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Abstract—Edge computing is a distributed computing
paradigm that moves data-intensive applications and services
(e.g., AI) closer to the data source. The rapid growth of edge
endpoints connected to the Internet today poses several challenges
in scalable application life cycle management. That is, managing
data and workloads on several thousand, up to millions of
edge endpoints, challenged by limited connectivity, resource
constraints, network and edge endpoint failures. In this work,
we present EdgeRDV, a new edge abstraction that builds on
the idea of rendezvous nodes to manage edge workloads at
scale. The EdgeRDV architecture is comprised of a central cloud
management endpoint (or cloud hub), a central gateway for each
edge site (or edge hub), redundant gateways (or rendezvous
nodes), and edge endpoints. Beyond its scalable architecture,
EdgeRDV presents new techniques and algorithms that address
single points of failures and provide adjustable levels of resilience
and cost-effectiveness in edge network deployments. We con-
ducted preliminary experiments to evaluate EdgeRDV, through
simulations, and our results show that EdgeRDV requires one to
three orders of magnitude fewer intermediate nodes compared
to relay structures, can gracefully adapt to failures, and requires
a constant number of messages during failure recovery in edge
sites with up to 667K+ edge endpoints.

Index Terms—edge computing, scalability, rendezvous, binary
trees, IoT.

I. INTRODUCTION

Edge computing is a distributed computing paradigm that
moves compute and storage away from centralized points.
In fact, edge computing distributes applications, data, and
services geographically closer to the edge endpoints that
consume these services. The roots of edge computing reach
back to the 1980’s when Prodigy [1], [2], [3], an early online
service, implemented content caching near the edge to provide
better and faster service for users. Content delivery networks
(CDNs) [4], [5] such as Akamai extended this concept to the
Internet to accelerate web performance and delivery of con-
tents. Edge computing generalizes and extends these concepts.

The rapid growth in the number of edge endpoints (e.g.,
computers, mobile devices, smart appliances, kubernetes (k8s)
clusters, and other Internet of Things (IoT) devices.) connected
to the edge of the Internet today has increased significantly
due to advances in AI, computing, and storage. Such rapid
growth has also accelerated the amount of data generated
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at the edge, for example: studies show that around 10%
of enterprise-generated data is created outside a traditional
centralized data center or cloud, and this figure will reach
75% by 2025 [6]. Additionally, the data generated from IoT-
connected edge endpoints is estimated to grow to 73.1 ZB by
2025 [7]. As the volume and velocity of data increases at the
edges, so too does the number of applications deployed at the
edge and the need to address some of the shortcomings of
cloud computing. For instance, it is expensive and inefficient
to transfer data generated at the edge to a cloud or data
center for processing. It is also expensive and inefficient to
transfer data back to the edge from the cloud or data center.
Moving data through and across boundaries in a network
topology (ingress, egress) consumes capacity and adds latency
to the transmission process. Furthermore, data processed in the
cloud lacks local contextual information, such as precise user
location, local network conditions, or information about users’
mobility behavior [8].

To address these challenges, advances in edge computing
are focused on collecting, processing, and enabling insightful
decisions, for a variety of industry use cases (e.g., manufac-
turing, remote exploration, smart homes, supply chains), at or
near where data is collected. When data is processed and ana-
lyzed at/near its collection point at the edge, communications
between the edge and the cloud is reduced to such things
as delivery of application and configurations, reporting, and
data summaries. Hence, data can be processed in a fast and
timely manner, while reducing network consumption, to meet
the requirements of modern applications (e.g., fast response
time, data privacy/sovereignty and security1, etc.).

To manage the life-cycle (e.g., deploy, update, and retire)
of edge applications and to bring value to the large amount
of data generated at the edge today, many edge applications
are deployed in a hub and spoke model (e.g., IBM MVI [9],
Open Horizon [10], etc.). The hub is the central control plane
for management of edge workloads deployed in a number of
spoke locations. A spoke is where data is generated or locally
aggregated for processing. A telecommunications access point,
an assembly line, or a retail branch are good examples of
places where spokes are deployed and operated. Deploying

1Analyzing data where it originates limits the risk of a security breach.
Edge computing also introduces other security challenges but its discussion
is out of the scope of this paper



and operating an application at the edge raises several chal-
lenges, including scalable application life cycle management.
Additional challenges are due, among other things, to limited
connectivity, network and edge endpoint failures, constrained
compute and storage resources. In particular, how can we
deploy and manage applications deployed in edge endpoints
across various locations, using a single control point or ‘single
pane of glass’? Further, how can we ensure timely application
status updates in the face of limited network bandwidth,
planned disconnections, and connection failures at the edge?
How can we handle the scale, diversity, and density of edge
endpoints in so many edge sites2? Managing at scale is
the key issue at the edge as the number of edge endpoints
located across a multitude of sites can reach several thousand
(e.g., quick service restaurant: McDonald’s drive-thru order
processing [11] and k8s edge clusters at Chick-fil-A [12]) up to
a 100K+ (e.g., number of vehicles in a software defined vehicle
network and total number of appliances, devices, and sensors
in smart factory across several sites in industry 4.0 [13], [14]).

