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Abstract
Min-max optimization is emerging as a key framework for analyzing problems of

robustness to strategically and adversarially generated data. We propose a random
reshuffling-based gradient free Optimistic Gradient Descent-Ascent algorithm for solving
convex-concave min-max problems with finite sum structure. We prove that the
algorithm enjoys the same convergence rate as that of zeroth-order algorithms for convex
minimization problems. We further specialize the algorithm to solve distributionally
robust, decision-dependent learning problems, where gradient information is not readily
available. Through illustrative simulations, we observe that our proposed approach
learns models that are simultaneously robust against adversarial distribution shifts
and strategic decisions from the data sources, and outperforms existing methods from
the strategic classification literature.

1 Introduction

The deployment of learning algorithms in real-world scenarios necessitates versatile and
robust algorithms that operate efficiently under mild information structures. Min-max
optimization has been used as a tool ensure robustness in variety of domains e.g. robust
optimization [BTEGN09], robust control [HÅBB13], to name a few. Recently, min-max
optimization has emerged as a promising framework for framing problems of algorithmic
robustness against adversaries [GPAM+14, SKL17, MMS+17], strategically generated data
[DRS+18, BHK20], and distributional shifts in dynamic environments [YLMJ21].

Despite this, recent works in machine learning and robust optimization on designing
and analyzing stochastic algorithms for min-max optimization problems have largely
operated on a number of assumptions that preclude their application to a broad range
of real-world problems e.g., access to first-order oracles that provide exact gradients
[YKH20, NSH+19, JNJ20] or restrictive structural assumptions such as strong convexity
[LLC+20, WBMR20, SBDG21]. Moreover, the developed theory is often not well-aligned
with the practical implementation of these algorithms in real-world machine learning
applications. For example, [BSG20] propose zeroth-order methods for convex-concave
problems but the proposed algorithm may not be suitable for machine learning applications
where the objective function is a sum of large numbers of component functions (depending
on the size of dataset). Indeed, in order to compute the gradient estimate at any iteration
Beznosikov et al requires perturbing all the functions which might not be suitable/possible
for many applications. Furthermore, stochastic gradient methods are often used with random
reshuffling (without replacement) in practice, yet their theoretical performance is usually
characterized under the assumption of uniform sampling with replacement [Bot09, JNN19].
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In this work, we do away with these assumptions and formulate a gradient-free (zeroth-
order), random reshuffling-based algorithm with non-asymptotic convergence guarantees
under mild structural assumptions on the underlying min-max objective. Our convergence
guarantees are established by balancing the bias and variance of the zeroth-order gradient
estimator [BLM18], using coupling-based arguments to analyze the correlations between
iterates due to the random reshuffling procedure [JNN19], and exploiting the recent connec-
tions between the Optimistic Gradient Descent Ascent (OGDA) and Proximal Gradient
algorithms [MOP20b].

One of the primary problem areas in which such an algorithm becomes necessary is in
learning from strategically generated or decision-dependent data, a classical problem in
operations research (see, e.g., [HBT18] and references therein). This problem has garnered
a lot of attention of late in the machine learning community under the name “performative
prediction” [PZMDH20, MPZ21, BHK20] due to the growing recognition that learning
algorithms are increasingly dealing with data from strategic agents. In such problems,
assuming access to the response map of strategic agents is often too restrictive, and the
introduction of agent’s strategic responses into a convex loss function can often result in
non-convex objectives.

As an example of such a decision-dependent problem, consider a scenario in which a
ride-sharing platform seeks to devise an adaptive pricing strategy which is responsive to
changes in supply and demand. The platform observes the current supply and demand in the
environment and adjusts the price to increase the supply of drivers (and potentially decrease
the demand) as needed. Drivers, however, have the ability to adjust their availability, and
can strategically create dips in supply to trigger price increases. Such gaming has been
observed in real ride-share markets (see, e.g., [Ham19, You19]) and results in negative
externalities like higher prices for passengers. Importantly, in this situation, the platform
does not observe precisely the decision making process of the drivers, only their strategically
generated availability, and must learn to optimize through these agents’ responses. This
lack of precise knowledge regarding the data generation process, and the reactive nature of
the data, motivate the use of game theoretic abstractions for the decision problem, as well
as algorithms for finding solutions in the absence of full information.

Previous work analyzing this problem studies this phenomenon through the lens of risk
minimization in which the data distribution is decision-dependent, and seeks out settings
in which the decision maker can optimize the decision-dependent risk [MPZ21]. These
works, however, do not account for model misspecification in their analysis. In particular,
if the data generation model is incorrect, the performance of the optimal solution returned
by their training methods may potentially degrade rapidly, something we explore in our
experiments.

We show that the decision-dependent learning (performative prediction) problem can
be robustified by taking a distributional robustness perspective on the original problem.
Moreover, we show that, under mild assumptions, the distributionally robust decision-
dependent learning problem can be transformed to a min-max problem and hence our
zeroth-order random reshuffling algorithm can be applied. The gradient-free nature of our
algorithm is important for applications where data is generated by strategic users that one
must query; in these scenarios, the decision-maker is unlikely to access the best response
map (data generation mechanism) of the strategic users, and hence will lack access to
precise gradients.

Contributions. In this paper, we analyze the class of convex-concave min-max problems
given by

min
x∈X

max
y∈Y

L(x, y), (1)
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where X ⊂ Rdx , Y ⊂ Rdy , and L : Rdx × Rdy → R has the finite-sum structure given by
L := 1

n

∑n
i=1 Li, where L1, . . . , Ln : Rdx×Rdy → R denote n individual loss functions. This

formulation is ubiquitous in machine learning applications, where the overall loss objective
is often the average of the loss function evaluated over each data point in a dataset.

The contributions of this paper can be summarized as follows.
I) We propose an efficient zeroth-order random reshuffling-based OGDA algorithm for a

convex-concave min-max optimization problem, without assuming any other structure
on the curvature of the min-max loss (e.g., strong convexity or strong concavity).
We provide (to our knowledge) the first non-asymptotic analysis of OGDA algorithm
with random reshuffling and zeroth-order gradient information.

II) As an important application, we formulate the Wasserstein distributionally robust
learning with decision-dependent data problem as a constrained finite-dimensional,
smooth convex-concave min-max problem of the form (1). In particular, we consider
the setting of learning from strategically generated data, where the goal is to fit
a generalized linear model, and where an ambiguity set is used to capture model
misspecification regarding the data generation process. This setting encapsulates
a distributionally robust version of the recently introduced problem of strategic
classification [HMPW16]. We show that this problem, under mild assumptions on
data generation model and the ambiguity set, can be transformed into a convex-
concave min-max problem to which our algorithm applies.

III) We complement the theoretical contributions of this paper by presenting illustrative
numerical examples.

2 Related Work

Our work draws upon the existing literature on zeroth-order methods for min-max optimiza-
tion problems, decision-dependent learning (performative prediction), and distributionally
robust optimization.

Zero-Order Methods for Min-Max Optimization. Zeroth-order methods provide
a computationally efficient method for applications in which first-order or higher-order
information is inaccessible or impractical to compute, e.g., when generating adversarial
examples to test the robustness of black-box machine learning models [LLC+20, LCK+20,
CZS+17, IEAL18, TTC+19, LLW+19, AH17]. Recently, Liu et al. and others [LLC+20,
GJZ18, WBMR20] provided the first non-asymptotic convergence bounds for zeroth-order
algorithms, based on analysis methods for gradient-free methods in convex optimization
[NS17]. However, these works assume that the min-max objective is either strongly
concave in the maximizing variable [LLC+20, WBMR20] or strongly convex [GJLJ17] in
the minimizing variable, an assumption that fails to hold in many applications [DRS+18,
YLMJ21]. In contrast, the zeroth-order algorithm presented in this work provides non-
asymptotic guarantees under the less restrictive assumption that the objective function is
convex-concave. In particular, we present the first (to our knowledge) zeroth-order variant
of the Optimistic Gradient Ascent-Descent (OGDA) algorithm [MOP20b, MOP20a].

In single-variable optimization problems, first-order stochastic gradient descent algo-
rithms are empirically observed to converge faster when random reshuffling (RR, or sampling
without replacement) is deployed, compared to sampling with replacement [RR11, Bot09].
Although considerably more difficult to analyze theoretically, gradient-based RR meth-
ods have recently been shown to enjoy faster convergence when the underlying objective
function is convex [Sha16, JNN19, MKR21, HS19, SS19, GOP21, RGP20]. Recently, these
theoretical results have been extended to first-order methods for convex-concave min-max
optimization problems [YLMJ21]; in this paper, we further extend these results to the case
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of zero-order algorithms. Specifically, we present the first (to our knowledge) non-asymptotic
convergence rates for zeroth-order random reshuffling min-max optimization algorithms.

Distributionally Robust Optimization. Distributionally Robust Optimization (DRO)
seeks to find solutions to optimization problems (e.g., supervised learning tasks) robust
against changes in the data distribution between training and test time [MMS+17, YLMJ21].
These distributional differences may arise due to imbalanced data, sample selection bias,
or adversarial perturbations or deletions [CSSL09, MMS+17], and are often modeled as
min-max optimization problems, in which the classifier and an adversarial noise component
are respectively modeled as the minimizer and maximizer of a common min-max loss
objective [Bag05, BBC10, GMT14, GYdH15, RM19]. In particular, the noise is assumed
to generate the worst possible loss corresponding to a bounded training data distribution
shift, with the bound given by either the f -divergence or Wasserstein distance. [YLMJ21,
BTHW+13, ND16, HNSS18, SAEK15]. While this work considers adversarial noise in
generated data, largely in a worst-case context, it has yet to capture strategically generated
data wherein a data source generates data via a best response mapping.

Strategic Classification and Performative Prediction. Strategic classification [HMPW16,
DRS+18, KTS+19, SBKK20] and performative prediction [PZMDH20, MDPZH20, MPZ21,
DX20] concern supervised learning problems in which the training data distribution shifts
in response to the deployed classifier or predictor more generally. This setting naturally
arises in machine learning applications in which the selection of the deployed classifier
either directly changes the training data (e.g., decisions based on credit scores, such as
loan approvals, themselves change credit scores), or prompts the data source to artificially
alter their attributes (e.g. withdrawals during bank runs spur worried clients to make more
withdrawals) [PZMDH20, MDPZH20, MPZ21]. Here, the learner accesses only perturbed
features representing the strategic agents’ best responses to a deployed classifier, and not the
true underlying features [DRS+18]. This is a recently introduced formulation to machine
learning; the results in this body of literature (to our knowledge) have not introduced the
concept of robustness to model misspecification or the data generation process, in the same
manner as we capture in this work.

3 Preliminaries

Recall that in this paper, we consider the class of convex-concave min-max problems given
by:

min
x∈X

max
y∈Y

L(x, y), (2)

where X ⊂ Rdx , Y ⊂ Rdy , and L := 1
n

∑n
i=1 Li, where L1, . . . , Ln : Rdx × Rdy → R denote

n individual loss functions. For convenience, we denote d := dx + dy.

Assumption 3.1. The following statements hold:
(i) The sets X ⊂ Rdx and Y ⊂ Rdy are convex and compact.

(ii) The functions L1, · · · , Ln : Rd → R are convex in x ∈ Rdx for each y ∈ Rdy , concave in
y ∈ Rdy for each x ∈ Rdx , and G-Lipschitz and `-smooth in (x, y) ∈ Rd (which implies
that L : Rd → R, by definition, also possesses the same properties).

For ease of exposition, we denote u := (x, y),ML := supu∈X×Y |L(u)|,D := supu,u′∈X×Y ‖u−
u′‖2, and define the operators F, Fi : Rd → Rd, for each i ∈ [n], by:

F (u) :=

[
∇xL(u)
−∇yL(u)

]
, Fi(u) :=

[
∇xLi(u)
−∇yLi(u)

]
, ∀ i ∈ [n]. (3)
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Observe that under Assumption 3.1, ML, D < ∞, and F and each Fi are monotone1.
Finally, we define the gap function ∆ : Rd → [0,∞) associated with the loss L by

∆(x, y) := L(x, y?)− L(x?, y) ≥ 0, (4)

where u? := (x?, y?) ∈ X × Y denotes any min-max saddle point of the overall loss L(x, y),
and (x, y) ∈ X × Y denotes any feasible point. This gap function allows us to measure
the convergence rate of our proposed algorithm. To this end, we define the ε-optimal
saddle-point of (2) as follows.

