outage (§§ 6.1)

Complexity/heterogeneity

Modularity (§§ 3.2)

Comosum design (§ 3)

Table 3: A summary mapping of systems challenges to Comosum design decisions and their supporting results

twins. In the case of frequency interference, for exam-
ple, the RFID sensors could be twinned. In the vineyard
context, the error message indicating mismatch between
ground truth and satellite data could be used as input for
a digital twin model.

FarmBIOS evolution and limitations: As emphasized
above, failure is the rule and not the exception. Farm-
BIOS was designed to tolerate failure, and as stated in
§§ 2.3, plant and livestock depend on a robust system.
Therefore, the system was improved over time. For in-
stance, the active digital twin implementation relied on
the telemetry module abstraction to increase fault toler-
ance. One limitation is the lack of support for automated
movement of computations between the edge and core
clouds during permanent power/network outages. Re-
call, however, that the edge side of the architecture is, in
fact, capable of operating autonomously, at a minimum
to retrieve and store sensor data (§§ 5.3) and, if so con-
figured, perform local computation (§§ 5.2). We leave
this limitation for future endeavors.

8 Related work
8.1 Programming Frameworks

To streamline application development and partitioning for
resource-constrained environments, recent community efforts
leverage the cloud for mobile and IoT applications. By rewrit-
ing application executables, the CloneCloud [19] architecture
intelligently partitions program portions for dynamic exe-
cution between mobile devices and their cloud twins. The
partitioner identifies expensive application portions through
static and dynamic code analysis that informs an optimizer to
solve the execution partitioning challenge. Along with Edge-
Prog [55] and like CloneCloud, the TinyLink [26,39] systems

form a set of cloud-native, generative systems of hardware
configurations and software executables for IoT applications.
TinyLink and EdgeProg expose high-level APIs and If-This-
Then-That (IFTTT) languages to abstract away the low-level
knowledge for developers, respectively.

In line with the prior work, Comosum exposes high-level
APIs for interfacing with IoT platforms without deep knowl-
edge of the underlying networking and hardware. Unlike
CloneCloud, Comosum partitions applications at the module
level, not the instruction level. Departing from EdgeProg’s
use of IFTTT and TinyLink’s exclusive support of applica-
tion development in C-like languages, Comosum supports
module development with any language compatible with the
(de)-serialization protocol shared by the modules.

8.2 Agricultural Sensor Networks

The rise of low-cost IoT sensor networks has led to an explo-
sion of new communication standards and protocols being
ported to industrial and consumer applications. For example,
like WaterGuard, Gutiérrez et al. [40], Ahmad et al. [6], and
Vasisht ef al. [87] showcase the application of GPRS, XBEE,
and TVWS technologies to agricultural monitoring systems,
respectively. Further, Ayoub et al. [11] and Jawad et al. [50]
present detailed overviews of both power-hungry (e.g., WiFi,
Bluetooth, etc.) and low power wide area network (LPWAN)
technologies (e.g., LoRa, NB-IoT, etc.) and their recent appli-
cations to, among others, dairy health care, automation, and
greenhouse monitoring. Comosum demystifies these novel
networking technologies’ potential and limitations to interdis-
ciplinary audiences interested in similar applications.
Besides IoT networking standards, the literature identi-
fies open challenges in IoT networking, hardware, and soft-
ware (co)design. The most salient include extensibility [81],
durability [13], reliability [37, 81], modularity [81], scalabil-
ity [37], energy efficiency [39, 81, 87], and interoperability



among heterogeneous devices [81]. The Comosum design ad-
dresses extensibility, durability, reliability, modularity, config-
urability, and interoperability. Further, scalability is indirectly
addressed through decoupling and thin APIs that allows inde-
pendent evolution of the software modules and the underlying
networking hardware, protocols, and devices.

Perhaps closest to our agricultural application of edge com-
puting is Taneja et al.’s SmartHerd management system [84].
Like SmartHerd, Comosum co-opts a microservice approach,
wherein the sensing, compute, storage, and actuation mod-
ules can seamlessly be placed in bandwidth rich as well as
constrained environments. Further in line with SmartHerd,
Comosum easily aggregates data from incompatible sensor
vendors’ private web servers to avoid vendor lock-in. Still, § 5
shows FarmBIOS’s extensibility beyond dairy applications.

8.3 10T Architecture Abstractions

Sisinni et al. [81] define a reference IoT architecture as a
“higher level of abstraction description that helps identify is-
sues and challenges for different application scenarios". This
definition reflects the three years of exploration that resulted in
the Comosum architecture. Previous architectural approaches
identify sensing or perception [10,25,51,90], physical [56],
interface [90], networking [10,25,51,90], transport [56], mid-
dleware [56], and service or application [10, 25,51, 56, 90]
layers as essential to an IoT application.