To address this gap, several frameworks [15], [16], [17], [10]
have been proposed to mitigate some of the limitations as-
sociated with edge application lifecycle management. How-
ever, these methods have scalability limitations, some are
susceptible to single points of failure and/or require significant
bandwidth for edge application management. CDNs can be
used to deploy edge applications at scale but CDNs alone are
not optimal to minimize data transfer and network bandwidth
between cloud and edge as well as minimizing the response
time for application deployment. Furthermore, using CDNs
alone introduces other challenges, for example: how do we
efficiently propagate application status from edge to cloud?
(more discussion in Sect. IV).

To address these gaps, we present a new edge abstraction
that builds on the idea of rendezvous nodes. We demonstrate
that our approach (1) can be optimized to accommodate
different levels of fault tolerance and costs, (2) avoids single
points of failures through rendezvous node replication, and (3)
requires one to three orders of magnitude fewer intermediate
nodes and up to 11% fewer messages as compared with relay
structures, in networks of up to 667K+ edge endpoints.

The contributions of this paper are as follows:
• We propose EdgeRDV, a scalable architecture for edge

workload management comprised of a cloud-based man-
agement endpoint (cloud hub), a central controller for
each site (edge hub), redundant gateways for each edge
endpoint (rendezvous nodes), and edge endpoints.

• We conduct preliminary experiments to evaluate
EdgeRDV’s scale and resilience in edge sites up to
667K+ edge endpoints, and we show that our framework
can be optimized for cost and resilience.

• We discuss how techniques in EdgeRDV are broadly ap-
plicable to distributed edge settings, including scalable in-
frastructure bootstrapping, adjustable network resilience,
and efficient resource usage.

2A physical location with several edges nodes such as a manufacturing site

The remainder of the paper is organized as follows. Sec-
tion II discusses our framework and methodology. Section III
presents our experiments and discusses our experimental re-
sults. Section IV discusses the implications of our work.
Section V discusses related works. We conclude and discuss
future work in Section VI.

II. METHODOLOGY

In this section, we present our framework, capable of man-
aging workloads across thousands of edge sites and serving up
to a 100K+ edge endpoints. We achieve this by minimizing
bandwidth and avoiding single points of failure. Figure 1
shows the architecture of our framework. It comprises of
a cloud hub, an edge hub for each edge site, redundant
rendezvous nodes and edge endpoints3. Next, we describe
each of these architectural elements and their interactions in
more detail. We conclude this section by providing a detailed
discussion on the rendezvous node’s selection algorithm and
on the network bootstrapping process.

A. Architecture

1) Cloud Hub: the cloud hub serves as a central control and
management plane for multiple edge sites. It provides a global
view of the edge infrastructure. It is where site operators or
admins configure or push manifests, expressing desired state,
that include a list of objects that must be deployed to edge
endpoints at a target edge site. The cloud hub also collects ag-
gregated status from the objects running at all edge endpoints.
Hence, the cloud hub can effectively manage objects/states
of edge endpoints spread across hundreds/thousands of edge
sites by communicating with edge hub computing resources
deployed at every site.

2) Edge Hub: it is the control point for each edge site,
serving thousands of edge endpoints. The edge hub receives
metadata from the cloud hub to pull and cache appropriate
objects (e.g., AI model) from object stores. Importantly, the
caching reduces the overhead for the cloud hub because
edge endpoints at the lower layers of the architecture do not
communicate directly with it. While the edge hub provides
scalable operations at each edge site, it also represents a single
point of failure in case of network outages. We addressed
this limitation using redundant rendezvous nodes, which are
described next.

3) Rendezvous Nodes: (or RDV nodes for short), represent
a replicated buffer zone between the edge hub and edge end-
point. RDV nodes pull and cache objects from the edge hub.
Further, RDV nodes aggregate status for all edge endpoints
under their management. RDV nodes provide three benefits.
First, they reduce the communication overhead at the edge
endpoints by limiting edge endpoint-to-edge hub messages
during the network bootstrapping phase (see II-B3). Second,
they preserve valuable edge hub bandwidth by avoiding re-
layed requests for each edge endpoint to the cloud hub and/or
object store. Third, RDV node redundancy overcomes the

3Recall that, in this paper, we use the term “edge endpoint” to refer to an
edge computing node such as an edge cluster or edge devices such as cameras



Fig. 1. The EdgeRDV architecture: comprised of a cloud-based management endpoint (cloud hub), a central controller for each edge site
(edge hub), redundant gateways (rendezvous nodes), and edge endpoints - illustrating how a workload (an AI model as a use-case) is deployed
from the cloud to edge endpoints

single point of failure within an edge site (i.e., the edge hub).
To further improve resilience, we will investigate the trade-
offs of selecting a RDV node to become an edge hub via a
leader election algorithm in future work.