Definition 3.1 (ε-optimal saddle point solution). A feasible point (x, y) ∈ X × Y is
said to be an ε-optimal saddle-point solution of (2) if

∆(x, y) = L(x, y?)− L(x?, y) ≤ ε,

4 Algorithms and Performance

In this section we introduce a gradient-free version of the well-studied Optimistic Gradient
Descent Ascent (OGDA) algorithm, and give finite time rates showing that it can efficiently
find the saddle point in constrained convex-concave problems.

4.1 Zero-Order Gradient Estimates

In our zero-order, random-reshuffling based variant of the OGDA algorithms, we use
the one-shot randomized gradient estimator in [Spa97, FKM05, GJZ18, LLC+20]. In
particular, given the current iterate u ∈ Rd and a query radius ε > 0, we sample a vector
v uniformly from unit sphere Sd−1 (i.e. v ∼ Unif(Sd−1)), and define the zeroth-order
estimator F̂ (u; ε, v) ∈ Rd of the min-max loss L(u) to be:

F̂ (u; ε, v) :=
d

ε
L(u+ εv)v

Properties of this zeroth-order estimator, derived in [BLM18], are reproduced as Proposition
A.4 in Appendix A.1.

4.2 Optimistic Gradient Descent Ascent with Random Reshuffling (OGDA-
RR)

In this subsection, we formulate our main algorithm, Optimistic Gradient Descent Ascent
with Random Reshuffling (OGDA-RR). In each epoch t ∈ {0, 1, · · · , T − 1}, the algorithm
generates a uniformly random permutation σt := (σt1, · · · , σtn) of [n] := {1, · · · , n} inde-
pendently of any other randomness, and fixes a query radius εt > 0 and search direction
vti ∈ Rd. (Note: query radii only depends on epoch indices t, and not on sample indices).
For each index i ∈ [n], we compute the OGDA-RR update as follows:

uti+1 = ProjX×Y

(
uti − ηtF̂σti (u

t
i; ε

t, vti)− ηtF̂σti−1
(uti; ε

t, vti) + ηtF̂σti−1
(uti−1; εt, vti−1)

)
, (5)

After repeating this process for T epochs, the algorithm returns the step-size-weighted
average of the iterates, ũT := 1

n·
∑T−1
t=0 ηt

∑T−1
t=0

∑n
i=1 η

tuti. Roughly, the weighting described
in Theorem 4.1 below optimally balances the bias and variance of the zero-order gradient
estimator in Section 4.1.

1A function F : Rd → Rd is called monotone if 〈F (x)− F (y), x− y〉 ≥ 0 for all x, y ∈ Rd.
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Algorithm 1: OGDA-RR Algorithm

1 Input: stepsizes ηt, εt, data points {(xi, yi)}ni=1 ∼ D, u
(0)
0 , time horizon duration T ;

2 for t = 0, 1, · · · , T − 1 do
3 σt = (σt1, · · · , σtn)← a random permutation of set [n];
4 for i = 0, . . . , n− 1 do
5 Sample vti ∼ Unif(Sd−1)
6 uti+1 ← (5)
7 end
8 u

(t+1)
0 ← utn

9 u
(t+1)
−1 ← utn−1

10 end
11 Output: ũT := 1

n·
∑T−1
t=0 ηt

∑T−1
t=0

∑n
i=1 η

tuti.

Theorem 4.1. Let L(u) denote the objective function in the constrained min-max opti-
mization problem given by (1), and let u? = (x?, y?) ∈ X × Y denote any saddle point of
L(u). Fix ε > 0. Suppose Assumption 3.1 holds, and the number of epochs T , step sizes
sequence {ηt}T−1

t=0 , and query radii sequence {εt}T−1
t=0 satisfy:

ηt := η0 · (t+ 1)−3/4+χ, ∀ t ∈ {0, 1, · · · , T − 1},
εt := ε0 · (t+ 1)−1/4, ∀ t ∈ {0, 1, · · · , T − 1},

T >
1

ε4

(
3

16n
D +

5

4n
· C ·max

{
ε0, η0, η0ε0,

η0

ε0
,
η0

(ε0)2

}(
1 +

1

χ

)) 4
1−4χ

,

for some initial step size η0 ∈
(

0, 1
2`

)
, initial query radius ε0 > 0, parameter χ ∈ (0, 1/4),

and constant:

C := max
{

3ndD`, 18ndDG`, 54ndG2 + 18ndD`ML, 90ndGML, 36ndM2
L,

6dGn2 + 14Gn2 + 4nG, 6dMLn, 3dDG`, 3dD`ML

}
> 0.

Then the iterates {uti} generated by the OGDA-RR Algorithm (Alg. 1) satisfy:

E
[
∆(ũT )

]
< ε.

Remark. Note that our OGDA-RR algorithm is more computationally efficient than Alg. 2
in [YLMJ21], even if one replaces the gradient estimates with true gradient values. This is
because Alg. 2 in [YLMJ21] requires M ∼ O(log(n)) inner loop iterations to approximate a
proximal point update. Here, we avoid this restriction by exploiting the recent perspective
that the OGDA update is a perturbed proximal point update [MOP20a, MOP20b]. For
more details, see Appendix A.2 for the proof of Theorem 4.1.

5 Applications to Decision-Dependent DRO

In this section we discuss a novel convex-concave min-max reformulation of a class of decision-
dependent distributional robust risk minimization problems, which reflects the need for
learning classifiers that are simultaneously robust to strategic data sources and adversarial
model-specification. In particular, we present a distributionally robust formulation of
strategic classification [DRS+18] with generalized linear loss, a semi-infinite optimization
problem that can be reformulated to a finite-dimensional convex-concave min-max problem.

Strategic classification is an emerging paradigm in machine learning which attempts to
“close the loop"— i.e., account for data (user) reaction at training time—while designing
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classifiers to be deployed in strategic environments in the real world, where deploying
naïve classifier (designed ignoring the distribution shift) can be catastrophic. Modeling
the exact behavior of such strategic interactions is very complex, since the decision-maker
(learner) does not have access to the strategic users’ preferences and hence lacks access
to their best response function. To overcome this difficulty, we use a natural model for
these strategic behaviors that has been exploited in Dong et. al.(2018), and then impose
robustness conditions (in the form of an ambiguity set on the decision-dependent data
distribution) to capture model misspecification. To facilitate the discussion, we provide a
primer on decision-dependent DRO in the next subsection.

5.1 Primer on decision-dependent distributionally robust optimization

Consider a generalized linear problem, where the goal is to estimate the parameter θ ∈ Θ,
which is assumed to be a compact set, by solving the following convex optimization program:

inf
θ∈Θ

ED [φ (〈x̄, θ〉)− ȳ 〈x̄, θ〉]

where φ : R → R is a smooth convex function and the tuple (x̄, ȳ) ∈ Rd × {−1,+1} is
sampled from an unknown distribution D, often approximated by the empirical distribution
of a set of observed data. The generalized linear model encompasses a wide range of machine
learning formulations [MN19].

A distributionally robust generalized linear problem, on the other hand, minimizes the
worst case expectation over an uncertainty set P in the space of probability measures. This
setup can be envisioned as a game between a learning algorithm and an adversary. Based
on parameters chosen by the learning algorithm, the adversary then picks a probability
measure from the uncertainty set which maximizes the risk for that choice of parameter:

inf
θ

sup
P∈P

EP [φ (〈x̄, θ〉)− ȳ 〈x̄, θ〉] ,

where (x̄, ȳ) ∼ P ∈ P. Typically P is chosen as a Wasserstein ball around the empirical
distribution D̃n of a set of n observed data points, {(x̃i, ỹi) ∈ Rd × {−1, 1}}ni=1, sampled
independently from the data distribution D. Then, for any δ > 0 the uncertainty set P is
given by Bδ(D̃n) = {P :W(P, D̃n) ≤ δ}.

A critique of the above problem formulation is that the underlying data distribution
D is considered fixed, while in many strategic settings underlying data distribution will
depend on the classifier parameter θ. Decision-dependent supervised learning aims to tackle
such distribution shifts. When specialized to the generalized linear model, the problem
formulation becomes:

inf
θ
ED(θ) [φ (〈x̄, θ〉)− ȳ 〈x̄, θ〉] ,

where (x̄, ȳ) ∼ D(θ). In this work, we take a step forward and work with the distributionally
robust decision-dependent generalized linear model, defined as:

inf
θ

sup
P∈P(θ)

EP [φ (〈x̄, θ〉)− ȳ 〈x̄, θ〉] , (6)

where (x̄, ȳ) ∼ P ∈ P(θ) and P(θ) = Bδ(D̃n(θ)). Here, the dependence of P on the choice of
classifier θ is captured by its inclusion in P(θ) = Bδ(D̃n(θ)). To describe decision-dependent
distribution shifts D̃n(θ), we restrict our focus to the setting of strategic classification. The
following subsection formalizes our setting.

5.2 Model for strategic response

Below, we denote the data points sampled from true distribution by (x̃i, ỹi) ∼ D where D
is a unknown, underlying distribution. For ease of presentation, we associate each data
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point index i with an agent. For each agent i ∈ [n], let ui(x; θ, x̃i, ỹi) ∈ R denote its
utility function that a strategic agent seeks to maximize. In other words, when a classifier
parametrized by θ ∈ Rd is deployed, the agent i ∈ [n] responds by reporting bi(θ, x̃i, ỹi),
defined as:

bi(θ, x̃i, ỹi) ∈ arg max
x

ui(x; θ, x̃i, ỹi).

Note that we allow different agent to have different utility function.
We now impose the following assumptions on the utility functions; these are crucial for

ensuring guaranteed convergence of our proposed algorithms.

Assumption 5.1. For each agent i ∈ [n], define ui(x; θ, x̃i, ỹi) := 1−ỹi
2 〈x, θ〉 − gi(x− x̃i),

where gi : Rd → R satisfies:

(i) gi(x) > 0 for all x 6= 0;
(ii) gi is convex on Rd;
(iii) gi is positive homogeneous2 of degree p > 1;
(iv) Its convex conjugate g∗i (θ) := supx∈Rd 〈x, θ〉 − gi(x) is Gi-Lipschitz and Ḡi-smooth on

Θ.

As is pointed out in Dong et. al. (2018), a large class of functions g(·) satisfy the
requirements posited in Assumption 5.1. For example, for any arbitrary norm and any
p > 1 the function g(x) = 1

p‖x‖
p is a candidate. Note that these assumptions are not

very restrictive and capture a large variety of practical scenarios [DRS+18]. A natural
consequence of the above modeling paradigm is that bi(θ, x̃i,+1) = x̃i. To wit, the agents
act strategically only if their true label is −1. This is a reasonable setting for many real
world applications [DRS+18]. We now present a technical lemma which will be helpful in
subsequent presentation.

Lemma 5.2 (Dong et. al. (2018)). Under Assumption 5.1, for each agent i ∈ [n], the
set of best responses arg maxx ui(x; θ, x̃i, ỹi) is finite and bounded. The function θ 7→
〈bi(θ, x̃i, ỹi), θ〉 is convex. To wit, for any i ∈ [n]: 〈bi(θ, x̃i, ỹi), θ〉 = 〈x̃i, θ〉 + 1−ỹi

2 qg∗i (θ)
where 1

p + 1
q = 1

Against the preceding backdrop, we now present the convex-concave min-max refor-
mulation of the Wasserstein Distributionally Robust Strategic Classification (WDRSC)
problem.

5.3 Reformulation of the WDRSC Problem

The WDRSC problem formulation contains two main components—the strategic component
that accounts for a distribution shift D(θ) in response to the choice of classifier θ, and the
adversarial component that accounts for the uncertainty set P(θ). As per the modeling
assumptions described in Section 5.2, we have (x̃i, ỹi) ∼ D and (bi(θ, x̃i, ỹi), ỹi) ∼ D(θ) for
all i ∈ [n]. We now impose certain restrictions on the adversarial component that would
enable us to reformulate the WDRSC problem as a convex-concave min-max optimization
problem. Crudely speaking, we allow adversarial modifications on features for all data
points, but adversarial modifications on labels only when the true label is +1.