Although the architectures fundamentally serve applica-
tions with different business and technical needs, their essen-
tial layers are modules in the Comosum design. Thus, the
benefit of Comosum is its partition of the physical hardware
from the software that manipulates the networked data. That
is, the software, by acting as a collection of byte-passing
modules, is extensible because it is agnostic to the evolution,
intricacies, protocols, or any other factors of the hardware.

9 Conclusion

In this paper, we present Comosum, a system software ar-
chitecture to support digital agriculture (DA) applications in
research and commercial farms. The architecture comprises
hardware, software, and distributed cloud abstractions to build
extensible, reconfigurable, and fault-tolerant sensor networks
for farms. By supporting diverse DA applications in multiple
clouds, we show that FarmBIOS, a Comosum implementa-
tion, meets these design goals. Eighteen months of Comosum
instance deployments and adaptations reveal new insights
on fault-tolerant sensor networks for DA. We introduce ac-
tive digital twins to streamline fault detection, escalation, and
optional repair from sensors to cloud-based modules. In en-
suring that systems approaches employed in urban research
farms readily map to rural farm realities, a thorough analysis
highlights practical insights, limitations, and trade-offs (see
Appendix) that are unique to DA applications as a starting
point for community discussions of DA’s potential contribu-
tions to networked system design and implementation beyond
the current state-of-the-art.
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A Artifact Appendix

Abstract

The artifact documents our deployment experience and open-
source efforts to build a Software-Defined Farm (or SDF),
also known as the Comosum or FarmBIOS system in the
present paper. Comosum is intended to provide an extensi-
ble, reconfigurable, and fault-tolerant platform for IoT data
collection, processing, and actuation. On one hand, the pa-
per covers the architecture (Comosum), the implementation
(FarmBIOS), and our deployment experiences over 18 months.
On the other hand, the artifact provides a standalone Docker
image and a pointer to the open-source code that, together,
can be used to demonstrate the instantiation of the telemetry,
analytics, and actuation concepts. In particular, the artifact
demonstrates the repeatability of these ideas through three
applications: CowsOnFitbits, WineGuard, and WaterGuard.

Scope

In addition to inspecting the code and research datasets, the
artifact can be used as a starting point for extending the Farm-
BIOS/Comosum platform with new cloud services and sensor
vendors. The current release of the artifact is intended to
validate the listed claims about the applications:

* The CowsOnFitbits application (§§ 5.1) can use the Co-
mosum sensor module (aka telemetry module) and com-
pute modules to aggregate data from three (anonymous)
IoT vendors and six data sources.

* The WineGuard application (§§ 5.2) can use can use the
Comosum compute module abstraction to train machine
learning models and perform local inference with at least
75% accuracy in approximately 30 seconds.

* The WaterGuard application (§§ 5.3) demonstrates the
potential of active digital twins in increasing the plat-
form’s fault-tolerance to failures in the path from the
sensors to the cloud.

Contents

The artifact includes a Docker image named comosum-atc-
artifact-eval and a zipped archive of the code base built from
the usenix-atc23-artifact-eval branch and the b313d7e commit
in the SDF GitHub repository.

Hosting

The artifact is hosted on the publicly-funded archival platform
Zenodo under this unique DOI.

Requirements

* The Docker image was primarily built and tested on an
X86-based system (Windows 10 Education OS, Version
22H2, OS Build 19045.2846 with WSL 2 installed to
emulate a Linux-like environment, and Docker Desk-
top Version 20.10.10). Therefore, the image should be
loadable on most Unix-like environments with Docker
installed.

* In addition to the primary development environment
listed above, we reproduced the results on a X86-based
system (Ubuntu Linux OS 22.04.1, Docker Version
23.0.6) and an arm64-based Macbook Pro (macOS Ven-
tura 13.3, Docker Version 23.0.5)

* Although we have successfully reproduced the results on
a Mac with an Apple Silicon (M2) chip, we cannot guar-
antee reproducibility if the evaluation is conducted on
macOS, especially the M chips which are known to have
issues with Docker Desktop filesystem change notifica-
tions and port mapping/forward issues. The Comosum
system extensively relies on change notifications and
port forwarding.