4) Edge Endpoints: The edge endpoints receive metadata
with updates from RDV nodes, apply the updates, and con-
tinuously report their state. Edge endpoints only report the
aggregate status of all the objects or workloads under their
management, therefore minimizing the state transported to the
cloud. Note that, in our framework, edge endpoints and RDV
nodes are located in the same network, and their communica-
tion modality represents one implementation of peer-to-peer
communication. In some scenarios an edge endpoint can also
function as a RDV node.

B. RDV Selection and Network Bootstrapping

As discussed above, the introduction of RDV nodes im-
proves the scale and resilience of our architecture. Edge
endpoints in an edge site only communicate with RDV nodes
to pull objects and report status. RDVs are assigned to nodes
during the network bootstrap process. However, as the number
of edge endpoints associated with an edge site increases, we
want to minimize the overhead of each RDV node and keep
the assignment of RDV nodes to edge endpoints balanced.
To minimize overhead we need to address the following
challenges: a) placement of RDV nodes in a network (II-B1);
b) selection and recommendation of RDV nodes for each

edge site (II-B2) and c) tractable and fault-tolerant assignment
of edge endpoints to RDV nodes (II-B3). In the following
discussion, we present our design and solutions to overcome
these challenges:

To assign RDV nodes to edge endpoints, we constructed a
virtual id (or VID) space using a Kademlia-like [18] virtual
binary tree during the network bootstrapping phase (similar
to the approach in [19]). In this tree, the edge endpoints
are represented by the leaf nodes and all the intermediary
nodes are logical nodes and candidates for RDV node selection
(different from the approach in [19]). In this virtual tree, the
VID of a node is the L-bit long binary string along the path
from the root to the corresponding node (see Fig. 2). Like
in [19], L denotes the number of bits used to represent the VID
space. Hence, the logical distance between a pair of nodes in
the VID space is L minus the length of the longest common
prefix for the pair. For example, suppose node A with VID
= 00000 and Node B with VID = 10000. Then the logical
distance(γ) between nodes A and B is 5 (L=5; γ = 5-0 = 5).

This VID space can also be used to embed the physical
connectivity or proximity between edge endpoints [19]: if two
edge endpoints are close in the VID space, then they are also
close in the physical topology. To build the VID space we
use the top-down and centralized algorithm proposed in [19].
This algorithm is suitable when the initial edge site or network
topology is known a priori. Next, we describe our methodology



to select RDV nodes, how we assign these nodes to edge
endpoints, and our network bootstrapping process.

1) RDV Node Placement: Recall RDV nodes are responsi-
ble for the delivery of objects and metadata to edge endpoints.
Hence, the right placement of RDV nodes is a prerequisite to
answer availability and fault tolerance questions in an edge
site. We considered two approaches (see Fig. 2) to find the
optimal minimum latency placement of RDV nodes at scale.

Let M denote the depth4 of VID space (i.e., edge endpoints
are leaf nodes located at depth M as discussed above). Let N
denote a depth in the VID space, where 1 <= N < M , and
S is the set of 2N bit strings that can be assigned to RDV
nodes. The first approach operates as follows. Suppose there
are at most D available nodes that can be assigned as RDV
nodes, where D < 2N . The first (or minimalist) approach
assigns the RDV nodes VIDs by using a constant X , where
X = (2N )

D , to choose eligible VIDs in S starting from index 0.
We call X an additive index. For example, in Figure 2, N = 3,
D = 3. Therefore, the additive index is 2 (i.e., 2

3

3 ), the indices
are (0, 2, 4), and the corresponding VIDs are illustrated in the
figure. Note that the minimalist approach prioritizes the cost5

of bootstrapping an edge network by mapping edge endpoints
constraints into the VID space.

In contrast, the second (or optimist) approach assigns RDV
node VIDs by choosing an arbitrary depth N where all VIDs in
S are eligible for assignment. For example, in Figure 2, N = 2.
Therefore, the network must have 4 (i.e., 22) RDV nodes. Note
that the optimist approach prioritizes resilience by mapping
as many VIDs from the VID space as possible, assuming no
edge endpoint constraints. By resilience, we mean keeping a
balanced load among all RDV nodes in case of a single RDV
failure.

To explore these two approaches, we conducted a theoret-
ical edge-endpoint-to-RDV-node assignments and RDV node
failure simulations. Specifically, by placing various quantities
of RDV nodes at different binary tree depths and reassigning
edge endpoints in a scenario where their primary RDV node
fails. Figure 3 demonstrates that, regardless of the tree depth,
the minimal approach skews the RDV-node-to-edge endpoint
redistribution (i.e., lower resilience) in case of a single RDV
node failure, in exchange for lower cost. On the other hand,
the optimist approach maintains network balance (i.e., higher
resilience) during redistribution while allowing a variable tree
depth to be chosen for the initial RDV node VID assignments
(i.e., variable cost). In other words, the optimist approach
maintains both cost and resilience flexibility. Therefore, the
RDV placement method used throughout this work relies on
the optimist approach.

