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Abstract. We propose a novel machine learning-based approach for ac-
celerating the broad phase of 3D collision detection for deformable ob-
jects. Our method, which we call the neural bounded deformation tree
(NBD-Tree), allows us to cull away primitives for full-space deformable
objects quickly. Unlike its classic, non-neural counterpart, the NBD-Tree
is not limited to deformable objects that are constrained to work within
the space of low-dimensional deformation modes, and instead works with
an arbitrary set of deformations. With our approach, when the shape of
the object changes at runtime, we use the low-dimensional deformation
modes of the object only as the input to a neural network that calculates
the necessary updates to the NBD-Tree. To further improve efficiency,
we approximate these low-dimensional modes efficiently through cluster-
ing, which allows us to avoid going through every vertex of the mesh.
We then rely on the network to overcome the potential errors stemming
from these approximations. The NBD-Tree paves the way for interactive
collision culling of large-scale, full-space deformable objects.

Keywords: Collision Detection - Neural Network - Broad Phase - Bound-
ing Volume Hierarchy - Sphere Tree

Fig.1: The Neural Bounded Deformation Tree allows us to quickly compute a
sphere tree for full-space deformable objects.
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1 Introduction

3D collision detection is an important component of various applications in such
fields as computer graphics, computer vision, and robotics, but an efficient ap-
proach for deformable objects remains a challenge [22]. In most applications, the
collision detection pipeline is usually divided into two parts: the broad-phase to
quickly cull away primitives that are far from being in contact, and the narrow-
phase to go through the remaining primitives to compute the actual collisions
[4]. In this paper, we focus on broad-phase collision detection. In particular, we
work with a sphere tree, which is one of the most commonly-used techniques for
broad-phase collision detection. With a sphere tree, we surround the 3D object
with a hierarchical set of spheres. If the root sphere of a 3D object, which con-
tains all of the primitives of the 3D object, does not intersect the root sphere of
another 3D object, then we know that the two 3D objects are not intersecting;
otherwise, we recursively check the children spheres of the two sphere trees.

For objects that are constrained to deform linearly based on a set of modes
[21], the classic bounded deformation Tree algorithm (BD-Tree) is still arguably
the best choice for the broad-phase [9]. The BD-Tree algorithm starts with a
sphere tree built from the rest pose of the deformable object, and then during
runtime, it updates the sphere centers and radii in time linear in the number
of modes, regardless of the number of vertices/triangles in the mesh. In some
situations, however, using the full space, as opposed to the linear modes, of de-
formations is desired or necessary, especially when hard constraints are present,
as they can cause locking with reduced deformations.

Unfortunately, BD-Trees cannot be used for full-space deformations, since its
update equations depend on the linearity of the deformations—large full-space
deformations cause BD-Tree bounds to be extremely conservative. Therefore,
we propose the neural bounded deformation tree (NBD-Tree), which uses neu-
ral networks to update the sphere tree for full-space deformable objects. At
runtime, we compute the low-dimensional modes of the deformation, which are
passed through a network to compute the corrections to be applied to the rest
pose sphere tree. We use a small multi-layer perceptron (MLP) for each sphere
of the tree, making the network evaluation very fast. However, the process of
computing the low-dimensional modes can then become a bottleneck for a large
mesh because: first, we need to compute the rigid alignment of the mesh to
go to the local transformed space of the trained network, and then we need to
perform a matrix-vector multiplication between the modal matrix and the trans-
formed vertices to compute the low-dimensional modes. Unfortunately, both of
these operations are linear, requiring us to go through every vertex of the mesh.
Therefore, we compute the rigid alignment and the matrix-vector multiplication
via a clustering approach to quickly compute the approximate low-dimensional
mode, and then rely on the network to overcome the potential errors stemming
from the approximations. This allows us to compute the modes quickly, thereby
making the whole pipeline highly efficient.
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Fig. 2: Even at a mild deformation (b) from the rest pose (a), a standard BD-Tree
is vastly overly conservative when using a small number of modes of deformation.