For the distributionally robust strategic classification problem, we consider a specific form
of uncertainty set P(θ) that allows us to reformulate the infinite-dimensional optimization
problem as a finite-dimensional convex-concave min-max problem. As described above,
in our formulation, the features of a given data point i can be perturbed strategically if
ỹi = −1, but not if ỹi = +1. On top of the strategic perturbations we also consider the

2A function f : Rd → R is positive homogenous of degree r if for any scalar α > 0 and x ∈ Rd we have
f(αx) = αrf(x)

8



adversarial perturbations to the data points. Specifically, we also assume that the adversary
can perturb both the features and label of a data point i if ỹi = 1, but can only perturb the
features and not the label if ỹi = −1. A rigorous exposition of this restriction is deferred
to Appendix B.1. Under these assumptions, we now present a convex-concave min-max
reformulation of the WDRSC problem.

Theorem 5.3. Let the strategic behavior of the agents be governed in accordance with
Assumption 5.1. Suppose φ is convex and β-smooth. In addition, suppose R 3 x 7→
φ(x) + x ∈ R is non-decreasing. Then the WDRSC problem (6) can be reformulated into
the following convex-concave min-max problem:

min
(θ,α)

max
γ∈Rn

{
α(δ − κ) +

1

n

∑
i

1 + ỹi
2

(φ (〈bi(θ), θ〉)) + γi (〈bi(θ), θ〉 − ακ) (7)

+
1

n

∑
i

1− ỹi
2

(φ(〈bi(θ), θ〉) + 〈bi(θ), θ〉)

}
s.t.‖θ‖ ≤ α/(β + 1), ‖γ‖∞ ≤ 1

where for any i ∈ [n], we have concisely written bi(θ, x̃i, ỹi) as bi(θ).

The proof of Theorem 5.3 is presented in Appendix B.2.

Remark. The non-decreasing assumption on the map R 3 x 7→ φ(x) + x ∈ R is not overly
restrictive; in fact, it is satisfied by the logistic regression model in supervised learning (see
Appendix C).

Remark. Note that we can convert the smooth convex-concave minmax problem (7) into a
non-smooth convex minimization problem by explictly taking maximization over γ. But
we refrain from doing as it has been observed [YLMJ21] that solving the smooth minimax
optimization problem is faster than solving the non-smooth problem. In fact, we have
presented an experimental study in Appendix C which corroborates this observation.

Throughout the rest of this paper, we denote the min-max objective in (7) by L(α, θ, γ).

6 Empirical Results

In this section we deploy zeroth-order OGDA algorithm with random reshuffling to solve
the convex concave reformulation of WDRSC as presented in (7). We point out that in
order to solve (7), the zeroth-order method should only be applied to estimate the gradient
with respect to θ. This is because the gradient with respect to other variables, namely
(α, γ), can be exactly computed. Specifically, to compute derivative with respect to θ the
designer must know the best response function which is often not available and it can only
be queried.

We now present some illustrations of the empirical performance of our proposed algo-
rithm, as well as empirical justification for solving the WDRSC problem over existing prior
approaches to strategic classification.

6.1 Experimental Setup

Our first set of empirical results uses synthetic data to illustrate the effectiveness of our
algorithms. The datasets used in this section are constructed as follows: the ground truth
classifier θ? and features x̃i are sampled as θ? ∼ N (0, Id) and x̃i ∼ i.i.d. N (0, Id), for each
i ∈ [n], while the ground truth labels ỹi are given by ỹi = sign(〈x̃i, θ?〉+ zi) for each i ∈ [n],
where zi ∼ i.i.d. N (0, 0.1 · Id). We use n ∈ {500, 1000} with d = 10. The first five of the

9



d = 10 features are chosen to be strategic. In all experiments, we take κ = 0.5 and δ = 0.4.
Each strategic agent i ∈ [n] has a utility function given by:

ui(x; θ, x̃i, ỹi, ζi) =
1− ỹi

2
〈x, θ〉 − 1

2ζi
‖x− x̃i‖2, (8)

where ζi denote the perturbation “power" of agent i. For simplicity, we assume all agents
are homogeneous, in the sense that ζi = ζ > 0 for all i ∈ [n]; in practice, one need not
impose this assumption. Given this utility function, the best response of agents takes the
form:

bi(θ, x̃i, ỹi; ζ) =

{
x̃i if ỹi = +1,

x̃i + ζθ if ỹi = −1
(9)

where, in our simulations, we fix ζ = 0.05. We reemphasize that our algorithm does not
use the value of ζ in any of its computations. For purposes of illustration, we focus on the
performance of the following algorithms:

(A-I) Zeroth-order optimistic-GDA with random reshuffling (see Algorithm 1),
(A-II) Zeroth-order optimistic-GDA without random reshuffling (see Appendix C),
(A-III) Zeroth-order stochastic-GDA with random reshuffling (see Appendix C),
(A-IV) Zeroth-order stochastic-GDA without random reshuffling (see Appendix C).

and we evaluate the proposed algorithms and model formulation on two criteria:

(i) Suboptimality : To measure suboptimality, we use the gap function ∆(α, θ, γ) =
L(α, θ, γ?) − L(α?, θ?, γ) (Def. 4) where (α?, θ?, γ?) is a solution of the min-max
reformulation (7) of the WDRSC problem. If the objective L(·) is convex-concave,
∆(·) is non-negative, and equals zero at (and only at) saddle points.

(ii) Accuracy : Given a data set {(x̃i, ỹi)}i∈[n], the accuracy of a classifier θ is measured
as 1

n

∑
i∈[n] ỹi 〈bi(θ, x̃i, ỹi; ζ), θ〉. Under this criterion we compare the accuracy under

different perturbations for different classifiers θ;

To compute suboptimality, we first compute a true min-max saddle point (α?, θ?, γ?) via a
first order gradient based algorithm (namely, GDA). All experiments were run using Python
3.7 on a standard MacBook Pro laptop (2.6 GHz Intel Core i7 and 16 GB of RAM).

6.2 Results

Simulation results presented in Figure (1a)-(1b) show that our proposed algorithm (i.e.
(A-I)) outperforms algorithms without reshuffling (i.e. (A-II) and (A-IV)). However, its
performance resembles that of zeroth-order stochastic-GDA with random reshuffling. More
experimental studies need to be conducted to more conclusively determine whether (A-I)
outperforms (A-III), or vice versa. In fact , there has been no theoretical investigations even
for the first order stochastic-GDA algorithm with random reshuffling; this is an interesting
future direction to explore.

In Figure 1, we also compare the robustness of the classifier obtained by using Algorithm
(A-I) with that obtained from prior work on solving probems of strategic classification trained
with ζ = 0.05 (referred as LogReg SC in Figure 1). As expected, due to the formulation, the
performance of the classifier obtained via (A-I) degrades gracefully even when subject to
large perturbations, while the performance of existing approaches to strategic classification
degrades rapidly. Further numerical results on synthetically generated and real world
datasets are given in Appendix C.
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Figure 1: Experimental results for a synthetic dataset with n = 500 and n = 1000. (Left
panes of (1a), (1b))) Suboptimality iterates generated by the four algorithms (A-I), (A-II),
(A-III), (A-IV), respectively denoted as Z-OGDA w RR, Z-OGDA w/o RR, Z-SGDA w RR,
Z-SGDA w/o RR. (Right panes of (1a), (1b))) Comparison between decay in accuracy of
strategic classification with logistic regression (trained with ζ = 0.05) and Alg. (A-I) with
change in perturbation.
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7 Conclusion

This paper presents the first (to our knowledge) non-asymptotic convergence rates for a
gradient-free stochastic min-max optimization algorithm with random reshuffling. Our
theoretical results, established for smooth convex-concave min-max objectives, do not
require any additional, restrictive structural assumptions to hold. As a concrete application,
we reformulate a distributionally robust strategic classification problem as a convex-concave
min-max optimization problem that can be iteratively solved using our method. Empirical
results on synthetic and real datasets demonstrate the efficiency and effectiveness of our
algorithm, as well as its robustness against adversarial distributional shifts and strategic
behavior of the data sources. Immediate directions for future work include establishing
convergence results for the random-reshuffling based Stochastic Gradient Descent Ascent
(SGDA-RR) algorithm, as well as performing more extensive experimental studies to better
understand the empirical performance of our algorithm.
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A Results for the Proof of Theorem 4.1

A.1 Lemmas for Theorem 4.1

First, we list some fundamental facts regarding projections onto convex, compact subsets
of an Euclidean space. Below, for any fixed convex, compact subset Ω ⊂ Rd, we denote the
projection operator onto Ω by ProjΩ(x) := argminz∈Ω‖x− z‖2 for each x ∈ Rd. Note that
ProjΩ(x) is well-defined (i.e., exists and is unique) for each x ∈ Rd, if Ω ⊂ Rd were convex
and compact.

We begin by summarizing some fundamental properties of the projection operator
ProjΩ(·).

Proposition A.1. Let Ω ⊂ Rd be compact and convex, and fix x, y ∈ Rd arbitrarily. Then:∥∥ProjΩ(x)− ProjΩ(y)
∥∥2

2
≤
(

ProjΩ(x)− ProjΩ(y)
)>

(x− y),

‖ProjΩ(x)− ProjΩ(y)‖2 ≤ ‖x− y‖2.

Proof. From [Nes14], Lemma 3.1.4 (see also [RW21], Lemma 7.4), we have:(
ProjΩ(x)− ProjΩ(y)

)>(
x− ProjΩ(x)

)
≥ 0,(

ProjΩ(y)− ProjΩ(x)
)>(

y − ProjΩ(y)
)
≥ 0.

Adding the two expressions and rearranging terms, we obtain:(
ProjΩ(x)− ProjΩ(y)

)>(
(x− y)− (ProjΩ(x)− ProjΩ(y))

)
≥ 0,

⇒‖ProjΩ(x)− ProjΩ(y)‖22 ≤
(

ProjΩ(x)− ProjΩ(y)
)>

(x− y),

as given in the first claim. The Cauchy Schwarz inequality then implies:

‖ProjΩ(x)− ProjΩ(y)‖22 ≤
(

ProjΩ(x)− ProjΩ(y)
)>

(x− y)

≤ ‖ProjΩ(x)− ProjΩ(y)‖2 · ‖x− y‖2.

If ProjΩ(x) = ProjΩ(y), then the second claim becomes 0 ≤ ‖x − y‖2, which is clearly
true. Otherwise, dividing both sides above by ‖ProjΩ(x) − ProjΩ(y)‖2 gives the second
claim.

Lemma A.2. Let Ω ⊂ Rd be a compact, convex subset of Rd, and consider the update
zk+1 = ProjΩ(zk − ηF (zk+1) + γk), where zk, zk+1, γk ∈ Rd. Then, for each z ∈ Ω:

〈F (zk+1), zk+1 − z〉

≤ 1

2η
‖zk − z‖2 −

1

2η
‖zk+1 − z‖2 −

1

2η
‖zk+1 − zk‖2 +

1

η
〈γk, zk+1 − z〉 .

Proof. Note that:

‖zk+1 − z‖2 = ‖zk+1 − zk + zk − z‖2

= ‖zk+1 − zk‖2 + ‖zk − z‖2 + 2 〈zk+1 − zk, zk − z〉
= ‖zk+1 − zk‖2 + ‖zk − z‖2 + 2 〈zk+1 − zk, zk − zk+1 + zk+1 − z〉
= ‖zk − z‖2 − ‖zk+1 − zk‖2 + 2 〈zk+1 − zk, zk+1 − z〉

By definition of zk+1, and optimality conditions for the projection operator:

〈zk+1 − z, zk+1 − zk + ηF (zk+1)− γk〉 ≤ 0,

⇒ 〈zk+1 − zk, zk+1 − z〉 ≤ 〈γk, zk+1 − z〉 − η · 〈F (zk+1), zk+1 − z〉 .
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Substituting back, we obtain:

‖zk+1 − z‖2 = ‖zk − z‖2 − ‖zk+1 − zk‖2 + 2 〈zk+1 − zk, zk+1 − z〉
≤ ‖zk − z‖2 − ‖zk+1 − zk‖2 + 2 〈γk, zk+1 − z〉 − 2η · 〈F (zk+1), zk+1 − z〉 .

Rearranging and dividing by η gives the claim in the lemma.