2) RDV Node Selection and Recommendation: To support
100K+ edge endpoints, the number of RDV nodes must
scale gracefully with the number of edge endpoints while
maintaining desirable levels of resilience. To achieve that,
we developed an RDV node recommendation algorithm that

4The number of levels in the virtual binary tree
5Here we measure cost by number of RDV nodes required for an edge site

Distance Ranking RDV
3 1 00 ∗ ∗∗
4 2 01 ∗ ∗∗
5 3 10 ∗ ∗∗
5 4 11 ∗ ∗∗

TABLE I
EDGE ENDPOINT RDV RANKING TABLE - OPTIMIST APPROACH FOR RDV

VID ASSIGNMENT

takes into consideration cost and resilience trade-offs: given
an edge site’s desired number of associated edge endpoints
and a resilience level (expressed as a percentage of total edge
endpoints coverage per RDV node), algorithm 1 outputs the
following: 1) binary tree depth; 2) number of RDV nodes, and
3) RDV node level placement in the tree. Using this algorithm,
an edge site administrator can adjust the initial number of RDV
nodes to match a desired level of resilience and cost given an
edge network site.

Algorithm 1 RDV Recommendation Algorithm
def estimate rdv(total endpts, desired covg pct):

subtree endpts = total endpts / 2
max depth = get tree depth(total endpts)
starting depth = 1
rec node lvl = rec estimate rdv(subtree endpts, to-

tal endpts, starting depth, max depth, desired covg pct)
return max depth, pow(2, rec node lvl), rec node lvl

def rec estimate rdv(subtree endpts, total endpts, depth,
max depth, desired covg pct):

if depth == max depth then
return depth - 1

end if

coverage percent = (subtree endpts/total endpts) * 100
if coverage percent < desired covg pct then

return depth
end if

subtree endpts = subtree endpts / 2
depth += 1
return rec estimate rdv(subtree endpts, total endpts,

depth, max depth, desired covg pct)

3) Network Bootstrapping: We use a centralized approach
for edge endpoint ID-VID mapping and assume that all edge
endpoints in an edge site are on the same network. Then,
during network bootstrapping we map edge endpoint IDs to
VIDs of leaf nodes in our binary tree (recall that only the
leaf nodes in the tree represent edge endpoints). Thus, the
VID of an edge endpoint is the L-bit long binary string along
the path from the root to the corresponding leaf node. This
ID-to-IP mapping represents a routing layer that enables edge
endpoints’ communication with RDV nodes.

The network bootstrapping process is as follows: edge



Fig. 2. The minimalist and optimist approaches to RDV node placement in the vid space - the white nodes (vertices) and white boxes
represent the unused vid’s

Fig. 3. Simulation results for minimalist (left) and optimist (right) RDV node placement approaches

Algorithm 2 Binary Tree Depth Recommendation Algorithm
def get tree depth(total endpts):

tree depth = 1
current depth endpts = pow(2, tree depth)
while current depth endpts <= total endpts do

if current depth endpts == total endpts then
break

end if

tree depth += 1
current depth endpts = pow(2, tree depth)

end while
return tree depth

endpoints contact the edge hub to get their assigned VIDs
and the list of (pre-assigned) VIDs of RDV nodes. Next,

edge endpoints compute logical distances (γ) to each RDV
node [20] and build an RDV ranking table (see Table I). Then,
the edge point locates its ranking table and selects the “closest”
RDV node to register for receiving updates, pulling objects,
and reporting status. In this scheme, the edge hub maintains
the list of VIDs for all reachable RDV nodes in the network.

The above network bootstrapping process has the following
two advantages: a) the edge hub only needs to maintain the
ID/VID mapping for all assigned VIDs; b) the edge hub
offloads the RDV node ranking computation to the edge end-
points. Hence, the network bootstrapping can easily scale to
thousands of edge endpoints with minimal overhead attributed
to the edge hub.

III. ANALYSIS/EVALUATION

We have conducted several experiments to evaluate our pro-
posed framework. More specifically, as illustrated in Figure 4,



Fig. 4. Proxy representations of tree flavors

we compare our EdgeRDV method (i.e., log2 based tree) to
other relay-based methods (i.e., log10, log20 and log100 trees).
In this section, we describe three sets of experiments. In the
first experiment, we compared the number of intermediate
nodes for two tree flavors, and our methodology with various
RDV node coverage. In the second experiment, we analyze
failure adaptation by analyzing the number of messages re-
quired to update all edge endpoints during failure events. In the
third experiment, we analyze the number of messages required
to pull the latest configurations in a worst-case scenario (i.e.,
all edge endpoints previously lost the path to the cloud).