2 Related Work

3D collision detection has been an active area of research in many fields includ-
ing graphics, robotics, and vision, with several survey papers spanning multiple
decades [8, 11, 22]. We refer the reader to these excellent surveys for an overview
of various techniques. One of the most popular approaches for deformable objects
collisions is a bounding volume hierarchy (BVH). If the modes of deformation
are known a priori, then the individual bounding volumes in a BVH can be up-
dated very efficiently [9]. However, as mentioned in the introduction, these fast
updates do not work on full-space models. Image-based methods work well with
deformable objects and naturally run on the GPU [5, 23], but these methods can-
not be readily incorporated into other simulation frameworks. Another approach
is to deform a signed distance field (SDF) based on the object’s mesh [6, 12, 13].
However, with these methods, a BVH is still required to find the region or the
cell that contains the query point. Deformed SDF's have also been used for de-
formed sphere tracing and simple collision detection [20], but such methods have
limited applicability to general collision detection because they cannot evaluate
the underlying implicit surface at an arbitrary point in deformed space.
Recently, approaches based on neural fields have become extremely popular
[24]. Of these, implicit shape representation through occupancy or signed dis-
tance fields are highly relevant to collision detection. Park et al. [16] showed that,
with their Coded Shape DeepSDF approach, they can build a highly effective
implicit representation of non-rigid 3D geometry. Concurrent work by Mescheder
et al. [14] and Chen and Zhang [2] used neural networks for occupancy fields.
All of these works use neural approaches for various visual applications, such as
shape completion, interpolation, and 3D reconstruction. There are also neural
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approaches that are specialized for articulated characters [1, 3, 19], including im-
plicit collision handling with posed characters. Our work is orthogonal to these
approaches, focused on general volumetric collision handling.

In the BD-Tree algorithm [9], which we base our work upon, a sphere tree
for a deformable model is updated based on its current reduced space deforma-
tion. A rest-pose sphere tree is precomputed using a wrapped hierarchy, in which
each sphere contains the enclosed geometry of its children, but not necessarily
the bounding spheres of its children. At runtime, a sphere tree node has its cen-
ter and radius updated using precomputed quantities derived from the model’s
displacement field and the current set of reduced space coordinates. This method
is output-sensitive in that a sphere has its center and radius updated only if its
parent sphere is in collision, reducing the number of computations needed. A
central drawback of this method, however, is that large deformations and defor-
mations not captured in the reduced space have very conservative bounds, as
seen in Fig. 2.

3 NBD-Tree Algorithm

3.1 BD-Tree Overview

With a standard sphere tree, whenever the 3D object changes its shape, the
sphere centers and radii are updated by checking all the primitives of the 3D
object. If we constrain the deformation to only linear modes, we can instead use
the Bounded Deformation Tree (BD-Tree) algorithm [9]. This work is based upon
the fact that a deformed model z € R3" which has rest pose X € R3" can be
approximated as ¢ = X +Ugq, where U € R3"*™ is the model’s displacement field
and ¢ € R™ is a vector of reduced space coordinates (i.e., linear modes) for the
current deformation. In the BD-Tree, each node of a sphere tree can be updated
to the model’s current deformation independently by using precomputed values
for that model along with the linear modes for the current deformation. In
particular, a sphere’s center and radius are updated as ¢ = ¢+ Uq and v’ =
r + ArTabs(q), where U and Ar are precomputed matrices derived from U.
The updated spheres computed via these matrices are guaranteed to contain
the deformed model, but if deformations are not well approximated by U, BD-
Tree bounds become extremely conservative. In our method, we address these
overly conservative bounds by using a learning based approach, which we call
the Neural Bounded Deformation Tree (NBD-Tree).

3.2 NBD-Tree Overview

An overview of the online portion of the NBD-Tree pipeline of is shown in Fig. 3a.
At every frame of the simulation, given the current vertex positions x, our goal
is to update the predicted (binary) sphere tree S,. (We use a bar above S to
indicate that this is the predicted quantity computed by evaluating the network.)
This is done through a sequence of steps, including rigid alignment (§), code
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Fig. 3: Training and online pipelines. C:reen boxes are the quantities precomputed

in the preprocessing pipeline, shown in Fig. 4. Red arrows imply that a subset of
the quantity is used to generate a reduced quantity. In the online pipeline, the
portion inside the dashed blue rectangle is performed once for the entire tree,
whereas the other portions are evaluated multiple times to update the spheres
as necessary.