Next, we state the properties of the mean and variance of the zeroth-order gradient
estimator defined in Section ?? ([BLM18], Lemma C.1). Below, we define the R-smoothed
loss function LR : Rd → R by LR(u) := Ev∼Unif(Bd)[L(u + Rv)], where Sd−1 denotes the
(d− 1)-dimensional unit sphere in Rd, Bd denotes the d-dimensional unit open ball in Rd,
and Unif(·) denotes the continuous uniform distribution over a set. Similarly, we define
LRi : Rd → R by LRi (u) := Ev∼Unif(Bd)[Li(u + Rv)], for each i ∈ [n] := {1, · · · , n}. We
further define R · Sd−1 := {Rv : v ∈ Sd−1} and R · Bd := {Rv : v ∈ Bd}. Finally, we use
vold(·) to denote the volume of a set in d dimensions.

Proposition A.3. Let F̂ (u;R, v) = d
R ·L(u+Rv)v and F (u) = ∇L(u). Then the following

holds:

Ev∼Unif(Sd−1)

[
F̂ (u;R, v)

]
= ∇LR(u), (10)

‖∇LR(u)− F (u)‖2 ≤ `R, (11)

‖F̂ (u;R, v)‖2 ≤ dG+
dML

R
, (12)

‖F̂ (u;R, v)− F (u)‖ ≤ min

{
(d+ 1)G+

dML

R
, `R+ 2dG+

2dML

R

}
. (13)

Proof. First, to establish (10), observe that since LR(u) = Ev∼Unif(Bd)[L(u + Rv)] and
F̂ (u;R, v) = d

R · L(u+Rv)v for each u ∈ Rd, R > 0, and v ∈ Sd−1:

∇LR(u) = ∇Ev∼Unif(Bd)

[
L(u+Rv)

]
= ∇Ev∼Unif(R·Bd)

[
L(u+ v)

]
=

1

vold(R ·Bd)
· ∇
(∫

R·Bd
L(u+ v)dv

)
=

1

vold(R ·Bd)
·
∫
R·Sd−1

L(u+ v) · v

‖v‖2
dv, (14)

Ev∼Unif(Sd−1)

[
F̂ (u;R, v)

]
=
d

R
· Ev∼Unif(Sd−1)

[
L(u+Rv)v

]
=
d

R
· Ev∼Unif(R·Sd−1)

[
L(u+ v) · v

‖v‖2

]

=
d

R
· 1

vold−1(R · Sd−1)
·
∫
R·Sd−1

L(u+ v) · v

‖v‖2
dv,

where (14) follows because Stokes’ Theorem (see, e.g., Lee, Theorem 16.11 [Lee13]) implies
that:

∇
∫
R·Bd

L(u+ v)dv =

∫
R·Sd−1

L(u+ v) · v

‖v‖2
dv.

The equality (10) now follows by observing that the surface-area-to-volume ratio of R ·Bd

is d/R.
Next, to establish (11), we note that:

‖∇LR(u)− F (u)‖2 =
∥∥∇Ev∼Unif(Bd)

[
LR(u)− L(u)

]∥∥
2
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=
1

vold(Bd)
·

∥∥∥∥∥∇
(∫

Bd

[
L(u+Rv)− L(u)

]
dv

)∥∥∥∥∥
2

≤ 1

vold(Bd)
·

∥∥∥∥∥
∫
Bd

[
F (u+Rv)− F (u)

]
dv

∥∥∥∥∥
2

(15)

≤ 1

vold(Bd)
·
∫
Bd

∥∥F (u+Rv)− F (u)
∥∥

2
dv

≤ 1

vold(Bd)
·
∫
Bd
`R · ‖v‖2 dv

≤ `R,

where (15) follows by differentiating under the integral sign (see, e.g., Rudin, Theorem 9.42
[Rud76]), and the remaining inequalities follow from the fact that F is `-Lipschitz.

Next, we establish (12) by using the triangle inequality and the ML-boundedness of
L(·) on X × Y , and the G-Lipschitzness of L(·):

|F̂ (u;R, v)| = d

R
|L(u+Rv)| · ‖v‖2

≤ d

R
·
(
|L(u)|+ |L(u+Rv)− L(u)|

)
· 1

≤ d

R
· (ML +RG).

We can then use (12) to establish (13) by observing that:

|F̂ (u;R, v)− F (u)| ≤ |F̂ (u;R, v)|+ |F (u)| ≤ (d+ 1)G+
dML

R
.

and, from (12):

|F̂ (u;R, v)− F (u)|
≤
∣∣F̂ (u;R, v)− Ev[F̂ (u;R, v)|u]

∣∣+
∣∣Ev[F̂ (u;R, v)|u]− F (u)

∣∣
≤
∣∣F̂ (u;R, v)− Ev[F̂ (u;R, v)|u]

∣∣+
∣∣∇LR(u)− F (u)

∣∣
≤2

(
dG+

dML

R

)
+ `R

This concludes the proof.

Below, we present technical lemmas that allow us to analyze the convergence rate of
the correlated iterates {uti} in our random reshuffling-based OGDA Algorithm (Alg. 1).

Let σ0, · · · , σt−1 denote the permutations drawn from epoch 0 to epoch t − 1, and
let {uti(σt)}1≤i≤n and {uti(σ̃t)}1≤i≤n denote the iterates obtained at epoch t, when the
permutations σt and σ̃t are used for the epoch t, respectively. Moreover, let Di,t denote the
distribution of {uti(σt)}1≤i≤n under σt, and for 1 ≤ r ≤ n let D(r)

i,t denote the distribution
of {uti(σt)}1≤i≤n with σt conditioned on the event {σti−1 = r}.

We use the p-Wasserstein distance between probability distributions on Rd, defined
below, to characterize the distance between Di,t and D(r)

i,t . This is used in the coupling-
based techniques employed to establish non-asymptotic convergence results for our random
reshuffling algorithm. Note the difference between the p-Wasserstein distance for probability
distributions on Rd, and the Wasserstein distance on Z := Rd × {+1,−1} associated with
a metric c : Z × Z → [0,∞), defined in Appendix B.2 (Definition B.1).

Definition A.1 (p-Wasserstein distance between distributions on Rd). Let µ, ν be
probability distributions over Rd with finite p-th moments, for some p ≥ 1, and let Π(µ, ν)
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denote the set of all couplings (joint distributions) between µ and ν. The p-Wasserstein
distance between µ and ν, denoted Wp(µ, ν), is defined by:

Wp(µ, ν) = inf
(X,X′)∼π∈Π(µ,ν)

(
Eπ
[
‖X −X ′‖p

])1/p
.

The following proposition characterizes the 1-Wasserstein distance as a measure of the
gap between Lipschitz functions of random variables.

Proposition A.4 (Kantorovich Duality). If µ, ν are probability distributions over Rd
with finite second moments, then:

W1(µ, ν) = sup
g∈Lip(1)

EX∼µ[g(X)]− EY∼ν [g(Y )],

where Lip(1) := {g : Rd → R : g is 1-Lipschitz}.

Using [YLMJ21, Lemma C.2], we now bound the difference between the unbiased gap
E[∆(uti)] and the biased gap E[Lσti (x

t
i+1, y

?)− Lσti (x
?, yti+1)] using the Wasserstein metric.

Lemma A.5. Let u? := (x?, y?) ∈ Rdx × Rdy = Rd denote a saddle point of the min-max
optimization problem (2). Then, for each t ∈ [T ] and i ∈ [n], the iterates {uti} = {(xti, yti)}
of the OGDA-RR algorithm satisfy:∣∣∣E[∆(uti+1)]− E

[
Lσti (x

t
i+1, y

?)− Lσti (x
?, yti+1)

]∣∣∣ ≤ G

n

n∑
r=1

W2

(
Di+1,t,Dri+1,t

)
Proof. Since σt and σ̃t are independently generated permutations of [n], the iterates
{uti}1≤i≤n = {uti(σt)}1≤i≤n and {uti(σ̃t)}1≤i≤n are i.i.d. Thus, we have:

E[∆(uti+1)] = E
[
Lσti (x

t
i+1(σ̃t), y?)− Lσti (x

?, yti+1(σ̃t))
]
,

and thus:∣∣∣E[∆(uti+1)]− E
[
Lσti (x

t
i+1, y

?)− Lσti (x
?, yti+1)

]∣∣∣
=
∣∣∣E[Lσti (xti+1(σ̃t), y?)− Lσti (x

?, yti+1(σ̃t))
]
− E

[
Lσti (x

t
i+1, y

?)− Lσti (x
?, yti+1)

]∣∣∣
=

∣∣∣∣∣ 1n
n∑
r=1

E
[
Lr(x

t
i+1(σ̃t), y?)− Lr(x?, yti+1(σ̃t))

]
(16)

− 1

n

n∑
r=1

E
[
Lr(x

t
i+1, y

?)− Lr(x?, yti+1)
∣∣σti = r

]∣∣∣∣∣
≤ 1

n

n∑
r=1

∣∣∣E[Lr(xti+1(σ̃t), y?)− Lr(x?, yti+1(σ̃t))
]
− E

[
Lr(x

t
i+1, y

?)− Lr(x?, yti+1)
∣∣σti = r

]∣∣∣
≤ 1

n

n∑
r=1

sup
g∈Lip(G)

(
E
[
g(xti+1(σ̃t), yti+1(σ̃t))

]
− E

[
g(xti+1, y

t
i+1)|σti = r

])
(17)

≤ 1

n

n∑
r=1

G · W1(Di+1,t,D(r)
i+1,t) (18)

≤ 1

n

n∑
r=1

G · W2(Di+1,t,D(r)
i+1,t), (19)

where (16) follows by properties of the conditional expectation on {σti = r} and the fact
that σt and σ̃t are independent, (17) follows from the fact that L is Lipschitz, (18) follows
from Proposition A.4, and (19) follows from the fact that W1(µ, ν) ≤ W2(µ, ν) for any two
probability distributions µ, ν.
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The next lemma bounds the difference in the iterates {uti(σt)} and {uti(σ̃t)} (assuming,
as before, that σ0, · · · , σt−1 were fixed and identical for both sequences.)

Lemma A.6. Denote, with a slight abuse of notation, uti := uti(σ
t) and ũti := uti(σ̃

t). Then:

‖uti+1 − ũti+1‖2 ≤

(
6nd+ 14n+ 2 ·

n∑
i=1

1{σti 6= σ̃ti}

)
G · ηt + 6ndML ·

ηt

Rt
.

Proof. Our proof strategy is to bound the differences between zeroth-order and first-order
OGDA updates, and between the OGDA and proximal point updates. To this end, we
define:

uti+1 = ProjX×Y

(
uti − ηtF̂σti (u

t
i;R

t, vti)− ηtF̂σti−1
(uti;R

t, vti) + ηtF̂σti−1
(uti−1;Rt, vti−1)

)
,

ũti+1 = ProjX×Y

(
ũti − ηtF̂σ̃ti (ũ

t
i;R

t, vti)− ηtF̂σ̃ti−1
(ũti;R

t, vti) + ηtF̂σ̃ti−1
(ũti−1;Rt, vti−1)

)
,

vti+1 = ProjX×Y

(
uti − ηtFσti (u

t
i)− ηtFσti−1

(uti) + ηtFσti−1
(uti−1)

)
,

ṽti+1 = ProjX×Y

(
ũti − ηtFσ̃ti (ũ

t
i)− ηtFσ̃ti−1

(ũti) + ηtFσ̃ti−1
(ũti−1)

)
,

wti+1 = ProjX×Y

(
uti − ηtFσti (w

t
i+1)

)
,

w̃ti+1 = ProjX×Y

(
ũti − ηtFσ̃ti (w̃

t
i+1)

)
.

By the triangle inequality:

‖uti+1 − ũti+1‖2 ≤ ‖uti+1 − vti+1‖2 + ‖vti+1 − wti+1‖2 + ‖wti+1 − w̃ti+1‖2 (20)
+ ‖w̃ti+1 − ṽti+1‖2 + ‖ṽti+1 − ũti+1‖2.

Observe that bounding the fourth term is equivalent to bounding the second term, and
bounding the fifth term is equivalent to bounding the first term.