A. Experimental Setup

We have developed our customized, in-house simulator for
EdgeRDV to enable an extensive edge endpoint simulation on
large network topologies. We implemented the aforementioned
architecture elements of EdgeRDV as RESTful modules.
These modules can be readily deployed as containers on
a variety of physical devices or virtual machines. In our
experiments, we evaluate EdgeRDV by running its compo-
nents as container processes on the same host (Docker Linux
containers using the Ubuntu 20.04 base image). Note that we
analyzed scale up to 667,712 edge endpoints. For the RDV
node placement/selection/recommendation (II-B) analysis, un-
less otherwise noted, we used an RDV node coverage of 10%.

B. Minimizing Intermediate Nodes

In tree-based edge endpoint deployments, the intermediate
nodes form the middle layer responsible for transporting state
and workloads to/from root nodes to leaf nodes (edge end-
points) – see Fig. 4. The larger is the number of intermediate
nodes the higher is the number of single points of failure
and the deployment cost for the edge site infrastructure.
Therefore, minimizing the number of intermediate nodes is
crucial to minimizing cost and increasing scale for the edge
infrastructure.

In this experiment, we compared the number of intermediate
nodes for three tree flavors and our method with various RDV
node coverage (i.e., 10% and 20%). We used random sampling
to select buckets for edges sites, from 5,000 up to 1,000,000
edge endpoints per site. Figure 5 shows that, depending on the
chosen RDV node coverage, the RDV-based approach requires
one to three orders of magnitude fewer intermediate nodes.
Note that our method can adjust the number of intermediate
nodes (aka RDV nodes) depending on the desired coverage6

per edge site. Therefore, our method provides a parameter to
optimize the trade-off between maximizing the coverage per
RDV node and increasing the resilience of the infrastructure
associated with higher cost.

Required Intermediate Nodes By Tree Type
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te
rm
ed
ia
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Leaf Nodes

Fig. 5. A comparative analysis of intermediate nodes by tree type

6By coverage we mean the number of edge endpoints that an RDV node
can support



C. Adapting to Failures

Relay methods such as Azure IoT propagate messages to
edge endpoints in a relay fashion [21]. In this experiment, we
analyzed failure adaptation through the number of messages
required to update all edge endpoints of failure events (i.e.,
loss of connectivity at top layer nodes) in an RDV-based tree
(i.e., RDV detection) and a log10 tree (i.e., relay detection).
Figure 6 shows that, compared to a relay method, the RDV
method scales gracefully with the number of edge endpoints.
Specifically, the RDV method requires up to 11% fewer
messages depending on the number of edge endpoints. The
reduction in messages is related to the need for no more
than two hops for failure notifications to get propagated
to edge endpoints instead of n-hops7 found in other relay
methods such as Azure IoT. Furthermore, a failure signal at
the root node in a relay structure could be delayed if any of
the intermediate nodes, responsible for managing some edge
endpoints, have also failed. In contrast, edge endpoints in an
RDV-based network can rely on back-up RDV nodes (i.e., the
next highest ranked RDV node) in the case that their primary
RDV node fails.

Failure Detection Messages By Discovery Mode
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Fig. 6. Relay and RDV failure detection message costs

D. Configuration Updates

Loss of connectivity implies edge endpoints do not receive
timely updates from the cloud hub. Thus, after failure recovery,
edge endpoints must send messages to receive and apply the
latest configurations. Depending on the tree structure, this
failure recovery phase may challenge the available bandwidth
within a given edge site if all edge endpoints and intermediate
nodes access the cloud gateway (edge hub) at the same time. In
this experiment, we analyze the number of messages required
to pull the latest configurations in a worst-case scenario
whereby all edge endpoints previously lost their path to the
cloud. In particular, we conducted an experiment comparing
the per edge endpoint messages in an RDV-based tree (i.e.,

7n corresponds to the number of levels in the tree

RDV pull) and a log10 tree (i.e., relay pull). Figure 7 shows
that the RDV method scales constantly with an increasing
number of edge endpoints. This is because it takes no more
than two hops for an edge endpoint to request and receive
the latest configuration update(s). In contrast, the number of
update messages grows linearly with the number of layers in
a relay structure. Further, as a corollary, each intermediate
layer in a relay structure introduces an increasingly larger
flash crowd problem during configuration updates whereby
numerous edge endpoints access an intermediate node at the
same time.

Endpoint Packets By Recovery Mode
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Fig. 7. Relay and RDV failure recovery message costs

IV. DISCUSSION/IMPLICATIONS

Edge computing is intended to reduce network bandwidth
consumption by processing and acting on data as close
to its source as possible. Furthermore, it is imperative to
manage edge workloads despite node and network failures.
Our methodology demonstrates techniques of achieving these
goals across thousands of sites representing millions of edge
endpoints – state of the art methods only support thousands to
tens of thousands of edge endpoints [22], [23]. In this section,
we discuss the implications of this work on distributed edge
systems.