generation (%), and network evaluations. (We use the hat notation to indicate
quantities that result from clustering, which we describe later.) The output of the
network is a correction AS to be applied to Sx, the sphere tree created during
the preprocessing stage with the rest pose vertex positions X, shown in Fig. 4.
We follow the original BD-Tree approach of using a wrapped, instead of layered,
hierarchy [7, 9]. Like the BD-Tree algorithm, our method is output-sensitive in
that we update the sphere tree nodes only if necessary. For instance, if the top-
level sphere does not return a collision, we do not update any of the descendant
spheres. In Fig. 3a, this is indicated by the dotted rectangle in dark blue. The
portion of the pipeline within this rectangle is performed once for the entire tree,
whereas the remaining portions are evaluated for a sphere if its parent sphere
reported a collision.
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Fig. 4: Preprocessing pipeline. The red arrow implies that a subset of rows of U
is used to generate the reduced modal matrix U.

To compute the predicted corrections, we use a neural network trained for
each sphere. The data generation pipeline for training is shown in Fig. 3b. We
take a set of training poses x, and, following a series of steps described in more
detail below, we generate the code Z and the corresponding sphere corrections
AS. This mapping between Z and AS is learned by the network and is used in
the online pipeline.

In the rest of this section, we describe these steps in more detail.

3.3 Rigid Alignment

The first step in both the training and online pipelines (Fig. 3) is to rigidly align
the current vertex positions x to best match the rest vertex positions X. We will
first consider the exact rigid transform E € SE(3) in Fig. 3b, ignoring the red
arrows and the approximate rigid transform FE e SE(3), which we will describe
shortly. Given a training pose x, we compute the rigid transform F using the
method described by Miiller et al. [15]. This rigid transform then allows us to
compute the aligned vertex positions:

y = Ex. (1)

Using these aligned vertices, we construct the exact spheres S, in the local
aligned space. Using the local space is helpful for training the network, since
then the network would not need to learn the rigid transforms.

For a large mesh, computing the best rigid transform can become a bottle-
neck, since we must go through every vertex of the mesh. We therefore use a
pre-selected subset of vertices to efficiently compute the approximate rigid trans-
form F. (In Figs. 3 and 4, we indicate all of the steps that use the pre-selected
subset with red arrows. All the arrows share the same subset.) We then use the
same subset of vertices from z to form & and transform them by E:

j = E#. (2)

In the next subsection, we discuss how we choose this subset of vertices.

3.4 Clustered Modes

Along with the rest sphere tree Sx, we construct the modal matrix U in the
preprocessing stage (Fig. 4). This matrix can be constructed in a number of
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ways, as described by Sifakis and Barbic [21], but in our implementation, we use
linear modes based on the mass and stiffness matrices of the volumetric object
[18]. The modal basis matrix U, regardless of how it was constructed, is a tall
and skinny matrix; if there are n vertices, then U is a 3n X m matrix, where
m < n. (In our implementation, we use m = 128 columns.) We can use U to
transform from the (aligned) full space y to the modal space z:

2=U"(y - X). (3)

Unfortunately, these operations again require us to iterate over all of the vertices.

Therefore, as a preprocessing step, we cluster the rows of U to form a clus-
tered modal matrix U (red arrow in Fig. 4). First, we reshape U so that a single
row corresponds to a 3D vertex, rather than a single coordinate, which makes U
be n x 3m. We then cluster the rows of this reshaped U via k-means using the
standard L? metric. After clustering, we find the representative vertex in each
cluster that is closest to each centroid. The indices of these k representative ver-
tices become the pre-selected subset for efliciently computing the rigid alignment
and the modes. Taking the rows corresponding to these k vertices and reshaping,
we form the 3k x m matrix U. To compute the clustered modal space vector Z,
we apply a per-cluster weight before multiplying by Ut

=UTwo (- X), (4)

where w is a weight vector composed of the number of elements in each cluster,
and ® denotes a component-wise multiplication between two vectors.

Since the result of k-means depends on initialization, we run the clustering
algorithm multiple times and choose the result that gives the smallest average
L? distance between z and 2 across all training poses. The inevitable error that
comes from the clustered alignment and modes will be remedied by the network,
which we describe next.