B Understanding the Trade-offs

This section presents an exploration of network configurations
for Comosum applications with two goals in mind. First, we
showcase Comosum’s potential reconfigurability from a 55-
acre urban farm to a 615-acre rural farm. Secondly, we offer a
way for interdisciplinary DA researchers to quickly establish
their networking needs by assessing three factors: expected
application payload frequencies (§§ B.1), network availabil-
ity and throughput in urban versus rural locations (§§ B.2),
and desired system latency (§§ B.3). The key observation
is that the DA context has the potential for new lessons and
challenges to well-established networking, storage, and appli-
cation management assumptions. The Comosum experiences
serve a crucial starting point for the community conversation.

B.1 Application Data Rates

Table 5 illustrates the significant range of data generation rates
for the three Comosum applications; from a few bytes every
six minutes to hundreds of MBs weekly. The WaterGuard
total is based on a sensor hub deployment with seven sensors
(see §§ 5.3). The WineGuard dataset is based on spectrometer
values from a 500m*300m vineyard field. The CowsOnFitbits
total is an estimation based on data from four sensor providers
tracking approximately 1,500 cows on a commercial farm.
The CowsOnFitbits sensor data generation varies from every
10 minutes to once daily.


https://github.com/Cornell-CIDA-Dev/Software-Defined-Farm/commit/b313d7e7a9a308fe374867c747c1237766cf3448
https://zenodo.org/badge/latestdoi/580583199
https://docs.docker.com/desktop/troubleshoot/known-issues/
https://docs.docker.com/desktop/troubleshoot/known-issues/
https://github.com/docker/for-mac/issues/3350

Application Payload Frequency LoRa (SF:12) DSL Satellite 4G LTE TVWS (1x6) TVWS (4x6) Fiber-optic

WaterGuard 65B 6 min 0.44 sec  5.20e-4 sec 1.73e-4 sec 9.60e-5 sec 5.20e-5 sec  2.80e-6 sec 5.20e-7 sec

WineGuard 4MB Daily 7.60 hr 32.00sec 10.67sec  5.93 sec 3.20 sec 0.17 sec 0.03 sec
CowsOnFitbits 17MB Daily 1.39 days 230min 45.87 sec 25.48 sec 13.76 sec 0.74 sec 0.14 sec

Table 4: Estimated cloud backup time for FarmBIOS applications under various network bottleneck scenarios.

Application Payload Frequency
WaterGuard 65B 6 minutes
WineGuard 4MB Daily

CowsOnFitbits  17MB Varies
Table 5: FarmBIOS application data rates and formats.

B.2 Achievable Network Throughputs

We consider five networking media for data transfers at a
farm, namely LoRa, DSL, Satellite, 4G LTE, and TVWS. Ta-
ble 6 shows the achievable data transfer rates for the different
media. The LoRa settings reflect current settings from the
WaterGuard sensor hubs.

The DSL throughput is included because DSL holds the
largest footprint in rural housing units’ Internet access [30].
The TVWS settings reflect observed throughputs in the lit-
erature [31], measured TV channel occupations (as of Sept.
2020) at a campus research farm and a more rural farm 25
miles away, and tower height-based channel availability esti-
mations [21] for the two farms. Based on their GPS coordi-
nates, the campus farm offers only separate, single channels
while the more remote farm offers four contiguous channels.

Medium Throughput Internet? Deployed?
LoRa (SF:12) 1.17 kbps No Yes
DSL 1 Mbps [30] Yes No
Satellite 3 Mbps [16] Yes No
4G LTE 5.4 Mbps [74] Yes Yes
TVWS (1x6MHz) 10 Mbps [31] No Yes
TVWS (4x6MHz) 186 Mbps [31] No No
Fiber-optic 1Gbps Yes Yes

Table 6: Rural uplink throughputs. SF = Spreading Factor.
B.3 Cloud Backup Bottleneck Analysis

The Comosum distributed cloud affords elastic compute and
storage power. Practically, we transfer data not only to lever-
age more abundant compute resources for compute-intensive
tasks in the cloud, but also to store the datasets for future retro-
spective analysis. Assuming each networking media (whether
routing in the field or at the gateway) as an unreliable bot-
tleneck in the data transfer, we compare the networking me-
dia/latency trade-offs in uploading each application’s data.
Table 4 illustrates the expected latencies of different media
for a given application. For instance, while a fiber-optic link
in an urban farm would transmit CowsOnFitbits’ 17MB of
data in less than a second, the most popular Internet service
in rural locations (DSL) would require three minutes. In an-
other instance, while a research farm with one TVWS channel
would route the data within 14 seconds at the edge, the four

channels in the rural farm would transmit the same dataset in
sub-second time.

In sum, by comparing urban and rural settings, this analysis
shows the nuanced networking and storage strategies for DA
applications in a distributed cloud setting. This motivates
future research avenues in Comosum application migrations
either as the network fails or edge resources deplete.
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