The architecture presented here is intended to scale to thou-
sands of edge sites, representing millions of edge endpoints,
by implementing efficient techniques across each edge site.
Figure 8 shows how we can horizontally scale our framework
to support one million edge endpoints deployed across several
edge sites with minimal overhead to the cloud management
plane (cloud hub). This is due to the number of connections
to the cloud hub only growing linearly with the number of
edge sites; independently of the number of edge endpoints per
edge site. Additionally, each site only downloads and caches
application manifests that are relevant to capability-specific
edge endpoints.

The practical challenges addressed by our methodology
(Section II-B) further cement the rendezvous method as a
general approach for exploring cost and resilience trade-offs
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Fig. 8. Horizontal scaling EdgeRDV across N edge sites to support one million plus edge endpoints with minimal overhead to the cloud hub

in network deployments. In particular, we showcase how the
rendezvous method is applicable for edge contexts where
the network structure is known a priori. Unlike other tree
structures, the binary tree presents properties that are easier
to represent and exploit. This includes network slicing at each
level to increase/decrease the resilience level by exactly 50%.

The core design principles that this work adheres to are:
increasing scalability, reducing bandwidth consumption, and
eliminating single points of failure. Our analysis indicates that
the proposed techniques result in requiring significantly fewer
intermediate nodes and dramatically reducing failure detec-
tion/recovery messages (Section III). In particular, these results
showcase how our techniques would scale at different points
in the application life cycle management workflow. That is,
initial infrastructure bootstrapping (by providing appropriate
resilience and cost adjustments), graceful failure detection (by
providing multiple detection paths), and low latency failure
recovery (by reducing intermediate layers). Further, the use of
logical distances implies an inversely proportional relationship
between edge endpoints and their assigned RDV nodes. This
means that the higher the logical distance between an edge
endpoint and an RDV node, the less impact a single RDV
node’s failure will have. A similar result is observed in [24].
Admittedly, this notion relies on latency between nodes, within
an edge site, remaining negligible (i.e., not reflected in the
logical distances). Note that a similar notion is difficult to
replicate in other relay structures such as Azure IoT [15].

Robustness is often defined as the ability of a network
to continue to function when it is subjected to failures. Our
proposed architecture is resilient to failure. In the scenario of
cloud hub failure, the edge hub will continue to deliver the
latest objects or metadata it received to edge endpoints via the
RDV nodes. In the case of failure of the edge hub, the RDV
nodes will continue to deliver objects and metadata to edge
endpoints. Lastly, the failure of a single RDV node does not
create any overhead, as edge endpoints can easily switch to
other replicas of the RDV nodes. Therefore, our architecture

provides multi-layer resilience to failure.
Furthermore, our proposed solution provides some advan-

tages over using CDN to deliver application workloads to con-
strained edge endpoints: a) minimize data transfer: in edge
computing, edge applications need to report status back to the
central hub to provide a global view of the edge infrastructure.
In our approach, RDV nodes collect and aggregate the status
from the edge endpoints, hence, minimize the amount of data
transferred over the network when compared with CDN –
where every edge endpoint would need to report a status back
directly to the cloud hub; b) fast response time: our approach
provides faster response time when compared to CDN - as
the edge endpoints pull objects or metadata from RDV nodes
located in the same network rather than from CDN edge
servers several hops away, or in other networks; c) network
bandwidth minimization: in our approach only a single edge
hub receives metadata from the cloud hub independent of
the number of edge endpoints associated with an edge site.
In contrast, with CDN, every edge endpoint will need to
pull content from the closest CDN edge server which may
overload the edge server as the number of edge endpoints
increase. Furthermore, the network bandwidth consumption
will be directly proportional to the number of edge endpoints
in an edge site. However, our solution can also be deployed
in conjunction with a CDN infrastructure to further improve
resilience; for example, a CDN can be used as the transport
layer between the cloud hub and the edge hub.

V. RELATED WORKS

A. Managing Edge Operations in Resource-Constrained En-
vironments

The challenge of managing data/workloads on resource-
constrained edge endpoints has been explored across different
contexts (e.g., community cellular networks [26], wildlife
tracking [27], drone image analytics [28]). We describe lessons
drawn from these other contexts to inform our methodology.
The authors in [26] tackled the challenge of scalably managing



Platform Module Management Cloud Comms Protocols Device-to-device Comms?