To bound the first term on the right hand side, we use Proposition A.3 to conclude that:

‖uti+1 − vti+1‖2 ≤ ηt · ‖F̂σti (u
t
i;R

t, vti)− Fσti (u
t
i)‖+ ηt · ‖F̂σti−1

(uti;R
t, vti)− Fσti−1

(uti)‖

+ ηt · ‖F̂σti−1
(uti−1;Rt, vti−1)− Fσti−1

(uti−1)‖

≤ 3(d+ 1)Gηt + 3dML ·
ηt

Rt
(21)

For the second term, we use the G-Lipschitzness of Lr, for each r ∈ [n] to conclude that:

‖vti+1 − wti+1‖2 ≤ ηt · |Fσti (u
t
i)|+ ηt · |Fσti−1

(uti)|+ ηt · |Fσti−1
(uti−1)|+ ηt · |Fσti (w

t
i+1)|

≤ 4G · ηt. (22)

For the third term, we observe that if σti 6= σ̃ti , then:

‖wti+1 − w̃ti+1‖2 ≤ ‖uti − ũti‖2 + ηt · ‖Fσti (w
t
i+1)− Fσ̃ti (w̃

t
i+1)‖2

≤ ‖uti − ũti‖2 + 2G · ηt. (23)

On the other hand, if σti = σ̃ti , then:

wti+1 = ProjX×Y

(
uti − ηtFσti (w

t
i+1)

)
,

w̃ti+1 = ProjX×Y

(
ũti − ηtFσti (w̃

t
i+1)

)
,

so we have:

‖wti+1 − w̃ti+1‖22
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≤ (wti+1 − w̃ti+1)>
(
(uti − η · Fσti (w

t
i+1))− (ũti − η · Fσti (w̃

t
i+1))

)
(24)

=(wti+1 − w̃ti+1)>(uti − ũti)− η(wti+1 − w̃ti+1)>
(
Fσti (w

t
i+1))− Fσti (w̃

t
i+1))

)
≤ (wti+1 − w̃ti+1)>(uti − ũti) (25)
≤‖wti+1 − w̃ti+1‖2 · ‖uti − ũti‖2, (26)

so ‖wti+1 − w̃ti+1‖2 ≤ ‖uti − ũti‖2. Here, (24) follows from the definitions of wti+1 and w̃ti+1,
as well as Proposition A.1, while (25) holds because the monotonicity of Fi, for each i ∈ [n],
implies that (wti+1− w̃ti+1)>

(
Fσti (w

t
i+1)−Fσti (w̃

t
i+1)

)
≥ 0. Putting together (21), (22), (23),

(26), we have:

‖uti+1 − ũti+1‖2 ≤ ‖uti − ũti‖2 + (6d+ 14)G · ηt + 6dML ·
ηt

Rt

+ 2G · 1{σti 6= σ̃ti} · ηt,

where the indicator 1(A) returns 1 if the given event A occurs, and 0 otherwise.
Since ut0 = ũt0, we can iteratively apply the above inequality to obtain that, for any and

epoch t and i ∈ [n]:

‖uti+1 − ũti+1‖2 ≤ (6d+ 14)nG · ηt + 6ndML ·
ηt

Rt
+ 2ηtG ·

n∑
i=1

1{σti 6= σ̃ti},

Remark. In the theorems and lemmas below, we will be concerned with the case where
σt and σ̃t have the following specific relationship. Let Rn denote the set of all random
permutations over the set [n]. For each l,m ∈ [n], let Sl,m : Rn → Rn denote the map that
swaps, for each input permutation σ, the l-th and m-th entries. For each r, i ∈ [n], define
the map ωr,i : Rn → Rn as follows:

ωr,i(σ) =

{
σ, if σi−1 = r,

Si−1,j(σ), if σj = r and j 6= i− 1.
.

Intuitively, ωr,i performs a single swap such that the (i− 1)-th position of the permutation
is r. Clearly, if σt is a random permutation (i.e., selected from a uniform distribution over
Rn), then ωr,i(σs) has the same distribution as σt|(σti−1 = r). Based on this construction,
we have ui(σt) ∼ Di,t and ui(ωr,i(σt)) ∼ D(r)

i,t . This gives a coupling between Ds,t and D(r)
s,t .

Since σt and σ̃t differ by at most two entries, by iteratively applying Lemma A.6, we have:

‖uti+1 − ũti+1‖2 ≤ n

(
(6d+ 14)G · ηt + 6dML ·

ηt

Rt

)
+ 4G · ηt

= (6nd+ 14n+ 4)G · ηt + 6ndML ·
ηt

Rt
,

as claimed.

Lemma A.7. If ηt ≤ 1/(2`) for each t ∈ {0, 1, · · · , T − 1}, the iterates {uti} = {(xti, yti)}
of the OGDA-RR algorithm satisfy, for each u ∈ X × Y:

2ηt · E
[〈
Fσti (u

t
i+1), uti+1 − u

〉]
≤E
[
‖uti − u‖22

]
− E

[
‖uti+1 − u‖22

]
− 1

2
E
[
‖uti+1 − uti‖22

]
+

1

2
E
[
‖uti − uti−1‖22

]
+ 2ηt · E

[〈
Fσti (u

t
i+1)− Fσti (u

t
i), u

t
i+1 − u

〉]
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− 2ηt · E
[〈
Fσti−1

(uti)− Fσti−1
(uti−1), uti − u

〉]
+ 6C1 ·

(
ηtRt + (ηt)2Rt + (ηt)2 +

(ηt)2

Rt
+

(ηt)2

(Rt)2

)
,

where C1 := d2 max
{

6G`D, 18G2 + 6ML`D, 30MLG, 12M2
L

}
is a constant independent of

the sequences {ηt} and {Rt}.

Proof. The iterates of the OGDA-RR algorithm are given by:

uti+1 = ProjX×Y

(
uti − ηtF̂σti (u

t
i;R

t, vti)− ηtF̂σti−1
(uti;R

t, vti)

− ηtF̂σti−1
(uti−1;Rt, vti−1)

)
= ProjX×Y

(
uti − ηtFσti (u

t
i+1) + ηt

(
γti + Eti,1 + Eti,2 + Eti,3

))
, (27)

where we have defined:

γti := Fσti (u
t
i+1)− Fσti (u

t
i)− Fσti−1

(uti) + Fσti−1
(uti−1),

Eti,1 := Fσti (u
t
i)− F̂σti (u

t
i;R

t, vti),

Eti,2 := Fσti−1
(uti)− F̂σti−1

(uti;R
t, vti),

Eti,3 := Fσti−1
(uti−1)− F̂σti−1

(uti−1;Rt, vti−1).

First, by applying Lemma A.2 we have:

2ηt · E
[〈
Fσti (u

t
i+1), uti+1 − u

〉]
(28)

≤E
[
‖uti − u‖22

]
− E

[
‖uti+1 − u‖22

]
− E

[
‖uti+1 − uti‖22

]
+ 2ηt · E

[〈
γti , u

t
i+1 − u

〉]
+

3∑
k=1

2ηt · E
[〈
Eti,k, u

t
i+1 − u

〉]
.

Below, we proceed to bound the inner product terms on the right-hand-side of (28). First,
we bound

〈
γti , u

t
i+1 − u

〉
:〈

γti , u
t
i+1 − u

〉
=
〈
Fσti (u

t
i+1)− Fσti (u

t
i), u

t
i+1 − u

〉
−
〈
Fσti−1

(uti)− Fσti−1
(uti−1), uti+1 − u

〉
=
〈
Fσti (u

t
i+1)− Fσti (u

t
i), u

t
i+1 − u

〉
−
〈
Fσti−1

(uti)− Fσti−1
(uti−1), uti − u

〉
−
〈
Fσti−1

(uti)− Fσti−1
(uti−1), uti+1 − uti

〉
≤
〈
Fσti (u

t
i+1)− Fσti (u

t
i), u

t
i+1 − u

〉
(29)

−
〈
Fσti−1

(uti)− Fσti−1
(uti−1), uti − u

〉
+

1

2
` · ‖uti − uti−1‖22 +

1

2
` · ‖uti+1 − uti‖22.

Note that the final inequality follows by applying Young’s inequality, and noting that F is
`-Lipschitz. Next, we bound 〈Et

i,1, u
t
i+1 − u〉:

E
[
〈Et

i,1, u
t
i+1 − u〉

]
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=E
[〈
Fσti (u

t
i)− F̂σti (u

t
i, R

t, vti), u
t
i+1 − u

〉]
=E
[〈
Fσti (u

t
i)−∇LR

t

σti
(uti), u

t
i+1 − u

〉]
+ E

[〈
E
[
F̂σti (u

t
i;R

t, vti |uti
]
− F̂σti (u

t
i, R

t, vti), u
t
i+1 − u

〉]
=E
[〈
Fσti (u

t
i)−∇LR

t

σti
(uti), u

t
i+1 − u

〉]
(30)

+ E
[〈

Ev
[
F̂σti (u

t
i;R

t, v|uti
]
− F̂σti (u

t
i, R

t, vti), u
t
i − u

〉]
+ E

[〈
Ev
[
F̂σti (u

t
i;R

t, v|uti
]
− F̂σti (u

t
i, R

t, vti), u
t
i+1 − uti

〉]
,

where the first equality above follows by applying Proposition A.3, (10), and we have used
the shorthand Ev := Ev∼Unif(Sd−1). (Recall that LR(u) := Ev∼Unif(Sd−1)

[
L(u+Rv)

]
) Next,

we upper bound each of the three quantities in (30). First, by Proposition A.3, (11), we
have:

E
[〈
Fσti (u

t
i)−∇LR

t

σti
(uti), u

t
i+1 − u

〉]
≤E
[
‖Fσti (u

t
i)−∇LR

t

σti
(uti)‖2 · ‖uti+1 − u‖2

]
≤ `D ·Rt, (31)

with C1 > 0 as given in Lemma A.7. Meanwhile, the law of iterated expectations can be
used to bound the second quantity:

E
[〈

Ev
[
F̂σti (u

t
i;R

t, v)|uti
]
− F̂σti (u

t
i, R

t, vti), u
t
i − u

〉]
=E
[
Ev
[〈
F̂σti (u

t
i, R

t, vti), u
t
i − u

〉∣∣uti]]− E
[〈
F̂σti (u

t
i, R

t, vti), u
t
i − u

〉]
=0, (32)

and we can upper-bound the third quantity as shown below. By using the compactness of
X × Y and the continuity of L, we have:

E
[〈

Ev
[
F̂σti (u

t
i;R

t, v)|uti
]
− F̂σti (u

t
i, R

t, vti), u
t
i+1 − uti

〉]
≤
(∥∥Ev[F̂σti (uti;Rt, v)|uti

]∥∥
2

+ ‖F̂σti (u
t
i, R

t, vti)‖
)
· ‖uti+1 − uti‖2

≤2 · d
Rt
· sup

u∈X×Y
v∼Unif(Sd−1)

|L(uti +Rtv)| · ‖uti+1 − uti‖2,

≤2 · d
Rt
· (ML +RtG) · ‖uti+1 − uti‖2, (33)

and using (31) and the bound for each ‖F̂σti‖2 given in (33), we have:

‖uti+1 − uti‖2
≤ηt · ‖F̂σti (u

t
i;R

t, vti) + F̂σti−1
(uti;R

t, vti)− F̂σti−1
(uti−1;Rt, vti−1)‖

≤ηt · ‖Fσti (u
t
i) + Fσti−1

(uti)− Fσti−1
(uti−1)‖2

+ ηtd · ‖F̂σti (u
t
i;R

t, vti)− Fσti (u
t
i)‖2

+ ηtd · ‖F̂σti−1
(uti;R

t, vti)− Fσti−1
(uti)‖2

+ ηtd · ‖F̂σti−1
(uti−1;Rt, vti−1)− Fσti−1

(uti−1)‖2

≤3Gηt + 3ηtd ·

(
2(ML +GRt) · 1

Rt
+ `D ·Rt

)
. (34)
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Substituting (34) back into (33), we have:

E
[〈

Ev
[
F̂σti (u

t
i;R

t, v)|uti
]
− F̂σti (u

t
i, R

t, vti), u
t
i+1 − uti

〉]
≤d2`D6ηtG ·Rt + 6d2ηt(3G2 +ML`D) + 30d2ηtMLG ·

1

Rt
+ 12d2ηtM2

L ·
(

1

Rt

)2

≤C1 ·
(
ηtRt + ηt +

ηt

Rt
+

ηt

(Rt)2

)
, (35)

where C1 := d2 ·max
{

6G`D, 18G2 + 6ML`D, 30MLG, 12M2
L

}
is a constant independent

of the sequences {ηt} and {Rt}. The quantities E
[
〈Et

i,2, u
t
i+1 − u〉

]
and E

[
〈Et

i,3, u
t
i+1 − u〉

]
can be similarly bounded. Substituting (31), (32), (35) back into (30), and substituting
(30) and (29) into (28), we find that:

2ηt · E
[〈
Fσti (u

t
i+1), uti+1 − u

〉]
=E
[
‖uti − u‖22

]
− E

[
‖uti+1 − u‖22

]
− E

[
‖uti+1 − uti‖22

]
+ 2ηt · E

[〈
γti , u

t
i+1 − u

〉]
+ 2ηt ·

3∑
k=1

E
[〈
Eti,k, u

t
i+1 − u

〉]
≤E
[
‖uti − u‖22

]
− E

[
‖uti+1 − u‖22

]
− E

[
‖uti+1 − uti‖22

]
+ 2ηt · E

[〈
Fσti (u

t
i+1)− Fσti (u

t
i), u

t
i+1 − u

〉]
− 2ηt · E

[〈
Fσti−1

(uti)− Fσti−1
(uti−1), uti − u

〉]
+ ηt` · E

[
‖uti − uti−1‖22

]
+ ηt` · E

[
‖uti+1 − uti‖22

]
+ 6C1 ·

(
ηtRt + (ηt)2Rt + (ηt)2 +

(ηt)2

Rt
+

(ηt)2

(Rt)2

)
,

In particular, since by assumption ηt ≤ 1/(2`) for each t ∈ {0, 1, · · · , T − 1}, then:

2ηt · E
[〈
Fσti (u

t
i+1), uti+1 − u

〉]
≤E
[
‖uti − u‖22

]
− E

[
‖uti+1 − u‖22

]
− 1

2
E
[
‖uti+1 − uti‖22

]
+

1

2
E
[
‖uti − uti−1‖22

]
+ 2ηt · E

[〈
Fσti (u

t
i+1)− Fσti (u

t
i), u

t
i+1 − u

〉]
− 2ηt · E

[〈
Fσti−1

(uti)− Fσti−1
(uti−1), uti − u

〉]
+ 6C1 ·

(
ηtRt + (ηt)2Rt + (ηt)2 +

(ηt)2

Rt
+

(ηt)2

(Rt)2

)
,

Finally, to bound the step size terms above, we require the following lemma, which
follows from standard calculus arguments.

Lemma A.8.

T∑
t=1

t−β ≥ 1

1− β
T 1−β , ∀β < 1,

T∑
t=1

t−(1+β) ≤ 1

β
+ 1, ∀β > 0.
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A.2 Proof of Theorem 4.1

Proof. (Proof of Theorem 4.1) By applying Lemma A.7 (note that ηt ≤ η0 ≤ 1
2` , for

each t ∈ {0, 1, · · · , T − 1}) and using convex-concave nature of Lr (refer Proposition 1 in
[MOP20b]), for each r ∈ {1, · · ·n}, we have:

2ηt · E
[
Lσti (x

t
i+1, y

?)− Lσti (x
?, yti+1)

]
≤2ηt · E

[〈
Fσti (u

t
i+1), uti+1 − u?

〉]
≤E
[
‖uti − u?‖22

]
− E

[
‖uti+1 − u?‖22

]
− 1

2
E
[
‖uti+1 − uti‖22

]
+

1

2
E
[
‖uti − uti−1‖22

]
+ 2ηt · E

[〈
Fσti (u

t
i+1)− Fσti (u

t
i), u

t
i+1 − u?

〉]
− 2ηt · E

[〈
Fσti−1

(uti)− Fσti−1
(uti−1), uti − u?

〉]
+ 6C1 ·

(
ηtRt + (ηt)2Rt + (ηt)2 +

(ηt)2

Rt
+

(ηt)2

(Rt)2

)
. (36)

Meanwhile, Lemma A.5, Proposition A.4 (Kantorovich Duality), and Lemma A.6 imply
that: ∣∣∣E[∆(uti+1)]− E

[
Lσti (x

t
i+1, y

?)− Lσti (x
?, yti+1)

]∣∣∣ ≤ G

n

n∑
r=1

W2

(
Di+1,t,Dri+1,t

)
≤ G

n

n∑
r=1

√
E
[∥∥uti+1(σt)− uti+1(σ̃t)

∥∥2

2

]
≤ G ·

(
(6nd+ 14n+ 4)G · ηt + 6ndML ·

ηt

Rt

)
.

Substituting back into (36), we have:

2ηt · E
[
∆(uti)

]
≤2ηt · E

[
Lσti (x

t
i+1, y

?)− Lσti (x
?, yti+1)

]
+G ·

(
(12nd+ 28n+ 8)G · (ηt)2 + 12ndML ·

(ηt)2

Rt

)
≤E
[
‖uti − u?‖22

]
− E

[
‖uti+1 − u?‖22

]
− 1

2
E
[
‖uti+1 − uti‖22

]
+

1

2
E
[
‖uti − uti−1‖22

]
+ 2ηt · E

[〈
Fσti (u

t
i+1)− Fσti (u

t
i), u

t
i+1 − u

〉]
− 2ηt · E

[〈
Fσti−1

(uti)− Fσti−1
(uti−1), uti − u

〉]
+ 6C1 ·

(
ηtRt + (ηt)2Rt + (ηt)2 +

(ηt)2

Rt
+

(ηt)2

(Rt)2

)
+G ·

(
(12nd+ 28n+ 8)G · (ηt)2 + 12ndML ·

(ηt)2

Rt

)
. (37)

We can now sum the above telescoping terms across the t-th epoch, as shown below:

2 ·
n∑
i=1

ηt · E
[
∆(uti)

]
≤E
[
‖ut1 − u?‖22

]
− E

[
‖ut+1

1 − u?‖22
]

+
1

2
E
[
‖ut1 − ut0‖22

]
− 1

2
E
[
‖ut+1

1 − ut+1
0 ‖22

]
+ 2ηt · E

[〈
Fσt0(ut1)− Fσt0(ut0), ut1 − u?

〉]
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− 2ηt · E
[〈
Fσt+1

0
(ut+1

1 )− Fσt+1
0

(ut+1
0 ), ut+1

1 − u?
〉]

+ 6nC1 ·
(
ηtRt + (ηt)2Rt + (ηt)2 +

(ηt)2

Rt
+

(ηt)2

(Rt)2

)
+ nG ·

(
(12nd+ 28n+ 8)G · (ηt)2 + 12ndML ·

(ηt)2

Rt

)
.

Meanwhile, we have for each t = 0, 1, · · · , T − 1, i ∈ [n]:

E
[〈
Fσti (u

t
i+1)− Fσti (u

t
i), u

t
i+1 − u?

〉]
≤E
[∥∥Fσti (uti+1)− Fσti (u

t
i)
∥∥ · ∥∥uti+1 − u?

∥∥]
= ` · E

[
‖uti+1 − uti‖

]
·D

≤ `D · E
[∥∥− ηtF̂σti (uti;Rt, vti)− ηtF̂σti−1

(uti;R
t, vti) + ηtF̂σti−1

(uti−1;Rt, vti−1)
∥∥]

≤3`D · ηt ·

(
dG+

dML

Rt

)

=3`DdG · ηt + 3`DdML ·
ηt

Rt
,

where the final inequality follows from Proposition A.3, (12). We can upper bound
E
[〈
Fσti−1

(uti)− Fσti−1
(uti−1), uti − u

〉]
in a similar fashion. Substituting back into (37), we

have:

2 ·
n∑
i=1

ηt · E
[
∆(uti)

]
≤E
[
‖ut1 − u?‖22

]
− E

[
‖ut+1

1 − u?‖22
]

+
1

2
E
[
‖ut1 − ut0‖22

]
− 1

2
E
[
‖ut+1

1 − ut+1
0 ‖22

]
+ 6nC1 ·

(
ηtRt + (ηt)2Rt + (ηt)2 +

(ηt)2

Rt
+

(ηt)2

(Rt)2

)
+ nG ·

(
(12nd+ 28n+ 8)G · (ηt)2 + 12ndML ·

(ηt)2

Rt

)

+ 6`DdG · (ηt)2 + 6`DdML ·
(ηt)2

Rt

≤E
[
‖ut1 − u?‖22

]
− E

[
‖ut+1

1 − u?‖22
]

+
1

2
E
[
‖ut1 − ut0‖22

]
− 1

2
E
[
‖ut+1

1 − ut+1
0 ‖22

]
(38)

+ 2C ·
(
ηtRt + (ηt)2Rt + (ηt)2 +

(ηt)2

Rt
+

(ηt)2

(Rt)2

)
,

where C := max{3nC1, (6nd+ 14n+ 4)nG, 6ndML, 3`DdG, 3`DdML}.
Finally, summing the above telescoping terms over i ∈ [n] and t ∈ {0, 1, · · · , T − 1},

and removing non-positive terms, we obtain:∑T−1
t=0

∑n
i=1 η

t · E
[
∆(uti)

]∑T−1
t=0

∑n
i=1 η

t

≤ 1

2 ·
∑T−1

t=0

∑n
i=1 η

t

(
‖u0

0 − u?‖2 − E
[
‖uT−1

n − u?‖2
]

+
1

2
‖u0

1 − u0
0‖2 −

1

2
E
[
‖uT−1

n − uT−1
n−1‖2

])

+ C · 1∑T−1
t=0

∑n
i=1 η

t
·
T−1∑
t=0

(
ηtRt + (ηt)2Rt + (ηt)2 +

(ηt)2

Rt
+

(ηt)2

(Rt)2

)
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≤ 1∑T−1
t=0 ηt

· 3D

4n
+ C · 1

n
∑T−1

t=0 ηt
·
T−1∑
t=0

(
ηtRt + (ηt)2Rt + (ηt)2 +

(ηt)2

Rt
+

(ηt)2

(Rt)2

)
, (39)

By definition, ηt = η0 · (t+ 1)−3/4−χ and Rt = R0 · (t+ 1)−1/4, so by Lemma A.8, we have:

T−1∑
t=0

ηt = η0 ·
T∑
t=1

t−3/4−χ ≥ 4η0 · T 1/4−χ,

T−1∑
t=0

ηtRt = η0R0 ·
T∑
t=1

t−(1+χ) ≤ η0R0 ·

(
1 +

1

χ

)
,

T−1∑
t=0

(ηt)2 = (η0)2 ·
T∑
t=1

t−3/2−2χ ≤ (η0)2 ·

(
1 +

1
1
2 + 2χ

)
≤ 3 · (η0)2,

T−1∑
t=0

(ηt)2Rt = (η0)2R0 ·
T∑
t=1

t−7/4−2χ ≤ (η0)2R0 ·

(
1 +

1
3
4 + 2χ

)
≤ 7

4
· (η0)2ε0,

T−1∑
t=0

(ηt)2

Rt
=

(η0)2

R0
·
T∑
t=1

t−5/4−2χ ≤ (η0)2

R0
·

(
1 +

1
1
4 + 2χ

)
≤ 5 · (η0)2

ε0
,

T−1∑
t=0

(ηt)2

(Rt)2
=

(η0)2

(R0)2
·
T∑
t=1

t−1−2χ ≤ (η0)2

(R0)2
·

(
1 +

1

2χ

)
.

Substituting back into (39) and using the convexity of the gap function ∆(·), we have:

E
[
∆(uT )

]
≤
∑T−1

t=0

∑n
i=1 η

t · E
[
∆(uti)

]∑T−1
t=0

∑n
i=1 η

t

≤ 1∑T−1
t=0 ηt

· 3

4n
D + C · 1∑T−1

t=0 ηt
·
T−1∑
t=0

(
ηtRt + (ηt)2Rt + (ηt)2 +

(ηt)2

Rt
+

(ηt)2

(Rt)2

)

≤

(
3

16n
D +

47

4n
· C max

{
R0, η0, η0R0,

η0

R0
,
η0

(R0)2

}(
1 +

1

χ

))
T−1/4+χ

≤R.

where the final inequality follows by definition of T .
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B Wasserstein Distributionally Robust Strategic Classifica-
tion

B.1 Model of Adversary

In this subsection, we formally define our model for the adversary, and the uncertainty set
of distributions for the resulting strategically and adversarially perturbed data. For better
exposition, in this section we summarize the various distributions used in the main article
in Table 1 below.