3.5 Training

The training poses are generated by running an FEM simulation of the volu-
metric object with various initial and dynamic conditions. As shown in Fig. 3b,
for each pose x, we compute the full space rigid alignment y, the clustered rigid
alignment ¢, and the code 2 as described in §3.3 and §3.4. For each tree node, we
compute the target bounding sphere S, = {¢,,r,} around y, where the sphere
is defined by its center ¢, and radius r,. We then subtract the rest sphere Sx
from S to compute the corrections AS:

Ac=cy—cx, Ar=ry—rx. (5)

Our neural network will learn a mapping from the clustered modal codes to
the sphere corrections: 2 — (Ac, Ar). This allows us to quickly reconstruct the
sphere without having to visit every vertex of the mesh.

As a preprocessing step, we normalize the range of Z, Ac, and Ar to +1
element-wise. For each tree node, we train a small MLP. Each MLP uses two
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Table 1: Meshes used for our experiments.

Mesh ‘# Nodes‘# Faces‘# train‘# test
Bunny 5988 6244 10k| 2.7k
ARMA 10518 16204 10k 2k

ARMAHD 32410| 64816 6k 1k
ARMAUHD| 129634| 259264 850 100

fully connected layers with 32 neurons and ReLU activation functions between
layers. We use a simple L? loss as our loss function. We train all networks in
parallel as a single model, and extract the weights and biases for each tree node
as a post-processing step.

3.6 Runtime

The runtime pipeline (Fig. 3a) has two stages: code computation and sphere
updates. In each timestep, we first compute the code Z as described in §3.3 and
83.4. Next, we recursively update, starting from the root node. Each node’s two
children are updated only if the node is itself in collision. Finally, if a leaf node
is found to be in collision, it passes its stored list of triangles back to be handled
by a narrow phase collision detector.

The update procedure is the same for all spheres. We first normalize 2
component-wise and pass it through the network for the sphere. The output
of the network is then unnormalized component-wise, which gives us the pre-
dicted corrections AS = {A¢, A7}. These predicted corrections are applied to
the rest sphere Sy = {cx,7x} to compute the predicted sphere S, in the local
aligned space:

¢y =cx +Ac, Ty =rx+ AT (6)

Finally, this sphere is transformed via E to give us the world space sphere S,.

4 Results

All networks in our pipeline were trained in PyTorch [17] on dual Titan-RTX
graphics cards. We use the Adam optimizer with a learning rate of 5 x 1073
with plateau decay [10]. We found that lower batch sizes yield better results,
and used a batch size of 128. All networks are trained to convergence. For each
tree node, we use an MLP with 2 hidden layers and 32 neurons per layer. We
found the benefits of any network larger than this size to be marginal. For all our
experiments, we use 128 linear modes, and in our modal clustering, we use 512
cluster points. All of our online code is written in C++ with Eigen, including
MLP evaluations. We test our method on four meshes, as listed in Table 1.

All networks for a tree are trained in parallel with an L? loss. We experi-
mented with other loss functions, including a loss which highly penalized when
predictions do not contain the ground truth nodes. In practice, we found that



NBD-Tree 9

7 _
——Qurs Total
6 H*Ours Update
-# Qurs Collision
5 [|{—e—Exact Total P
% ||[o-ExactUpdate | 7
€ 4 ||-o Exact Collision| =
q) ““““
E3 -
S
2 L
1 L
0
0

Fig. 5: Comparison of performance between Our method and Exact sphere trees.
Total: the amount of time it takes to run the online pipeline for two colliding
objects. Update: the amount of time to compute the code by our methods or to
update the spheres by the exact. Collision: the amount of time spent computing
sphere-sphere collisions.

the performance benefit of such a loss was no better than simply increasing
predicted radii by 1%, in terms of percentage of vertices protruding from their
predicted nodes.

When we cluster the modal matrix U, we experience a code reconstruction
error of at most 5%. Because this error is systematic, our networks are able to
overcome it and produce results on par with unclustered methods. We addition-
ally find that increasing the radii of a clustered model by 1-2% will result in
vertex containment better than its unclustered counterpart.