Azure IoT Edge [15] IoT Agent IoT Hub MQTT, AMQP No
Google IoT Core [17] IoT Core IoT Core MQTT, HTTP No
AWS IoT Core [16] IoT Core IoT Core MQTT, HTTPS, LORAWAN Yes
IBM EAM [25] Edge Agent Edge Service REST API No

TABLE II
CAPABILITY COMPARISON FOR INDUSTRIAL IOT PLATFORMS FROM MAJOR CLOUD PROVIDERS

independent cellular networks. Community cellular networks
(CCNs) are intended to be deployed for the people and run by
the people. That is, they offer phone services and applications
across multiple sites while still tapping into the resources such
as phone numbers from incumbent Mobile Network Opera-
tors (MNOS). The key approach in [26] involved operating
multiple CCNs under a single Community Cellular Manager
(CCM) controller, which in turn is managed by MNOs for
other aspects such as secure bootstrapping and resource usage
reports. Like CCM, we aim to operate each edge site as a
single entity that can deploy specific workloads and scale up
depending on the number of supported nodes (i.e., RDV nodes,
edge endpoints). Still, each edge site would be plugged into a
central control plane (i.e., edge hub and cloud hubs) spanning
multiple edge sites.

Another challenge in edge contexts is operating millions of
edge endpoints, at scale, with resource and network bandwidth
limitations. ZebraNet [27] is a classical example that involves
tracking wildlife migration patterns using battery-powered col-
lar tags on Zebras. One of the technical challenges addressed
in ZebraNet involves communication and data collection from
sporadically reachable and resource-constrained nodes. The
ZebraNet architecture relied on peer-to-peer data swaps to
retrieve data from unreachable nodes. That is, faced with
limited storage and network bandwidth, nodes prioritize con-
nections and data from more recently connected peers through
dynamic ranking during data swap phases. In this context, we
leverage a similar approach by ranking RDV nodes in terms
of logical distance from a given edge endpoint. This stands in
contrast to the “flood protocol” in ZebraNet where nodes waste
network resources by broadcasting or flooding data packets to
all nearby nodes.

B. Industrial IoT Management Platforms

Industrial IoT platforms are developed by major cloud
providers [15]–[17], [25]. The platforms are widely deployed
to support diverse use cases including transportation [17],
smart homes [16], manufacturing [15], [25], etc. While the
targeted use cases are different, they share the architectural
goal of deploying and managing workloads on edge endpoints
(Table II). Workload manifests (or metadata) are routinely de-
ployed to specific edge endpoints or groups of edge endpoints
based on labels or tags. We leverage a similar approach where
manifests can be sent to specific edge sites from the cloud
hub. We further extend this approach to each edge site. In other
words, edge hubs and RDV nodes may only download relevant

objects/workloads to reduce load on constrained storage and
CPU resources.

Each industrial IoT deployment typically accesses cloud
resources through a gateway or “top layer” node [21]. Thus,
“lower layer” edge endpoints rely on the gateway for out-
bound requests to the cloud. In most implementations, the
edge endpoints’ logical connections are pooled into a single
physical connection at the cloud-connected top layer node.
This reduces the bandwidth overhead on top layer nodes and
the cloud management endpoints. In our approach, a single
physical connection is established by each site’s edge hub
to the cloud hub to reduce load on the latter. Note that, for
existing platforms, the connection pooling is both a benefit
and a forcing function of the chosen upstream protocols such
as MQTT or AMQP [17], [29]. In contrast, we implement the
architectural elements using HTTP because the edge endpoints
do not communicate directly with the edge hub.

Industrial IoT workloads are deployed as “modules” or
“models” on the edge endpoints [15], [25]. Among the ma-
jor platforms, Azure IoT enables edge-endpoint-to-module
and module-to-module communication, which enables discon-
nected operations for situations when cloud connectivity is
temporarily lost [29]. Note that the platforms rarely enable
edge-endpoint-to-edge-endpoint communication, which could
reduce the number of edge endpoint requests to the cloud
through the top layer node. Granted, AWS IoT is capable
of edge-endpoint-to-edge-endpoint communication through a
publish/subscribe (pub/sub) interface [30]. The pub/sub is
brokered through its IoT Core (i.e., top layer) node. This
approach faces two limitations. First, the pub/sub interface
becomes a bottleneck as the number of edge endpoints grows.
Secondly, although it serves as an important channel for edge-
endpoint-to-edge-endpoint messages, the broker represents a
single point of failure during disconnected operations. In con-
trast, our approach optionally distinguishes the capacities of
edge endpoints and RDV nodes, which enables edge-endpoint-
to-edge-endpoint communication with built-in redundancy to
the top layer node.

As described above, industrial IoT networks operate with
‘top layer’ (or ‘parent’) and ‘lower layer’ (or ‘child’) edge
endpoints [31], in line with the ANSI/ISA-95 standard [32].
This alludes to tree-like network structures. However, a layered
tree structure, with necessary intermediate “parent” nodes,
may not scale efficiently because the number of intermediate
nodes grows linearly with the number of edge endpoints. In
fact, Azure IoT recommends not scaling a network beyond five
levels and no more than 100 edge endpoints per IoT node [22].