Table 1: Table of notations

Notation Explanation
D Unknown underlying distribution
D(θ) Unknown underlying distribution strategically perturbed by θ
D̃n(θ) Empirical distribution of strategically perturbed data
P An element of uncertainty set P(θ)
Piθ Conditional distribution of adversarially generated data given ith data point

The WDRSL problem formulation contains two main components—the strategic compo-
nent that accounts for the distribution shift D(θ) in response to the choice of classifier θ, and
the adversarial component, which accounts for the uncertainty set P(θ). As per the modeling
assumptions put forth in Section 5.2, we have (x̃i, ỹi) ∼ D and (bi(θ, x̃i, ỹi), ỹi) ∼ D(θ) for
all i ∈ [n]. For the sake of brevity, we shall use bi(θ) in place of bi(θ, x̃i, ỹi) for all i ∈ [n].

As per the standard formulation of distributionally robust optimization, we restrict P(θ)
to be a Wasserstein neighborhood of D̃n(θ) (the empirical distribution of strategic responses
{(bi(θ), ỹi)}ni=1), i.e., we set P(θ) ⊂ Bδ(D̃n(θ)) for some δ > 0. However, to ensure that the
min-max problem reformulated from the WDRSC problem is convex-concave, we further
require the adversary to modify the label of an data point i in the empirical distribution only
when the true label ỹi is +1, although they are still always allowed to modify the feature
bi(θ). As a consequence, this imposes some restrictions on the conditional distribution Piθ
of (dx, y), as generated by the adversary, given a data point i in the empirical distribution.
In particular:

Piθ(dx,+1|bi(θ),−1) = 0, ∀ i ∈ [n].

By definition of conditional distributions, we obtain that any distribution P can be
expressed as the average of the conditional distribution Piθ. That is,

P(dx, y) =
1

n

n∑
i=1

Piθ(dx, y|bi(θ), ỹi).

Below, we formally state the restriction described above.

Assumption B.1. We assume that P ∈ Bδ(D̃n(θ)) and Piθ(dx,+1|bi(θ),−1) = 0 for all
i ∈ [n]. As a direct result, the uncertainty set P(θ) is characterized as:

P(θ) = Bδ(D̃n(θ)) ∩

{
1

n

n∑
i=1

Piθ(dx, y|bi(θ), ỹi)

∣∣∣∣∣Piθ(dx,+1|bi(θ),−1) = 0, ∀ i ∈ [n]

}
. (40)

In the following subsection, we reformulate the WDRSC problem with a generalized
linear model and with the uncertainty set defined in (40).
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B.2 Proof of Theorem 5.3

The proof takes inspirations from [SAEK15, Theorem 1]. First, we define the Wasserstein
distance between distributions on Z with cost function c; note that this is different from the
p-Wasserstein distance between probability distributions on Rd defined in Appendix A.1.

Definition B.1. (Wasserstein distance between distributions on Z with cost
Function c) Let µ, ν be probability distributions over Z := Rd × {+1,−1} with finite
second moments, and let Π(µ, ν) denote the set of all couplings (joint distributions) between
µ and ν. Given a metric c : Z × Z → [0,∞) on Z, we define:

Wc(µ, ν) = inf
(Z,Z′)∼π∈Π(µ,ν)

Eπ
[
c(Z,Z ′)

]
.

In Theorem 6 and in our proof below, we use the cost function c(z, z′) := ‖x− x′‖22 +
κ · |y − y′|, with a fixed constant κ > 0, for each z := (x, y) ∈ Z and z′ := (x′, y′) ∈ Z.

Proof. (Proof of Theorem 5.3) Fix a θ ∈ Θ. Note that bi(θ, x̃i,+1) = x̃i. For any
(x, y) ∈ Rd × {−1, 1}, let `((x, y), θ) := φ(〈x, θ〉) − y 〈x, θ〉. We first analyze the inner
supremum term, i.e.

sup
P∈P(θ)

EP[φ(〈x, θ〉)− y〈x, θ〉]

= sup
P∈P(θ)

∫
Z
`(z, θ)P(z)dz

=

 sup
πθ∈Π(P,D̃n(θ))

∫
Z `(z, θ)πθ(dz,Z)

s.t.
∫
Z×Z ‖z − z̃‖πθ(dz, dz̃) ≤ δ

Here, Π(P, D̃n(θ)) denotes the set of all joint distributions that couple P ∈ P(θ) and
D̃n(θ). Since the marginal distribution D̃n(θ) of z̃ is discrete, such couplings πθ are
completely determined by the conditional distribution Piθ of z given z̃i = (x̃i(θ), ỹi) for each
i ∈ {1, . . . , n}. That is:

πθ(dz, dz̃) =
1

n

∑
i∈[n]

ϑ(bi(θ),ỹi)(dz̃)Piθ(dz)

where for any (x, y) ∈ Z, ϑ(x,y) is a Dirac delta distribution with its support at point (x, y).
We introduce some notations. Let I+1 = {i ∈ [n] : ỹi = +1} and I−1 = {i ∈ [n] : ỹi =

−1}. Let’s introduce two distributions µiθ and νiθ such that

Piθ =

{
µiθ if i ∈ I+1

νiθ if i ∈ I−1

Due to the constraint (40), we have νiθ(dx,+1) = 0 at every x. This implies:

πθ(dz, dz̃) =
1

n

∑
i∈I+1

ϑ(bi(θ),1)(dz̃)µiθ(dz) +
∑
i∈I−1

ϑ(bi(θ),−1)(dz̃)νiθ(dz)


With a slight abuse of notation, we denote µiθ,+1(dx) = µiθ(dx,+1), µiθ,−1(dx) = µiθ(dx,−1)

and νiθ(dx) = νiθ(dx,−1). The optimization problem of concern then simplifies to:

sup
µiθ,±1,ν

i
θ

1

n

∑
i∈I+1

∫
Rd
`((x,+1), θ)µiθ,+1(dx) +

1

n

∑
i∈I+1

∫
Rd
`((x,−1), θ)µiθ,−1(dx)
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+
1

n

∑
i∈I−1

∫
Rd
`((x,−1), θ)νiθ(dx)

s.t.
1

n

∑
i:ỹi=+1

∫
Rd
‖(x,+1)− (bi(θ), ỹi)‖µiθ,+1(dx)

+
1

n

∑
i:ỹi=+1

∫
Rd
‖(x,−1)− (bi(θ), ỹi)‖µiθ,−1(dx)∫

Rd
µiθ,+1(dx) +

∫
Rd
µiθ,−1(dx) = 1, ∀ i ∈ I+1∫

Rd
νiθ(dx) = 1, ∀ i ∈ I−1

First, we rewrite the inequality constraint above as follows. Recall that:

2κ

n

∫
Rd

∑
i∈I+1

µiθ,−1(dx) +
1

n

∫
Rd

∑
i∈I+1

‖x− bi(θ)‖µiθ,+1(dx)

+
1

n

∫
Rd

∑
i∈I+1

‖x− bi(θ)‖µiθ,−1(dx) +
1

n

∫
Rd

∑
i∈I−1

‖x− bi(θ)‖νiθ(dx) ≤ δ.

Hence,

sup
µiθ,±1,ν

i
θ

1

n

∑
i∈I+1

∫
Rd
`((x,+1), θ)µiθ,+1(dx) +

1

n

∑
i∈I+1

∫
Rd
`((x,−1), θ)µiθ,−1(dx)

+
1

n

∑
ỹi=−1

∫
Rd
`((x,−1), θ)νiθ(dx)

s.t.
2κ

n

∫
Rd

∑
i∈I+1

µiθ,−1(dx) +
1

n

∫
Rd

∑
i∈I+1

‖x− bi(θ)‖µiθ,+1(dx)

+
1

n

∫
Rd

∑
i∈I+1

‖x− bi(θ)‖µiθ,−1(dx) +
1

n

∫
Rd

∑
i∈I−1

‖x− bi(θ)‖νiθ(dx) ≤ δ∫
Rd
µiθ,+1(dx) +

∫
Rd
µiθ,−1(dx) = 1, ∀ i ∈ I+1∫

Rd
νiθ(dx) = 1, ∀ i ∈ I−1

Now, we can use duality to reformulate the infinite-dimensional optimization problem
into a finite-dimensional problem:

sup
P∈P(θ)

EP[φ(〈x, θ〉)− y〈x, θ〉]

=



infα,si αδ + 1
n

∑
i∈I+1

si + 1
n

∑
i∈I−1

ti

s.t. supx `((x,+1), θ)− α · 1+ỹi
2 ‖x− bi(θ)‖ ≤ si ∀ i ∈ I+1

supx `((x,−1), θ)− α · 1+ỹi
2 ‖x− bi(θ)‖ − ακ(1 + ỹi) ≤ si ∀ i ∈ I+1

supx `((x,−1), θ)− α · 1−ỹi
2 ‖x− bi(θ)‖ ≤ ti ∀ i ∈ I−1

α ≥ 0

which is equivalent to:

sup
P∈P(θ)

EP[φ(〈x, θ〉)− y〈x, θ〉]
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=



infα,si αδ + 1
n

∑
i∈I+1

si + 1
n

∑
i∈I−1

ti

s.t. supx `((x,+1), θ)− α‖x− bi(θ)‖ ≤ si ∀ i ∈ I+1

supx `((x,−1), θ)− α‖x− bi(θ)‖ − 2ακ ≤ si ∀ i ∈ I+1

supx `((x,−1), θ)− α‖x− bi(θ)‖ ≤ ti ∀ i ∈ I−1

α ≥ 0

We now invoke [YLMJ21, Lemma A.1], which claims that for any ỹ ∈ {+1,−1} and x̃ ∈ Rd:

sup
x
`((x, ỹ), θ)− α‖x− x̃‖ =

{
`((x̃, ỹ), θ) if ‖θ‖ ≤ α/(L+ 1)

−∞ otherwise.

We now have:

sup
P∈P(θ)

EP[φ(〈x, θ〉)− y〈x, θ〉]

=



infα,si αδ + 1
n

∑
i∈I+1

si + 1
n

∑
i∈I−1

ti

s.t. `((bi(θ),+1), θ) ≤ si ∀ i ∈ I+1

`((bi(θ),−1), θ)− 2ακ ≤ si ∀ i ∈ I+1

`((bi(θ),−1), θ) ≤ ti ∀ i ∈ I−1

α ≥ 0

‖θ‖ ≤ α/(L+ 1)

In the above presented optimization problem we can conclude that:

ti = φ(〈bi(θ), θ〉) + 〈bi(θ), θ〉 ∀i ∈ I−1

si = max{`((bi(θ),+1), θ), `((bi(θ),−1), θ)− 2ακ} ∀i ∈ I+1.

To further simplify the si expression, note that:

si = max{φ(〈bi(θ), θ〉)− 〈bi(θ), θ〉 , φ(〈bi(θ), θ〉) + 〈bi(θ), θ〉 − 2ακ}
= φ(〈bi(θ), θ〉)− 〈bi(θ), θ〉+ max{0, 2 〈bi(θ), θ〉 − 2ακ}
= φ(〈bi(θ), θ〉)− ακ+ max

γi:|γi|≤1
γi (〈bi(θ), θ〉 − ακ) ,

so the overall objective can be written as:

sup
P∈P(θ)

EP[φ(〈x, θ〉)− y〈x, θ〉]

=


infα maxγ:‖γ‖∞≤1 α(δ − κ) + 1

n

∑
i

1+ỹi
2 (φ(〈bi(θ), θ〉) + γi (〈bi(θ), θ〉 − ακ))

+ 1
n

∑
i

1−ỹi
2 (φ(〈bi(θ), θ〉) + 〈bi(θ), θ〉)

s.t. ‖θ‖ ≤ α/(L+ 1)

We claim that the minimax objective above is convex is θ. There are mainly two cases
to analyze:

1. Case I (i ∈ I+1): We have bi(θ) = x̃i as per the strategic classification model.
Therefore 〈bi(θ), θ〉 is a linear function. For every γ, α, we claim that the mapping
θ 7→ φ(〈bi(θ), θ〉) + γi(〈bi(θ), θ〉 − ακ) is convex. Indeed, the assumption that φ is
convex and the observation that 〈bi(θ), θ〉 is affine in θ ensures the convexity.