Fig. 5 shows the timing results for colliding two objects. For these tests,
we used a collision scenario that occurs often in practice with physics based
modeling: with the two objects touching at a few places but with no deep inter-
penetrations. We compare our method against a traditional bottom-up ‘exact’
sphere tree. With the exact sphere tree, we need to scan the whole mesh to
update the tree (red dotted line). On the other hand, with our method (blue
dotted line), we are able to quickly compute the code % using the clustering
approach—no matter how large the mesh is, as long as U is the same size, it
takes the same amount of time to compute the code (blue rectangle in Fig. 3a).
This is a reasonable assumption when working with different resolutions of the
same object, since the modes are likely to be similar, and the vertex clusters
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(i.e., 1071 = 0.1%).

are also likely to be similar. The actual colliding of the spheres (dashed lines)
is faster with the exact approach, because once the spheres are constructed,
the collision check only involves the cheap distance check between spheres. Our
method is required to evaluate an MLP to compute the center and the radius,
and so it is relatively more expensive to perform these checks. In essence, the
long-term trajectory of our approach does not depend on the vertex count but
on the modes and the clusters, all the while being able to account for full-space
deformations due to the neural corrections.

We find that our trained networks learn bounds which contain almost all
vertices across our test sets (Fig. 6). At the root level, almost every vertex is
contained, with at most 0.1% protruding from the nodes. Furthermore, we find
that almost all vertices protruding from their respective bounding spheres are
very near the surface of the predicted bounding sphere. As we consider nodes
deeper in the trees, we see that at a depth of 7, only around 1% of vertices
protrude from their spheres. Various predicted tree depths are shown on a test
set deformation in Fig. 9.

In Fig. 7, we demonstrate that across our test set, we learned the correct
radii within at most 1-2%, independent of tree depth. Notably, this percentage
error is very tight as compared to a BD-Tree, which often has radial error of
over 10-20% across our test sets.

In Fig. 10, we visually compare the results of our method against the BD-Tree
method. We find that, even when deformations are small, the BD-Tree method
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is very conservative with it’s bounds, while our method produces bounds much
closer to the ground truth.

Fig. 8 shows how the percentage of vertices of ARMA outside the spheres
decreases as we increase the radii by adding a percentage margin. We vary the
added percentage from 1% to 25%. The errors for top-level spheres quickly reach
zero, whereas the errors for lower-level spheres go down more slowly. However,
we note that even for Level 7 spheres, the decrease is exponential.

5 Conclusion & Future Work

We presented NBD-Tree, a neural network-based approach for collision culling of
full-space deformable objects. NBD-Trees allows for interactive collision culling
for large-scale, full-space deformable objects. It is ideal for collision detection
with a highly detailed mesh, possibly driven by lower resolution physics. The
performance depends not on the discretization of the mesh but on the number
of modes and clusters. Like the classic BD-Tree algorithm, our NBD-Tree algo-
rithm uses low-dimensional modes, but our NBD-Tree algorithm is not limited
to reduced-space deformations because we use a neural network to learn the
corrections needed to update the spheres to enclose full-space deformations that
are in the training set. We compute these low-dimensional modes efficiently and
approximately, without going through every vertex of the mesh, relying on the
network to overcome the potential errors stemming from these approximations.
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Like other learning-based methods, our approach does not work well for ex-
trapolating outside the training set. For extreme deformations that were not seen
before, our spheres will inevitably produce more and more false negatives. We
also need to train the networks for every new object to be simulated. It would
be interesting to see if different discretizations of the same object (e.g., ARMA,
ARMAHD, and ARMAUHD) can share the same trained network. This is likely
to be the case if the modes are compatible, such as linear modal modes.

If there are many deep inter-penetrations, a standard sphere tree that naively
updates its spheres can eventually become cheaper, since their sphere checks are
extremely fast. Conversely, our method is extremely efficient if there are few
collisions with deep inter-penetrations. Our method is fast at computing the code
for the network, but compared to the standard sphere tree, actually carrying out
sphere-sphere collisions is more expensive because an MLP needs to be evaluated
to compute the center and the radius. Our current implementation based on
Eigen can be improved significantly to speed up this process, for example, by
using the GPU.
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Fig.9: Predicted bounding spheres for the ARMAHD mesh, at a test set defor-
mation. We show the results of depths 1, 3, 5 and 7.

(c)

Fig. 10: We compare the results of our method (a) and the traditional BD-Tree
method (c) against the ground truth (b) using 128 modes of deformation. Our
method closely matches the ground truth, while the BD-Tree method is vastly
over conservative with its bounds, even at a mild deformation.

Fig. 11: The predicted bounding spheres at a depth of 7 for a test set deformation
of the ARMAUHD model (left), compared to the ground truth (right).
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