In contrast, we present an architecture whose number of
intermediate nodes grows by a logarithmic factor with the
number of edge endpoints to be supported. In fact, the number
of intermediate nodes can be adjusted to a desired level of
resilience for an arbitrary number of edge endpoints.

C. Content Delivery Networks (CDNs)

CDNs are the result of significant efforts in exploring
content delivery at scale [4], [5]. CDN advances and opti-
mizations are motivated by major challenges inherent to the
Internet’s original design and evolution such as inefficient rout-
ing protocols, requirements for increased scale, and unreliable
networks. [5]. The overarching goal of CDNs is to reduce
the number and latency of round-trip times (RTTs) between
content origin servers and “edge” servers. We draw many
lessons from decades of CDN experience in our architecture.

The original Akamai CDN aimed to solve the flash crowd
problem, “in which request load overwhelms some aspect of
the site’s infrastructure, such as the front-end web server, net-
work equipment, or allocated bandwidth” [4, p. 50]. Akamai
devised a system to serve content from a variable number
of servers closer to the network edge. We draw an analogy
whereby thousands of edge endpoints simultaneously access
cloud resources with requests. State-of-the-art IoT platforms
have resolved this issue by bundling ‘logical’ edge endpoint
connections into a single physical cloud connection [29].
However, as a network scales to millions of edge endpoints
across thousands of edge sites, this multiplexing effect still
embodies the flash crowd problem and a single point of
failure, especially in edge sites with a single cloud gateway.
Like CDNs, we avoid network overload by redirecting edge
endpoint requests to redundant, and potentially more powerful,
nodes (the equivalent of CDN edge servers). Going beyond the
CDN approach, within each edge site, we present a layered
architecture with a parameter to control the desired level of
resilience to spikes and failures through multiple, ranked RDV
nodes representing each edge endpoint.

CDN edge servers evolved from challenges related to host-
ing content to offering computation for running workloads
closer to the end user [5]. Like CDNs, our goal is to reli-
ably deliver state/workloads from model stores to potentially
thousands of sites/servers. Additionally, we assume a level of
control over the edge endpoints and networks where the work-
loads run. Here, we provide even more granular redundancy
and lower latency at each site through RDV node replication.
Similar to CDNs, our proposed methodology reduces the
number of RTTs between the end users (i.e., edge endpoints)
and origin servers (i.e., model stores) through effective, multi-
level caching at the edge hubs and RDV nodes.

Another important component of CDNs is the mapping
system that associates user requests to the closest live edge
server [5]. The mapping system relies on a detailed view
of the CDN network - enabled by granular monitoring of
RTTs between CDN overlay networks, edge servers, and the
broader Internet. In other words, the edge servers provide an
important view into their loads, download times, and other

metrics. Thus, the mapping system operates a fail-over system
in case the closest edge server to a user is no longer available.
Note that a mapping system requires a significant amount
of network traffic for sustainable operations. In contrast to a
mapping system, we move the fail-over mechanism to the edge
endpoints. Specifically, the edge endpoints are individually
tasked with ranking backup RDV nodes in case their primary
RDV node fails.

VI. CONCLUSION

Edge computing is intended to reduce network latency
by bringing applications as close to their data source(s) as
possible - away from centralized cloud data centers. Man-
aging application lifecycles across thousands of edge sites,
supporting hundreds of thousands to millions of edge end-
points, poses many challenges –including disconnected op-
erations, edge endpoint failures, etc. Existing hub-and-spoke
frameworks attempt to address these shortcomings. However,
these frameworks have scalability limitations and are still
subject to single points of failure and significant network
bandwidth consumption. To bridge this gap, we presented an
alternative framework, EdgeRDV, that builds on the idea of
RDV nodes. EdgeRDV is a scalable architecture comprised
of a cloud-based management endpoint (cloud hub), a central
controller for each edge site (edge hub), redundant gateways
(RDV nodes), and edge endpoints. Our EdgeRDV method-
ology presents novel techniques and algorithms to optimize
infrastructure costs and resilience settings.

Through simulations, we conducted preliminary experi-
ments to evaluate EdgeRDV’s scale and resilience in edges
sites up to a 667K+ edge endpoints. Our experiments demon-
strate that EdgeRDV requires one to three orders of magnitude
fewer intermediate nodes, can adapt to failures with up to 11%
fewer network messages compared to relay structures, and
avoids the flash crowd problem in application configuration
updates during failure recovery. We discuss how the techniques
employed by EdgeRDV are broadly applicable to distributed
edge settings, including scalable infrastructure bootstrapping,
adjustable network resilience, and efficient resource usage. As
a future work, we plan to implement EdgeRDV in hardware
and showcase its benefits in terms of scalability, network
bandwidth, data transfer, and RTT optimization.
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