2. Case II (i ∈ I−1): We know from Lemma 5.2 that 〈bi(θ), θ〉 is convex in θ. Moreover,
the convexity of φ and the assumption that z 7→ φ(z) + z is non-decreasing ensures
that φ(〈bi(θ), θ〉) + 〈bi(θ), θ〉 is convex for every i.

This concludes the proof.
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C Details on experimental study

Code used to reproduce the results in the main paper is available at https://drive.google.
com/drive/folders/1spuB3R6vEU2AqaXxAxeeXo9z5QMVdtdl?usp=sharing

C.1 Algorithms

In our experiments, we compare the OGDA-RR algorithm (Alg. 1) with three other zeroth-
order algorithms—Optimistic Gradient Descent Ascent with Sampling with Replacement
(OGDA-WR), Stochastic Gradient Descent Ascent with Random Reshuffling (SGDA-RR),
and Stochastic Gradient Descent Ascent with Sampling with Replacement (SGDA-WR)—
characterized by the update equations (42), (43), (44), respectively. For convenience, we
have reproduced (5), the update equation for the OGDA-RR algorithm (Algorithm 1), as
(41) below:

uti+1 = ProjX×Y

(
uti − ηtF̂σti (u

t
i;R

t, vti)− ηtF̂σti−1
(uti;R

t, vti) + ηtF̂σti−1
(uti−1;Rt, vti−1)

)
,

(41)

uti+1 = ProjX×Y

(
uti − ηtF̂jti (u

t
i;R

t, vti)− ηtF̂jti−1
(uti;R

t, vti) + ηtF̂jti−1
(uti−1;Rt, vti−1)

)
,

(42)

uti+1 = ProjX×Y

(
uti − ηtF̂σti (u

t
i;R

t, vti)
)
, (43)

uti+1 = ProjX×Y

(
uti − ηtF̂jti (u

t
i;R

t, vti)
)
, (44)

where the indices σti and j
t
i are as defined in Algorithms 2, 3, and 4.

Algorithm 2: OGDA-WR Algorithm

1 Input: stepsizes ηt, Rt, data points {(xi, yi)}ni=1 ∼ D, u
(0)
0 , time horizon duration

T ;
2 for t = 0, 1, · · · , T − 1 do
3 for i = 0, . . . , n− 1 do
4 Sample jti ∼ Unif({1, · · · , n})
5 Sample vti ∼ Unif(Sd−1)
6 uti+1 ← (42)
7 end
8 u

(t+1)
0 ← utn

9 u
(t+1)
−1 ← utn−1

10 end
11 Output: ũT := 1

n·
∑T−1
t=0 ηt

∑T−1
t=0

∑n
i=1 η

tuti.

C.2 Additional Experimental Results

In this section, we present more experimental findings, on both synthetic and real-world
datasets, that reinforces the utility of the proposed algorithm. In all experimental results
throughout this subsection, we take δ = 0.4, κ = 0.5 and ζ = 0.05.

C.2.1 Experimental Study On Synthetic Datasets

Figure 2 compares the performance of (A-I)-(A-IV) on a synthetic dataset (whose generating
process is the same as that described in Section 6), with 4000 training points and 800
test points. Our proposed algorithm performs better empirically compared to most of
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Algorithm 3: SGDA-RR Algorithm

1 Input: stepsizes ηt, Rt, data points {(xi, yi)}ni=1 ∼ D, u
(0)
0 , time horizon duration

T ;
2 for t = 0, 1, · · · , T − 1 do
3 for i = 0, . . . , n− 1 do
4 Sample jti ∼ Unif({1, · · · , n})
5 Sample vti ∼ Unif(Sd−1)
6 uti+1 ← (43)
7 end
8 u

(t+1)
0 ← utn

9 u
(t+1)
−1 ← utn−1

10 end
11 Output: ũT := 1

n·
∑T−1
t=0 ηt

∑T−1
t=0

∑n
i=1 η

tuti.

Algorithm 4: SGDA-WR Algorithm

1 Input: stepsizes ηt, Rt, data points {(xi, yi)}ni=1 ∼ D, u
(0)
0 , time horizon duration

T ;
2 for t = 0, 1, · · · , T − 1 do
3 σt = (σt1, · · · , σtn)← a random permutation of set [n];
4 for i = 0, . . . , n− 1 do
5 Sample vti ∼ Unif(Sd−1)
6 uti+1 ← (44)
7 end
8 u

(t+1)
0 ← utn

9 u
(t+1)
−1 ← utn−1

10 end
11 Output: ũT := 1

n·
∑T−1
t=0 ηt

∑T−1
t=0

∑n
i=1 η

tuti.
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Figure 2: Experimental results for a synthetic dataset with n = 4000. (Left pane))
Suboptimality iterates generated by the four algorithms (A-I), (A-II), (A-III), (A-IV),
respectively denoted as Z-OGDA w RR, Z-OGDA w/o RR, Z-SGDA w RR, Z-SGDA w/o
RR. (Right pane ) Comparison between decay in accuracy of strategic classification with
logistic regression (trained with ζ = 0.05) and Alg. (A-I) with changes in perturbation.

its counterparts. Moreover, the proposed classifier, (A-I), is significantly more robust
than a classifier obtained without considering adversarial perturbations. Note, however,
that we cannot make any conclusive claims yet, because of the inherent randomness in
these algorithms. Indeed, even if we fix the initialization, then there are two sources of
randomness—the construction of the zeroth-order gradient estimator, and the sampling
process that generates the data points.

To illustrate the variability in these algorithms’ performance, we run each algorithm
repeatedly on a data set with 500 synthetically generated data points, using the same
initialization, and present confidence interval plots with ±2 standard deviations for the
resulting performance (Figure 3). On average, our proposed algorithm (A-I) outperforms
the other algorithms (A-II)-(A-IV). It is also interesting to point out that the performance
of algorithms with random reshuffling is generally higher, and fluctuate less, compared to
the performance of algorithms without random reshuffling.

We now illustrate the performance of our algorithm on two real-world data sets—the
“GiveMeSomeCredit” dataset 3, and the “Porto Bank” data set4.

C.2.2 Experimental Study on Credit Dataset

In modern times, banks use machine learning to determine whether or not to finance a
customer. This process can be encoded into a classification framework, by using features
such as age, debt ratio, monthly income to classify a customer as either likely or unlikely to
default. However, those algorithms generally do not account for strategic or adversarial
behavior on the part of the agents.

To illustrate the effect of our algorithm on datasets of practical significance, we deploy
our algorithms on the “GiveMeSomeCredit”(GMSC) dataset, while assuming that the
underlying features are subject to strategic or adversarial perturbations. We use a subset
of the dataset of size 2000 with balanced labels. In Figure 4, we compare the empirical
performance of our algorithm (A-I) with that of (A-II)-(A-IV). The left pane shows that
(A-I) performs well, and the right pane illustrates that our classifier is significantly more
robust to adversarial perturbations in data, compared to the strategic classification-based

3This dataset can be found at https://www.kaggle.com/c/GiveMeSomeCredit
4This dataset can be found at https://archive.ics.uci.edu/ml/datasets/bank+marketing
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Figure 3: Experimental results for a synthetic dataset with n = 500. Suboptimality iterates
generated by the four algorithms (A-I), (A-II), (A-III), and (A-IV) are respectively denoted
as Z-OGDA w RR, Z-OGDA w/o RR, Z-SGDA w RR, and Z-SGDA w/o RR.

logistic regression algorithm developed recently in the literature [DRS+18].

C.2.3 Experimental Study on Porto-Bank Dataset

Next, we present empirical results obtained by applying our algorithm to the “Porto-Bank”
dataset, which describes marketing campaigns of term deposits at Portuguese financial
institutions. The classification task in this scenario aims to predict whether a customer
with given features (eg. age, job, marital status etc.) would enroll for term deposits.

In Figure 5, we present the performance of our proposed algorithm (A-I) on the Porto-
Bank dataset. For ease of illustration, we consider a subset of the dataset with 2000 training
data points, 800 test data points, and balanced labels. In Figure 5, we compare the empirical
performance of our algorithm (A-I) with that of (A-II)-(A-IV). The left pane shows that
(A-I) performs well, while the right pane illustrates that our classifier is significantly more
robust to adversarial perturbations in data, compared to the strategic classification-based
logistic regression developed recently in the literature [DRS+18].

C.2.4 Effect of n, d on sample complexity

In this part, we demonstrate the empirical results that corroborates the theoretical depen-
dence of sample complexity on n, d. For this purpose, we use synthetic dataset which is
generated as per the method described in Section 6.1. Here we work in the setting where
n ∈ {500, 1000, 1500, 2000} and d ∈ {10, 15, 20, 25}. We fix the suboptimality to ε = 0.1
and compute the number of samples required in each of the settings of n and d so that the
iterates reach the ε−suboptimality. We present the results in Figure 6.

C.3 Logistic regression as a Generalized linear model

The goal in logistic regression is to maximize the log-likelihood of the conditional probability
of y (the label) given x (the feature). In this model, it is assumed that:

P (Y = 1|x, θ) =
1

1 + exp(−〈x, θ〉)
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Figure 4: Experimental results for a balanced GiveMeSomeCredit dataset with n = 2000.
(Left pane) Suboptimality iterates generated by the four algorithms (A-I), (A-II), (A-III),
(A-IV), respectively denoted as Z-OGDA w RR, Z-OGDA w/o RR, Z-SGDA w RR, Z-SGDA
w/o RR. (Right pane) Comparison between decay in accuracy of strategic classification
with logistic regression (originally trained with ζ = 0.05) and Alg. (A-I) with changes in
perturbation.
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Figure 5: Experimental results for a balanced PortoBank dataset with n = 2000. (Left
pane) Suboptimality iterates generated by the four algorithms (A-I), (A-II), (A-III), (A-IV),
respectively denoted as Z-OGDA w RR, Z-OGDA w/o RR, Z-SGDA w RR, Z-SGDA
w/o RR. (Right pane) Comparison between decay in accuracy of strategic classification
with logistic regression (originally trained with ζ = 0.05) and Alg. (A-I) with change in
perturbation.
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Figure 6: Experimental results presenting the number of samples required to reach
ε−suboptimality, with ε = 0.1, for our algorithm (A-I) on synthetic dataset with varying
values of n ∈ {500, 1000, 1500, 2000} and d ∈ {10, 15, 20, 25}.

This implies that:

P (Y = −1|x, θ) =
exp(−〈x, θ〉)

1 + exp(−〈x, θ〉)
Given a data point (x, y) the logistic loss is log-likelihood of observing y given x. For

any θ and y ∈ {−1, 1}:

P (Y = y|x; θ) = (P (Y = 1|x, θ))
1+y
2 (P (Y = −1|x, θ))

1−y
2

Now, the log-likelihood is given by:

L(x, y; θ) = log(P (Y = y|x; θ))

=
1 + y

2
log

(
1

1 + exp(−〈x, θ〉)

)
+

1− y
2

log

(
exp(−〈x, θ〉)

1 + exp(−〈x, θ〉)

)
= −1− y

2
〈x, θ〉+

(
1 + y

2
+

1− y
2

)
log

(
1

1 + exp(−〈x, θ〉)

)
= −1− y

2
〈x, θ〉 − log(1 + exp(−〈x, θ〉))

=
y

2
〈x, θ〉 − 1

2
〈x, θ〉+ 〈x, θ〉 − log(1 + exp(〈x, θ〉))

=
y

2
〈x, θ〉+

1

2
〈x, θ〉 − log(1 + exp(〈x, θ〉))

The goal is to maximize the log likelihood, which is equivalent to minimizing the negative
log likelihood. Thus the logistic regression minimizes the following loss:

L̃(x, y; θ) = −L(x, y; θ) = −y
2
〈x, θ〉+ φ(〈x, θ〉)

where φ(β) = log(1 + exp(β))− β
2 . If y = 1, then the above loss becomes:

log(1 + exp(〈x, θ〉))− 〈x, θ〉 = log(1 + exp(−〈x, θ〉))

Otherwise, if y = −1, then the above loss becomes log(1 + exp(〈x, θ〉)). Thus, the above
loss is equivalent to log(1 + exp(−y 〈x, θ〉)).
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